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Abstract: COVID-19 and heart failure (HF) are common disorders and although they share some
similar symptoms, they require different treatments. Accurate diagnosis of these disorders is crucial
for disease management, including patient isolation to curb infection spread of COVID-19. In this
work, we aim to develop a computer-aided diagnostic system that can accurately differentiate these
three classes (normal, COVID-19 and HF) using cough sounds. A novel handcrafted model was used
to classify COVID-19 vs. healthy (Case 1), HF vs. healthy (Case 2) and COVID-19 vs. HF vs. healthy
(Case 3) automatically using deoxyribonucleic acid (DNA) patterns. The model was developed using
the cough sounds collected from 241 COVID-19 patients, 244 HF patients, and 247 healthy subjects
using a hand phone. To the best our knowledge, this is the first work to automatically classify healthy
subjects, HF and COVID-19 patients using cough sounds signals. Our proposed model comprises
a graph-based local feature generator (DNA pattern), an iterative maximum relevance minimum
redundancy (ImRMR) iterative feature selector, with classification using the k-nearest neighbor
classifier. Our proposed model attained an accuracy of 100.0%, 99.38%, and 99.49% for Case 1, Case 2,
and Case 3, respectively. The developed system is completely automated and economical, and can be
utilized to accurately detect COVID-19 versus HF using cough sounds.

Keywords: COVID-19; heart failure; cough sounds; DNA pattern; advanced sound processing

1. Introduction

The COVID-19 pandemic is continuing to the present time despite recent vaccina-
tion efforts. Experts advise people to continue to wear masks, implement sanitization
procedures, and avoid crowds [1,2]. Curfews still exist in many countries. COVID-19
has disrupted normal life and has strained national health resources, even more so at
the beginning of the pandemic [3]. A new normal is necessary to limit its spread [4] and
people are often living in isolation according to quarantine rules [5,6]. Many patients with
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pre-existing chronic illnesses such as heart failure (HF) suffer restricted access to routine
medical care, and may thus risk acute clinical deterioration that requires hospitalization [7].
COVID-19 and HF share similar clinical presentations, such as symptoms of breathlessness
and a cough; however the treatment mode is much different. Accurate differentiation
of these disorders is therefore crucial for appropriate medical management, including
deciding whether to promptly isolate a suspected COVID-19 patient to curb the spread of
infection. Machine learning models can potentially be used to aid medical personnel in
clinics and hospital settings to diagnose and triage both conditions automatically [8].

Many machine learning techniques have been reported for computer-aided diagnosis
of diverse diseases [9–12] that may reduce clinician burden [13,14]. Moreover, many
machine learning techniques have been used in many different disciplines [15–17]. In
this study, a machine learning method was proposed for automatic differentiation of
COVID-19 vs. HF conditions based on cough sounds, which can readily be recorded at
low-cost using mobile phone technology. Details of the proposed method are elucidated in
the relevant subsections.

Our group has previously described a rapid and accurate machine learning technique
for the automated classification of heart valve disorders. It employed a distinctive graph
pattern to generate features from heart sounds recorded on phonocardiography [18]. For
the current study, we again exploit graph theory by using the chemical structures nucleotide
basic units of the deoxyribonucleic acid (DNA) molecule, hence the name “DNA pattern”,
for local feature (microstructure) generation in our proposed model. As both COVID-19
and HF can present with cough symptoms, we chose to study mobile phone recordings
of cough sounds, which were then processed into one-second segments. The presented
DNA pattern extracted 1024 features from each sound segment. The most valuable features
were selected using iterative maximum relevance minimum redundancy (ImRMR) and
classification was performed using the standard k-nearest neighbor (kNN) classifier [19].
We aimed to study the feasibility of feature generation when utilizing these DNA patterns,
as well as the diagnostic performance of the DNA pattern-based model, for automatic
classification of cough sounds for COVID-19 and HF diagnosis.

The novel aspects of the proposed model include:

• New local feature generator based on graph theory and the chemical structure of
nucleotide basic units of the DNA molecule, which we labelled as DNA pattern-based.

• New prospectively acquired dataset comprising cough sounds recorded from healthy
subjects, COVID-19, and HF patients using basic smart phone microphones, which we
divided into standardized one-second sound segments for analysis.

• To the best our knowledge, this is the first work to automatically classify healthy
subjects, HF and COVID-19 patients using cough sounds signals.

• The major contributions of this study include:
• Three distinct clinically relevant classification problems were defined: Case 1, COVID-19

vs. healthy; Case 2, HF vs. healthy; and Case 3, COVID-19 vs. HF vs. healthy.
• The DNA pattern- and ImRMR-based model combined with the standard kNN classi-

fier attained excellent results, with greater than 99% accuracy for every Case.

Here, we review selected publications on computer-aided diagnostic systems for HF
and COVID-19 detection using biomedical signals and imaging readouts, respectively.
Masetic and Subasi [20] developed an electrocardiogram (ECG) method based on the
autoregressive Burg method and random forest classifier, tested it on the MIT BIH ar-
rhythmia [21], PTB diagnostic ECG [22] and BIDMC-congestive HF datasets [21,23], and
reported a 100.0% accuracy rate for HF diagnosis. Tripathy et al. [24] processed ECGs from
the MIT BIH arrhythmia [25] and BIDMC congestive HF datasets [21,23] using a high-pass
filter and applied Stockwell-transform for time-frequency analysis to extract entropy fea-
tures. Using hybrid classifiers with mean metric, 98.78% accuracy rate was reported for
congestive HF detection. Porumb et al. [26] developed a convolutional neural network
(CNN) model to diagnose congestive HF on single raw ECG heartbeats, and reported
100.0% accuracy after analyzing 490,505 individual ECG heartbeat signals. Abbas et al. [27]
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tested a DeTraC (Decompose, Transfer and Compose) CNN model on a combined chest
X-ray image dataset [28,29], and reported a 93.10% accuracy rate for COVID-19 diagno-
sis. Jaiswal et al. [30] used a DenseNet201-based image classification model to analyze
computed tomographic (CT) chest images [31], and attained a 96.25% accuracy rate for
discriminating between COVID-19 (+) vs. COVID-19 (−) status. Singh et al. [32] applied
a CNN model on CT chest images and attained a 93.50% accuracy rate for a binary clas-
sification of images into infected (+) vs. infected (−). Horry et al. [33] used a transfer
learning-based method that analyzed X-ray, CT, and ultrasound images from four different
datasets—COVID-19 image data collection [34], NIH chest X-Ray [35], Covid-CT [36],
and POCOVID [37]—and for each imaging modality, calculated the performance metrics
of the different analysis models that included VGG16 [38], VGG19 [38], Xception [39],
InceptionResNetV2 [40], InceptionV3 [41], NASNetLarge [42], DenseNet121 [43], and
ResNet50V2 [44]. For instance, F1-score values for VGG19 were 87.00%, 99.00%, and 78.00%
for X-ray, ultrasound, and CT, respectively. Zebin and Rezvy [45] applied a CNN method
to analyze chest X-ray images for initial COVID-19 classification into COVID-19, normal
and pneumonia classes, as well as for monitoring of disease progression. They reported
90.00%, 96.80%, and 94.30% accuracy rates for VGG-16, EfficientNetB0 [46] and ResNet50
models, respectively.

2. Material and Method
2.1. Material

Using various mobile phones, cough sounds were recorded from 247 healthy subjects
as well as 241 COVID-19 and 244 HF patients who attended Firat University Hospital,
and stored in m4a (719), mp3 (3) or ogg (10) formats. Ethical approval for the study was
obtained from the Firat University Ethics Committee. These recordings were of different
durations and had to be subdivided into standardized one-second sound segments for
analysis. There were 696 (32%), 906 (42%) and 554 (26%) sound segments from healthy
subjects, COVID-19 and HF patients, respectively, out of a total of 2156 segments.

2.2. Method

The model comprised a graph-based local feature generator, an iterative feature
selector, and classification components. The former used graphical depictions of the
chemical structures of nucleotide basic units of the DNA molecule, purine and pyrimidine,
to generate features from cough sounds. The optimal number of features was selected
using ImRMR and classification of the chosen features performed using standard kNN
classifier. A schematic of this model is shown in Figure 1.
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The pseudocode of the model is given in Algorithm 1.

Algorithm 1. Proposed algorithm cough sound-based automatic COVID-19 and HF detection

Input: Cough dataset (CD) with a size of 2156 × 44,100 (2156 is the total number of observations
and 44,100 is the length of each observation. The sampling rate of the sound signal is 44.1 kHz),
labels (y) with a length of 2156.
Output: Results

01: for c = 1 to 2156 do
02: Read each cough sound.
03: Extract 1024 features deploying DNA patterns.
04: end for c
05: Apply ImRMR to features generated.
06: Classify the features selected using kNN.
07: Obtain results.

2.2.1. DNA Pattern

A new DNA pattern-based local feature generator was proposed. There have been
several graph-based feature extraction models in the literature [18,47] and molecular
structure graphs used in deep learning models and graph networks have attained high
classification performance [48,49]. In this study, we used the aromatic heterocyclic chemical
structures of nucleotide basic units of the DNA molecule purine with its fused six- and five-
membered ring conformation; and pyrimidine, its six-membered ring to generate features
from cough sound signal segments. Each purine nucleotide unit (adenine, guanine) on
one DNA strand is hydrogen-bonded to the corresponding pyrimidine nucleotide unit
(thymine, cytosine) of the second DNA strand (base pairing) to collectively form the DNA
double helix, which is the basis of our genetic code. The chemical structures of purines and
pyrimidines are topologically distinctive and can be represented as directed cyclic graphs
(Figure 2). These graphs are utilized as the pattern of a histogram-based local feature
generator. As can be seen in Figure 2, there are 25 edges in these two graphs, and these
edges are denoted parameters of generated binary features.
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Figure 2. Directed cyclic graphical representations of purine (fused six- and five-membered ring
conformation) and pyrimidine (six-membered ring). Individual directed paths are constructed using
red arrows, which are enumerated. The initial and final points of each arrow represent the first
and second parameters of the signum function for bit generation, respectively. With both structures
combined, 25 bits (total number of directed paths) can be generated using 5 × 7 and 6 × 5 sized
matrices (see text).

A schematic of the proposed DNA pattern-based feature generation is shown in Figure 3.
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Steps of the proposed DNA pattern-based feature generation:
Step 1: Divide cough sound into overlapping blocks with a size of 35.
Step 2: Create first matrix with a size of 5 × 7 using vector to matrix transformation.
Step 3: Use the purine pattern and signum function to generate 14 bits. The definition

of the signum function is given in Equation (1).

γ( f , s) =
{

0, f − s < 0
1, f − s ≥ 0

(1)

where γ(., .), f and s are the signum function first and second parameters, respectively.
Step 4: Divide cough sound into overlapping blocks of size 30.
Step 5: Create a second matrix with dimension 6 × 5 using vector-to-

matrix transformation.
Step 6: Use the pyrimidine pattern and signum function to generate 11 bits.
Step 7: Merge the generated bits (total 25 bits) from Steps 3 and 6.
Step 8: Divide these bits into left, middle and right groups.

le f t(j) = bit(j), j ∈ {1, 2, . . . , 8} (2)

middle(k) = bit(k + 8), k ∈ {1, 2, . . . , 9} (3)

right(j) = bit(j + 17) (4)

From Equations (2)–(4), left, middle and right bit groups contain 8, 9, and 8 bits, respectively.
Step 9: Create three map signals using the generated bit groups.

m1(i) =
8

∑
j=1

le f t(j) ∗ 2j−1 (5)

m2(i) =
9

∑
k=1

middle(k) ∗ 2k−1 (6)

m3(i) =
8

∑
j=1

right(j) ∗ 2j−1 (7)
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where m1, m2 and m3 are the generated first, second, and third map sounds for feature
generation. Histograms of these map sounds are extracted to obtain feature vectors. From
Equations (5)–(9), these signals are coded with 8, 9, and 8 bits, respectively.

Step 10: Extract histograms of m1, m2, and m3. The lengths of the created histograms
of m1, m2, and m3 are calculated as 28, 29, and 28, respectively.

Step 11: Merge the extracted histograms to obtain the feature vector of the DNA pattern.

f v(a) = h1(a), a ∈ {1, 2, . . . , 256} (8)

f v(g + 256) = h2(g), g ∈ {1, 2, . . . , 512} (9)

f v(a + 768) = h3(a) (10)

where f v defines a feature vector with length 1024, and h1, h2, and h3 are histograms
extracted using the m1, m2, and m3 map signals, respectively.

The eleven steps above define the DNA pattern-based feature generation. 1024 features
are generated from each sound segment by deploying these steps.

2.2.2. Feature Selection

For automatic selection of the optimal number of generated features, we proposed an
iterative version of the maximum relevance minimum redundancy selector (mRMR) [50],
ImRMR, that incorporated an error calculator with kNN classifier. A schematic of the
ImRMR selector is shown in Figure 4.
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By deploying ImRMR, each of the 1024 features extracted by the DNA pattern is
selected iteratively, and the kNN classifier employed to calculate the resultant error rates
of the selected feature vector. The steps of the ImRMR used are detailed below.

Step 1: Apply mRMR and calculate 1024 index (id) values.
Step 2: Select features using the id that has been calculated in Step 1.

s f i(k, j) = f v(k, id(j)), i ∈ {1, 2, . . . , 1024}, j ∈ {1, 2, . . . , i}, k ∈ {1, 2, . . . , 2156} (11)
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where s f i represents ith selected features, and k is the number of observations. Here,
iterative feature selection is described.

Step 3: Calculate loss values of each feature vector selected using the kNN classifier
with 10-fold cross-validation.

µ(i) = kNN
(

s f i
)

(12)

In Equation (12), µ and kNN(.) represent the error value and the kNN classifier, respectively.
Step 4: Find the minimum loss value.
Step 5: Select optimal feature vector (last) using index (ind) of the minimum error value.

last(k, j) = f v(k, id(j)), j ∈ {1, 2, . . . , ind}, k ∈ {1, 2, . . . , 2156} (13)

2.2.3. Classification

A standard distance classifier (kNN) [19] was utilized for selecting the best and optimal
number of feature vectors (it functioned as error value generator, see Section 2.2.2) as well
as for calculating the classification results. Parameters of the kNN are: k was selected as
one; distance parameter, Spearman; distance weight, equal; and standardize, true. Ten-fold
cross-validation was chosen as the validation technique.

3. Results
3.1. Experimental Setup

The MATLAB (2020b) coding environment was used to develop the proposed DNA
pattern- and ImRMR-based cough sound classification model. Systems configuration of
the computer used were as follows:

Operating system: Window 10.1 professional,
RAM: 48 gigabytes,
CPU: Intel i9 9900 with 3.60 GHz cycling frequency,
Specifically, neither graphical core nor parallel processing was used to develop

the model.

3.2. Cases

To evaluate the proposed model comprehensively, three distinct clinically relevant
classification problems were defined based on the collected cough sound dataset:

Case 1: COVID-19 vs. healthy binary classification. 906 + 696 = 1602 observations
were analyzed, and ImRMR was implemented to select 198 features.

Case 2: HF vs. healthy binary classification. 554 + 696 = 1250 observations were
analyzed, and ImRMR selected 50 features.

Case 3: COVID-19 vs. HF vs. healthy multiclass classification. 906 + 554 + 696 = 2156
observations were analyzed, and ImRMR selected 895 features.

3.3. Results

Standard performance metrics including accuracy, sensitivity, precision, F1-score, and
geometric mean [51] were evaluated (see Table 1) and confusion matrices constructed
(Figure 5) for all Cases. High classification accuracy rates of 99.38%, 100% and 99.49% were
attained for Case 1, Case 2 and Case 3, respectively, with low rates of classification error.

Table 1. Model performance metrics (%) obtained for various Cases.

Case Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Geometric Mean (%)

Case 1 99.38 98.90 100 99.45 99.45
Case 2 100 100 100 100 100
Case 3 99.49 99.60 99.35 99.47 99.59
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The time burden (computational complexity) of the presented model was denoted
using big O notation. The time complexity of the DNA pattern-based local feature generator
function was O(n), where n was the length of the cough sound segment analyzed. ImRMR
used both kNN and mRMR, and constituted the most complex phase of the model. Its time
burden was O

(
Mlnd2), where M, l and d were the iteration number, length of the features,

and number of observations, respectively. In the classification phase, kNN was used and
the associated time complexity was O(nd).

4. Discussion

Cough sound-based COVID-19 detection is an emerging field of research for both
clinicians and machine learning experts. The prevalence and incidence of HF has been on
the increase even before the onset of the COVID-19 pandemic, and is now often affected
by a lack of access to routine medical care. The clinical presentations of both COVID-19
and HF can overlap, which underscores the need for the development of computer-aided
diagnostic tools to support clinicians in triage and management. Both conditions can
induce cough symptoms. Therefore, we collected cough sounds from COVID-19 and HF
patients, as well as healthy subjects, to test the performance of our proposed DNA pattern-
and ImRMR-based model. Our proposed model is able to classify three clinically relevant
classification problems: COVID-19 vs. healthy; HF vs. healthy; and COVID-19 vs. HF vs.
healthy. The model generated 1024 features from each one-second cough sound segment.
An iterative feature selector is employed to select the most discriminative features. We
presented the results obtained using ImRMR, iterative neighborhood component analysis
(INCA), iterative ReliefF (IRF) and iterative Chi2 (IChi2) feature selectors. The plots of
error rates versus number of features selected using these feature selectors implemented
for Case 3 are shown in Figure 6.
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It can be noted from Figure 6 that the number of features selected corresponding
to least error rates for Case 3 classification using IChi2, INCA, IRF and ImRMR are 226,
802, 701, and 895, respectively. The minimum error rate of 0.0051 is obtained for ImRMR,
0.006 for IChi2, INCA, and IRF selectors. Application of ImRMR to Case 1 and Case 2
yielded minimum error rates of 0.0062 and 0 for 198 and 50 selected features, respectively
(Figure 7). Overall, the model attained 99.38%, 100% and 99.49% accuracy rates for Case 1,
Case 2 and Case 3 classifications, respectively.

The Standard kNN classifier is employed for calculating the error rate during the
feature selection phase (see Section 2.2.3) in order to obtain classification results. We have
used decision tree (DT) [52], linear discriminant (LD) [53], naïve Bayes (NB) [54], support
vector machine (SVM) [55], kNN [19], bagged tree (BT) [56], and subspace discriminant
(SD) [57] classifiers in addition to kNN for the classification tasks using 1024 features. It can
be noted from Figure 8 that the best results are obtained using the kNN classifier. Therefore,
kNN is selected both as the classifier and the error/loss value generator in the features
selection phase.
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The performance parameters (%) obtained for automated COVID-19 detection using
cough sound signals is depicted in Table 2.

Table 2. Performance metrics (%) obtained for automated COVID-19 detection using cough sound signals.

Study Method Classifier Dataset Subjects/Samples Results (%)

Brown et al.
[58]

Mel-Frequency Cepstral
Coefficients

Support vector
machine

Collected
data

23 COVID-19 with cough
29 No-covid19 with cough

AUC: 82.00
Pre: 80.00
Rec: 72.00

Wei et al. [59]

Convolution neural
networks,

Mel-frequency cepstral
coefficients

Support vector
machine

Collected
data

64 COVID-19
40 Healthy

20 Bronchitis
20 Chronic pharyngitis

10 children with pertussis
39 Smoking subject

Sen: 98.70
Spe: 94.70 for

COVID-19
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Table 2. Cont.

Study Method Classifier Dataset Subjects/Samples Results (%)

Xia et al. [60] Convolutional neural
networks Softmax Collected

data
330 COVID-19

688 Healthy
AUC: 74.00
Sen: 68.00
Spe: 69.00

Hassan et al.
[61]

Recurrent neural
network, long-short

term memory
Recurrent

neural network
Collected

data
60 Healthy

20 COVID-19

Acc: 97.00
AUC: 97.40

F1: 97.90
Rec: 96.40
Pre:99.30

Pahar et al.
[62]

Mel frequency cepstral
coefficients, log

energies, zero-crossing
rate, kurtosis

Long
short-term
memory,

sequential
forward search

1. Coswara
[63],

2. Sarcos
[64] dataset

1. 1079 healthy
92 COVID-19

2. 13 COVID-19 negative
8 COVID-19 positive

Spe: 96.00
Sen: 91.00
Acc: 92.91

AUC: 93.75
for combined

dataset

Schuller et al.
[65]

Deep spectrum,
autoencoders

Convolutional
neural

networks

Cambridge
COVID-19

sound
database
[58,66]

119 COVID-19
606 No-COVID-19 UAR: 73.90

Andreu-Perez
et al. [67]

Empirical mode
decomposition,

convolutional neural
networks

Artificial neural
network

Collected
data

2339
COVID-19 positive

6041 COVID-19 negative

AUC: 66.41
Pre: 76.04
Sen: 76.64
Spe: 67.00

Chowdhury
et al. [68]

Convolutional neural
networks

Convolutional
neural

networks

Coswara
[63],

Cambridge
[58],

CoughVid
[69] dataset.

582 healthy
141 COVID-19 patients

Acc: 95.86
Pre: 95.84
Sen: 95.86
F1: 95.84

Spe: 93.43

Maleki [70]
Mel frequency cepstral
coefficients, Sequential

forward selection

Euclidean
k-nearest
neighbors

Combined
dataset
(Virufy

COVID-19
open cough
data set [71],
NoCoCoDa

[72])

48 COVID-19 positive
73 COVID-19 negative

Acc: 98.33
F1: 97.99

AUC: 98.60
Sen: 100.0 for

Non-COVID-19
Sen: 97.20 for

COVID-19

Mouawad
et al. [73]

Mel frequency cepstral
coefficients, recurrence
quantification analysis

Weighted
XGBoost

Collected
data

1895 healthy
32 sick samples

Acc: 97.00
F1: 62.00

AUC: 84.00

Our method DNA pattern k-nearest
neighbors

Collected
data

247 healthy 241 COVID-19
244 heart failure

Acc: 99.38
Sen: 98.90
Pre: 100.0
F1: 99.45

Gm: 99.45
for Case 1
Acc: 100.0
Sen: 100.0
Pre: 100.0
F1: 100.0

Gm: 100.0
for Case 2
Acc: 99.49
Sen: 99.60
Pre: 99.35
F1: 99.47

Gm: 99.59
for Case 3

AUC: Area under the ROC curve, Acc: Accuracy, Sen: Sensitivity, Spe: Specificity, Pre: Precision, F1: F1-Score, Gm: Geometric mean,
Rec: Recall.
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The benefits and disadvantages of our proposed DNA pattern-based method are
given below.

The benefits are as follows.

• Developed a new cough sound dataset, which was collected from healthy subjects,
and COVID-19 and HF patients.

• Presented a novel histogram-based feature generator inspired by DNA patterns. To
the best our knowledge, this is the first work to automatically classify healthy subjects,
HF and COVID-19 patients using cough sounds signals.

• Proposed a DNA pattern- and ImRMR-based model which attained greater than 99%
accuracy for all (binary and multiclass) defined classification problems.

• Generated an automated model based on cough sounds that is accurate, economical,
rapid, and computationally lightweight.

• The limitations of this work are given below:
• The system should be validated with a larger dataset prior to clinical application.
• Only a three-class system was used (normal, COVID-19 and HF).

We have presented a histogram-based hand-modeled feature generation function us-
ing the DNA molecular pattern. New-generation deep learning models based on molecular
shapes can be further studied to improve model performance. A snapshot of cloud-based
cough detection via mobile application with cough sounds is presented in Figure 9.
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5. Conclusions

This paper presents a new automated COVID-19 and HF failure detection model
using cough sounds. This model extracts subtle features from a cough sound signal using
a histogram-based feature generator with a chemical structure of DNA molecule. The
proposed DNA patterns used for feature bit generation, combined with the ImRMR and
kNN classifier, yielded an accuracy of 99.38%, 100%, and 99.49% for COVID-19 vs. healthy,
HF vs. healthy, and COVID-19 vs. HF vs. healthy diagnoses, respectively. The model is
accurate, economical and computationally lightweight. In the future, we intend to detect
asthma in addition to the three classes currently used for cough sound signal analysis.
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