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Abstract

Purpose - The purpose of this paper is to present a new discretisation scheme, based on

equation-coupled approach and high-order five-point integrated-RBF approximations, for

solving the first biharmonic equation, and its applications in fluid dynamics.

Design/methodology/approach - The first biharmonic equation, which can be defined in a

rectangular or non-rectangular domain, is replaced by two Poisson equations. The field

variables are approximated on overlapping local regions of only five grid points, where the

integrated-RBF approximations are constructed to include nodal values of not only the field

variables but also their second-order derivatives and higher-order ones along the grid lines.

In computing the Dirichlet boundary condition for an intermediate variable, the integration

constants are utilised to incorporate the boundary values of the first-order derivative into

the boundary IRBF approximation.

Findings - These proposed IRBF approximations on the stencil and on the boundary enable

the boundary values of the derivative to be exactly imposed, and the IRBF solution to be

much more accurate and not influenced much by the RBF width. The error is reduced at a

rate that is much greater than four. In fluid-dynamics applications, the method is able to
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capture well the structure of steady highly nonlinear fluid flows using relatively coarse grids.

Originality: The main contribution of this study lies in the development of an effective high-

order five-point stencil based on integrated RBFs for solving the first biharmonic equation

in a coupled set of two Poisson equations. A fast rate of convergence (up to 11) is achieved.

Keywords: first biharmonic equation, coupled-equation approach, compact stencils, inte-

grated radial basis functions, fluid flows

1 Introduction

The first biharmonic equations arise in fluid mechanics and solid mechanics. This kind

of equations, where the variable and its first-order normal derivative are given along the

boundary, can be solved by the non-coupled approach and the coupled-equation approach

(Gupta and Manohar, 1984). For the non-coupled approach, there is only one dependent

variable and thus one needs to solve one resultant set of algebraic equations. In the context

of finite-difference methods, various types of stencils were developed, including the classi-

cal 13-point formula with truncation error of order h2, i.e. O(h2) (Gupta and Manohar,

1984), 25-point formula (O(h4)) (Collatz, 1960) and the compact 9-point formula (O(h4))

(Stephenson, 1984). For the classical 13-point and 25-point stencils, the approximations at

grid points near the boundary need to include points outside of the domain of interest, and

these fictitious points are used for the purpose of incorporating the boundary conditions

(Gupta and Manohar, 1984). The inclusion of fictitious points can be avoided by means

of compact approximations (e.g. Stephenson, 1984; Dehghan and Mohebbi, 2006). For the

compact 9-point stencil (Stephenson, 1984), the first derivatives of the solution in the x

and y directions are also considered as unknowns, resulting in a much larger system of al-

gebraic equations. In (Mai-Duy et al., 2022b), the compact 9-point stencil, based on IRBF

approximations, was presented for the solution of the first biharmonic problem using the

non-coupled approach. Like the compact 9-point stencil in (Stephenson, 1984), there are no

fictitious points involved. However, the error of the IRBF solution is reduced at the rate
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that is much greater than 4.

For the equation-coupled approach, the biharmonic equation is reduced to a coupled set of

two Poisson equations. One only has to deal with second-order derivatives, but needs to

solve two resultant sets of algebraic equations. The main difficulty of this approach is that

the boundary condition for an intermediate variable is unknown, and there is the need for

using an iterative procedure to solve the two resulting coupled algebraic systems. In the

context of finite-difference methods, the classical 5-point stencil, which is a second-order

accurate scheme, and the compact 5-point stencil (Hirsh, 1975), which is a fourth-order

accurate scheme, are typically employed to solve Poisson equations. Effort has been spent

to derive classes of boundary approximations for the boundary condition of a new variable,

and classes of direct and iterative schemes for solving the two resulting algebraic systems

(Roache, 1998).

Radial basis functions (RBFs) have achieved remarkable success in representing functions

and solving partial differential equations (PDEs). The multiquadratic function and some

other types of RBFs yield spectral accuracy for interpolation and derivative approximations.

The RBF approximations can be constructed through differentiation (DRBF) or integration

(IRBF). The governing equations of fluid dynamics have been successfully solved by the

DRBF- and IRBF-based methods (e.g. Mai-Duy and Tanner, 2005,2007; Dehghan and

Shokri, 2008; Kosec and Šarler, 2008,2013; Mohebbi et al., 2014; Ngo-Cong et al., 2017;

Ebrahimijahan and Dehghan, 2021; Ebrahimijahan et al., 2020,2022,2022b; Abbaszadeh et

al., 2022; Mesgarani et al., 2022).

This paper presents a new 5-point stencil, based on high-order IRBF approximations, for

the solution of the first biharmonic problem using the coupled-equation approach, and its

applications in fluid dynamics. The stencil requires only 5 grid points over which the con-

struction of IRBF approximations is based on the 3-point approximations which have been

recently developed in (Mai-Duy and Strunin, 2021; Mai-Duy et al., 2022) for solving second-

order PDEs. For each dependent variable, the coefficients of the interpolation in the physical

space are expressed in terms of not only the nodal values of the variable but also the nodal
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values of its derivatives of second order and higher ones along the grid lines. The inclusion

of nodal values of high-order derivatives enables the solution accuracy to be enhanced and

not affected much by the RBF width, which helps overcome the issue of finding the optimal

RBF width. In computing the Dirichlet boundary condition for an intermediate variable, the

integration constants are utilised to incorporate the boundary values of the first derivative

into the boundary IRBF approximation. If the boundary is not a horizontal/vertical line, the

IRBF approximation at a boundary node is constructed to include only the second derivative

with respect to the coordinate along the associated grid line. This kind of treatment enables

the boundary values of the derivative to be exactly imposed.

The remainder of the paper is organised as follows. Section 2 is a brief review of the gov-

erning biharmonic equation. The proposed method is presented in section 3. In section 4,

numerical verification is carried out, where some test problems with analytic solutions and

some complex fluid flows, which are defined on rectangular and non-rectangular domains,

are considered. Section 5 gives some concluding remarks.

2 Governing equations

Consider the Dirichlet problem for the biharmonic equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= b(x, y), (x, y) ∈ Ω, (1)

u = g1(x, y), (x, y) ∈ ∂Ω, (2)

∂u

∂n
= g2(x, y), (x, y) ∈ ∂Ω, (3)

where Ω is a closed domain in two dimensions, ∂Ω is its boundary, ∂u/∂n represents the

outward normal on ∂Ω, and b(x, y), g1(x, y) and g2(x, y) are some given functions.
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Equation (1) is frequently split into two coupled Poisson equations

∂2u

∂x2
+
∂2u

∂y2
= v, (4)

∂2v

∂x2
+
∂2v

∂y2
= b. (5)

In this work, we are also interested in the solution of the Navier-Stokes equations within the

stream function and vorticity formulation. The steady motion of a viscous incompressible

fluid is governed by the following dimensionless PDEs (Roache, 1998)

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (6)

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
= vx

∂ω

∂x
+ vy

∂ω

∂y
, (7)

where ψ is the stream function, ω the vorticity, Re the Reynolds number, and (vx, vy) the x

and y components of the velocity vector

vx =
∂ψ

∂y
and vy = −∂ψ

∂x
. (8)

The prescribed velocities on the boundary lead to two boundary conditions for the stream

function and zero for the vorticity

ψ = g1(x, y), (x, y) ∈ ∂Ω, (9)

∂ψ

∂n
= g2(x, y), (x, y) ∈ ∂Ω. (10)

It is noted that our present study and previous one (Mai-Duy et al., 2022b) are all concerned

with numerically solving the first biharmonic equation, where Cartesian grids are used to

represent the problem domain, and the discretisations are based on one-dimensional 3-point

IRBF approximations. In (Mai-Duy et al., 2022b), the first biharmonic equation is solved in

its original form (i.e. equation (1)) with the focuses being the discretisation of fourth-order

derivatives and cross/mixed derivatives, and the imposition of double boundary conditions.

In this study, the first biharmonic equation is replaced by two Poisson equations (i.e. (4) and
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(5) (or (6) and (7))) with the focuses being the discretisation of second-order derivatives, the

process of deriving the boundary values for v (or ω) from the discretised form of equation

(4) (or equation (6)) and the boundary condition (3) (or (10)), and the iterative process of

solving the two resulting algebraic systems. The system matrices are constructed from the

proposed compact 5-point stencils, where extra information includes the nodal values of the

second derivatives and higher ones along the grid lines. Unlike the non-coupled approach

reported in (Mai-Duy et al., 2022b), the first-order derivatives of the variable u with respect

to x and y are not included in the IRBF approximations on the proposed 5-point stencil.

There are two types of IRBF approximations used in the proposed method, namely the

IRBF approximations on the 5-point stencils and the one-dimensional IRBF approximations

on the grid lines.

3 Proposed method

3.1 IRBF approximations on the five-point stencil

The construction of the proposed 5-point stencil is based on the one-dimensional 3-point

IRBF approximations (Mai-Duy and Strunin, 2021).

3.1.1 Three-point approximations

We use η to denote the independent variables x and y, and f the dependent variables u

and v. Let IRBFq (q: even number) be an IRBF scheme of order q, in which the RBFs are

integrated q times. For IRBFq, there are q integration constants and one can utilise them

to add q extra equations to the conversion of the RBF space into the physical space (called

the conversion system). For the approximation on a set of 3 grid points (ηi−1, ηi, ηi+1), we

employ these extra equations to impose derivatives of f at ηi−1 and ηi+1. The second-order

derivative of f at ηi is thus expressed in terms of f at (ηi−1, ηi, ηi+1) and its derivatives at
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(ηi−1, ηi+1)

∂2fi
∂η2

= D[q]
2η f̂ , (11)

where D[q]
2η is a row matrix of (3 + q) known coefficients and

f̂ =

(
fi−1, fi, fi+1,

∂2fi−1

∂η2
,
∂2fi+1

∂η2

)T
,

for q = 2, and

f̂ =

(
fi−1, fi, fi+1,

∂2fi−1

∂η2
,
∂2fi+1

∂η2
, . . . ,

∂q/2+1fi−1

∂ηq/2+1
,
∂q/2+1fi+1

∂ηq/2+1

)T
,

for q ≥ 4. Further details can be found in (Mai-Duy and Strunin, 2021).

3.1.2 Five-point stencil

The proposed discretisation is based on 5-point stencils. A stencil consists of the central

point and the four neighbouring nodes, which are denoted by 1-5 (Figure 1). We apply

point collocation to discretise the Poisson equations (4) and (5). At the central node of each

stencil, one has

∂2f3
∂x2

+
∂2f3
∂y2

= F3, (12)

where F3 becomes v3 when the Poisson equation is (4) and b3 when the Poisson equation is

(5).

Using (11), the second-order derivative of f with respect to x is expressed as

∂2f3
∂x2

= D[q]
2x(1)f1 +D[q]

2x(2)f3 +D[q]
2x(3)f5+

D[q]
2x(4)

∂2f1
∂x2

+D[q]
2x(5)

∂2f5
∂x2

+ · · ·+D[q]
2x(q + 2)

∂q/2+1f1
∂xq/2+1

+D[q]
2x(q + 3)

∂q/2+1f5
∂xq/2+1

, (13)

where D[q]
2x(k), k = (1, 2, . . . , q + 3), is the kth element of the coefficient set D[q]

2x.
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Let

R
[q]
2x = D[q]

2x(4)
∂2f1
∂x2

+D[q]
2x(5)

∂2f5
∂x2

+ · · ·+D[q]
2x(q + 2)

∂q/2+1f1
∂xq/2+1

+D[q]
2x(q + 3)

∂q/2+1f5
∂xq/2+1

,

equation (13) reduces to

∂2f3
∂x2

= D[q]
2x(1)f1 +D[q]

2x(2)f3 +D[q]
2x(3)f5 +R

[q]
2x. (14)

In a similar way, the second-order derivative of f with respect to y is expressed as

∂2f3
∂y2

= D[q]
2y(1)f2 +D[q]

2y(2)f3 +D[q]
2y(3)f4 +R

[q]
2y, (15)

where D[q]
2y(k), k = (1, 2, . . . , q + 3), is the kth element of the coefficient set D[q]

2y , and

R
[q]
2y = D[q]

2y(4)
∂2f2
∂y2

+D[q]
2y(5)

∂2f4
∂y2

+ · · ·+D[q]
2y(q + 2)

∂q/2+1f2
∂yq/2+1

+D[q]
2y(q + 3)

∂q/2+1f4
∂yq/2+1

.

Substitution of (14) and (15) into (12) yields

(
D[q]

2x(1)f1 +D[q]
2x(2)f3 +D[q]

2x(3)f5

)
+
(
D[q]

2y(1)f2 +D[q]
2y(2)f3 +D[q]

2y(3)f4

)
= F3 −R[q]

2x −R
[q]
2y,

(16)

where R
[q]
2x and R

[q]
2y are known values taken from a previous iteration. It can be seen that

the resultant algebraic systems have only 5 nonzero entries per row.

3.2 One dimensional IRBF approximations on the grid lines

To obtain nodal derivative values in R
[q]
2x and R

[q]
2y of (16), we also apply an IRBFq scheme

on a grid line, where all nodes on the grid line are involved (Mai-Duy et al., 2022). We use

the notation ā instead of a to denote the width/shape-parameter employed here. Let Nη be

the number of nodes on a grid line. For the first biharmonic problem, the boundary values
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of the first-order derivative of u are given. The presence of integration constants enables the

derivative boundary values (i.e. ∂u/∂η at the two end-points of a grid line) to be included

in the conversion system in an exact manner.

The kth-order derivative of u at ηi is expressed in terms of u at (η1, η2, . . . , ηNη) and its

derivatives at (η1, ηNη)

∂kui
∂ηk

= D̃[q]
kηû, (17)

where D̃[q]
2η is a row matrix of (Nη+2) known coefficients and û =

(
u1, u2, . . . , uNη ,

∂u1
∂η
,
∂uNη
∂η

)T
.

The kth-order derivative of v at ηi is expressed in terms of v at (η1, η2, . . . , ηNη)

∂kvi
∂ηk

= D[q]

kηv̂, (18)

where D[q]

2η is a row matrix of Nη known coefficients and v̂ =
(
v1, v2, . . . , vNη

)T
.

3.3 Dirichlet boundary condition for an intermediate variable

The Dirichlet boundary condition for the variable v is computed through the discretised

form of equation (4) on the boundary

vb =
∂2ub
∂x2

+
∂2ub
∂y2

. (19)

If the boundary is a straight line parallel to the x or y axis, equation (19) reduces, respectively,

to

vb =
∂2ub
∂y2

+ px, (20)

or

vb =
∂2ub
∂x2

+ py, (21)

where px and py are some known values derived from the boundary values of u.

If the boundary is a curved line, one can establish the following analytical relationship
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between ∂2ub/∂x
2 and ∂2ub/∂y

2 (Le-Cao et al., 2009)

tx
ty

∂2ub
∂x2

− ty
tx

∂2ub
∂y2

=
1

ty
∇t

(
∂ub
∂x

)
− 1

tx
∇t

(
∂ub
∂y

)
, (22)

where tx and ty are the x and y components of a unit vector tangent to the boundary. Since

u and ∂u/∂n are given along the boundary, the terms on RHS of (22) can be evaluated.

Making use of (22), like (21) and (20), vb in (19) can be expressed in terms of only ∂2ub/∂x
2

or only ∂2ub/∂y
2, which are used for computing vb at the two end-nodes of a x grid line or a

y grid line, respectively. We use (17) to compute ∂2ub/∂η
2 at a boundary node, where nodal

values along the η grid line associated with that boundary node are used.

3.4 Solution procedure

The resulting algebraic systems can be solved by Picard iterations and Newton-like methods.

They are iterative, where the solution is approached through a series of steps. The key

difference between the two methods lies in the algorithm used within each step and how

the current approximation is obtained from one or more previous approximations. Picard

iterations are known as successive substitution, while Newton-like iterations are gradient-

based methods. The former converges more slowly but involves less work per iteration than

the latter (Dennis and Schnabel, 1996).

Newton-like methods: we apply the trust-region method (More and Sorensen, 1983), where

the termination tolerance on the size of a step is set to 1.0× 10−6.

Picard iterations: the following solution procedure is implemented.

1. Set the nodal values of v and u and their derivatives, except for the boundary values

of u and its first derivative, to zero.

2. Solve equation (4) for the variable u, subjected to the Dirichlet boundary condition

(2).
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3. Relax the solution u

solku = αsolku + (1− α)solk−1
u , 0 < α ≤ 1,

where the superscript k is used to denote the current iteration and solu comprises the

interior values of u

4. Compute derivatives of u along the grid lines, where the approximations are constructed

to satisfy the boundary values of the first derivative of u.

5. Derive the boundary values for v, where equation (4) is reduced to the form that

involves only the second derivative with respect to the coordinate of the associated

grid line, and satisfies the boundary condition (3).

6. Compute the interior values of v using the data from Step 4 and regard it as the

previous interior solution for v.

7. Solve equation (5) for the variable v, subjected to the Dirichlet boundary condition

derived from Step 5.

8. Relax the solution v

solkv = αsolkv + (1− α)solk−1
v , 0 < α ≤ 1,

where the superscript k is used to denote the current iteration and solv comprises the

boundary and interior values of v.

9. Compute derivatives of v along the grid lines.

10. Check convergence

CM =

√∑
i

(
uki − uk−1

i

)2
+
∑

i

(
vki − vk−1

i

)2√∑
i

(
uki
)2

+
∑

i

(
vki
)2 ,

where uki and vki are, respectively, the values of u and v from Step 2 and Step 7. If
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CM is less than a specified tolerance, stop the calculation and output the results.

Otherwise, repeat from Step 2. In this work, the tolerance is set to 1.0× 10−10.

The solving process typically takes a few hundred iterations when using the Picard method

and only a relatively few iterations when using the trust-region method.

Since there are only 5 function values involved in the IRBF approximation of derivatives at

an interior node, the proposed method results in sparse algebraic systems. Furthermore, it

has the ability to handle the case of non-rectangular domains without using any coordinate

transformations. On the other hand, one may need to use extended precision (32-digit

accuracy) to handle local IRBF approximations (i.e. those on the stencils and those on the

grid lines) and there is a need to compute derivatives along the grid lines. It is noted that (i)

for local systems, the matrices are relatively small; (ii) on the grid lines, the approximations

are simply problems of function approximation, where overlapping domain decomposition

can be employed; (iii) one is still able to use double precision over grid lines of 200 nodes

for the case of IRBF2; and (iv) the global system matrices are relatively large and they are

constructed and solved in standard double precision (16-digit accuracy).

4 Numerical examples

The proposed IRBF method is implemented with the multiquadric function.

4.1 Example 1

The method is first tested with the first biharmonic equation defined in the square −1 ≤

x, y ≤ 1. The forcing function and exact solution to this problem are

b(x, y) = 4 sin(πx) sin(πy), (23)

u(x, y) =
1

π4
sin(πx) sin(πy). (24)

12



The boundary conditions u and ∂u/∂n are derived from (24). We employ IRBFq with

q = (2, 4, 6, 8) to construct the approximations on the stencil and grid lines.

Approximations on the stencil: These approximations affect the accuracy of the solution, Ne,

and the condition number of the system matrix, cond(A). Another quantity of interest is the

condition number of the conversion matrix, cond(C). Figures 2, 3 and 4 show the effect of the

RBF width a on Ne, cond(C) and cond(A), respectively. For the approximations along the

grid lines, the RBF width is chosen as ā = 0.01. With regard to the solution accuracy, it can

be seen that the IRBF solution is much more accurate and much less dependent on the RBF

width with an increase in the order of the IRBF scheme. It appears that the IRBF2 solution

does not converge with grid refinement for relatively-large values of a. For the case of using

IRBF6 and IRBF8, the IRBF solution is highly accurate over a wide range of the RBF width.

There is no need for searching the optimal RBF width. For a = 10−5 and a = 10−2, the

solution converges, respectively, as O(h3.69) and O(h2.29) for IRBF4, O(h7.00) and O(h7.30)

for IRBF6, and O(h9.09) and O(h9.08) for IRBF8. With regard to the conversion matrix C,

the condition number does not grow much with the RBF width, especially for coarse grids.

The use of an IRBF scheme of higher order and/or a grid of higher density produces a larger

condition number. With regard to the system matrix A, it can be seen that the condition

number is relatively small and not influenced by the RBF width.

Approximations on the grid lines: These approximations affect the accuracy of the solution,

Ne, but not affect the condition number of the system matrix, cond(A). Other important

quantities are the condition numbers of the conversion matrix for u, cond(Cu), and for v,

cond(Cv). For the approximations on the stencils, the RBF width is taken as a = 0.001.

Figures 5, 6 and 7 show the effect of the RBF width a on Ne, cond(Cu) and cond(Cv),

respectively. With regard to the solution accuracy, it can be seen that the IRBF solution

is more accurate and less dependent on the RBF width with an increase in the order of the

IRBF scheme. It appears that the IRBF2 solution is unstable with grid refinement. For

ā = 10−5 and ā = 10−2, the solution converges, respectively, as O(h4.09) and O(h3.58) for

IRBF4, O(h6.87) and O(h7.01) for IRBF6, O(h9.05) and O(h9.09) for IRBF8. With regard to
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the conversion matrices, it can be seen that the condition numbers are not influenced much

by the RBF width. A higher-order IRBF scheme and a higher-density grid produce a larger

condition number.

4.2 Example 2

Consider the first biharmonic equation with the forcing function

b = (2π)4 [4 cos(2πx) cos(2πy)− cos(2πx)− cos(2πy)] , (25)

and the domain being a region inside the unit square and outside the circle of radius 0.125

(Figure 8). The exact solution is given by

u = [1− cos(2πx)] [1− cos(2πy)] , (26)

from which the boundary conditions u and ∂u/∂n are derived. We also use a Cartesian grid

to represent the domain. The boundary nodes are intersections of the grid lines and the

boundaries. In generating the interior nodes, the grid nodes close to the inner boundary

(within distance h/6, where h is the grid size) are removed (Figure 8). We employ IRBFq

with q = (2, 4, 6, 8) to construct the approximations on the stencil and grid lines.

Approximations on the stencil: Results concerning the accuracy of the solution, Ne, against

the RBF width on the stencils, a, are shown in Figure 9, where the RBF width ā for the

approximations on the grid lines is kept at value of 0.01. The influence of the RBF width

(stencils) becomes less with an increase in the order of the IRBF scheme. It appears that

the IRBF2 solution does not converge with grid refinement for large values of a. For the

case of using IRBF6 and IRBF8, the IRBF solution is highly accurate over a wide range of

the RBF width. There is no need for searching the optimal RBF width. For a = 10−5 and

a = 10−2, the solution converges, respectively, as O(h3.53) and O(h2.10) for IRBF4, O(h8.51)

and O(h8.43) for IRBF6, and O(h11.34) and O(h11.35) for IRBF8.
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Approximations on the grid lines: Results concerning the accuracy of the solution, Ne,

against the RBF width on the grid lines, ā, are shown in Figure 10, where the RBF width

a for the approximations on the stencils is kept at value of 0.001. The influence of the RBF

width (grid lines) becomes less with an increase in the order of the IRBF scheme. It can

be seen that the IRBF2 solution is unstable with respect to grid refinement. For the case

of using IRBF6 and IRBF8, the IRBF solution is highly accurate over a wide range of the

RBF width. There is no need for searching the optimal RBF width. For ā = 10−5 and

ā = 10−2, the solution converges, respectively, as O(h4.35) and O(h3.40) for IRBF4, O(h8.36)

and O(h8.51) for IRBF6, and O(h11.26) and O(h11.34) for IRBF8.

4.3 Example 3

Consider the steady viscous flow in a square cavity with the side length L driven by a lid

that translates parallel to itself with a velocity U . The boundary conditions for the stream

function are

ψ = 0 over all walls, (27)

∂ψ

∂x
= 0 at the sides, (28)

∂ψ

∂y
= 0 at the bottom, (29)

∂ψ

∂y
= U at the lid. (30)

The Reynolds number is defined as Re = UL/ν, where ν is the kinematic viscosity of the

fluid. This is a well-known benchmark problem for the assessment of numerical methods and

the validation of computer codes (Botella and Peyret, 1998).

We simulate the lid-driven cavity flow at the Reynolds number of 0, 100, 400, 1000, 3200,

5000, 7500 and 10000. A trust-region method is used to solve the resulting nonlinear system

of algebraic equations. It is noted that the Picard iteration scheme is appropriate for only

Re ≤ 5000. We take a computed solution at a lower adjacent Re as the initial solution.
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In computing the derivatives of ω along the grid lines, the boundary values of the first

derivative of ω (i.e. ∂3ψb/∂x
3 on the x grid lines and ∂3ψb/∂y

3 on the y grid lines) are

included in the conversion matrices to enhance the approximation quality. The IRBF8

results are compared with the benchmark finite-difference solutions (Ghia et al., 1982) and

the benchmark spectral results (Botella and Peyret, 1998). The latter was mainly reported

for Re = 1000. By reference to the spectral results (converged to 7 digits for the velocities),

Table 1 shows that the percentage of the relative error is small and reduced with an increase

in the grid density. The errors found from a grid of 121 × 121 are lower than 0.05% while

they are up to 2% for the finite-difference results found from a grid of 129 × 129 in (Ghia

et al., 1982). Figures 11 and 12 display, respectively, the streamlines and iso-vorticity lines

of the flow at high Re = (3200, 5000, 7500, 10000) using a uniform grid of 161 × 161. They

all look reasonable. The IRBF solution for Re = 10000 using only 161× 161 = 25921 nodes

are competitive with those found in the literature using 66049 nodes (Ghia et al., 1982) and

39389 nodes (Bayona et al., 2017).

4.4 Example 4

We numerically study the steady viscous flow in an equilateral triangular cavity with one

moving wall. This problem is also considered as an important test case for numerical tech-

niques. The three corners of the cavity are chosen as (0, 0), (
√

3, 3) and (−
√

3, 3). The

boundary conditions are that the velocity is constant U along the top and zero on fixed

walls. Unlike the rectangle, the triangle cannot be mapped onto a square without a singu-

larity (Karunasena et al., 1996). The flow has been simulated by means of finite differences.

In (McQuain et al., 1994), the stream function formulation was employed. It was found

that the finite-difference stencils for the fourth-order PDEs as used for the trapezoid and

rectangle fail completely for the triangle. As a result, the equilateral triangle was mapped

to an isosceles right triangle and nonsymmetric finite-differences stencils were developed to

yield well-conditioned algebraic systems that are solved by using a Newton-like iteration.

The finite-difference results were reported for Re up to 500. In (Li and Tang, 1996), the
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stream function and vorticity formulation was employed. The PDEs were also solved on

a transformed geometry and the results were reported for Re up to 1500. The flow in a

triangular cavity has also been simulated by other types of numerical techniques such as the

finite-element method (Kohno and Bathe, 2006) and the control volume method (Jyotsna

and Vanka, 1995).

In this work, the PDEs are solved on the original geometry (no coordinate transformations

implemented). We simply use a Cartesian grid to represent the triangle (Figure 13). For

any Cartesian grid used, the grid lines near the corners involves only 3 grid nodes, and the

use of low-order IRBF schemes to compute the derivatives along these grid lines appears

more appropriate. In discretisation, we employ IRBF2 on all the grid lines and IRBF8 on

the stencils. Like (McQuain et al., 1994), we also choose the reference length and velocity as

L = 1 and U = 1, respectively. Values of Re, namely 0, 100, 200, 500, 1000, 1500 and 2000,

are considered. We solve the algebraic systems resulting from the IRBF discretisation using

the trust-region method. The IRBF results were reported in Figure 14 for the streamline

patterns and in Figure 15 for the vorticity distribution. They all look reasonable. Table 2

displays the calculated centre locations of the primary vortex and the corresponding stream

function ψc and vorticity ωc. Results from the finite-difference schemes (McQuain et al.,

1994; Li and Tang, 1996) are also included for comparison purposes. It can be seen that

the present results are in good agreement with the finite-difference results for the cases

Re = 100 and 200, and become somehow different when Re ≥ 500. We further check our

results through plotting the location of the centre of the primary eddy as a function of the

Reynolds number. As shown in Figure 16, the location changes smoothly with an increase in

Re; our results are in better agreement with those by the flow-condition-based interpolation

finite-element method (Kohno and Bathe, 2006).

17



5 Concluding remarks

This paper reports an effective high-order discretisation method, based on compact local

integrated-RBF approximations and Cartesian grids, for solving the first biharmonic equa-

tion in a coupled set of two Poisson equations. The proposed method results in algebraic

systems that have only 5 nonzero entries per row. Unlike central-difference schemes, the

method is able to yield a fast rate of convergence with grid refinement (up to about 11) and

can handle the case of non-rectangular domains without using coordinate transformations.

Unlike traditional RBF methods, the present RBF solutions are not sensitive to the change

of the RBF width. The method is tested successfully in several flows that are of primary

importance in practice, including the flow in a triangular cavity.
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Table 1: Lid-driven square-cavity flow: Velocity extremes on the centerlines at Re = 1000.
The percentage error is measured relative to the benchmark special results (Botella and
Peyret, 1998). The errors found from a grid of 101 × 101 are lower than 0.05% while they
are up to 2% for the finite-difference results found from a grid of 129× 129 in (Ghia et al.,
1982).

Grid ymin (vx)min Error(%) xmax (vy)max Error(%) xmin (vy)min Error(%)
81× 81 0.1720 -0.3884 0.03 0.1580 0.3767 0.06 0.9090 -0.5270 0.01
101× 101 0.1720 -0.3885 0.02 0.1580 0.3768 0.03 0.9090 -0.5270 0.01
121× 121 0.1720 -0.3885 0.01 0.1580 0.3769 0.02 0.9090 -0.5270 0.01
141× 141 0.1720 -0.3885 0.01 0.1580 0.3769 0.01 0.9090 -0.5271 0.01
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Table 2: Lid-driven triangular-cavity flow: the location of the centre of the primary eddy
and the corresponding stream function and vorticity for a grid of 12206 nodes.

Re Method xc +
√

3 yc |ψc| ωc
100 Proposed 2.0667 2.3574 0.2481 1.3641

Finite differences (McQuain et al., 1994) 2.061 2.355 0.247 1.373
Finite differences (Li and Tang, 1996) 2.100 2.363 0.244 1.264

200 Proposed 1.9349 2.2750 0.2621 1.2489
Finite differences (McQuain et al., 1994) 1.940 2.280 0.260 1.272
Finite differences (Li and Tang, 1996) 1.905 2.250 0.262 1.156

500 Proposed 1.8657 2.2183 0.2765 1.1727
Finite differences (McQuain et al., 1994) 1.905 2.265 0.269 1.250
Finite differences (Li and Tang, 1996) 1.840 2.213 0.278 1.124

1000 Proposed 1.8425 2.1956 0.2825 1.1509
Finite differences (Li and Tang, 1996) 1.840 2.138 0.279 1.048

1500 Proposed 1.8351 2.1890 0.2847 1.1464
Finite differences (Li and Tang, 1996) 1.840 2.138 0.277 0.998

2000 Proposed 1.8335 2.1881 0.2855 1.1477
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Figure 1: A five-point stencil.
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Figure 2: Example 1, Nx × Ny = (11 × 11, 13 × 13, . . . , 25 × 25): the solution accuracy,
Ne, against the RBF width on the stencils, a. It appears that the IRBF2 solution does not
converge with grid refinement for large values of a. For a = 10−5 and a = 10−2, the solution
converges, respectively, as O(h3.69) and O(h2.29) for IRBF4, O(h7.00) and O(h7.30) for IRBF6,
and O(h9.09) and O(h9.08) for IRBF8. It can be seen that the IRBF solution is more accurate
and less dependent on the RBF width with an increase in the order of the IRBF scheme.
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Figure 3: Example 1, Nx×Ny = (11×11, 13×13, . . . , 25×25): the condition number of the
conversion matrix on the stencil, cond(C), against the RBF width on the stencils, a. The
condition number is not influenced much by the RBF width. A higher-order IRBF scheme
and a higher-density grid produce a larger condition number.
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Figure 4: Example 1, Nx×Ny = (11×11, 13×13, . . . , 25×25): the condition number of the
system matrix, cond(A), against the RBF width on the stencils, a. The condition number
is relatively small and not influenced much by the RBF width.
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Figure 5: Example 1, Nx ×Ny = (11× 11, 13× 13, . . . , 25× 25): the solution accuracy, Ne,
against the RBF width on the grid lines, ā . It appears that the IRBF2 solution is unstable
with grid refinement. For ā = 10−5 and ā = 10−2, the solution converges, respectively, as
O(h4.09) and O(h3.58) for IRBF4, O(h6.87) and O(h7.01) for IRBF6, and O(h9.05) and O(h9.09)
for IRBF8. It can be seen that the IRBF solution is more accurate and less dependent on
the RBF width with an increase in the order of the IRBF scheme.
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Figure 6: Example 1, Nx × Ny = (11 × 11, 13 × 13, . . . , 25 × 25): the matrix condition
number, cond(C)u, against the RBF width, ā, on the grid lines. The condition number is
not influenced much by the RBF width. A higher-order IRBF scheme and a higher-density
grid produce a larger condition number.
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Figure 7: Example 1, Nx × Ny = (11 × 11, 13 × 13, . . . , 25 × 25): the matrix condition
number, cond(C)v, against the RBF width, ā, on the grid lines. The condition number is not
influenced much by the RBF width. A higher-order IRBF scheme and a higher-density grid
produce a larger condition number.
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Boundary node

Figure 8: A non-simply connected domain and its associated discretisation.
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Figure 9: Non-rectangular domain, Nx ×Ny = (10× 10, 12× 12, . . . , 20× 20): the solution
accuracy, Ne, against the RBF width on the stencils, a. For the approximations on the grid
lines, the RBF width ā is kept at value of 0.01. The influence of the RBF width (stencils)
becomes less with an increase in the order of the IRBF scheme. It appears that the IRBF2
solution does not converge with grid refinement for large values of a. For a = 10−5 and
a = 10−2, the solution converges, respectively, as O(h3.53) and O(h2.10) for IRBF4, O(h8.51)
and O(h8.43) for IRBF6, and O(h11.34) and O(h11.35) for IRBF8.
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Figure 10: Non-rectangular domain, Nx×Ny = (10× 10, 12× 12, . . . , 20× 20): the solution
accuracy, Ne, against the RBF width on the grid lines, ā. For the approximations on the
stencils, the RBF width a is kept at value of 0.001. The influence of the RBF width (grid
lines) becomes less with an increase in the order of the IRBF scheme. It can be seen that the
IRBF2 solution is unstable with respect to grid refinement. For ā = 10−5 and ā = 10−2, the
solution converges, respectively, as O(h4.35) and O(h3.40) for IRBF4, O(h8.36) and O(h8.51)
for IRBF6, and O(h11.26) and O(h11.34) for IRBF8.
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Re = 3200 Re = 5000

Re = 7500 Re = 10000

Figure 11: Square-cavity flow: Streamlines of the flow for several Re numbers using a uniform
grid of 161× 161.
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Re = 3200 Re = 5000

Re = 7500 Re = 10000

Figure 12: Square-cavity flow: Iso-vorticity lines of the flow for several Re numbers using a
uniform grid of 161× 161.
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Figure 13: Triangular cavity and its associated discretisation.
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Re = 0 (2546 nodes) Re = 500 (6476 nodes)

Re = 1500 (8186 nodes) Re = 2000 (12206 nodes)

Figure 14: Triangular-cavity flow: Streamlines of the flow for several Re values. The stream-
line contour spacing is 0.015 for ψ ≤ 0 and 0.0012 for ψ > 0.
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Re = 0 (2546 nodes) Re = 500 (6476 nodes)

Re = 1500 (8186 nodes) Re = 2000 (12206 nodes)

Figure 15: Triangular-cavity flow: Iso-vorticity lines of the flow for several Re values. The
vorticity contour spacing is 0.5.
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Figure 16: Triangular-cavity flow, 12206 nodes: Points from top to bottom are the centre
locations of the primary eddy for the case Re = 100, 200, 500, 1000 and 1500, respectively.
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