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ABSTRACT 

Airborne light detection and ranging (LiDAR) is one of the most effective means for 
high quality terrain data acquisition. The high-accuracy and high-density LiDAR data 
makes it possible to model terrain surface in more detail. Using LiDAR data for DEM 
generation is becoming a standard practice in the spatial science community. Of the 
three commonly used digital elevation models (e.g., triangular irregular network (TIN), 
gridded DEM and contour line model), the gridded DEM is the simplest and the most 
efficient approach in terms of storage and manipulation. However, this approach is 
liable to introduce errors because of its discontinuous representation of the terrain 
surface based on the interpolation process of sampled terrain points. Given the 
characteristics of LiDAR data, much attention must be paid to the selection of an 
appropriate interpolation algorithm, otherwise the accuracy of produced DEM from 
LiDAR data will be compromised.  
 
This study aims to evaluate the performance of commonly used interpolation algorithms 
to the LiDAR data, including inverse distance weighted (IDW) method, Kriging 
method, and local polynomial method. All these interpolation algorithms are applied to 
DEMs generated from LiDAR at various data density levels. The performance of these 
interpolation methods is evaluated by using both cross-validation and validation test 
methods. The results showed the performance of each interpolation algorithm for two 
study sites with different terrain types and analysed the relationship between 
interpolation algorithms and LiDAR data density. Considering accuracy and computing 
time for large volume of LiDAR data, IDW is recommended for LiDAR DEM 
generation from this study.    

INTRODUCTION 

Digital elevation data and derived products such as digital elevation models (DEMs) are 
critical components of spatial databases in a wide range of applications. They comprise 
an essential layer within the national spatial data infrastructure (ICSM 2008). They are 
so important that a National Digital Elevation Program (NDEP) in USA was established 
to promote the exchange of accurate digital land elevation data among government, 
private, and non-profit sectors and the academic community and to establish standards 
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and guidance that will benefit all users (NDEP 2004; Jensen 2007). In Australia, the 
National Elevation Data Framework (NEDF) initiative was established in 2008 as well. 
The purpose of the NEDF initiative is to develop a collaborative framework that can be 
used to increase the quality of elevation data and derived products such as DEMs 
describing Australia’s landform and seabed (ICSM 2008). Drivers for the establishment 
of the NDEP and NEDF are the need for high resolution elevation data to meet a range 
of purposes and the rapid development of survey technologies such as airborne light 
detection and ranging (LiDAR) for digital elevation data collection (ICSM 2008). 
LiDAR offers the capability of obtaining high-density three-dimensional points, as 
characterised by vertical accuracy of 10-50 cm and horizontal post spacing of 1-3 m 
(ICSM 2008). The highest accuracy such as 10-15 cm RMSE (root mean square error) 
can only be achieved under the most ideal circumstances (Hodgson and Bresnahan 
2004). The actual accuracy of LiDAR elevation data in a project varies with factors 
such as flying height, laser beam divergence, location of the reflected point within the 
swathe, LiDAR system errors including errors from Global Positioning System (GPS) 
and Inertial Measurement Unit (IMU), distance to ground base station, and LiDAR data 
classification (filtering) reliability (Hodgson and Bresnahan 2004; Turton 2006). 
 
Methods for quality assessment of LiDAR data vary with applications and delivered 
products. For the purpose of DEM generation and delivered with classified LiDAR 
point clouds, vertical accuracy with respect to a specified vertical datum is the principal 
criterion in specifying the quality of LiDAR elevation data (Maune 2007). Quantitative 
assessment of LiDAR elevation data is usually conducted by comparing high-accuracy 
checkpoints with elevations estimated from the LiDAR ground data at the locations of 
checkpoints. RMSE (root mean square error) can subsequently be calculated, and an 
overall vertical accuracy of LiDAR data at 95 percent confidence level can be obtained. 
The vertical accuracy of LiDAR data can be affected by various ground cover types 
because vegetation may limit ground detection. Furthermore, in LiDAR data filtering 
process, some non-ground LiDAR points may not be filtered out and be labelled as 
ground points. Therefore, ASPRS (2004) required that the vertical accuracies of LiDAR 
data should be assessed separately for each of land cover categories and combined land 
cover.  
 
Aforementioned accuracy assessment addressed the absolute vertical accuracy of 
LiDAR data with regard to a national defined vertical datum. Absolute vertical accuracy 
accounts for all effects of systematic and random errors. For some applications of 
digital elevation data, however, the relative vertical accuracy is more important than the 
absolute vertical accuracy (NDEP 2004). Relative vertical accuracy, also referred to as 
point-to-point accuracy (Weydahl et al. 2007), is affected by the random errors in a 
dataset. In the case of derivative products that make use of the local differences among 
adjacent elevation values such as slope and aspect calculations, the relative vertical 
accuracy is especially important. Relative vertical accuracy may be difficult to assess 
unless a very dense set of reference points is available (NDEP 2004; ICSM 2008). 
LiDAR data have high-sampling density, and LiDAR-derived DEMs have high 
resolution. Therefore, it is possible to assess the relative vertical accuracy of LiDAR 
data.  
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DEMs are digital representations of the Earth’s terrain surface. A natural terrain surface 
is a continuous surface and comprises an infinite number of points (El-Sheimy et al. 
2005). With a point sampling method, the terrain surface can be approximated to the 
required degree of accuracy by DEM with a finite number of sampled points. Different 
DEMs have been developed to represent the terrain surface. The grid DEM, the 
triangular irregular network (TIN), and the contour line model are the most commonly 
used DEMs. The grid DEM use a matrix structure that implicitly records topological 
relations between data points (El-Sheimy et al. 2005). Each grid cell has a constant 
elevation value for the whole cell (Ramirez 2006). This constant elevation value is 
usually obtained by interpolation among adjacent sampling points. Interpolation is an 
approximation procedure in mathematics and an estimation issue in statistics (Li et al. 
2005). It is the process of predicting the values of a certain variable in unsampled 
locations based on measured values at points within the area of interest (Burrough and 
McDonnell 1998). Interpolation in grid digital elevation modelling is used to estimate 
the terrain height value of a point (the centre of cell) by using the known elevations of 
neighbouring points (Li et al. 2005). There are many factors that affect the DEM 
accuracy, but the interpolation is the most important factor affecting the relative vertical 
accuracy of the DEM.  
 
There are many interpolation methods for DEM generation, including deterministic 
methods such as inverse distance weighted (IDW), geostatistical methods such as 
Kriging, and polynomial-based methods such as local polynomial (LP). The variety of 
available interpolation methods has led to questions about which is most appropriate in 
different contexts and has stimulated several comparative studies of relative accuracy 
(Zimmerman et al. 1999). To evaluate the performance of some commonly used 
interpolation methods, a variety of empirical studies have been conducted to assess the 
effects of different methods of interpolation on DEM accuracy. There seems to be no 
single interpolation method that is the most accurate for the interpolation of terrain data 
(Fisher and Tate 2006). None of the interpolation methods is universal for all kinds of 
data sources, terrain patterns, or purposes. Few studies have addressed the interpolation 
issues for DEM generation from LiDAR data (Lohr 1998; Lloyd and Atkinson 2002, 
2006; Liu 2008). Given the specific characteristics (high density and large volume) of 
LiDAR data, study is needed for the evaluation of the performance of DEM 
interpolation algorithms for LiDAR data. 
 
The ideal method for the assessment of the accuracy of a DEM generated by 
interpolation is to compare the produced DEM with a “true” terrain surface. These kinds 
of “true” terrain surfaces are not available in practice. Using a DEM of relatively higher 
accuracy as reference is an option, but access to such a DEM can not be assumed when 
a new DEM-generation project is being implemented. Validation and cross-validation 
methods can be used to assess the accuracies of DEMs generated from different 
interpolation algorithms. For validation method, whole dataset is separated to training 
and test datasets. Test data are used as checkpoints while the training data are then used 
to produce DEMs with different interpolators. Differences between elevations of test 
data and correspondent elevations from DEMs are calculated to assess the accuracies of 
DEMs. Cross-validation removes one data point at a time, and uses the reminder data 
points to predict the data value at the location of removed data point. The predicted and 
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actual values at the location of removed data point are compared to assess the 
performance of interpolation methods. 
 
This study aims to evaluate the performance of commonly used interpolation algorithms 
for LiDAR data, including IDW method, Kriging method, and local polynomial method. 
The performance of these interpolation methods is evaluated by using both cross-
validation and validation test methods. The effects of LiDAR data density on the 
performance of different interpolation algorithms were also tested. 

MATERIALS AND METHODS 

Study Area 

The study area is in the region of Corangamite Catchment Management Authority 
(CCMA) in south western Victoria, Australia. The landscape in the region can be 
depicted to north and south highlands and a large Victoria Volcanic Plain (VVP) in the 
middle. The VVP is dominated by Cainozoic volcanic deposits. It is characterized by 
vast open areas of grasslands, small patches of open woodland, stony rises denoting old 
lava flows, numerous volcanic cones and old eruption, and is dotted with shallow lakes 
both salt and freshwater. Terrain types vary between the comparatively treeless basins 
of internal drainage on Victoria Volcanic Plains (VVP) to dissected terrains north and 
south. The plains have high priority for a range of research projects pertaining to 
environment management issues addressed in the catchment management strategy plan. 
LiDAR data from the first stage of CCMA LiDAR project covered an area of 6900 km². 
In this study, two LiDAR tiles (covered an area of 5 km by 5 km each) were selected as 
the test sites, shown in Figures 1 and 2. Site one is relative flat, with several shallow 
gullies. Site two is dominated by volcanic derived stony rises, with rough terrain. 

LiDAR Data 

LiDAR data were collected over the period of 19 July 2003 to 10 August 2003. The 
primary purpose of this LiDAR data collection was to facilitate more accurate terrain 
pattern representation for the implementation of a series of environment related projects. 
The LiDAR data have been classified into ground and non-ground points by using data 
filter algorithms across the project area. Manual checking and editing of the data led to 
further improvement in the quality of the classification. The resulting data products used 
for DEM generation are irregularly distributed LiDAR ground points, with an average 
spacing of 2.2 m (AAMHatch 2003). The accuracy of LiDAR data was estimated as 0.5 
m vertically and 1.5 m horizontally (AAMHatch 2003). The LiDAR data were delivered 
as tiles in ASCII files containing x, y, z coordinates and intensity values.  

Methods 

Using the Geostatistical Analyst extension of ArcGIS 9.3, LiDAR data points for the 
two test sites were first randomly selected and separated to two datasets: 90% for 
training dataset and 10% for test dataset. Training datasets were used for subsequent 
reduction to produce a series of dataset with different data density, representing the 
100%, 75%, 50% and 25% of the original training dataset. Using reduced datasets, a 
DEM was created using IDW, Kriging and local polynomial algorithms at each data 
density level, e.g., a total of twelve DEMs at 100%, 75%, 50% and 25% of training 
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datasets for each test site. The elevation value of each check point from test dataset was 
compared to the correspondent elevation value from DEMs produced at each of data 
density levels. Root mean square error (RMSE) and mean absolute error were calculated 
to assess the performance of different interpolation algorithms at different LiDAR data 
density levels. 
 

 

Fig. 1: Study site one 

 

 

Fig. 2: Study site two 

 
The performance of IDW, Kriging and local polynomial interpolation methods was also 
tested using the cross-validation in ArcGIS Geostatistical Analyst extension. The cross-
validation removes one LiDAR data point at a time, and interpolates elevation at the 
location of the removed point using the reminder LiDAR points. The difference 
between the actual elevation value of the removed data point and the interpolated 
elevation corresponding to this point was calculated. This process was repeated until 
every LiDAR point has been removed once in each dataset. The overall performance of 
the interpolator is then evaluated by statistical means such as the RMSE and mean 
absolute error.  
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RESULTS AND DISCUSSION 

RMSEs obtained from validation and cross-validation with different interpolators at 
various LiDAR density levels for site one and site two are presented in Table 1, and 
depicted in Figures 3 and 4 as well. At all LiDAR density levels, both validation and 
cross-validation showed that local polynomial method has the lowest RMSE values at 
site one and site two. Compared to IDW and Kriging, the local polynomial performed 
extremely well on flat terrain (site one). Kriging usually gave the biggest RMSEs with 
exception at 25% data density for site one. 
 
RMSEs from all three interpolation algorithms increased with the decrease of LiDAR 
data density at both test sites. However, there is only slight increase of RMSEs with 
Kriging from both validation and cross-validation, indicating that Kriging is insensitive 
to data density on a flat terrain like the test site one. On a complex terrain (site two), all 
three interpolation algorithms are sensitive to data density, showing significant 
increases when LiDAR data density decreased from 100% to 25%. Even on flat terrain 
(site one), both IDW and local polynomial algorithms are sensitive to data density, 
being significant when density decreasing from 75% to 25% of the original data. 
 
On flat terrain, RMSEs from all three interpolation algorithms are smaller than those 
corresponding to complex terrain. For example, with cross-validation at 100% LiDAR 
data density, the local polynomial yielded a RMSE of 0.149 m at site one, and 0.250 m 
at site two. It gave an indication that terrain type has a significant impact on 
interpolation results. On flat terrain, interpolators performed well, while on complex 
terrain, interpolation process may introduce more errors, even in the case of high-
density sampling data. 
 

Tab.1: RMSEs obtained from validation and cross-validation with different 
interpolators at various LiDAR density levels for site one and site two  

 Site one Site two 

Density Interpolator Validation 
Cross-

validation Validation  
Cross-

validation 

100% 

Kriging 0.174 0.174 0.358 0.411 

IDW 0.165 0.165 0.294 0.296 

LP 0.150 0.149 0.250 0.250 

75% 

Kriging 0.174 0.174 0.411 0.282 

IDW 0.166 0.166 0.327 0.328 

LP 0.150 0.150 0.282 0.282 

50% 

Kriging 0.175 0.175 0.500 0.500 

IDW 0.170 0.170 0.382 0.383 

LP 0.155 0.155 0.315 0.317 

25% 

Kriging 0.176 0.175 0.694 0.696 

IDW 0.181 0.180 0.508 0.505 

LP 0.163 0.162 0.406 0.405 
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Kriging was originally developed to estimate the spatial concentrations of minerals for 
the mining industry. Kriging takes into account both the distance and the degree of 
variation between sampling data. From a statistical perspective, Kriging is a sound 
method (Lu and Wong 2008). In practice, however, it may not satisfy users. This study 
demonstrated that Kriging did not work well for LiDAR data on both flat and complex 
terrains. Furthermore, it is not a quick interpolator, consuming more computer 
resources, especially for large volume of LiDAR data. The local polynomial 
interpolation fits the specified order (zero, first, second, third, and so on) polynomial 
using points within the defined neighbourhood. It is a moderately quick interpolator 
(ESRI 2008). In our study, it provided better results than other two algorithms on flat 
terrain.  
 
The IDW interpolation assumes the closer a sample point is to the prediction location, 
the more influence it has on the predicted value. It estimates a point value using a 
linear-weighted combination set of sample points. The weights assigned depend only on 
the distances between the point locations and the particular location to be estimated, but 
the relative locations between sampling data are not considered (Myers 1994). 
Therefore, the use of IDW is straightforward and non-computationally intensive (Lu and 
Wong 2008). The IDW works well for dense and evenly distributed sample data (Childs 
2004). This study showed that even on complex terrain, IDW can produce good results, 
without significant difference with those from the local polynomial. Considering its 
simplicity, quick computation and availability in almost all the GIS software, IDW is 
the most suitable interpolation method for LiDAR data.        
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Fig. 3: RMSEs from different interpolators at various LiDAR density levels for site one, 
(a) using validation, (b) using cross-validation  
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Fig. 4: RMSEs from different interpolators at various LiDAR density levels for site two, 
(a) using validation, (b) using cross-validation  

 

CONCLUSION 

Relative vertical accuracy of DEMs may be more important than absolute vertical 
accuracy in some applications. Selection of an appropriate interpolator could be critical 
for DEM generation as it is an important factor affecting the relative vertical accuracy 
of the DEM. This study used validation and cross-validation to evaluate the 
performance of IDW, Kriging and local polynomial algorithms for LiDAR data on two 
different terrains. Results showed that Kriging did not work well. The local polynomial 
performed much better than IDW on flat terrain, but there was no significant difference 
with IDW on complex terrain. Accuracies from interpolators became worse with the 
decrease of LiDAR data density, with Kriging being insensitive to data density on flat 
terrain. As a trade-off between accuracy and computing time for large volume of 
LiDAR data, IDW is the recommended interpolation method for DEM generation from 
LiDAR data.    
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