
Computer Assisted Assessment of SQL Query Skills

Stijn Dekeyser Michael de Raadt Tien Yu Lee

Department of Mathematics & Computing
University of Southern Queensland

Queensland, Australia

{dekeyser, deraadt, leet}@usq.edu.au

Abstract

Structured Query Language (SQL) is the dominant
language for querying relational databases today, and
is an essential topic in introductory database courses
in higher education. Even though the language is syn-
tactically simple, relatively concise, and highly struc-
tured, students experience many difficulties while
learning to express queries in SQL. In recent years
a small number of software tools have been proposed
to help students learn to write query statements and
to assess their querying skills.

In this paper we compare and evaluate existing
tools mainly from the perspective of database theory
and practice, but also from a pedagogical perspective.
Addressing the deficiencies and opportunities uncov-
ered by the evaluation, we then introduce SQLify, a
new tool that extends the current state of the art by
incorporating semantic feedback, enhanced automatic
assessment based on database theory, and peer review
to arrive at a richer learning experience for students,
as well as consistent assessment results and reduced
marking for instructors.

Keywords Computer Assisted Learning and As-
sessment, SQL, Conjunctive Queries, Query Equiv-
alence.

1 Introduction

Structured Query Language (SQL) is the dominant
database language today, comprising commands to
define relational schema objects (Data Definition
Language ddl) as well as provisions to manipulate
data (Data manipulation Language dml). In most in-
troductory level database courses in higher education,
learning to write dml query expressions in SQL re-
ceives a significant amount of attention. Students are
not only taught to write syntactically correct state-
ments, but more importantly to translate a natural
language question into a semantically correct SQL ex-
pression. This learning process is often difficult.

Researchers [10, 11, 14, 17, 19] have identified sev-
eral common problems that students encounter while
learning SQL. We list some of these:

• It is a burden for students to memorize the
database schema, possibly resulting in erroneous
solutions due to incorrect table or attribute
names. This burden also misleads the students

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Australia. Conferences in Research and
Practice in Information Technology, Vol. 63. James Bailey and
Alan Fekete, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

to focus on low-level syntax at the expense of
high-level query definition.

• Many students misunderstand the basic elements
of SQL and first order logic and the relational
data model in general. They have trouble grasp-
ing concepts such as joins, universal quantifica-
tion, grouping and aggregation, and some set op-
erations.

• Students may incorrectly perceive a query prob-
lem as being easy [19]. Thus, they need experi-
ence thinking about the semantics of questions
and expressing them in SQL. Part of the prob-
lem is that many common, useful, simple to un-
derstand, and potentially easy to express queries
are outside the bounds of relational complete-
ness. Conversely, many queries that can be ex-
pressed with a relationally complete language are
difficult to compose or comprehend.

• The declarative nature of SQL is rather difficult
for many learners to grasp. It requires them to
think sets rather than steps.

To overcome some of these problems, students are
typically provided with a relational database man-
agement system in which they can experiment and
increase their skills. However, this approach only
provides students with immediate feedback regarding
the syntactical correctness of their expressions1. This
is insufficient to prepare them for assessment, where
course instructors usually place more importance on
semantical correctness.

From the perspective of students a simple environ-
ment is needed in which they can test query expres-
sions and receive immediate feedback regarding both
syntax and semantics.

On the other side of the teaching–learning divide,
course instructors often desire a tool that helps them
teach querying skills while also enforcing consistency
in grading and helping to reduce their marking load,
freeing them for more effective teaching tasks. For
both parties, a tool that helps raise learning to higher
orders of thinking (particularly evaluation) can im-
prove educational outcomes [2].

Because relational query languages are not Turing
complete, and because important subsets of these lan-
guages allow decidability of query equivalence, tools
can be constructed that provide immediate syntac-
tic and semantic feedback. In recent years a small
number of tools that offer partial feedback have been

1Students may also get some idea of the semantic correctness of
their queries from evaluation, but a correct query answer for one
specific database instance may be misleading the student to think
the query is correct in general. In addition, students don’t always
know what the correct answer for a given instance should be.

53

proposed. We evaluate a number of these in the next
section.

Motivation. (1) To build on the current state of
the art and improve the learning experience for stu-
dents attempting to master SQL, while helping in-
structors in assessment. (2) To inform database re-
searchers and teachers of educational SQL tools.

Contribution. This paper contains two distinct
contributions. First, we compare and evaluate ex-
isting computer assisted SQL tutoring and assess-
ment tools from the perspectives of Databases and
Computer Science Education. Secondly, we propose
SQLify as a tool building upon and enhancing these
existing solutions, especially in the areas of improved
computer assisted assessment and peer review.

Organization. In Section 2 we review existing
tools used for teaching and assessing SQL statements.
In Section 3 we then give a detailed description of
SQLify, before presenting an example run-through of
the system in Section 4. Some implementation de-
tails, especially concerning automatic query assess-
ment, are given in Section 5. We conclude with a
summary and future work in Section 6.

2 Evaluation of Existing Tools

In this section we review a number of tools that are
well described in literature.

• eSQL, proposed in 1997 in [10] to help teach the
concept of query processing. It is not used for
query evaluation or assessment.

• SQL-Tutor, developed at the University of Can-
terbury, Christchurch, in 1998 [14]. It provides
semantic feedback but is not used in assessment.

• AsseSQL, a tool created at the University of
Technology in Sydney in 2004 [16]. It provides
binary grading of queries submitted by students.

• SQLator, a tool created by the University of
Queensland also in 2004 [17]. This tool is similar
to AsseSQL.

A number of other tools and systems exist (e.g. [9]
and [11]) but are only partially described in scien-
tific research literature. Interestingly, however, very
few papers discuss database teaching in general and
most of them are not known to database researchers
as they are published in computer science education
literature.

We now offer a cross-disciplinary review of these tools,
first evaluating the systems from a database theory
and practice perspective, and then from a pedagogical
perspective. The review is summarized in Figure 1.

2.1 Database Perspective

The tools we studied for this paper were primarily
created and described from a computer science edu-
cation point of view, with minor regard to relational
database theory. None of them provide detailed im-
plementation information.

Both AsseSQL and SQLator [16, 17] use heuristical
methods to evaluate whether queries entered by stu-
dents in a test are correct. This involves running the
submitted query on a test database, and comparing

the output with that of the query included in the def-
inition of the question. In Relational Algebra terms,
the condition that is tested is

(a(I)− s(I)) ∪ (s(I)− a(I)) = φ (1)

where a is the correct query as supplied by the course
team, s is the query submitted by the student, and I
is an instance of the database supplied by the course
team. This test, however, is only approximate: it
is possible for students to cheat by creating simple
queries that produce the desired result, especially
when they are shown the database instance. Sadiq
and others in [17] report that their SQLator system
appropriately marks a query as correct in 95% of cases
when the test queries are relatively easy. This re-
sult is sufficient for a beginner’s course on SQL, but
may be more problematic for more advanced courses.
Also, the success of the heuristic depends in part on
the database instance used in the test; a badly de-
signed instance reduces the level of correctness of this
method.

In [16] Prior and Lister have therefore proposed
extending their AsseSQL tool to run an additional
test on a second database instance not known to the
students. While this indeed increases the correctness
of evaluation, it is still only a heuristic test.

In database theory it is well known that the class
of Conjunctive Queries has the important property
that it is decidable whether two queries are equiv-
alent. The CQ class is a significant subset of SQL
excluding the set operators and grouping statements.
In the introductory Database Systems course at the
University of Southern Queensland, more than 70% of
the time spent on teaching SQL is reserved for such
queries. Hence, for this type of query, a computer
assisted assessment tool should be able to evaluate
correctness of submitted queries with 100% accuracy.
For queries that are not in CQ, a heuristic approach
can still be used, but any automatic grading tool will
need to flag such cases so that the lecturer can in-
tervene appropriately. In Section 3 we detail use of
query equivalence decidability results to improve the
accuracy of computer-based assessment, and to allow
automatic grading of reviews performed by students
for their peers where possible.

The existing literature also does not address some
practical considerations with regard to database sys-
tems. For example, the use of the distinct keyword or
sorting in a query makes it impractical to test equiva-
lence using only the heuristic described above2. Fur-
thermore, both AsseSQL and SQLator seem vulnera-
ble to SQL injection attacks. These include attempts
to make unauthorised modifications to a database by
taking advantage of the level of access provided by the
interface. Care must be taken to check or rewrite a
submitted query before it is evaluated by the database
server.

None of the systems we reviewed have support for
teaching or assessing Relational Algebra expression
writing. We argue that adding such support is very
valuable, for two reasons. Firstly, most introductory
level relational database textbooks that we are fa-
miliar with (e.g. [5, 12, 20]) include the teaching of
relational algebra, often before teaching SQL. They
do so for a variety of reasons but mostly because stu-
dents who understand the relational algebra are more
likely to write better SQL queries: “relational algebra
is the key to understanding the inner workings of a
relational dbms, which in turn is essential in design-
ing SQL queries” [12]. Secondly, the techniques used

2CQ equivalence testing is also not sufficient for this purpose.

54

Feature eSQL SQL-Tutor SQLator AsseSQL SQLify

Modelling of student to individualize instruc-
tional sessions

✗ ✓ ✗ ✗ ✗

Visualization of database schema ✗ ✓ ✗ ✗ ✓

Visualization of query processing ✓ ✗ ✗ ✗ ✓

Feedback on query semantics ✗ ✓ ✗ ✗ ✓a

Automatic assessment (using heuristics) ✗ ✗ ✓ ✓b ✓c

Automatic assessment (using CQ query equiva-
lence)

✗ ✗ ✗ ✗ ✓

Use of peer review for assessment ✗ ✗ ✗ ✗ ✓

Relational Algebra expressions support ✗ ✗ ✗ ✗ ✓d

Special treatment of distinct and order by ✗ ✗ ✗ ✗ ✓

SQL-injection attack countermeasures ✗ ✗ ✗ ✗ ✓

Figure 1: Comparison of existing tools and SQLify detailed in the remainder of this paper. (a) in practice
mode only. (b) on two instances (proposal only). (c) for queries not in CQ. (d) planned for next version.

in automated SQL teaching and assessment tools can
be readily used for the relational algebra as well, re-
quiring only a user-friendly (and, desirably, pedagog-
ical) interface for entering relational algebra state-
ments, and additional logic to convert students’ al-
gebra expressions into SQL, the latter of which is a
well-documented procedure.

2.2 Pedagogical Perspective

eSQL [10] was one of the earliest tools proposed for
teaching database concepts. This is a system similar
to a normal query interface except that the response
to a select statement is not merely to show the re-
sult, but also to show a sequence of images giving a
step-by-step account of how the query result is de-
termined. Hence, eSQL visualizes query processing,
at least at the conceptual level. This helps students
develop a mental model and enhances students’ un-
derstanding of the semantics of SQL. One of the steps
being visualized is the creation of the cartesian prod-
uct of the input tables. Since the number of rows in
the intermediate result may be far too large to show,
the system uses an ingenious algorithm to choose a
sample row set for display.

The main contribution of eSQL is therefore ped-
agogical. The tool is not meant to analyze queries
submitted by students, nor is it used in assessment.

SQL-Tutor [14] is a knowledge-based system that sup-
ports students in learning SQL. It focuses on the indi-
vidualization of instructional sessions towards a par-
ticular student, by developing a model of the student’s
knowledge, learning abilities and general character-
istics and tailoring instructional actions to the stu-
dent’s needs. SQL-Tutor is also an Intelligent Teach-
ing System designed as a guided learning environ-

ment, which helps students in overcoming the diffi-
culties in learning SQL. Students are given opportu-
nities to discover things by themselves; they can learn
by doing.

A major strength of SQL-Tutor is that this system
gives meaningful feedback on the semantic correctness
of queries in addition to feedback concerning syntax.
Moreover, there are five levels of feedback in the sys-
tem, yielding increasingly detailed information.

Another feature of SQL-Tutor is the visualization
of the database schema. This removes cognitive load
for students, allowing them to focus on higher level
query definition problems instead of low-level syntax.

However, SQL-Tutor does not visualize the way a
query is executed as eSQL does. In addition, the tool
only focusses on helping students practice before as-
sessment and does not help instructors in conducting
assessment.

Turning to the systems which support assessment,
both SQLator and AsseSQL [16, 17] apply only bi-
nary grading to queries submitted by students, and
do not provide comments or suggestions for improve-
ment. While Prior and Lister [16] argue the suffi-
ciency of this right-or-wrong approach, binary grad-
ing does not correct students’ misunderstandings or
encourage further learning.

As well as giving students query problems to solve,
AsseSQL also shows the desired result of the query
they are to write. This is justified as an attempt to
overcome students’ poor English skills, but creates an
unauthentic setting for student learning, as database
programmers typically do not know the result of a
query before submitting it to the server.

Both AsseSQL and SQLator create only a single chan-
nel of communication between the student and the

55

instructor via the system. No other forms of commu-
nication (e.g., peer to peer) are mentioned as being
part of these systems or used along-side these systems.

None of the tools we examined use peer review as
part of learning and assessment. According to Saun-
ders [18] peer learning is advantageous as “it offers the
opportunity for students to teach and learn from each
other, providing a learning experience that is quali-
tatively different from the usual teacher-student in-
teractions”. Peer review can take several forms. One
form takes a student’s submission and allows it to
be reviewed by a number of student-peers, a process
overseen by an instructor. Peer review has been suc-
cessfully incorporated in the assessment of student
work in various fields, including computing [6, 7, 13].
Peer review allows students to evaluate the work of
others which requires higher order thinking skills [2]
through evaluating the work of peers and reflecting
on their own work. With peer review, students also
receive feedback from more than one source enriching
the learning experience for students. Receiving feed-
back from peers can encourage a community of learn-
ing [3] which can in turn further encourage higher or-
der thinking. Peer review involves students in the as-
sessment process, encouraging increased engagement
in the course and ultimately improved learning out-
comes [6]. Peer review, when used as an assessment
tool, can also reduce the assessment workload of in-
structors.

3 SQLify

Having compared and evaluated existing computer
assisted learning and assessment tools both from a
Computer Science Education and a Database The-
ory point of view, we now turn to the description of
SQLify (pronounced as squalify) which aims to im-
prove existing solutions on several different fronts.

From the discussion in the previous section, it is clear
that combining semantic feedback, an enhanced au-
tomatic assessment algorithm, and peer review will
produce better outcomes for students and instructors
alike. Specifically, the following requirements have
driven the design of SQLify:

• Provide rich feedback to students in an auto-
mated and semi-automated fashion;

• Reduce the need for recall for students by pre-
senting the relevant relational schema;

• Illustrate the execution strategy for queries sub-
mitted by students to deepen their understand-
ing of database systems;

• Employ peer-review to enhance learning out-
comes for students (through students conduct-
ing evaluations and receiving feedback from more
sources);

• Use a query equivalence testing algorithm com-
bined with peer review effectively to yield a wider
range of final marks;

• Automatically judge the accuracy of reviews per-
formed by students as part of their assignments;

• Reduce the number of necessary moderations
conducted by instructors, freeing them for other
forms of teaching;

• Increase the consistency of marks allocated to
students.

Hence, the main focus of SQLify is computer assisted
practice and assessment using a sophisticated auto-
matic grading system in combination with peer re-
view.

3.1 Use of SQLify

The SQLify system is intended to assess a student’s
query writing skills through an online interface in
the context of assignments and preparing for assign-
ments3. Student use of the system can be seen to fall
into a series of phases.

1. Trial and submission

2. Reviewing peers’ submissions

3. Receiving feedback and marks.

Students will submit solutions to a number of prob-
lems. The value of their submission will be judged
by peers, the SQLify system and ultimately by the
instructor (see Figure 2).

Students complete reviews of (usually two) other
students submissions for which they are awarded
marks. The accuracy of their submission determines
the mark they receive for reviewing.

Correctness

of

Submission

Accuracy

of Review

Final Mark

Correctness

of

Submission

Accuracy

of Review

Correctness

of

Submission

Accuracy

of Review

Figure 2: Components of a student’s mark.

Finally the marks they received for submission and
the accuracy of their reviews is summed to form a final
mark.

The following subsections describe in detail the three
phases mentioned above.

3.1.1 Trial and Submission

Students are able to develop and trial their query an-
swers to a specific set of problems using SQLify and
immediately see how the automatic grading system
evaluates their work. The SQLify system will give one
of (a limited set of) the levels of correctness shown in
Figure 3. Students may practice query problems in-
definitely prior to starting work on assignments. The
mark they are shown during this trial period is not
necessarily what they would receive from the instruc-
tor for the correctness of their submission in assign-
ments; this is given later by the instructor under ad-
visement of the student’s peers and the SQLify sys-
tem. When the student is happy with their work they
may proceed to submitting query answers to assign-
ment problems.

Students completing assignments using SQLify will
typically be given a number of English-language prob-
lems (say three to five) that he or she would translate
to SQL4. The problems are well defined descriptions
of authentic, real world problems. Students’ query
answers are submitted through a web form; a screen-
shot of SQLify is shown in Figure 4.

3The system is not meant for use in the context of examination.
4Or Relational Algebra, as detailed in Section 6.

56

L
e
v
e
l

Description S
tu

d
en

ts
ca

n
u
se

S
y
st

em
ca

n
u
se

In
st

ru
ct

o
r

ca
n

u
se

E
x
a
m

p
le

v
a
lu

e

L0 Syntax, output schema,
query semantics incor-
rect

✓ ✓ ✓ 0%

L1 Syntax is correct,
schema and semantics
incorrect

✓ ✓ ✓ 20%

L2 Syntax and schema cor-
rect, semantics are in-
correct

✓ ✓ ✓ 30%

L3 Syntax and schema cor-
rect, semantics largely
incorrect

✓ 40%

L4 Syntax and schema cor-
rect, semantics seem
largely incorrect (not
sure)

✓ 70%

L5 Syntax and schema cor-
rect, semantics just ad-
equate

✓ 80%

L6 Syntax and schema
correct, semantics seem
largely correct (not
sure)

✓ ✓ 90%

L7 Syntax, schema, and se-
mantics are correct

✓ ✓ ✓ 100%

Figure 3: Levels implied by evaluation sentences.
Different levels may be used by reviewing students,
the SQLify system, and by instructors. Internal as-
sessment values (last column) are example values for
each level; they may be changed by instructors using
SQLify.

The problems that students are asked to solve re-
late to differing database schema, so the student is
presented with the correct schema (and a sample in-
stance) for each individual problem. The student can
also be supplied with hints and comments, and also
with the desired output schema for the query (not
the desired output instance), if so determined by the
creator of the problem.

Once a query is submitted to the system it is checked
for SQL injection attacks. First, tables referenced
in the from clause of the submitted statement will
need to appear in the source database schema, or the
query will be rejected. Second, the where clause will
be analyzed and possibly rewritten using mainstream
SQL injection countermeasures.

In SQLify’s assessment mode, students will not be no-
tified if their submissions contain queries that are syn-
tactically incorrect (although they should have been
able to determine this themselves by trialing their
submission in a database). Demonstrating under-
standing of the particular SQL syntax of the database
system that is used by SQLify is a part of the as-
signment. Also, students may use any resources they
like while answering the problems, including SQL lan-
guage reference guides.

Students receive feedback about their submission in
the final phase (see Section 3.1.3).

Figure 4: SQLify screenshot of the query entry form.

3.1.2 Reviewing Peers’ Submissions

After submitting, most students are able to immedi-
ately proceed to complete reviews allocated to them.
A small pool of early-submitting students (usually
four) must wait until enough submissions have accu-
mulated before they can proceed to reviews. Such
early-submitters are informed that they must wait
and when this minimum pool has been reached the
system will automatically allocate reviews to the ini-
tial pool and inform them by email that they may
start reviews.

This single step submit-review process has been
successfully applied [6] and has several advantages
over a two step process (submit before deadline, re-
view after first deadline and before a second deadline):

• only one deadline is needed,

• the majority of students are not required to re-
turn to the site for the sole purpose of completing
reviews,

• students review the task they have just com-
pleted,

• students receive feedback from peers shortly after
submission, and

• students can work ahead in the course.

The disadvantage of a single phase review allocation
system is that it must distribute review allocations in
a way that maintains anonymity. If students can pre-
dict who they will review, collusion between students
is possible. This can be countered by complicating the
review allocation process and keeping its workings se-
cret, by requiring each submission to be reviewed by
more than one peer, and by comparing the accuracy
of a student’s review to that suggested by the system.

When the system has allocated reviews to a student,
reviewing can commence. The student is presented
with a similar screen to what they used to input their
query answer during the initial submission phase, but
where they were previously able to enter their answer
the system now shows a read-only query given by a
peer. The reviewing student additionally sees the re-
sult of applying the query on the relevant database in-
stance. The reviewing student then selects a level de-
scribed by a sentence from the list shown in Figure 3

57

that best describes their assessment of the correctness
of the query answer. The list of possible levels given
in Figure 3 shows all available levels of which the re-
viewing student may choose levels marked with a tick
in the column titled “Students can use”. No corre-
sponding internal values are shown to the reviewing
student. Reviewing students may express uncertainty
by choosing a sentence that includes “not sure”. This
allows the system to assign a wider range of marks
to reviews, but is also used to flag potential problems
that need to be moderated by an instructor.

By linking automatic assessment of queries with re-
views given by students, it is not only possible to eval-
uate the correctness of queries, but also the accuracy
of reviewers in judging that query. Students will re-
view the work of two peers knowing that the accuracy
of reviews they perform will also be assessed.

A student’s review accuracy should be marked high
when the level they selected for a peer’s query answer
is very similar to the level ultimately determined for
that query answer by the instructor. Conversely, ac-
curacy should be marked low when it differs greatly
from the instructor’s correctness mark. Hence, the
formula for marking accuracy of a review performed
by a student is quite simple.

accuracyMark =
100− | correctnessMark − studentMark |.

In other words, the mark given to a reviewer for the
accuracy of their review depends on the difference to
the correctness mark assigned by instructor. Note
that this formula has the additional affect that when
a student has signaled uncertainty (by picking level
L4 or L6) they will not be awarded full marks for this
review.

Giving fellow students a false high or low level
evaluation which differs for the mark applied by an
instructor will lose marks for the reviewing student.

As well as judging correctness levels for query an-
swers, reviewing students are also required to leave
a comment. Students are encouraged to give com-
ments of praise or positive suggestions for improve-
ment. This is arguably the most valuable part of the
reviewing process for both the reviewer and the re-
viewee.

select

...
SQLifySQLify

Instructor giving feedback

Peer giving feedback

Peer giving feedback

Student receiving

feedback

Figure 5: Feedback received by the student.

For the reviewer this is an opportunity to eval-
uate the work of a peer and in doing so, reflect on
their own work. This requires higher order thinking
skills [2] which will hopefully encourage greater learn-
ing outcomes.

For the reviewee receiving peer feedback means they
will receive feedback from more sources than just the
instructor or the system. The information contained
in comments can encourage a more personal rela-
tionship among students (even anonymously) and be-

tween instructors and students, thus helping to form
a community of learners.

For instructors, adding a comment allows elabora-
tion on why a student may have lost marks and posi-
tive encouragement on their progress. The instructor
may draw on a list of previously created comments to
speed up the moderation process. This also provides
consistency when multiple instructors are performing
moderations.

Another benefit of this system is to allow students
to flag peer reviews they believe to be incorrect for
instructor intervention. Although quite often the in-
structor would be moderating such cases, this feature
allows the student to express unhappiness with a re-
view. This can remove some anxiety related to having
their work assessed, in part, by algorithms and peers.

Note that the manner in which SQLify uses peer re-
view is based on an existing, fully evaluated and suc-
cessful peer-review system [6, 7].

3.1.3 Receiving Feedback and Marks

When all reviews of a student’s work are complete,
the instructor allocates a mark for the student’s work
based on the levels suggested by the SQLify system
(which does so on the basis of its own algorithm and
marks suggested by peers). Instructors must attend
to submissions that have been assessed differently
by each peer or by the system. Past experience [7]
has shown that in at least half of normal submis-
sions, peers alone are able to achieve non-conflicting
reviews, so this means moderation is most likely to
be unnecessary in these cases. Additionally, in many
cases SQLify can determine a level for a solution with
absolute certainty so this further eases the marking
load of the instructor.

Past experience also suggests that it is important that
students sense the instructor’s involvement in the as-
sessment process [7]. They see the instructor as an
authority and feel they deserve the attention of the
instructor during the assessment process. It is pos-
sible for good students who produce excellent work,
to be assessed equally by peers and the SQLify sys-
tem. In such cases the instructor may elect to assign a
mark based on the agreed standard of the work with-
out performing moderation. If a student achieves this
consistently through the semester, they may miss the
instructor’s input in their assessment; they may then
feel cheated by the assessment approach. It is pos-
sible to track how many times a student has been
moderated by an instructor and set target levels of
moderation at various points through the teaching
period. This way each student can be satisfied with
the attention they are receiving while still reducing
the marking load on instructors.

One of the clearest benefits of using a single-step peer
review system it that students receive feedback about
their submission as soon as a peer has completed their
review. Compared with a normal instructor marked
assignment where students must wait until after the
assignment deadline for feedback, previous use of the
approach suggested here returns feedback to students
within hours [7].

Once the peer review process is completed and the
instructor has assigned marks to students, the SQLify
system can calculate a final mark for each student.

The system suggests a final mark for a student’s as-
signment. It does so by summing both the correctness
marks for each query answer and accuracy marks for
the reviews conducted by that student (see details in

58

Section 3.2.1). The weighting of correctness and re-
view accuracy for each problem in each assignment
could be varied according to the effort for each. An
example would be weighting the correctness marks
to 70% of the entire assessment and review accuracy
marks to 30%.

The instructor then chooses to accept or modify
the suggested mark (see Section 3.2.2). Such marks
may be released individually by the instructor or en
masse.

3.2 Details of how a correctness mark is de-
termined

The three phases described above result in a process
of assigning marks to queries and reviews. Three vari-
ables are kept per submitted query answer for each
student: a system correctness mark sys, and two cor-
rectness marks from peers std1 and std2. With the
aid of SQLify, the instructor then uses these marks to
determine an overall correctness mark for each query
answer the student submits.

3.2.1 How the system determines its correct-
ness mark (Determining values for sys)

The levels below are taken from Figure 3.

L0 The submission is syntactically incorrect
The submitted query is sent to the database en-
gine which returns a syntax error. The system is
certain that the query is syntactically incorrect,
so the internal value for sys is L0.

L1,L2 The submission is syntactically correct
The query is accepted by the database, upon
which the system checks whether the output
schema is the same as the one produced by the
solution query (supplied by the instructor). The
system can determine this exactly, and assigns
an internal mark of L1 for sys if the condition is
not met, and L2 if the condition is satisfied.

L6 The submission produces a result that is
probably correct but needs to be checked
or compared with peer marks
The query passes the output schema test, and
now undergoes examination of its semantics. If
the query does not belong to the Conjunctive
Query (CQ) class, only a heuristic approach is
possible. If the heuristics determine that the
query is correct, there is only a small chance that
in fact the query is not semantically correct (see
Section 2.1). Hence, the internal value for sys is
set to L6 if the test is successful, and L2 if it is
not.

L7 The submission is certainly correct
In case the query belongs to the CQ class, it is
possible to algorithmically decide whether it is
semantically equivalent to the set solution query.
If it is, the internal value for sys is set to L7,
otherwise sys will be reset to level L2.

As is clear, there is a significant gap between levels
L2 and L6; levels L3 to L5 cannot be chosen by the
system. This is because the SQLify system cannot
determine how good or how bad a query is that has
been proven to be semantically incorrect. Hence a
combination of peer review and instructor interven-
tion is used to come up with a wider range of accuracy
marks. Thus, as well as enhancing the learning expe-
rience of students, the peer review process also plays
a practical role in moderating the mark proposed by
the system and in flagging possible problems to the
instructor.

3.2.2 How the instructor determines a cor-
rectness mark for an answer

SQLify calculates a suggested correctness mark for
each submitted answer by using the marks given in
reviews by students when its own automatic assess-
ment is not sufficient. In many cases the system can
suggest a mark with great certainty which the instruc-
tor can accept. Instructor moderation is needed when
the system is uncertain about the student’s submis-
sion or if there are conflicts between peer reviews or
between reviews and the mark of the system. The
following procedure is used by the instructor to apply
the mark suggested by SQLify.

sys ≤ L1
(The submission is incorrect)

In this case, the suggested mark will be same
as sys, so possible internal values for the cor-
rectness mark are L0 or L1. The system is
always right in these cases, so no student
review marks need to be used to determine
the correctness mark and no instructor in-
tervention is necessary.

sys = L2 ∧ L2 ≤ std1 ≤ L4 ∧ L2 ≤ std2 ≤ L4
(The submission is largely incorrect)

In this case, both reviewing students agree
with the system that the submitted query is
semantically incorrect while the syntax and
output schema are correct. The suggested
mark will be the average of both student re-
views rounded up to the nearest level. So,
possible internal values for the correctness
mark are L2, L3 and L4 as chosen by the
instructor.

sys = L2 ∧ ¬(L2 ≤ std1 ≤ L4 ∧ L2 ≤ std2 ≤ L4)
(There is a conflict between reviewers and the system)

In this case either one or both of the re-
viewing students disagree with the system.
Hence, instructor intervention is appropri-
ate to moderate the conflict. The correct-
ness mark will be determined by the instruc-
tor and can be taken from L2, L3, L4, or
L5 as suggested by the system. The cor-
rectness mark cannot be higher than L5 be-
cause SQLify has determined the query to
be semantically incorrect. Also, the instruc-
tor can choose from the two additional levels
L3 and L5 because he is more experienced
than the reviewing students.

sys = L6 ∧ (std1 ≤ L4 ∨ std2 ≤ L4)
(The system suggests the answer is probably correct

but the reviewers disagree)

The system could only heuristically deter-
mine that the query semantics are likely to
be correct, while at least one of the review-
ing students believes that the query is incor-
rect. In this case, intervention is needed by
an instructor, who may choose any of the
suggested levels L0, L2, L6, and L7. The
chance is rather low that the query is indeed
incorrect, so the first two levels are only used
when the instructor believes that the stu-
dent may have attempted to cheat (L0) or
only accidentally confused the system (L2).

sys = L6 ∧ std1 ≥ L5 ∧ std2 ≥ L5
(The system thinks the query is probably correct and
the reviewers agree)

59

Both students believe the query may be cor-
rect, and SQLify has also determined that
this is likely. Intervention is not necessary as
students are motivated to conduct accurate
reviews. The system suggests a correctness
mark of L7 (100%).

sys = L7
(The system indicates that the answer is certainly cor-
rect)

The system has incontrovertibly determined
that the submitted query is correct, hence no
student review marks are needed to deter-
mine the correctness mark, and no instruc-
tor intervention is necessary. The system
strongly suggests a correctness mark of L7
(100%).

Based on the system’s recommendation the instructor
will set a correctness mark for each submitted answer.
Each correctness mark is summed together with the
marks calculated for the accuracy of reviews submit-
ted by a student to form a final mark which can be
released to the student.

4 Examples

To illustrate the workings of SQLify, two query prob-
lems are presented together with a description of how
they are evaluated using SQLify. The assessment pro-
cess to see how students’ submissions are evaluated is
followed through to a final mark.

4.1 Query Problems

The example problems make use of a database with
the following schema5.

employee(eNo, fname, lname, wage, dNo, eloc)
department(dNo, dname, dlocation)

The first query problem (qp1) is an example of
a Conjunctive Query (a problem in class CQ). In
this class it is possible to conclusively determine if a
supplied query is correct without employing heuristic
comparison.

Give the first and last names of all employ-
ees in the Sales department earning more
than 300 dollars.

The instructor supplies a solution query that will be
used by the system to test queries submitted by stu-
dents.

SELECT fname, lname FROM employee E,
department D WHERE E.dNo = D.dNo AND
dname = ‘Sales’ AND wage > 300; (qp1)

The following are two queries submitted by students.
They are both different to the solution presented by
the instructor, but both can be proved to be semanti-
cally equivalent to the instructor’s solution query and
are therefore considered correct. Correctness marks
given by the system and two peers are also shown.

Submitted query sys std1 std2
SELECT fname, lname FROM
employee JOIN department ON
dNo WHERE dname = ‘Sales’ AND
wage > 300; (sa1)

L7 L6 L7

SELECT fname, lname FROM
employee E WHERE wage > 300
AND EXISTS (SELECT * FROM
department D WHERE E.dNo =
D.dNo AND dname = ‘Sales’);
(sa2)

L7 L7 L4

5Instructors submitting their own query problems can submit
their own schemas and instances.

The following query is an incorrect query answer to
the above problem (qp1).

Submitted query sys std1 std2
SELECT fname, lname FROM
employee E WHERE dname =
‘Sales’ AND wage > 300; (sa3)

L2 L6 L4

The next problem (qp2) involves a query that is not
in CQ class.

List all locations where there is either an em-
ployee or a department.

The following is an instructor’s solution query for this
problem.

(SELECT eloc FROM employee) UNION
(SELECT dlocation FROM department);
(qp2)

An incorrect solution to this problem is given next.

Submitted query sys std1 std2
SELECT loc FROM employee,
department WHERE loc = eloc
OR loc = dlocation; (sa4)

L2 L2 L3

4.2 Marking query correctness

When the system has evaluated a submitted query
and peer reviews are complete for that query the sys-
tem will recommend a mark to the instructor. The
instructor can then assign a correctness mark for the
query.

The table below shows, for each row, the correctness
marks for a particular query submitted by a student,
as given by the system itself (sys), and two peers re-
viewing the query answer (std1 and std2). In addition,
a suggested mark is shown calculated by SQLify on
the basis of sys, std1 and std2 using the procedure de-
scribed in Section 3.2.2. Finally, the correctness mark
assigned by the instructor is listed; this mark may or
may not be the same as the suggested mark.

S
tu

d
en

t

P
ro

b
le

m

S
u
b
m

it
te

d
q
u
er

y

S
y
st

em
m

a
rk

(s
ys

)

R
ev

ie
w

er
1

M
a
rk

(s
td

1
)

R
ev

ie
w

er
2

M
a
rk

(s
td

2
)

S
u
g
g
es

te
d

m
a
rk

C
o
rr

ec
tn

es
s

m
a
rk

1 qp1 sa1 L7 3 L6 5 L7 L7 L7
1 qp2 sa4 L2 4 L2 5 L3 L3 L3

. . .
4 qp1 sa2 L7 1 L7 3 L4 L7 L7
5 qp1 sa3 L2 1 L6 2 L4 L4 L4

The internal values corresponding to levels given in
Figure 3 are not hard-coded into the system. The
instructor using SQLify can set these values during
use of the system. Hence the levels given in the last
column will translate into different scores for queries
as determined by the instructor.

4.3 Checking accuracy of reviews

The following table lists one row per peer review that
is performed in the context of an assignment. The
first row, for instance, shows that student 1 was a re-
viewer for a query (sa2) submitted by student 4 in
answer to query problem qp1. Student 1 gave this
query answer a correctness mark of L7. The correct-
ness mark for the submitted query answer ultimately

60

given by the instructor was also L7. Hence, the ac-
curacy mark for this particular review is 100. For the
next review performed by this student there is a dif-
ference between the correctness mark given by this
student and the correctness mark set by the instruc-
tor. This difference causes their mark for accuracy to
be reduced.

R
ev

ie
w

er

R
ev

ie
w

ee

P
ro

b
le

m

S
u
b
m

is
si

o
n

R
ev

ie
w

er
’s

m
a
rk

C
o
rr

ec
tn

es
s

m
a
rk

D
iff

er
en

ce

A
cc

u
ra

cy
m

a
rk

1 4 qp1 sa2 L7 L7 0% 100%
1 5 qp1 sa3 L6 L4 20% 80%

. . .

4.4 Calculating a final mark

The last table below summarizes the various marks
that a particular student received for various query
problems and for the reviews performed. A weighted
final mark is given in the last row using the suggested
weightings of 70% for correctness and 30% for accu-
racy of reviews.

Student: 1
Correctness marks qp1 100%
(Weight 70%) qp2 50%

qp3 70%
Review accuracy qp1 100%
(Weight: 30%) qp2 80%

qp3 50%
Final Mark 74%

5 Implementation Aspects

The SQLify system has been implemented and is cur-
rently undergoing tests to prepare for first use in an
undergraduate database systems course offered later
this year.

The current version of the system was implemented
in a standard LAMP (Linux, Apache, MySQL, PHP)
environment and is integrated with university sys-
tems to manage assignment assessment for enrolled
students. However, the tutoring part of SQLify is
open for outside use, and can be accessed at [8].

While there are several implementation issues that
are worthy of description, we here only focus on the
process of testing query equivalence.

5.0.1 Heuristic Testing

When students submit a query for assessment, SQLify
first rewrites it to counter SQL injection attacks and
to align it with the actual database table names stored
in MySQL. As will become clear, the rewriting is also
useful for other reasons. Subsequently the system
checks syntactic correctness and the correctness of the
query’s output schema. If either of these fail, evalua-
tion stops and sys is set to either L0 or L1.

After rewriting, the heuristic test given in Formula 1
on page 2 is performed. The same measures used
in AsseSQL and SQLator are taken to increase the
reliability of the heuristic test.

If the heuristic test is negative, meaning that for
the specific database instance or instances stored in
MySQL the result of the query is different from that

of the correct query (as supplied by the instructor),
evaluation stops and the submitted query’s sys value
is set to L2.

In case the test was positive, but queries involve
set operations, grouping, or aggregation, the analy-
sis stops, and SQLify sets the sys variable to L6. Peer
reviews and instructor input will then further refine
the score for the submitted query.

5.0.2 CQ Equivalence Testing

If the submitted query is in the Conjunctive Query
class automatic evaluation continues. This is the case
if the query was able to be rewritten (in the previous
phase) into the following SQL form:

SELECT A1, . . . , An
FROM table1, . . . , tablet
WHERE 〈condition1〉 and . . . and 〈conditionc〉

where the conditioni, for 1 ≤ i ≤ c, consists of only
join conditions and equality comparisons, that is X =
Y , where X is a variable (column) and Y is either a
variable or constant.

Note that some SQL queries containing where
exists subqueries can be rewritten in this form.
Query sa2 given in Section 4 is such a case, and can
be rewritten as qp1 which conforms to the SQL sub-
set given above.

Testing the equivalence of conjunctive queries is a
basic problem on which query optimizers are partly
based. Since checking equivalence of two queries can
be done by testing the mutual containment of the
queries involved, the containment problem has been
studied extensively by many researchers.

Under the set semantics, the containment of con-
junctive queries using only equality tests was fully
solved by Chandra and Merlin [4], using the concept
of containment mapping. There has been extensive
work on the testing of set containment of inequality
conjunctive queries, and also on bag semantics with
either equality or inequality tests.

Recently, the idea of using a finite set of canoni-
cal databases to represent an infinite set of databases
is used by Penabad [15] to develop a general proce-
dure, called Query Containment Checker (QCC), to
test the containment problems of both equality and
inequality conjunctive queries, under both set and bag
semantics.

For SQLify we decided to implement an algorithm us-
ing tableaux representation of expressions [1] to test
the equivalence of equality conjunctive queries under
set semantics. The tableaux can be easily constructed
from the previous query rewriting phase. We will
leave all other fragments of the general containment
problem as an extension for future versions of our sys-
tem.

6 Conclusion and Future Work

In this paper a small set of existing tools used for
teaching and assessing SQL writing skills was re-
viewed. The tools were evaluated both from Com-
puting Education and Database perspectives, noting
possible areas of enhancement.

Secondly, we proposed a comprehensive new tool for
the teaching and assessment of SQL writing skills.
Central to the system is the use of an intricate au-
tomatic grading system and peer review. The main
reason for including peer review is to offer students a
richer learning experience. Additionally, peer reviews
assist in the assessment of assignments.

61

SQLify uses a relatively complex method to assign
final grades to assignments, designed to (1) yield a
much wider range of grades than simply correct or
incorrect, (2) utilize database theory to arrive at a
computer assisted assessment, (3) set high quality de-
mands for student reviews, yielding a better learning
environment, and (4) reduce the number of necessary
interventions performed by course instructors.

Regarding future work, we are currently preparing
SQLify for use in a live course by the end of 2006.
We will then evaluate the usefulness of the system as
perceived by students and instructors. Any change in
student outcomes will be measured.

To evaluate relational algebra expressions two ad-
ditions to the system (planned for the next version
of SQLify) are needed: first, the implementation of
an interface that helps students construct syntacti-
cally correct algebra expressions, and second the im-
plementation of the algorithm that translates the sub-
mitted algebra expression to an equivalent SQL state-
ment. The generated statement is then processed in
the same way as a normal SQL statement.

References

[1] Serge Abiteboul, Richard Hull and Victor Vianu.
Foundations of Database Systems. Addison Wes-
ley, 1997.

[2] B. Bloom. Taxonomy of Educational Objectives.
Edwards Bros., Ann Arbor, Michigan, 1956.

[3] C. Brook and R. Oliver. Online learning commu-
nities: Investigation a design framework. Aus-
tralian Journal of Educational Technology, Vol-
ume 19, Number 2, pages 139–160, 2003.

[4] Ashok Chandra and Philip Merlin. Optimal im-
plementation of conjunctive queries in relational
data bases. In Proceedings of the ninth annual
ACM symposium on Theory of computing, pages
77–90, Boulder, Colorado, 1977.

[5] Thomas Connolly and Carolyn Begg. Database
Systems – A Practical Approach to Design, Im-
plementation, and Management. Addison Wes-
ley, fourth edition, 2005.

[6] Michael de Raadt, Mark Toleman and Richard
Watson. Electronic peer review: A large cohort
teaching themselves? In Proceedings of the 22nd
Annual Conference of the Australasian Society
for Computers in Learning in Tertiary Educa-
tion (ASCILITE’05), pages 159–168, Brisbane,
December 2005.

[7] Michael de Raadt, Mark Toleman and Richard
Watson. An effective system for electronic peer
review. International Journal of Business and
Management Education, Volume 13, Number 9,
pages 48–62, 2006.

[8] Stijn Dekeyser, Michael de Raadt and Tien Yu
Lee. SQLify project website. Technical report,
2006. http://www.sci.usq.edu.au/projects/
sqlify/.

[9] Suzanne Dietric, Eric Eckert and Kevin Pisca-
tor. WinRDBI – a Windows-based relational
database educational tool. In Proceedings of
SIGCSE ’97, pages 126–130, San Jose, Califor-
nia, March 1997.

[10] R. Kearns, S. Shead and A. Fekete. A teaching
system for SQL. In Proceedings of ACSE ’97,
pages 224–231, Melbourne, July 1997.

[11] Claire Kenny and Claus Pahl. Automated tutor-
ing for a database skills training environment.
In Proceedings of SIGCSE’05, pages 59–62, St.
Louis, Missouri, February 2005.

[12] Michael Kiefer, Arthur Bernstein and Philip
Lewis. Database Systems – An Application-
Oriented Approach. Addison Wesley, second edi-
tion, 2006.

[13] J. Kurhila, M. Miettinen, P. Nokelainen, P. Flo-
reen and H. Tirri. Peer-to-peer learning with
open-ended writable web. In Proceedings of the
8th Annual Conference on Innovation and Tech-
nology in Computer Science Education, pages
173–178, Thessaloniki, Greece, June 2003.

[14] Antonija Mitrovic. Learning SQL with a com-
puterized tutor. In Proceedings of SIGCSE’98,
pages 307–311, Atlanta, Georgia, February 1998.

[15] Miguel Penabad. General Procedure to Test Con-
junctive Query Containment. Ph.D. thesis, Uni-
versidade da Coruña, 2002.

[16] Julia Prior and Raymond Lister. The backwash
effect on SQL skills grading. In Proceedings of
ITiCSE’04, pages 32–36, Leeds, UK, June 2004.

[17] Shazia Sadiq, Maria Orlowska, Wasim Sadiq and
Joe Lin. SQLator—an online SQL learning work-
bench. In Proceedings of ITiCSE’04, pages 223–
227, Leeds, UK, June 2004.

[18] D. Saunders. Peer tutoring in higher education.
Studies in Higher Education, Volume 17, Num-
ber 2, pages 211–218, 2006.

[19] Ben Shneiderman. Improving the human factors
aspect of database interactions. ACM Transac-
tions on Database Systems, Volume 3, Number 4,
pages 417–439, 1978.

[20] Abraham Silberschatz, Henry Korth and S. Su-
darshan. Database System Concepts. McGraw-
Hill, fifth edition, 2006.

62

