John Billingsley • Robin Bradbeer (Eds.)

Mechatronics and Machine Vision in Practice

With 245 Figures

Prof. Dr. John Billingsley
Faculty of Engineering and Surveying
University of Southern Queensland
Toowoomba, QLD
Australia
billings@usq.edu.au

Prof. Dr. Robin Bradbeer
Department of Electrical Engineering
City University of Hong Kong
88 Tat Chee Avenue
Kowloon, Hong Kong
P.R. China
eersbrad@cityu.edu.hk

ISBN 978-3-540-74026-1

e-ISBN 978-3-540-74027-8

DOI 10.1007/978-3-540-74027-8

Library of Congress Control Number: 2007933848

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper

987654321

springer.com

Foreword

Research papers on the subject of mechatronics cover a great variety of topics. Among them are those that explore new techniques and applications, but all too often there are those others that seek to paint old, tired techniques with a patina of new jargon. You will find none of the latter here. There is a heavy emphasis of the 'in Practice' that completes the title of the conference series from which these papers have been drawn.

The papers were originally reviewed as full manuscripts and now a selection of authors have been invited to rewrite their work for inclusion in this volume.

In the first section, papers with an educational theme have been gathered. Most of them focus on practical experiments that will reinforce a mechatronics course. A variety of techniques for vision analysis form the next section, again stressing a practical emphasis.

The third section focuses on practical applications of machine vision, several of which have been implemented in industry, while the fourth is concerned with techniques within robotics other than vision.

Some of the medical applications of the fifth section might not be for the squeamish. The book is completed with a number of applications that have an agricultural theme.

University of Southern Queensland, Australia City University, Hong Kong John Billingsley Robin Bradbeer November 2007

Contents

Education	
Emergent Behaviour Real-time Programming of a Six-Legged Omni-Directional Mobile Robot: <i>Planning of Viennese Waltz Behaviour Frank Nickols</i>	3
The Hong Kong Underwater Robot Challenge	17
Dynamics and Control of a VTOL Quad-Thrust Aerial Robot Joshua N. Portlock and Samuel N. Cubero	27
Project-oriented Low Cost Autonomous Underwater Vehicle with Servo-visual Control for Mechatronics Curricula	41
Coordination in Mechatronic Engineering Work	51
Vision Techniques	
A Vision System for Depth Perception that Uses Inertial Sensing and Motion Parallax	65
Rate Shape Identification Based on Particle Swarm Optimization	77
Advanced 3D Imaging Technology for Autonomous Manufacturing Systems	87
Vision Based Person Tracking and Following in Unstructured Environments	99

Simple, Robust and Accurate Head-Pose Tracking Using a Single Camera	111
Machine Vision for Beer Keg Asset Management	125
Millimetre Wave Radar Visualisation System: Practical Approach to Transforming Mining Operations	139
An Underwater Camera and Instrumentation System for Monitoring the Undersea Environment	167
Visual Position Estimation for Automatic Landing of a Tail-Sitter Vertical Takeoff and Landing Unmanned Air Vehicle Allen C. Tsai, Peter W. Gibbens and R. Hugh Stone	181
Minutiae-based Fingerprint Alignment Using Phase Correlation	193
Robotic Techniques	
A Snake-like Robot for Inspection Tasks	201
Modelling Pneumatic Muscles as Hydraulic Muscles for Use as an Underwater Actuator	209
Automated Tactile Sensory Perception of Contact Using the Distributive Approach	219
Blind Search Inverse Kinematics for Controlling All Types of Serial-link Robot Arms	22

Medical Applications	
Distributive Tactile Sensing Applied to Discriminate Contact and Motion of a Flexible Digit in Invasive Clinical Environments	247
Intelligent Approach to Cordblood Collection	255
An Autonomous Surgical Robot Applied in Practice	261
Development of an Intelligent Physiotherapy System	267
Visual Prostheses for the Blind: A Framework for Information Presentation	275
Computer-based Method of Determining the Path of a HIFU Beam Through Tissue Layers from Medical Images to Improve Cancer Treatment	289
Agricultural Applications	
On-the-go Machine Vision Sensing of Cotton Plant Geometric Parameters: First Results	305
Robotics for Agricultural Systems	313
More Machine Vision Applications in the NCEA	. 333
Authors	345
* .	2.45