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Summary. A modified Lundgren’s model (the LABSRL model) accounting for the effect of 

surface tension is applied for the description of stationary bathtub vortices in a viscous liquid 

with a free surface. Laminar liquid flow through the circular bottom orifice is considered in a 

horizontally unbounded domain with the liquid being assumed to be undisturbed at infinity and 

approaching to a constant depth. An approximate analytical solution of the LABSRL model is 

obtained for small-dent vortices. Good agreement is achieved between the constructed 

analytical and numerical solutions for the same set of parameters. 
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 1. Introduction 

Whirlpools or bathtub vortices often appear in bathes, kitchen sinks, laboratory tanks or 

industrial reservoirs. In spite of their daily occurrences, their structure, formation and 

subsequent dynamics are still not completely understood and adequately described.  

One of the most successful models describing a structure of bathtub vortices in a rotating 

vessel has been the analytical model proposed by Lundgren [6]. Andersen et al. [1, 2] further 

extended the model to include the surface tension and bottom upwelling due to viscous effect 

in the Ekman boundary layer near the outlet orifice. This modified model, designated as the 

LABSRL model, was verified against the experimental data on whirlpools observation in a 

rotating cylinder with water circulating at a given flow rate. By adjusting two fitting parameters 

and solving the resultant set of ordinary differential equations (ODEs) numerically, Andersen 

et al. [1, 2] obtained good agreement between the theoretical/numerical results and 

experimental data for moderate flow conditions: drain rate through the vessel, Q ~ 1.810
–6

 

m
3
/s, and vessel rotation rate,  ~ 1.26 rad/s (~ 12 rpm). The experiments demonstrated that 

the surface tension significantly affected both the whirlpool shape and its dip, at least when the 

whirlpool dent was found to be relatively small. In particular, the model without surface 

tension in one of the cases studied overestimated the depth of experimentally registered 

whirlpool by 70%, whereas the model with surface tension agreed well with the experimental 

data.  

In the book by Lautrup [5], a model, which bears many similarities with the Lundgren’s 

model, has been derived in describing bathtub vortices in a non-rotating vessel without surface 

tension. Miles [7], essentially considering the Lundgren–Lautrup model, constructed an 

approximate solution for the free surface shape caused by a bathtub vortex in the liquid. His 

solution may well be regarded as an extension of Rott’s solution [9] based on the Burgers’ 

vortex theory in viscous fluid [3]. The analytical results from Miles [7] were found to agree 
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rather well with Lundgren’s numerical solution [6] in the range of theory validity, i.e. when the 

whirlpool dip was small in comparison to the total fluid depth.  

In our recent work [10], the LABSRL-model with surface tension has been reconsidered for 

whirlpools in a non-rotating vessel. Basic set of equations was re-examined, derived 

independently, and studied numerically. The improved LABSRL-model was capable of not 

only describing the subcritical regime of liquid discharge when whirlpools of small dent 

appeared on the surface but also critical and even supercritical regimes when the gaseous 

vortex cores occupied some portion of the bottom outlet orifice. Flow parameters providing the 

existence of such intense vortices were determined and analysed by neglecting the surface 

tension. It should be noted that accounting surface tension into the model dramatically 

increased the complexity of the theoretical and numerical analyses. In [1, 2] and [10], the 

influence of surface tension was numerically calculated for relatively shallow whirlpools, i.e. 

for whirlpools of small dents. The motivation for the current study is to further ascertain the 

important influence of surface tension on whirlpool shapes at least in a first approximation 

from an analytical perspective. Results obtained through the LABSRL-model with surface 

tension are presented below. 

 

2.  The LABSRL model 

Consider a stationary whirlpool and associated surface depression in a liquid discharging 

from the vessel though the bottom orifice whose radius r0 is taken to be much smaller in 

comparison with the vessel radius R0 (see Fig. 1). The basic set of hydrodynamic equations in 

cylindrical coordinate system can be presented in dimensionless form (see, e.g., [8, 6, 10]) as: 
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Fig. 1. A schematic drawing of a liquid flow with a small-dent whirlpool in the cylindrical 

coordinate system. Vessel radius R0 is not shown in the figure because it is much greater than 

the radius of the bottom orifice r0. 
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The variables are normalized as: 

 

 = r/H0,    = z/H0,   {wr, w, wz} = {ur, u, uz}/Ug,   P = p/(Ug
2
),   Reg = H0Ug/,               (5) 

 

where ur, u and uz are the components of the velocity field in cylindrical coordinate system, Ug 

= (gH0)
1/2

 is the characteristic velocity parameter, H0 is the unperturbed liquid depth at infinity, 

 is liquid kinematic viscosity and Reg is the “geometric” Reynolds number based on the liquid 

depth rather than on real fluid velocity. 
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In the above equations (2) and (4), the pressure field is determined by the formula (for 

details see [10]): 
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where P0 is the normalized atmospheric pressure, h() = H()/H0 is the normalized liquid depth 

with H(r) being the dimensional liquid depth (see Fig. 1), and the last term represents the 

normalized pressure due to surface tension with the dimensionless coefficient 

2 2

0 0We gU H gH      being the Weber number;  is the surface tension coefficient of 

the gas/liquid interface (cf. [1, 2]).  

As shown in [6, 1, 2, 5, 10], this set of hydrodynamic equations can be reduced to the 

simplified set of ODEs according to:  
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where R = r0/H0 is the normalized radius of the output orifice and  2

0 02RQ Q H r   

  0Re 2g gU U is the dimensionless liquid discharge rate with U0 being the average drainage 

velocity through the outlet pipe. 

These equations are complemented by the boundary conditions at  = 0: 
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and at  = : 
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There are six parameters altogether characterizing the stationary whirlpool: QR, We, R, h0, 

0h , and w
 . For the given values of external parameters which determine the global liquid 

flow, viz., QR, We and R, three other parameters determining the internal whirlpool structure, 

h0, 0h , and w
 , play a vital role in ascertaining the eigenvalue vector  = {h0, 0h , w

 }. Only 

at certain values of , physically acceptable solutions of the boundary-value problem of 

equations (7)–(10) can exist. At special conditions, some of the external parameters become 

appreciably small; the boundary-value problem of equations (7)–(10) can thus be simplified. 

Numerical solutions of this boundary-value problem were constructed and discussed in [10]. In 

this paper, we present some results of numerical calculations to validate the analytically 

constructed approximate solution. For the sake of simplicity, the characteristic vortex radius 

(which will be precisely defined below) is assumed to be much smaller than the radius of the 

output orifice, so that the parameter R becomes unimportant. The essential domain of 

consideration is then  << R.  

 

3. Approximate analytical solution to the LABSRL model 

By assuming that the circulation in the liquid is very small and the depth being sufficiently 

large, the surface dent caused by the liquid discharge through the bottom outlet can be safely 
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neglected. In this limit, the solution of equations (6) and (7) subject to the boundary conditions 

(8) and (9) is the so-called Burgers–Rott vortex (see [3, 9, 7]): 
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where K = /(UgH0) is the dimensionless Kolf number defined through the average liquid 

circulation .  

The characteristic vortex radius, i.e. the coordinate where the azimuthal velocity maximum 

occurs is: 0 2c c Rr H Q   , where   1.256 is the root of the transcendental equation 

2 1e   . The maximum value of azimuthal velocity is: 
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Carrying out the transformation whereby x = QR
1/2 and  

max
w w    and denoting 

 
2

max
w   and WeRQ  , equations (7) and (8) can be expressed in terms of the new 

variables as: 
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When  = 0, this set of equations is equivalent to that considered by Miles [7] who 

constructed an approximate analytical solution for the whirlpool shape assuming the parameter 

 << 1. Accordingly, both parameters  and  are assumed to be small but finite as well as the 

hierarchical condition of  <<  << 1 prevails. These inequalities in the dimensional variables 

is equivalent to the following relationship between physical parameters: 

   
22

0 2 193.87H      and  0 0 2U H g   . For water whirlpools, these 

conditions reduce particularly to 00.118 H  m2
/s and 0 00.243U H  m/s. 

Expressing a solution to the set of equations (13) and (14) in the form of Taylor series in the 

parameters  and , it can be shown that in the leading order the series are given as: 



h(x) = 1 +  h(x) + h(x) + … ,     υ(x) = υ(x) + υ(x) +  
υ(x) + … ,                           (15) 

 

where υ(x) is the zero-order solution (11) for the azimuthal velocity in new variables, viz, 

 
2 2

0 ( ) 1 xx e x    , and hi(x) and υi(x) are the first-, second-, and higher-order corrections. 

Substitution these series into equations (13) and (14) yields the equations for the first-order 

corrections to functions h(x) and υ(x) on the parameter  only: 

 

2

01dh

dx x


 ,                                                                                                                     (16) 

 

   1 0

1 1

1 1d x d xd d
x h

dx x dx dx x dx

 


   
     

   
.                                                                            (17) 

 

Integration of the above equations subject to the boundary conditions (9) and (10) results in 

the following expression for the liquid surface (cf. [7]): 
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     , is the exponential integral (see, e.g., the website [12]). 

The first-order correction to the azimuthal velocity component is described by the following 

equation: 
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Integrating this equation yields 
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where CEM  0.5772, which is the Euler–Mascheroni constant. 

Essentially, the same solutions for the first-order corrections have been obtained by Miles 

[7]. The expression for the velocity correction, υ(x), is however left in the quadrature form in 

his derivation. As shown from above, the corresponding integrals may be calculated in close 

analytical forms and the result can be presented in terms of the same transcendential function 

E1(x) as in the correction to the vortex shape. 

The equations for the second-order corrections h2(x) and υ2(x) are: 
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and their solutions are: 
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Hence, the first-order corrections to the Burgers–Rott vortex due to gravity and surface 

tension effects can be presented through the approximate solutions to the LABSRL model in 

the form of Taylor series of equation (15) with equations (18), (20), (23) and (24) for the 

corresponding terms. Asymptotic representation of this solution in the vicinity of x = 0 is: 
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It is observed from equation (25) that the minimum value of h(x) occurs at x = 0 and equals 

to 
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Therefore, the surface tension correction, proportional to , always acts in the direction of 

diminishing of whirlpool dip. This agrees well with the physical expectation and results of 

experimental observations [1, 2] and numerical modeling [10].  

Note that solution (23) contains terms of the order of  2
, but only in a combination with QR. 

The last parameter can be taken to be substantially large, so that the combination  2
QR may not 

be negligible. Moreover, it can even be much greater than unity. In the last case, the 

characteristic scale of the second-order correction, h2(x), becomes x = 4/(
2QR

1/2
); it is of the 

order of unity if 2
QR


 << 1. 

In the limit of small x, the corrections to the azimuthal velocity both of the first- and 

second-order are proportional to x
3
. For small values of  and , the corrections are very small 

in reality. Hence, the Burgers formula for the vortex velocity 0(x) [3] is a good approximation 

of the azimuthal velocity component in a real whirlpool velocity field, at least when the 

whirlpool dip is relatively small in comparison with the total liquid depth. 

The solution obtained is shown in Fig. 2 for  = 0.0171 and three values of :  = 0 (no 

surface tension),  = 0.0564 and  = 0.1647. It is evidenced that the whirlpool dip diminishes 

due to the effect of surface tension. Its curvature at x = 0 decreases as  increases: 
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Fig. 2. a) – Vortex profile versus dimensionless radial coordinate x for  = 0.0171 and three 

values of :  = 0 (QR = 7.67·10
3
) – dashed line 1 (no surface tension),  = 0.0564 (QR = 

7.67·10
3
) – solid line 2, and  = 0.1647 (QR = 2.24·10

4
) – dashed-dotted line 3. Dotted line 4 

shows unperturbed liquid surface position. b) – azimuthal velocity component versus radial 

coordinate for  =  = 0 (the Burgers vortex) – dashed line 1 and for  = 0.0171,  = 0.1647 – 

solid line 2. (For better resolution only fragments of plots are shown in the range 0  x  5.). 
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Moreover, the curvature becomes negative when  2 40.25 1 16RQ    . In such a case, a 

small narrow hump forms in the centre of the vortex dent (see line 3 in Fig. 2a). A similar 

effect of the hump formation was also obtained in the numerical study of liquid outflow from 

cylindrical vessel [4, 11]. It was found in particular that the hump may reach the unperturbed 

free-surface level [4]. However, such solutions in both papers [4, 11] have been obtained for 

the case of an irrotational liquid discharge within the framework of the potential theory with 

the surface tension being neglected. The hump formation in our case though looks outwardly 

similar at this juncture but is rather different from those in [4, 11]. The physical cause of hump 

formation in all cases, apparently, is related to the fast convergence of the velocity field to the 

vertical axis; this has been demonstrated by Zhou & Graebel in [11]. The phenomenon requires 

further investigation in order to better understand the process of liquid discharge from the 

vessels with and without surface tension, as well as with and without circulation. 

The azimuthal velocity is shown in Fig. 2b for the case of  = 0.1647. The corrections to the 

Burgers velocity profile are very small even for relatively large value of . 

 

4. Comparison of approximate analytical solution with numerical calculations 

To validate the constructed approximate solution, the set of ODEs (11)–(12) was solved 

numerically subject to the corresponding boundary conditions of equations (9) and (10) in the 

new dimensionless variables. The main difficulty with the numerical solution of this boundary-

value problem lies pre-dominantly in determining the appropriate values for the eigenvalue 

vector  = {h0, 0h ,  
}, which essentially contains three unknown parameters for a given set of 

external parameters ,  and QR. The constructed approximate solution from the above 

nonetheless significantly assists in the choice of at least one of three unknown parameters, viz., 

 
.  

As follows from the approximate solution, the velocity gradient,  
, at x = 0 is unaffected 

by the first- and second-order corrections and can thus be taken from the Burgers zero-order 
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solution 0(x). Two other parameters, h0 and 0h , can also been estimated rather accurately from 

the approximate solution. Our calculations have shown that the value of liquid depth in the 

whirlpool centre, h0, was given by the approximate solution fairly precisely, whereas the 

whirlpool curvature at the centre, 0h , being actually only the unknown eigenvalue parameter, 

was easily determined in the course of computations with the starting value taken from the 

approximate solution of equation (27). 

Results of calculations with the same parameters as in Fig. 2 are shown in Fig. 3 for the 

whirlpool profile (line 1 – approximate theoretical solution, dotted line 2 – numerical solution). 
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Fig. 3. Analytical versus numerical solutions for the vortex profile. Case 1:  = 0.0171,  = 

0.0564, QR = 7.67·10
3
, solid line 1 – approximate analytical solution, dotted line 2 – numerical 

solution. Case 2:  = 0.0576,  = 0.24, QR = 8.33, solid line 3 – approximate analytical solution, 

crossed line 4 – numerical solution. Dotted line 5 shows unperturbed liquid surface position. 

 

The numerical solution has been obtained with parameters h0  0.973 and  
  1.11 taken 

from the theoretical prediction. The value of whirlpool curvature at x = 0 was found 

numerically to be about 60 times greater than the theoretically predicted value: 4

0 2.56 10h    . 

Calculations showed that the solution behavior at the right end of the integration interval (in 
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our case xend = 10) was very sensitive to the choice of the parameter 0h  value at the left end of 

the interval, x = 0. The correct solutions were obtained with considerable fine tuning of that 

parameter. 

Values of external dimensionless parameters ,  and QR used in this example corresponded 

to the water discharge at room temperature 25C from the cylindrical vessel of 1 m depth. 

Drainage velocity was taken as U = 5·10
–3

 m/s, water density  = 997.1 kg/m
3
, kinematic 

viscosity  =8.94·10
–7

 m
2
/s, surface tension  = 7.2·10

–2
 N/m, circulation  = 6.52·10

–2
 m

2
/s. 

The depth of the whirlpool dent for such set of parameters is  = 2.67 cm and whirlpool 

characteristic radius is rc = 1.81 cm. 

As expected, good quantitative agreement between the approximate analytical and 

numerical solutions occurred when parameters  and  were small and taken in accordance 

with the assumption  <<  << 1. To assess the robustness of the constructed approximate 

solution when this assumption was violated, the analytical solution for fairly large values of  = 

5.76·10
–2

 and  = 0.24 was obtained and plotted in Fig. 3 (solid line 3) against the numerical 

solution (crossed line 4) for the same external parameters ,  and QR = 8.33. A quantitative 

difference between these two solutions can be clearly seen from Fig. 3. The differences 

between the theoretical and numerical whirlpool parameters were: (h0)theor = 0.96796, (h0)num = 

0.96324; ( 0h )theor = 0, ( 0h )num = 0.01994; ( 
)theor = 1.108, ( 

)num = 0.7756. In spite of these 

differences, vortex profiles (lines 3 and 4) qualitatively agree rather well with each other. 

Theoretical values imposed for the internal eigenvalue parameters were found to be useful in 

attaining the numerical solution. 

 

5. Conclusion 

An approximate analytical solution has been derived from the basic LABSRL model 

describing stationary whirlpools on a surface of viscous liquid flowing out of a container 
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through the bottom orifice. The model is a generalization of the Lundgren model [6] pertaining 

to the case when the surface tension is not negligible. Such extension has been previously 

suggested in [1, 2] for a liquid in a rotating tank. The solution to the LABSRL model 

constructed here also accounts for in the first approximation of the surface tension effect, and 

reduces to the approximate solution ascertained by Miles [7] when the surface tension is 

neglected. The range of applicability of the approximate solution is restricted by relatively 

small discharge velocities and circulations. Consequently, the solution only describes 

whirlpools of relatively small dent depths. 

Theoretical results have been validated by direct numerical calculations. Good agreement 

was achieved between approximate analytical and numerical solutions for the same set of 

parameters within the range of theory validity. Meanwhile, the approximate solution assisted in 

solving the basic boundary value problem for vortex shape and velocity and provided the 

means of obtaining suitable starting values for the three component of the unknown eigenvalue 

vector. This has allowed us to construct numerical solutions even beyond the range of validity 

of the approximate theory. 
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