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ABSTRACT 
 
Affordable tools with the ability to continuously monitor the growth rate of livestock 
animals are highly sought after by the livestock industries. This demand is driven by 
the potential for these tools to assist in improving animal welfare and production 
efficiency. In a rapidly growing population the demand for meat is escalating, 
especially in Asia, where the middle class is currently expanding. Meanwhile in the 
western world there is growing consumer concern surrounding animal husbandry, 
with certain organisations labelling some of the current husbandry practices cruel or 
sub-standard. The environmental impacts of livestock farming are also increasingly 
becoming scrutinised, pressuring researchers to find new methods to increase the 
efficiency of livestock nutrition, and improve health (disease prevention), 
reproductive and waste management practices. At the centre of these problems is the 
ever-changing individual animal as it continuously adapts to its surrounding 
environment and available resources.  
 
Livestock growth is a fundamental measure which can be used for diagnostic 
purposes in these areas, therefore the main objective of this study was to develop a 
system to automatically determine the growth of individual and groups of livestock 
animals (pigs) using welfare friendly and non-invasive methods. A machine vision 
system was selected to undertake this weight estimation task, whereby pigs’ body 
measurements are extracted from images and used to estimate their weight without 
physical interference. 
 
Reviews prompted the development of a methodology to determine the weight-
estimation equations as a function of not just the animals’ body measurements but 
also their pose. Subsequently equations were generated from shapes that conformed 
closely to a specified reference template shape. Thus, to enhance precision during 
weight estimation the template shape was directly linked to the equation and pose 
validation aspects of the system. Filters were developed to provide recognition via 
the confirmation of the characteristic template shape and known body measurement 
and weight relationships. The shape filter ensured that 94% of weight estimates that 
passed through to output were within ±5 kg of the actual weight of the pig. Using the 
shape and limit filter in unison ensured that greater than 97% of the samples which 
passed had an weight estimate within ±5 kg of the actual weight of the pigs and  68% 
of the total number of samples were within ±2 kg. Statistical modelling was used to 
determine the importance of different body measurements in estimating weight. 
Subsequently a multivariate linear weight estimation equation was created to 
estimate pigs’ weight using a stepwise selection of variables. The multivariate linear 
equation estimated 2% more sample weights within ±2 kg error and 3% less sample 
weights greater than ±5 kg error than the closest non-linear equation. Software was 
written to automatically recognise pigs inside the field of view (FOV) of the camera 
and to extract 16 body measurements from the pigs’ body contours. Height was 
manually recorded from the back of a sample of pigs to determine its strength in 
weight estimation. Including the pig’s height in the weight-estimation equation did 
improve predictive performance with a 7.34 % improvement in the number of 
samples estimated within ±2 kg of the pigs’ actual weight compared to a multivariate 
equation without the height parameter. Although, this improvement was not 
significant enough to justify the additional practical development required to collect 
the height information automatically during the weight estimation process.  
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Both off-line simulation and on-farm experiments were undertaken using data 
collected from commercial facilities. During an off-line simulation, the shape and 
dimension filters were applied across a dataset containing over 20,000 frame samples 
of over 500 pigs. Gut fill was used as a guide to determine a practical error margin 
for measuring the weight of individual pigs across the course of a day. The machine 
vision system was found to operate within an acceptable error margin of 50 % of the 
gut fill according to the equation and average shape template used during off-line 
simulations. As on average pigs in the weight-range of 45 to 115 kg had their live 
body weight estimated to within 3.16 % and 2.20 % of their actual live body weight, 
respectively. For pigs less than 45 kg in weight the piGUI system operated, on 
average, to within 67% of the weight attributed to gut fill (between ±1.07 and ±1.49 
kg error). During off-line simulations, the percentage mean-relative error obtained by 
the piGUI system was between 5.1 and 3.7% for pigs in the weaner to grower weight 
range (15 to 45 kg) and less than or equal to 2.5% for grower finisher pigs between 
45 and 115 kg. Thus, on average, the system was able to estimate the pig’s body 
mass with practical precision.  
 
The system labelled ‘piGUI’ was installed in pens at commercial facilities which 
housed pigs in group-sizes of between 10 and 160 pigs. During testing, the system 
determined the average weight of groups of pigs on a daily basis, tracking the 
group’s growth rate. In some trials, the pig’s weights were also estimated along with 
the weight deviation of the group. During a 22 day trial period the system estimated 
the average weight of a group of finisher pigs within 2.1%, on the seven days when 
the actual group weight was recorded from an electronic scale. No information was 
passed between successive days by the system.  
 
The diagnostic power of the piGUI system was also tested on-farm. A deflection 
away from the standard growth curve was recorded during two successive batches of 
grower pigs after reaching weights greater than ~45 kg. These growth deflections 
were believed to be caused by stress related directly or indirectly to temperature, as 
the summer temperatures reached over 38°C during these batches. The level of 
animal activity recorded by the system, the temperatures leading up to the deflection 
in growth and figures reported in literature support this theory.  
 
The piGUI system was also tested to see whether it could estimate the weight of 
sows in their early stages of pregnancy and whether it could detect changes in the 
body measurements of individual sows before and after giving birth. A group of 
eleven sows between day 71 and day 82 of pregnancy had their group weight 
estimated to within 0.1 kg of their actual group weight. Eighty-two percent of their 
individual weights were estimated within a practical range of ±5 kg of their actual 
weight. The metric body measurements of two Large White × Landrace sows were 
also recovered by the vision system before and after giving birth. The widths and 
lengths of the sows’ recorded by the vision system were consistent with those found 
in literature. Indicating that the device may be used to monitor sow weight and body 
morphology in future.  
 
The developed device was also tested at various locations within the pen 
environment. Radio Frequency Identification (RFID) was integrated into the system 
to determine whether bias in group estimates could occur as a result of the sampling 
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region observed within the pen. A layout bias was discovered, caused by certain pigs 
visiting the FOV (containing the feeder) more frequently or for longer durations than 
others. Subsequently, feeding behaviour was determined using the RFID information 
collected and demand for the feeder was calculated for the pigs individually and as a 
group. The number of social interactions between pigs at the feeder was also 
determined, thus providing a method to identify social interaction and potentially the 
competitive nature of pigs automatically. 
 
A comparative study was undertaken between a commercial system ‘System-A’ and 
the piGUI system. System-A failed to correctly estimate the group average weight of 
the finisher pigs in the trials. It was apparent that necessary conversions were not 
taking place within System-A’s software to normalise the extracted body 
measurements to suit weight-estimation equation coefficients. It was found that, 
System-A’s growth data would require a multiplication by a scalar factor to adjust 
the growth data to valid weight ranges. Code within the piGUI software performed 
the necessary conversions automatically during initialisation and was not burdened 
by this limitation. The piGUI system estimated the group average weight to within 
2.1% on each of the seven days when the actual weight of the pigs were determined 
using the electronic scale. On these days, System-A reported group average weight 
estimates in excess of 16 kg error of the actual group average weight. It was clear 
that the distribution of weight data recorded daily by the piGUI system was far more 
concentrated around a mean estimate value than system-A. 
 
The results of this PhD study demonstrate that the average weight of groups of pigs 
can be calculated with sufficient practical accuracy. The precision achieved during 
this study was better than reported in the literature and the precision of the system 
was also favourable compared to a commercially available system. Therefore the 
developed system can be used for practical purposes on commercial farms to 
determine the average weight and growth of groups of grower-finisher pigs.  
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PREFACE 
 
This thesis presents PhD research carried out during the 2/2/09 to the 8/2/12 at both 
the University of South Australia and the National Centre for Engineering in 
Agriculture, University of Southern Queensland. Experiments were undertaken at 
three different commercial facilities during this time Rivalea, Corowa NSW, 
Riverhaven Enterprises, Morgan SA and PPPI, Roseworthy SA. Early development 
of this work was undertaken as part of a co-operative research centre  program 
“Measuring feed intake and pig weights in commercial situations” under the 
subprogram “Practical and continuous measurement of feed intake and pig weight 
(2A-103)” which was funded by the PORK CRC and collaborative partners South 
Australian Research and Development Institute (SARDI) and Rivalea. This project 
was concluded in 2009, however, the PORK CRC continued funding the 
development of a system to estimate the weight of livestock (pigs) for the subsequent 
3 years until early 2012. 
 
This thesis presents the combined work from several published journal articles 
conference papers and submitted manuscripts to academic journals and industry 
organizations entitled;  
  

1. Tscharke, M. & Banhazi, T. M. (2011). Review of methods to determine 
weight, size and composition of livestock from images. In The Bi-annual 
Conference of the Australian Society of Engineering in Agriculture (SEAg 
2011), 465-483. (Eds C. Saunders and T. Banhazi). Gold Coast, Australia: 
Australian Society of Engineering in Agriculture. 

 
2. Banhazi, T. M. & Tscharke, M. (2011). Review of Image Analysis (IA) 

technologies for the Australian pig industry. Final report for APL. (54 Pages). 
Canberra, Australia 

 
3. Tscharke, M. & Banhazi, T. M. (2011).Determining animal behaviour using 

machine vision and artificial intelligence. In The Bi-annual Conference of the 
Australian Society of Engineering in Agriculture (SEAg 2011), 55 (Eds C. 
Saunders and T. Banhazi). Gold Coast, Australia: Australian Society of 
Engineering in Agriculture. 

 
4. Tscharke, M. &Banhazi, T. M. (2011).Growth recorded automatically and 

continuously by a machine vision system for finisher pigs. In The Bi-annual 
Conference of the Australian Society of Engineering in Agriculture (SEAg 
2011), 454-464. (Eds C. Saunders and T. Banhazi). Gold Coast, Australia: 
Australian Society of Engineering in Agriculture. 

 
5. Banhazi, T. M., Tscharke, M., Ferdous, W. M., Saunders, C. &Lee, S.-H. 

(2011). Improved image analysis based system to reliably predict the live 
weight of pigs on farm: Preliminary results. Australian Journal of  Multi-
disciplinary Engineering 8 (2): 107-119. 

 
6. Banhazi, T. M., Tscharke, M., Ferdous, W. M., Saunders, C. &Lee, S.-H. 

(2009).Using image analysis and statistical modelling to achieve improved 
pig weight predictions. In The Bi-annual Conference of the Australian Society 
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of Engineering in Agriculture (SEAg 2009), p. CD publication. (Eds T. M. 
Banhazi and C. Saunders). Brisbane, Australia: Australian Society of 
Engineering in Agriculture. 
 

7. Ferdous, W. M., Tscharke, M., Saunders, C., Lee, S.-H. &Banhazi, T. M. 
(2011).Digital image processing methods for the identification of pigs posture 
during weight estimation. In 5th European PLF Conference, 422-432. 
Prague. 

 
8. Banhazi, T. M., Tscharke, M., Lewis, B. &Broek, D. (2009). Practical and 

continuous measurement of feed intake and pig weight. Final report for the 
PORK CRC. (108 pages). Adelaide, Australia. 
 

9. Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, P., Tscharke, 
M. &Berckmans, D. (2011).Precision livestock farming: scientific concepts 
and commercial reality. In ISAH conference proceedings, p:137-143. 

A patent has also been submitted: 

Banhazi. T. and Tscharke, M. Image analysis for size estimation.  (Provisional 
patent application number: 61346310) 

During this time I attended four conferences on subjects directly related to this PhD 
study and made two oral and one poster presentation. During this PhD study I was 
also involved in the data collection and analysis of a sister component in the project 
(2A-103) involving the development of an apparatus to determine the dispensed 
weight of feed which is detailed in the following publication; 

 
10. Banhazi, T. M., Lewis, B. &Tscharke, M. (2011). The development and 

commercialisation aspects of a practical feed intake measurement 
instrumentation to be used in livestock buildings. Australian Journal of 
Multi-disciplinary Engineering 8(2): 131-138. 
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AIMS AND THESIS OVERVIEW 
 
The Chapters found in this thesis provide supporting evidence that relates to the 
general hypothesis of this PhD study which aims to determine whether the live 
weight of groups of livestock can be estimated reliably, efficiently, accurately and 
automatically using two dimensional image analysis techniques.  
 
These chapters aim to answer the following key questions. 
 

• What methodical approaches could be used to tackle this problem? 
• What equipment could be considered in the system design?  
• How can an animal be identified and tracked reliably within images?  
• How accurately and reliably can an animal’s weight be determined from its 

appearance in two dimensional images? 
 
Two literature reviews form Chapter 1 and Chapter 2 of this thesis. Chapter 1 
involves a comprehensive investigation into the methodologies other researchers 
have used to tackle the weight estimation problem. From all alternatives image 
analysis was found to be the most attractive technique to automate the weight 
estimation process. Subsequently studies using this technique are reviewed and the 
performance of a number of research based systems involving the weight estimation 
of several different livestock species is documented. The various modelling methods 
used to describe the relationship between weight and different body measurements 
are also determined. In the later part of Chapter 1 the image analysis techniques 
relevant to identifying and extracting semantic information of the animal out of the 
image for further analysis are presented, with specific attention given to techniques 
that complement the systems application environment. Review findings prompt 
further research related to the posture of the animal during weight estimation. As the 
animals posture has close ties to behavioural recognition Chapter 2 shifts focus 
slightly to review machine vision techniques and technologies used in the study of 
animal behaviour. No behavioural recognition software was available which could 
extract the required information of the animal out of images reliably. Consequently 
our own software development was warranted in this study. Chapter 3 draws on the 
findings of Chapter 1 and Chapter 2 to identify weak points in existing 
methodologies for weight estimation using image analysis. Chapter 3 begins with a 
description of the task at hand, followed by a breakdown of the generic attributes of 
livestock-scales that provide insight into the various elements required in a livestock-
scale design. Potential equipment and the working environment is then reviewed and 
equipment selection, configuration and installation positioning is justified. The 
individual software methods that were created in support of a scale’s functioning 
elements are explained and illustrated. These methods identified a pig, its posture 
and determined its live weight from the body measurements extracted from images. 
For enhanced control, an integrated equation and shape builder was also formed. 
This builder configures and outputs a complementary shape and equation pair for 
weight estimation and shape validation during system operation. After integration, 
the combined segmentation, extraction, validation and estimation methods formed 
the ‘piGUI’ system which was used to test the hypothesis of the project. Simulated 
results of the performance of the piGUI system can be found at the end of Chapter 3. 
Various field trials were undertaken during system development. Chapter 4 presents 
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the first on-farm trial undertaken at a small commercial research piggery housing 
finisher pigs. The ability of the piGUI system in estimating the live weight of finisher 
pigs was determined through validations performed both on-farm and off-line. In 
both validation trials the system estimated the average weight of groups of finisher 
pigs to practical levels. Chapter 5 presents trail work undertaken to estimate the 
weight of grower pigs. Both off-line and on-farm trials at a large Australian 
commercial piggery were undertaken. In both trials the average weight of groups of 
grower pigs were estimated to practical levels by the system. The piGUI system’s 
analytical power was also explored in this chapter, with hot summer temperatures 
appearing to adversely affect the activity level and growth of the grower pigs. In 
Chapter 6 the system’s ability to estimate the weight of sows’ in early pregnancy is 
determined and the morphological changes recorded before and after giving birth are 
explored. The system estimated the average weight of a group of sows to practical 
levels. Chapter 7 determined whether bias in group weight estimates could occur 
from certain pigs feeding more frequently and for longer durations than others. The 
system was installed above a feeder within a group of pigs’ pen and Radio Frequency 
Identification (RFID) was integrated into the piGUI system to detect for any bias. 
Bias was identified from certain pig’s body shapes and the sampling location of the 
device within the pen. Chapter 8 contains a comparative study between two systems 
running in parallel; the piGUI system and an existing commercial image-based 
weighing system labelled ‘System-A’. In Chapter 9 conclusions are drawn from the 
results of each chapter and future improvements and directions are discussed. 
Technical detail can be found in the appendices when prompted.  
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ABSTRACT 
 
Technologies which can determine the weight and growth of livestock are reviewed. 
Limitations of the weighing task by these means are defined. Comparisons between 
the different techniques highlight the superiority of the non-contact vision-based 
method. Modelling techniques for weight estimation, size and composition are 
reviewed along with image segmentation and recognition methods. Conclusions 
identify that further work is required in regards to (i) estimating the weight and (ii) 
weight deviation of groups of livestock animals, (iii) estimating the weight of 
individual livestock animals and (iv) improving the design of livestock weighing 
methods to function in commercially realistic environments. Future direction also 
centres on enhancing automation, minimising invasive environmental control, 
maximising precision and repeatability during the recovery of body measurements 
and identifying and controlling the effect of any bias in weight estimation.  
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1.1 INTRODUCTION  
 
In practice the most appropriate measures used to determine the nutritional 
requirements of livestock are live body weight and age relative to their surrounding 
environment (Whittemore and Schofield, 2000; National Research Council 1998). 
Therefore, to maintain and optimise the physical condition of livestock animals, 
feeding regimes must be structured based on a continuous assessment of their 
growth. Due to the promise of increased efficiency and subsequent production 
savings, mechanisms to facilitate control-loops of this nature have long been sought 
by livestock producers.  
 
The largest cost involved in the production of pigs is feed cost which contributes to 
approximately 60-65% of the total production cost and accounts for 75-80% of the 
variable cost (Gillespie and Flanders, 2009). Consequently the way in which feed is 
managed can easily dictate the profitability of a farm. It is estimated that up to 10% 
of feed is wasted on-farms, with the majority of feed waste attributed to under or 
overfeeding the animals and poor feed management (Carr et al., 2008). Overfeeding 
causes the animals to store the energy from the feed as fat, reducing the quality of the 
animals’ carcass at slaughter and attracting penalties in the sale price. Underfeeding 
causes the animals to grow slowly, thus contributing to reduced production 
efficiency (Frost et al., 1997; Korthals, 2001). A common behavioural tendency, 
which further contributes to over and under feeding, occurs when animals of varying 
weights are grouped together. In this scenario, smaller animals are more likely to be 
prevented from eating their appropriate ration by larger ones, which use competitive 
and sometimes aggressive actions to gain access to feeding spaces. It is, therefore, 
important to introduce management protocols that reduce the level of weight-
variance found in groups of intensively housed pigs, as regular weight-based sorting 
of pigs into weight classes has proven to contribute to production savings via 
enhanced feed efficiency and product quality (Banhazi and Black, 2009; Korthals, 
2001). Hence, by maintaining appropriate levels of feed for individual animals, 
savings can be made on feed, space, time, health and welfare.  
 
However, before the correct ration can be allocated to a group of animals, their 
average weight must be determined. Conventionally, the weights of animals are not 
regularly recorded on individual and group-average bases. Furthermore, an unknown 
quantity of feed is generally fed to each animal (adlib feeding). Although this level of 
record keeping is suboptimal it is common practice as existing farm facilities, tools 
and resources are unable to acquire the required growth information in a cost 
effective manner (Frost et al., 1997; White et al., 2004; Black et al., 2001).  
 
Mechanical and electronic scales can be used to weigh the animals. However, a 
considerable amount of labour is required to move the animals through the scale, and 
to document and analyse the weight information recorded. It takes two farm workers 
approximately three to five minutes to weigh a heavy pig (Brandl and Jørgensen, 
1996; Kollis et al., 2007). Safety concerns also arise for the worker and animal 
during the manual handling process as injuries and stress may occur. Some studies 
show that up to 6% of reported livestock-related injuries to farm workers result from 
standing in close proximity to an animal (Criddle, 2001).  
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As a result of these practical limitations, the growth rate of successive batches of 
animals can only be approximated retrospectively based on the number of animals 
sent to market and the approximate feed consumed during the entire growth period. 
At this point it is too late to rectify growth problems experienced during the cycle. 
Hence, automating the growth measurement can help overcome these limitations.  
 
During industrial processes objects are commonly inspected using a range of 
equipment and techniques in order to classify objects into different groups and to 
maintain certain standards such as those related to quality, safety and productivity. 
Often inspection processes are performed manually, and therefore rely on the 
intuition of skilled workers to manage the task or manage the machine undertaking 
the task. Long durations of concentration and interaction with a process can result in 
fatigue and drift from the task at hand. Subsequently errors in judgement can result. 
Therefore automating tasks of this nature can improve quality and productivity, as a 
machine can be managed to operate continuously and maintain a specific standard 
and reliable measurements.  
 
Inspection tasks in the livestock industry focus on the animals and their activities. 
Arguably the most important inspection task within these industries is determining 
weight of the animal. For a number of reasons it is valuable to determine the weight 
of livestock as they grow. At the core of this reasoning is the livestock system’s 
output; the condition of all of the animals the enterprise cares for. This measure is 
fundamental as it quantifies all inputs going into the production process. 
Subsequently the on-line feedback obtained during the process can be used to control 
and optimise management procedures (Kristensen, 2003; Parsons et al., 2007). 
Growth is a prime indicator of animal condition, therefore successive weight 
measurements are required of both individual and groups of animals for 
quantification and optimisation to occur. Several suboptimal conditions can be 
identified and managed from measuring growth, such as (i) determining whether 
sorting is appropriate into smaller weight ranges to avoid competitive behaviour (ii) 
determining whether and when the animal is ready for market to maximise returns 
(Korthals, 2001), (iii) forecasting the likely requirements for feed, space (Petherick, 
1983; Pastorelli et al., 2006), and transport in the future, (iv) identifying weak or 
unwell animals by singling out animals which exhibit periods of poor growth (Maltz, 
2010) and, (v) to monitor and analyse the animals’ response to different feed and 
environmental scenarios to optimise and standardise the process (Green and 
Whittemore, 2005; Frost et al., 1997; Doeschl-Wilson et al., 2005; Whittemore and 
Schofield, 2000). Considerable value can be gained from refining these management 
processes (Niemi et al., 2010). Due to the importance of these measures from a 
production and welfare perspective, techniques have been devised to assess the 
weight of livestock both on an individual and group basis. Progressively systems that 
measure the weight of livestock have evolved from inefficient, time-consuming and 
labour intensive methods to advanced methods designed to facilitate (i) higher levels 
of automation, (ii) increasingly accurate and semantic information and (iii) a safer 
working environment. Throughout this evolution several different types of scale have 
emerged which can be categorised into four different groups based on how they 
function during weight assessment. We identify which of these four weighing 
methods is best suited to undertake the weight estimation task and determine whether 
it can be improved and how. This statement forms the basis of the two main sections 
of this review.  
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The first section undertakes an in-depth look at the existing scales which can be used 
to automatically determine the weight of livestock automatically. The design 
considerations are presented, highlighting the positive and negative aspects of each 
of the weighing methods. The second section reviews research-based and 
commercially available machine vision systems that are used to estimate the weight 
of animals. The body measurements of several different species of animals are shown 
to have strong correlation to weight. The type and effectiveness of different 
equations in modelling weight using various body measurements are also 
determined. Segmentation and recognition techniques that are used to identify 
animals in images are also reviewed. Conclusions highlight the current limitations of 
this technology and provide insight into future research to enhance the method.  
 
1.2 LIVESTOCK WEIGHING METHODS 
 
Essentially four methods exist to obtain weight estimates of livestock animals 
automatically, (i) automated cage scales, (ii) foreleg and platform scales, (iii) vision-
based scales and (iv) walk-through scales. The following section presents the 
function and obtainable precision of each of these methods.  
 
An automated cage scale is comprised of a load cell or cells, a cage area and 
pneumatically, electronically or mechanically controlled gates. Sensors on the gates 
and inside the cage detect the presence of an animal and coordinate its confinement 
while weight assessment takes place. After a weight reading is obtained an adjacent 
set of gates are opened to release the animal. Advanced scales of this type can 
automatically sort animals by opening alternative release gates to direct an animal 
into an enclosure containing animals in its weight class (Weight Watcher™, Osborne 
Industries, Inc., Kansas, USA). In this process the weight of the animal is determined 
using load-cell(s) which are generally accurate to within ± 1 %. Some scale systems 
offer finer readings for different weight classes such as ± 100 g from 1 to 49 kg and 
± 500 g from animals 50 to 150 kg. A single automatic cage scale can handle 
between 500 and 1500 animals depending on pen layout and the number of exit gates 
on the scale. If the scale can be transported easily it may be moved periodically 
between pens with the same layout to optimise the use of the scale and cater for 
additional groups of animals.  
 
A foreleg weigher is alternative type of scale developed to obtain livestock live-
weight continuously. A foreleg weigher consists of a small load-cell platform which 
makes a total weight estimate of the animal based on the weight of the animal’s front 
legs. Foreleg weighers have been reported to estimate pig’s weight to within 5% 
precision with 95% repeatability (Ramaekers et al., 1995b). The weight ‘state’ of a 
pig using a foreleg weigher can be further refined using a Kalman filter (Williams et 
al., 1996).  Foreleg weighers have also been used to weigh cattle (Ramaekers et al., 
1995b). Platform scales measure the weight of the entire body of pigs using a load-
cell device such as the ACCU-ARM® Weigh Race (Osborne Industries, Inc., 
Kansas, USA). A platform scale requires the animal to remain stationary during 
assessment. Platform type scales have also been used to automatically weigh poultry 
(Turner et al., 1984b; Lott et al., 1982) and cattle. 
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The weight of an animal can also be estimated based on the animal’s body 
measurements as measured directly from the body of the animal using a flexible 
measuring tape called a tailors rule. In this weight estimation process a stockperson 
uses the animal’s body measurements as variable inputs into a weight-estimation 
equation. From this concept steps have been taken to minimise the labour 
requirement for weight estimation based on the body measurements of the animal. 
An alternative and superior method based on the same concept is to extract the body 
measurements of the animals from video frames and use them to estimate the live 
weight of animals without making physical contact. We term this technique a vision-
based scale. This method has proven to estimate the live weight of certain livestock 
animals to within 5% of their actual weight (Schofield, 1990). The assessment 
process requires the animal and its body measurements to be identified within the 
image frame so that the body measurements can be used in a weight-estimation 
equation to form a weight estimate. Minagawa et al. (2003) reported average mean 
error of 2.1% for individual pigs and 1.3% for group mean estimates using the pig’s 
height and area as determined from images. Commercial systems for image-based 
weighing of pigs also exist and some report a maximum deviation of 3% for the 
group average weights of finishing pigs (Fancom; Hoelscher&Leuschner; 
InnoventTechnology). 
 
Walk through scales estimate the animal’s body weight while the animal is in motion 
(dynamically). This type of scale records the unique weight-signal over time which 
results from the animal’s weight distribution across its feet as it moves across the 
load-cell platform of the scale. This signal-pattern is then used to identify the 
walking motion of a single animal, after which, an assessment of the relative load-
cell reading(s) can take place to determine the weight (Cveticanin, 2003). An 
example of a walk-through weigher for dairy cows can be found in Filby et al. 
(1979) and for cattle in Martin et al. (1967). An alternative form of walkthrough 
dynamic scale was presented by Wang et al. (2008) who used a machine vision 
system to determine the live weight of pigs as they walked through a raceway. 
Several body measurements were extracted from video frames and then used in a 
weight-estimation equation to make an assessment of the pig’s weight.  
 
1.2.1 Adding Functionality and Value to Weighing Methods 
 
Four different methods of automatic weighing have been presented above. Below is a 
summary of the advantages, disadvantages and additional practical potential of these 
methods.  
 
A major benefit of automated cage scales is that they can be used to sort animals into 
enclosures of different weight ranges. There are several benefits of sorting animals 
into different weight classes, these include facilitating target diets for specific weight 
ranges, minimising tail biting and fighting and consequently mortality, identifying 
the number of market ready animals and adjusting feed accordingly. These 
characteristics of sorting devices can therefore lead to improvements in animal 
growth, feed management and welfare as well as feed and labour savings. An 
alternative function of a platform scale may be to determine whether the force 
distribution exerted on the weigh platform indicates the animal is protecting an 
injured leg. 
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Identification of weight from walkthrough scales relies on the identification of 
unique force-time patterns attributed to the animal walking over the load-cell 
platform. Correct recognition of a walking sequence pattern can effectively filter out 
other patterns such as those attributed to crowding on the scale or when there is only 
a small time between successive animals walking over the scale (Cveticanin, 2003). 
However notably, finer detail in walking-sequence patterns reveal the characteristic 
force-time patterns useful in the classification of gait (StepMetrix™, BouMatic, 
Madison, Wisconsin, USA). In addition, if points of impact between the animal and 
the platform can be identified on the horizontal plane then when using larger 
platforms multiple animals have potential to be classified and assessed for their 
weight.  
 
Vision systems also present a range of potential functionality. As the system is 
appearance-based, additional code can be integrated into the system for the detection 
of certain behaviours such as fighting (Šustr et al., 2001) or tracking the movement 
of animals around their enclosure (Lind et al., 2005; McFarlane and Schofield, 
1995). Vision-based scales automatically record various body measurements of the 
animals’ bodies as they grow; alternative methods are unable to achieve this. Output 
from vision-based scales have been used to provide grounds for sorting animals 
which are similar to the tasks performed by automated cage-type scales 
(Hoelscher&Leuschner). The vision-based method also has the greatest future 
potential to contribute to individual animal identification due to advancements in the 
techniques for vision-based biometric-identification. The level of detail and semantic 
information is also likely to improve with the development of 3D vision systems 
capable of recording accurate reconstruction of the animal’s body in 3D space (Wu et 
al., 2004). It has also been proposed that the identification of gender breed and body 
composition is attainable using vision-based methods based on the extraction of 
certain body measurements (White et al., 2004; Doeschl-Wilson et al., 2005; Fisher 
et al., 2003). An extension is using the system for body condition scoring (Bewley et 
al., 2008). The use of different vision-based sensors can also introduce additional 
functionality into the system. Although it is not feasible at this time for commercial 
applications, thermal imaging has potential to help determine an animal’s 
temperament, thermal comfort and health as well as helping to simplify the 
segmentation process, all while maintaining the functionally attributed to image 
sensors that sense in RGB colour except appearance (Stajnko et al., 2008). Two 
dimensional vision systems also have the capability of viewing a large area and may 
be used to track individual animal movements and social interactions in future. 
 
Determining the measurement equipment that is best suited for automatic weight 
estimation is governed by factors such as cost, functionality, practicality and 
accuracy. It is important for the cost of the device to remain low to help persuade 
farmers to adopt and justify technological advancements. In addition it is also 
necessary for the sensor to work in harsh environmental conditions where both 
moisture and dust are often unavoidable. These environmental considerations also 
provide additional reasoning to keep the equipment inexpensive in case damage 
occurs and a replacement is required.  The sensor must also be accurate enough to 
ensure that the information gained is practical and comparable to measurements 
obtained using conventional methods (White et al., 2004). 
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The characteristics of the current methods used to automatically estimate livestock 
group-weight are summarised in Table 1. The vision-based weighing method is the 
preferred method given the very low level of contact between the scale, the operator 
and the animal, the very low level of additional infrastructure required for the scale 
to function and the very low safety risk posed towards animals and workers while the 
scale is in operation.  

Table 1: Summary of Scale Selection Characteristics 

Weigh Method 
Level of 

Operator/Animal 
Contact 

Level of  
Scale/Animal 

 Contact 

Level of  
Infrastructure  

Required 
Safety Risk 

Manual VH* VH L VH 
Foreleg VL ML L L 
Platform VL H MH L 
Automatic Cage ML VH VH H 
Vision VL VL VL VL 
Walkthrough L H H ML 
Walkthrough Vision L L MH L 
* VL = very low, L = low, ML = medium to low, MH = medium to high, H = high, VH = very high  
 
Level of Operator/Animal Contact refers to the requirement of stockpersons in the 
process. Notably the manual weigh method requires a very high level of animal 
handling skill. The walkthrough method would require some animal handling (low) 
to either train or persuade the animals to move through the raceway. The automated 
scale has been assigned a medium to low (ML) level due to the additional challenges 
involved in training the animals’ to overcome any fear related to entering a confined 
area with moving parts. 

Level of Scale/Animal Contact refers to the requirement for the scale to make direct 
contact with the animal. The most extreme cases are the automatic scale and manual 
method which require some form of confinement of the animal. An automated 
scale’s gates are also often in direct contact with the animals. The raceway in the 
walkthrough type scales both encloses the animal and makes contact with the animal. 

Level of Infrastructure Required refers to the level of additional infrastructure in 
direct contact with the animals which is required for the system to function correctly 
to obtain growth information. The vision system performs best in this category as it 
can be fixed to the roof of the building and therefore can make weight assessments 
without ever having direct with the animal and its environment. Depending on the 
level of co-operation of the animal, manual weight assessment method may be 
achieved without confining the animals, however, in general some confinement 
would be necessary of operator safety and to obtain the measurements in a timely 
manner. Walk through weighers and automated scales require fencing to channel the 
animals through the scale area adding to system cost and complexity. 

Safety Risk refers to a combination of the risk of stress or injury on the operator or 
the animals during the weigh process. Essentially this measure is based on the Level 
of Operator/Animal Contact, Level of Scale/Animal Contact and Level of 
Infrastructure Required. 

 
1.3 MACHINE VISION SYSTEMS FOR WEIGHT ESTIMATION 
 
This following section covers the image analysis techniques and systems used in 
agricultural applications for weight estimation. In such a system a camera is 
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responsible for acquiring images of the animal and the software on a computer is 
responsible for controlling the acquisition, storage and analysis of image frames 
using a routine set of instructions. These instructions automatically recognise the 
animal within the image and extract one or more of the animal’s body measurements 
to use as a predictor of weight in a weight-estimation equation. 
 
1.3.1 Livestock Body Measurements and Their Correlation to Weight 
 
The information gained from the study of vision-based and manual-based weight 
estimation methods (using a tailors rule) exemplify the underlying correlation 
between weight estimation and physical linear body measurements of the animal. 
These body measurements have been obtained manually (directly from the animal), 
estimated indirectly by machine vision systems in 2D (Schofield, 1990; Schofield et 
al., 1999), 3D perspective (such as using a 2D side and 2D top view image of the 
animal) (Kmet et al., 2000) and 3D stereo configurations (Wu et al., 2004) to 
approximate the weight of several different species of livestock.  
 
The body measurements have been extracted from images by either (i) using a 
printout image containing a reference object of known body measurements on the 
animal and taking the measurements manually (Phillips and Dawson, 1936), (ii) 
implementing an operator controlled process where instructions are imposed on a 
computer to control the identification of the animal’s body and locate and extract the 
respective body measurements (Arias et al., 2004; Minagawa et al., 2003) and finally 
(iii) a machine controlled process where instructions are automatically imposed on a 
computer to control the identification of the animal’s body and locate and extract the 
respective body measurements to estimate the growth of animals (Schofield et al., 
1999; Parsons et al., 2007; Green et al., 2003). These three extraction methods 
represent manual, semiautomatic and completely automatic processes.  
 
The concept of using an animal’s body measurements to estimate its weight has been 
applied to several livestock animals including cattle, buffalo, chickens, pigs, sheep, 
fish, horses and rabbits. The relationship extends to wildlife such as elephants (Hile 
et al., 1997). 
 
In cattle and buffalo these extracted body measurements include heart girth, wither 
height, hip width, hip height and body length. Other measures include age and 
condition related information such as the parity of the animal. In a study based on the 
direct manual-extraction of body measurements of Holstein Heifers, Heinrichs et al. 
(1992) determined that the highest coefficient of determination was between the 
heart girth and weight. Heart girth, wither height, hip width and body length also 
demonstrated high correlation R2 > 0.95. Similarly a study of Holstein calves found 
that heart girth was also the highest correlating body measurement to weight. 
However, correlations were less pronounced between the different age groups 
studied R2 0.72-0.77 (Wilson et al., 1997). Dairy cows have been assessed for their 
weight based on their body measurements and parity with R2 in the range of 0.80 to 
0.89 (Enevoldsen and Kristensen, 1997). A coefficient of determination of 0.94 was 
found for Simmental heifers using the heart girth (Willeke and Dursch, 2002). There 
have also been several attempts to extract livestock body measurements using an 
indirect vision-based approach from different perspective views of the animal. Kmet 
et al. (2000) used three views (top side and end) of Simmental cattle to determine the 
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shoulder width, lumbar protuberance in the body width, rear thy area and the top-
view body area. The R2 relationship between weight and the various body 
measurements obtained was from 0.80-0.94. Different age classes of Simmental 
cattle have also been assessed for their wither height and hip height using thermal 
imaging techniques. Hip height (R2 0.46-0.74) performed slightly better than wither 
height (R2 0.43-0.66) across the growth period (Stajnko et al., 2008). Minagawa 
(1994) used a stereo imaging method to recover the side surface of the Japanese 
shorthorn cattle to estimate their weight. Correlation coefficients for the five animals 
studied were r = 0.88, 0.81, 0.89 for weight estimates based on surface area, volume 
and projected area. External body measurements have been used to determine the 
weight of buffalo (Manik et al., 1981; del Pilar et al., 2002). The side-view surface 
area of Mediterranean buffalos have also proven to correlate well to weight with r  = 
0.90 using a light projection method and an image processing technique (Negretti et 
al., 2007a). A vision system is also in development to determine the live weight and 
condition scoring of buffalo. Measured and modelled parameters include the animals 
wither height, rump height, body height, trunk, rump length and surface areas of the 
lateral profile (side view), of the profile of the hindquarters (end view) and of the 
lateral iliac tuberosity. The best performing parameters in respect to weight were the 
side view R2 0.94 and end view R2 0.92. Using these two parameters in a multiple 
regression equation obtained slightly better coefficient of determination R2 0.96 
(Negretti et al., 2008).  
 
Computer-assisted image analysis has also been used to quantify daily growth rates 
of broiler chickens. Weight based on the perimeter and area as viewed from above 
was estimated to 15 % and 10 % respectively (standard deviation of the residuals) De 
Wet et al. (2003). Similarly other studies report errors in the weight estimates of 
broilers between 0.04 and 16.47 % up to 35 days of age using image based 
techniques for the estimation Mollah et al. (2010).  
 
The body measurements of fish have also been used to estimate their mass. Beddow 
and Ross (1996) estimate the mass of salmon to within ± 2 % error using manual 
measuring techniques. Image based estimation methods have been applied to blue fin 
tuna in commercial pens (Costa et al., 2009). The total number of fish was estimated 
using a dual camera technique to 2.2 % and their mass was found to be within 50.6 % 
of the actual total weight which was an improvement on conventional methods which 
had 353.9 % error in estimates and the estimates provided by divers during the same 
study. Lines et al. (2001) found that the linear body measurements of salmon could 
be used to estimate their mass with a mean error of less than 0.5 % and these linear 
body measurements could be extracted automatically from stereo images with a 
mean error of less than 10 %. The mean mass measurement error was 18 % based on 
an off-line analysis of 60 images of 17 fish.  
 
A large amount of work has been undertaken to estimate the live weight of pigs 
based on their body measurements. One of the first studies undertaken to determine 
the live weight of pigs from images involved a comparison between manually 
extracted body measurements and those obtained from images. The body 
measurements extracted from the images in the study were found to be very close to 
those extracted manually, with eight of the 11 measurements manually taken from 
the images measuring less than or equal to 1cm from the measure obtained from the 
surface of the animal (Phillips and Dawson, 1936). Similar findings between image-
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based and physically taken measurements using conventional tools on different 
species of livestock can be found in Negretti and Bianconi (2004). Yeo and Smith 
(1977) and Pope and Moore (2002) used a girth measurement as a parameter to 
estimate the weight of sows to regulate their feed consumption. Vision-based 
systems have also been developed to obtain the body measurements of pigs non-
invasively. Building on earlier research Schofield (1990) demonstrated that the live 
weight of pigs could be estimated from 2D images using the aid of a computer. This 
dramatically increased the efficiency of the method. The weight of three pigs 
weighing 75 kg, 52 kg and 30 kg were estimated using single images of each animal. 
The relative error in weight estimation was between 6.2 and 15.4%. These errors 
were minimised by averaging the estimates of several frames of each animal, 
resulting in a reduction in the relative error to between 2.5 and 6.3%. On average it 
was stated that using image analysis the weight of pigs could be estimated to within 
5%.  Later Minagawa and Ichikawa (1994) reported the correlation between the 
weight of two different breeds of pigs and several of their 2D image-extracted body 
measurements. The weights of 33 pigs weighing between 7 and 120 kg were 
estimated based on the average body measurements derived from 5 images of the 
animal as viewed from above.  An image was only included in the analysis if the 
animal was standing with its body straight and its head was facing forward. The 
highest correlating body measurement was the central projected area with a 
coefficient of determination of R2 = 0.999 and standard error of ± 0.9 kg followed by 
the orthogonal area R2 = 0.998 (± 1.7 kg), length R2 = 0.998 (± 4.4 kg) and mean 
width R2 = 0.988 (± 4.0 kg). A study involving a larger group of pigs was undertaken 
by Brandl and Jørgensen (1996) which manually recorded the body measurements of 
416 pigs (25 to 100 kg) of six different cross breeds from 2D images to determine 
their correlation to the weight of the animal. The study findings indicated that the 
body surface area as viewed from above was the strongest predictor of weight with 
R2  = 0.98. Notably compared to Minagawa’s study there was a difference in the way 
in which the area measurement was derived, as pilot testing had indicated that the 
head of the pig introduced errors into the area measurement from its motion. 
Consequently a trim above the front shoulder was performed and as thresholding 
proved to be sensitive to image disturbances the total area was derived from a 
manual trace of the pig’s body (Brandl and Jørgensen, 1996). These studies proved 
that the body measurements of a pig (as perceived in images) could be manually and 
in some cases semi automatically extracted to form a basis of weight estimation. 
However, for practical purposes software and hardware developments were required 
to facilitate the automatic extraction and weight-analysis of these body 
measurements from streaming video (Brandl and Jørgensen, 1996; Minagawa and 
Ichikawa, 1994; Schofield, 1990). In effect these developments would generate a 
system which could perform online and continuous weight assessment without the 
need for physical contact with the animal and any manual labour determining the 
body measurements. There was a large amount of additional work required to 
facilitate this level of automation which was further limited by the technology of the 
day. Later Schofield et al. (1999) reported the development of a system at the Silsoe 
Research Institute (Wrest Park, Silsoe, Bedford, UK) which was able to provide 
group-weight assessment of pigs continuously without operator involvement. The 
system monitored the growth of three genetic strains of pigs to within 5% of their 
body weight for a total of 47 days as they grew from 47 to 90 kg. Further information 
on the system’s performance in determining growth can be found in Marchant et al. 
(1999) and White et al. (2003). More recently Yang and Teng (2008) have 
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determined the live weight of pigs to 3.2% (mean relative area) using the side and 
top view of the pig from 2D images, although the level of automation is not clearly 
explained. A recent investigation into manually obtained  measurements (physically 
and from 2D images) can be found in Zaragoza (2009). Preliminarily studies have 
also been undertaken to assess sheep for their live weight using vision-based 
methods (Burke et al., 2004; Schofield et al., 2005) and the live weight of lambs 
(Lambe et al., 2008b). The concept has also been extended to rabbits and horses 
(Negretti et al., 2007b).  
 
1.3.2 Modelling Techniques to Estimate the Weight of Animals  
 
Modelling methods used to estimate body weight include linear, power, quadratic, 
cubic, spline and artificial neural networks (ANNs). These methods are based on 
either single independent or multiple variables. Heinrichs et al. (1992) used several 
regression methods including linear quadratic and cubic effects on single 
independent variables. When considering multiple traits as independent variables the 
correlation between estimated and actual weights increased. Adding a second body 
measurement to the highest correlating measurement (heart girth of Holstein Heifers) 
increased the linear, quadratic, and cubic effects from R2  0.95-0 .99. Similar findings 
were found when multiple regression modelling was applied to Holstein Calves 
(Wilson et al., 1997) and dairy cows (Enevoldsen and Kristensen, 1997). Minagawa 
(1994) found the projected area, surface area and volume were best related to the side 
view of Japanese short horn cattle using a power function. Nonlinear modelling 
methods such as artificial neural networks (ANNs) have been used to estimate the 
weight of blue-fin tuna (Costa et al., 2009), pigs (Wang et al., 2008) and cattle (Arias 
et al., 2004). In addition to further refine models, certain growth periods can been 
generalised by their own estimation equations Stajnko et al. (2008).  
 
1.3.3 Body Composition, Scoring and Classification 
 
The conventional method for determining the carcass composition of livestock is 
using ultrasound. McLaren et al. (1989) gives an account of the ability to forecast the 
carcass composition of pigs using ultrasonic measurement of back fat and loin eye 
area, to improve genetic selection or optimise selections for market. Correlations 
have been discovered between different body measurements and the fat and muscle 
content of the animal (composition). Ermias and Rege (2003) used various tail-based 
measures to determine the body fat of flat-tailed sheep for genetic selection. Vision-
based techniques have also been used in a similar manner to determine the carcass 
characteristics of lambs (Lambe et al., 2008a; Lambe et al., 2009). The degree of 
fattening in buffalo has been estimated from body measurements extracted from 
images with a coefficient of determination of R2 = 0.85 (Negretti et al., 2008). An 
estimation of the value of various slaughter characteristics has also been achieved 
using vision-based methods on Simmental bulls (Kmet et al., 2000). Cold carcass 
weight, live body weight, weight of meat in carcass and weight of meat in valuable 
cuts have obtained R2 values of 0.7, 0.75, 0.65 and 0.64 respectively for the best 
performing body measurements extracted from images of bulls (Kmet et al., 2000). 
Doeschl-Wilson et al. (2005) found that the measurements obtained from images of 
pigs “were useful in the estimation of muscle size, carcass conformation and 
composition” (Doeschl-Wilson et al., 2005, p229). Wu et al. (2004), Tillett et al. 
(2004) and McFarlane et al. (2007) use a stereoscopic vision system consisting of 
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three pairs of cameras to recover the surface representation of a pig’s body and 
determine any morphological body changes in respect to different diets. There is also 
potential to use the measurements obtained from vision-based techniques for body 
condition scoring (Bewley et al., 2008), classification between different livestock 
species (Dunn et al., 2003) and classification between genders and breeds of 
livestock (White et al., 2004).  
 
This research demonstrates the potential that machine vision systems have as an 
online condition assessment tool for livestock, as the body measurements they 
extract can be used to give an indication of an animal’s value, body composition and 
health through growth variations and morphological changes in their body. 
 
1.4 IDENTIFYING ANIMALS IN IMAGES 
 
To identify an animal within an image, a method is required to determine image pixel 
values which represent the animal’s appearance. 
 
1.4.1 Segmentation Techniques 
 
Essentially the segmentation method used can be categorised into a scene, shape, 
appearance or motion based technique. These techniques may also relate information 
between frames in a temporal manner. The following section presents the various 
techniques that have been used to separate the animal from the rest of the image 
within these categories. 
 
Scene based segmentation can be an efficient and effective way of segmenting the 
target object from the background. Scene based techniques work on the principal that 
a background image is constantly maintained to maximise the difference between the 
background and any animal-object. This technique works under the assumption that 
if the animal-object is not part of the background then removing the background 
should only leave the animal-object in the image.  
 
Scene based techniques can be broken into subcategories of background 
representation, classification, background updating and background initialisation 
(Moeslund et al., 2006).  
 
Background representation is a method where the image intensity, spatial properties 
and often temporal information are used to derive a representative template of the 
background (Elgammal et al., 2002). An example of a basic background 
representation is chroma-keying which involves manipulation of the image scene 
environment (lighting and homogeneous background) such that the animal-object can 
be easily segmented due to the enhanced contrast between it and the known 
background colour. Dunn et al. (2003) used a chroma-keying technique to segment 
different species of animals from a blue background.  An image can also be 
transformed into an alternate colour space to retain representation of different 
background features in the image such as shadows (Cucchiara et al., 2001; Schreer et 
al., 2002). Background classification involves the grouping of the data after 
segmentation takes place to eliminate the occurrence of false positives. False 
positives can occur during the subtraction process and are caused by a number of 
different factors such as large light changes (shadows), non-target objects or changes 
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to the cameras field of view (FOV) or scene. In a background initialisation method 
the background model is learned during an initialisation phase and can be considered 
static in that it does not change once initialised. 

 
Background updating includes the background data in subsequent frames as a 
weighted combination of various measures. The simplest updating method is to store 
a template image of the background (updating the background) when no target object 
is present and then subtract this template image from future frames which contain the 
animal-object, leaving the animal-object as the difference. Kollis et al. (2007) use a 
similar updating method to determine an adaptive threshold value.  

 
Mixture of Gaussians (MoG) or Gaussian Mixture Models (GMM) are reported as a 
robust and reliable technique used to segment a target object from the background in 
outdoor scenes without requiring any physical alteration to the scene or objects 
within the scene. In this segmentation technique every pixel has its feature 
information recorded across an image sequence (temporal information of each pixel 
is maintained). The various changes in the pixels are stored as one of K different 
features related to a pixel. Each K feature is represented by its own distribution and 
cluster (the modes of the background scene). The feature distributions are 
continuously updated online in an adaptive mixture model. The distributions are used 
to determine whether a pixel belongs to the background (or not) based on the 
incident pixels value in relation to the feature distributions. For example, the feature 
distribution is updated if a pixel is within 2.5 deviations from the distribution mean. 
If the pixel is not within the range of any of the distributions in the adaptive mixture 
model then the least significant distribution is overridden with the new distribution. 
Only two parameters were used in the process, alpha (𝛼𝛼) a learning constant and 𝑇 
which is the assumed proportion of the data related to the background (Stauffer and 
Grimson, 1999). Zivkovic (2004) improves the Gaussian mixture model by creating 
an algorithm that automatically determines the number of distributions required to 
represent each pixel which results in a time saving and improved segmentation.  

 
While mixtures of Gaussians are effective at maintaining appropriate segmentation in 
slowly changing scenes they have been known to have difficulty in identifying 
textures related to backgrounds that frequently change within the image scene. In 
order to minimise the effect of these characteristic variances during segmentation, 
various spatial-temporal techniques have been investigated. Zhong and Sclaroff 
(2003) devised a technique to segment objects away from dynamic textures or 
backgrounds which have repetitive patterns; a ship in waves for example. In their 
proposed system Kalman filter estimates the appearance of the dynamic texture and 
the foreground objects region and an autoregressive moving average model (ARMA) 
is used to segment the time varying background iteratively.  
 
One well known motion based technique in the area of image processing is optical 
flow. This temporal technique determines the velocity of any movement between two 
or more images as a result of changes in the images’ light patterns. The motion can 
be caused by a moving object or by movement of the camera itself. Different objects 
can be segmented based on their motion characteristics, as the rate of change of the 
objects direction, position and speed help with the identification of the object or its 
location within an image (Horn and Schunck, 1981). Several different optical flow 
methods have been developed, a quantitative comparison of nine techniques can be 
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found in Barron et al. (1994). One of the major benefits of using optical flow as a 
basis for segmenting and identifying objects is that small movements which might be 
hard to perceive in two body measurements can be identified; such as a ball rotating 
about its axis. In addition, the objects motion and its motion history can help with 
identification and tracking if the object becomes partially occluded by another object. 
However, the exact shape of the object may be hard to extract using this technique as 
the entire body may not always be in motion. 
 
An Active contour is a shape based technique (also known as a snake) which 
involves morphologically displacing a contour (enclosed collection of points) 
overtime to follow a 2D shape contour in an image. The contour is active in the sense 
that it moves as it converges to the minimum energy, created by the magnitude of 
surrounding external and internal edge gradients located within the image search 
space that form the contour. Although active contours in their most basic form can 
successfully derive the correct shape of a deformable object and track it between 
successive frames they have the limitation of not knowing whether their location is 
correct or how they are deforming is correct as they have no inbuilt intelligence. 
They can easily drift and produce errors as a result. To prevent drift from occurring, 
information is required to validate the contour as the target shape. Point distribution 
models (PDM) and Finite Element Models (FEM) have been used individually and 
collectively to obtain more reliable information to form a basis for the active 
contours next move (Cootes and Taylor, 1995). Point distribution models determine 
the correct location of a point on a contour using a statistical based approach on a 
network of surrounding pixels. The PDM is trained in an off-line process. During 
training, points are applied in close proximity along target shapes over a large 
number of images. For example, if the model was being trained to detect people’s 
hands for sign language recognition the points in the training set would surround the 
fingers and palm. The shape data located on and between adjacent points is required 
to be defined for a given hand signal such that it can describe any persons hand 
performing the action (Heap and Hogg, 1996). Processes that utilise this technique 
are often referred to as Active Shape Models (ASM) (Cootes et al., 1995). Examples 
of tracking and recognition using ASM and PDM models can be found in Baumberg 
and Hogg (1994); Tillett et al. (2000); Sumpter et al. (1997); Marchant (1993); 
Onyango et al. (1995); Tillett (1991).  
 
A threshold is commonly applied to the spatial appearance of an image to divide 
(classify) the image into two colour regions by allocating all pixel intensities above 
one intensity value (the threshold value) white (1) and all equal to or below the 
threshold value black (0) . The function of the threshold value is to divide the image 
into two regions such that the background image is represented by one colour and the 
foreground image containing the target object is another colour; effectively 
segmenting the target object. However, the segmentation of the object from the 
image depends greatly on the environment. If the environment such as the lighting 
and background is not controlled to suit the vision system’s processes then is 
inevitable that the threshold value will begin to incorrectly divide the image when 
changes in lighting occur. To overcome this dependence, thresholding algorithms 
have been developed to automatically determine the threshold value using the 
information of the intensity within the image regions or the entire image globally. A 
good comparison of these thresholding methods can be found in Wu and Amin 
(2003). A simple and manual thresholding technique was used by Minagawa (1994) 
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and Wang et al. (2006) to derive the area of the pig from the image. Previously,  
Yang and Teng (2008) have used an adaptive thresolding technique based on the 
minimum found in a histogram of the image between the light (pig) and dark 
(background) regions in the image. De Wet et al. (2003) and Kollis et al. (2007) used 
adaptive thresholding and erosion and dilation filtering to minimise noise and 
redundant artefacts present in the background during and after binarization. Another 
appearance based segmentation technique is Active Appearance Modelling (AAM) 
which is an extension of active shape models (ASM). Active Appearance Models are 
a statistically based modelling method to match both the shape and appearance of a 
target object in a new image. Similar to ASM an AAM model first requires off-line 
training using a large number of sample images. During the training procedure 
landmark locations (coordinate points) are defined on the target object. These points 
are strategically chosen to adequately represent the spatial variance of the objects 
characteristics which are to be investigated, as a result the distribution of a set of 
shapes is found describing the objects shape and appearance (Cootes et al., 1992). 
This training data represents a point distribution model (PDM) based on the derived 
principle components. The trained model is then applied within close proximity 
(good estimate) of the target object within the test images. The shape and appearance 
are found after a number of iterations searching the image (Cootes et al., 1998).  
 
Recognition techniques 
 
A method is required to validate the object before during or after segmentation. One 
method applied to fish has been to identify the fish based on the ‘crescent’ or arc-
shape created after subtracting two successive frames from one another within the 
fish enclosure. This arc shape (a result of movement of the fishes head) was found to 
be a suitable starting point for further validation for all fish within the tank regardless 
of size. Other reference points on the fishes’ bodies were deemed to be inappropriate 
to use as identification cues as the swimming motion of the fish caused too much 
variance in these locations. Before the matching took place the entire body 
measurements of the fish were extracted using a point distribution model (PDM). 
This model was then cross-referenced to validate incident test-shape data (Lines et 
al., 2001). Recognition in pigs has predominantly been based on their shape. Pig 
shapes have been outlined within the image using active contours where a continuous 
boundary morphologically deforms toward energies created by edges within the 
image (Marchant, 1993; Marchant and Schofield, 1993; Cootes and Taylor, 1992). In 
some studies pig presence was identified by the grey level of a central region of the 
image; as the pigs under observation were whiter in appearance in respect to their 
surroundings, an increase in intensity in this central image region indicated the 
presence of a pig. A search of the image recovered a shape using the snake 
technique. To validate the shape as a pig-shape the total area of the shape was 
determined along with the shapes width and length. For the shape to pass as a pig, 
the area, the ratio between the length and width and the  ratio between the area of the 
front and rear section of the body of the animal was required to be within certain 
known physical limits based on known pig body measurements. If the shape passed 
this filtering stage the weight was determined based on the shapes area and recorded 
along with a time stamp. The shape has been validated by other means. For example 
Wang et al. (2008) used the asymmetry between the pig’s left and right side of its 
body and only included those samples which had sides with areas within 15% of one 
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another. Binary pattern classifiers (Chan et al., 1999), chain-code, s-phi curves 
(Dunn et al., 2003) are other similar techniques used to match shape geometries. 
 
1.5 DISCUSSION AND RECOMMENDATIONS 
 
Four methods have been presented that continuously and automatically monitor the 
weight of livestock. The vision-based method had the greatest potential to overcome 
various practical limitations due to its non-invasiveness, ability to operate to practical 
accuracy, ability to determine animals’ weights in parallel, enhanced safety due to no 
moving parts, manoeuvrability, maintainability and inherent and potential additional 
functionality. The ability of the vision-based method to determine the live weight of 
several different species of livestock animals was established. Majority of the 
systems demonstrated that they could work within practical accuracy and some 
proved to be more accurate than conventional methods. However, common trends in 
the limitations specific to vision-based methods were found in conclusions drawn 
from many authors. Predominately more attention in this field is required in the 
following areas (listed in order of significance): 
 
System Automation: Only a few vision-based developments have reached the end 
goal of system capable of continuous and automatic operation. Many reports had the 
desire to further their work to facilitate complete automation (Arias et al., 2004; 
Minagawa et al., 2003; Wang et al., 2006; Brandl and Jørgensen, 1996).  
 
Two vision-based systems are available commercially. Hoelscher and Leuschner 
have developed a hybrid sorting device which constrains a pig and uses an image-
based analysis of the pig’s body to determine whether it has reached its market 
weight. Release gates are controlled accordingly to direct the animal to appropriate 
pens (Hoelscher&Leuschner). Vision-based systems which determine the average 
weight of groups of housed pigs are also available, however, these systems do not 
cater for individual animals and the large variability between the weight samples 
collected daily indicate that the filtering of erroneous data may require further 
development (Fancom; InnoventTechnology). The average weights of groups of  
finishing pigs are reported to have a maximum deviation of 3% using this system 
(Fancom). Notably if individual weights are precise enough the weight deviation 
within the groups of animals should be able to be recorded and subsequently used as 
an alert to the farmer of when it would be appropriate to sort the animals. 
 
Repeatability in Measurements: Numerous authors highlight the fact that the pose of 
the animal was likely to have led to fluctuation in the obtained body measurements 
of the animal which in retrospect may have introduced error into weight estimates 
(Zaragoza, 2009). Those authors that did not remove the head and tail from the 
analysis experience additional challenges in repeating measurements (Mollah et al., 
2010; Minagawa and Ichikawa, 1994; Kollis et al., 2007; Schofield, 1990; De Wet et 
al., 2003; Wang et al., 2006). An algorithm is required to automatically select the 
best images for weight estimation (Wang et al., 2006) and generally a steady posture 
of the animal is required for analysis to take place (Stajnko et al., 2008; Kmet et al., 
2000) to avoid variation in body measurements (De Wet et al., 2003). Furthermore it 
has been argued that the measurements used to construct the weight estimation 
models may be of more worth than the final weight estimation value as these 
measurements can be used to record genetic and composition characteristics among 
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other classifications (Whittemore et al., 2001; White et al., 2004). Therefore precise 
measurements are of added importance. 
 
Environmental control: Although several authors use structured lighting this 
approach may not always be practical in a commercial setting. It was interesting to 
note few authors have attempted to exploit the benefits of spectroscopic analysis to 
identify the characteristic reflectance of light off of the surface of the livestock 
animals. Notably if appropriate this reflectance may be useful in determining a 
suitable optical filter to place over the imaging sensor to suppress background 
artefacts and assist in segmentation (De Wet et al., 2003). The colour and cleanliness 
of the animals also pose problems when distinguishing based on appearance. 
Movement of the animal through artificial environments or to a structured area also 
facilitated additional levels of control (Minagawa and Ichikawa, 1994; Stajnko et al., 
2008). However, these arrangements in some cases were probably outside the bounds 
of commercial reality due to equipment costs and labour cost involved in moving the 
animals. 
 
Bias and fine tuning: The bias in measurement toward individuals within groups of 
animals can be overcome using Radio Frequency Identification (RFID). However, 
for many livestock species this is currently not feasible on a per-animal basis. 
However, there is potential for individual animals to be identified through images 
and vision-based tracking in future. Additional causes of bias may result as a 
consequence of the time of day when the livestock are assessed. For example, 
broilers may be “significantly heavier in the evening than in the morning” (De Wet et 
al., 2003, p 530). The process or system layout may also cause bias (Lines et al., 
2001). Thus, in-depth validation should be undertaken. Some fine tuning of 
parameters may also be required to categorise different weight classes or body types 
into different estimation equations or recognition routines. Other parameters such as 
age may be required to further refine estimates (Ramaekers et al., 1995b; Brandl and 
Jørgensen, 1996). 
 
A large amount of work spanning the four previously mentioned categories is still 
required in this research area to realize the full potential of weight estimation using 
vision-based techniques.  
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Chapter 2   
 
A Review of Methods to Determine Animal Behaviour Using 
Machine Vision and Artificial Intelligence 
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ABSTRACT 
 
Although animal behaviour is a widely studied field, a vast amount is still unknown. 
This is mainly due to the difficulties encountered when manually identifying the 
complex underlying behavioural patterns which occur between animals and their 
environment. Often behavioural assessment relies heavily on the intuition of the 
observer which varies considerably between assessors. Animal behaviour studies are 
becoming more prevalent in the livestock industry as consumer opinion increasingly 
influences production processes. However, increasing the frequency of livestock 
monitoring is difficult to achieve. This is due to the high costs involved in manually 
documenting and determining, individual behaviour, social interaction and the health 
condition of large numbers of animals. Hence, this review investigates the 
recognition qualities and potential that machine vision systems have in monitoring 
the behaviour of animals. A review of commercially available and research-based 
behaviour monitoring systems was undertaken. Findings indicate that there are 
currently no recognition systems which can reliably determine complex behaviour of 
livestock in commercially realistic environments. Thus further research and 
development in this area is warranted to overcome the inconsistencies and costs that 
are associated with human observation in behavioural recognition tasks.  
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2.1 LIVESTOCK BEHAVIOUR AND VISION SYSTEMS 
 
Measuring and assessing the behaviour of livestock is important as it can be used to 
indicate welfare status. Behaviour is formed from an animal’s continuous interaction 
with its environment (Figure 1). Animals use behaviour to respond to internal stimuli 
(physiological) such as hunger or external stimuli such as climate. If the goal of the 
behaviour is not or cannot be achieved the animal may change its behaviour or 
physiological response.  
 

 
Figure 1: Behaviour Cycle 

 
There is potential for welfare problems to arise when there are inadequate 
environmental triggers to support the behavioural needs of livestock.  
 
It has been argued that the husbandry methods used in intensive livestock production 
have resulted in the deprivation of some naturally occurring behaviours (Fraser, 
1983). Such information is often misconstrued by the public. However, regardless of 
public opinion, producers have a strong interest in maintaining the welfare of their 
livestock from both economic and ethical perspectives; as proactive welfare 
management often has a positive effect on the farm’s production efficiency and the 
quality and marketability of the end product. However, the observation processes 
currently used to measure livestock behaviour are subjective, as farm workers 
perform the welfare assessment. There are also high labour costs involved in 
monitoring animal behaviour which can further influence the amount of attention an 
individual animal receives. Consequently, behavioural measurements are open for 
interpretation and may be overlooked.  
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To overcome these issues, tools that can objectively assess the behaviour and welfare 
status of livestock species accurately, repeatedly and continuously are required.  
Ideally an autonomous system is required that: 
 

(i) Can recognise the onset of welfare related problems (mimics the 
intelligence of a trained welfare inspector) and 

(ii) Has the ability to monitor and recognise these behaviours continuously  
 
Machine vision systems are a device suitable for undertaking this task as they are (i) 
automatic and (ii) have the potential to quantitatively assess animal behaviour under 
a predetermined process that will not change greatly (Noldus et al., 2001). For these 
reasons, vision systems have replaced ‘human inspectors’ in many inspection tasks in 
food-related industries (Brosnan and Sun, 2004). In recent times, research 
surrounding developing tools for the automatic identification of animal behaviour 
has gained interest.  
 
Researchers have identified similarities between behaviour recognition and the 
principles that are used to recognise speech. Conceptually, these principles are useful 
to help describe how behaviour can be quantitatively assessed using a machine vision 
system. Bregler (1997) introduced the concept that in the study of behaviour a 
“movemes” could be treated as being similar in function to a “phoneme” (a sound) 
and a gesture (composed of a sequential combination of movemes) could be 
comparable to a word (a sequential combination of sounds). This concept can be 
extended to include the sequence of several words (a sentence) which is analogous 
with visually defined activities and behaviours. For example, identifying the activity 
of someone ‘throwing darts’ would involve the identification of the dart board, the 
motion and the orientation of the thrower’s hand, arm, body and the dart in the 
direction of the board. In this example the path of behaviour can be followed if the 
components (dart, hand) can be tracked and recorded and broken down into smaller 
components with adequate levels of detail. The reaction with the environment can be 
observed as the position that the dart lands on the board. This constitutes the end 
result of the sentence or interpretation of the goal-driven behaviour. The reaction can 
be labelled as the result (‘throwing a bulls eye’). Furthermore, by analysing the 
tracked observations and results of many ‘reactions’ one may be able to begin to 
forecast the reaction in a similar manner to how people often finish one another’s 
sentences. The thrower may have only just released the dart but it may still be 
possible to predict what result is likely to occur based on various observed features, 
such as the dart’s trajectory and speed at the time it is released from the hand, in 
relation to past observations.  
 
As the above example demonstrates, behaviour recognition systems are required to 
automatically collect and recognise behaviour-related features which describe the 
target object(s) at each time step. These features need to be modelled in sequence and 
within the constraints that characterise the behaviour. Surrounding objects may also 
be recognised to help label certain behaviours. 
 
As human beings, we intuitively come to learn and understand what we are looking 
at in an image from the world around us. However, a computer only sees an image in 
its most primitive sense; as a matrix of stored values. The content within the image is 
meaningless to the computer unless we give the computer instructions to determine 
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the underlying meaning from the image values. Johansson (1975) introduced the idea 
of moving light displays (MLD) to describe the visual motion of bodies in the 
‘computer’s’ world. For a better perspective the reader can think of an animal in an 
image as a moving light display; a collection of small moving lights (pixels).  
 
The process to locate a moving light display within an image is known as 
segmentation, where the target object’s light values are separated from the 
background light-values to form two separate groups of values representing the target 
object and background scene. Software is required to manipulate the image matrix to 
perform this classification automatically so that only the meaningful visual data 
representing the target object is left for further analysis. The system also needs to be 
structured such that it provides direction toward a predetermined outcome, such as 
monitoring certain behaviours. At the same time the system must compensate for 
variances caused by unwanted changes in light across the image. These variances in 
light can be caused in local sections of the image from shadows, other non-target 
objects and reflections, or alternatively, globally over entire image from illumination 
changes to the scene. Fortunately, the image can be manipulated to compensate for 
these variances using various hardware and image analysis techniques. These 
techniques may become essential if the vision system is required to operate outdoors 
in random environments where any physical control or removal of the causes of these 
variances is impractical.  

 
The purpose of this review is to demonstrate whether machine vision systems can be 
used to: 
 
(i) Objectively and automatically determine animal behaviour in commercial 
environments (especially those surrounding the pose of the animal) and to  
(ii) Identify any undesirable behaviour  
 
A vision system is made up of hardware (camera, computer) and software 
components (intelligence). These components are programmed to communicate with 
one another similar to that of the communication between the eyes and brain. The 
eyes provide information to the brain which interprets the information to 
automatically make decisions or help make decisions in a recognition process. 

 
2.2 THE RECOGNITION PROCESS 
 
A vision system’s behaviour recognition procedure can be broken into four main 
stages: (i) initialisation, (ii) tracking, (iii) pose estimation and (iv) recognition 
(Moeslund and Granum, 2001) (See Figure 2).  
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Figure 2: The Recognition Process 

 
Initialisation is a setup stage where the foundation for further processing is achieved. 
Reference to the information gained in the initialisation stage makes it easier for the 
system to interpret the scene in subsequent processes. This stage can be further 
broken up into software, hardware and data calibration components, all of which 
assist in obtaining an appropriate representation of the image scene and the 
information within it. Tracking involves the identification of feature(s) within the 
scene and segmenting (separating) them from the remainder or the image so that they 
can be analysed further. Tracking techniques create associations between successive 
image frames using some form of measure found within the image. Pose Estimation 
is a stage that aims to describe or identify the orientation of the target object within 
an image scene. The body pose can be identified as a combination of the orientation 
(angles and body measurements) of several components (limbs), or as a whole. 
Recognition is the correct labelling and identification of a pose or a sequence of 
poses as a given action or gesture.  
 
2.2.1 Initialisation 
 
Initialisation can involve tasks carried out before (off-line) or after (online) the vision 
system becomes active. In essence, each task of the initialisation stage will involve 
some form of calibration. Hardware such as the room lighting and camera settings 
(such as exposure, focus and contrast) may need to be calibrated to application-
specific levels. This is done to optimise the integrity of the image for further 
processing and is usually carried out off-line, however, some instruments enable 
online adjustment of these features. Examples of these are cameras with built-in 
‘automatic focus’ which can automatically adjust the focal length between the lens 
and the imaging sensor to obtain a clear image and cameras with built-in ‘automatic 
exposure’ which can maintain a suitable dynamic range within the resultant image by 
controlling the amount of light incident onto the imaging sensor.  
 
Like hardware, software must also be initialised. Software initialisation requires the 
calibration and optimisation of variables within the software to enable the tracking 
and recognition processes to function seamlessly.  
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Finally the data describing the target object is required to be collected and calibrated. 
This can be performed either off-line where a detailed model of the target object is 
pre-defined (known as a model based on a priori knowledge). Or alternatively online 
where there is no a priori information available (model free) and the model for the 
target object is learnt and built over time from tracking, clustering and classifying the 
object features in successive images. The off-line models include information 
describing the physical and kinematic constraints of the object. These models are 
either continuously referred to in a matching process by the software component 
(direct model), or are used to identify a pose for further learning (indirect model). If 
properly applied, a priori models have an advantage over model free systems as they 
can be used to minimise the solution space through the effective use of their 
predefined constraints (Moeslund et al., 2006). Data such as image distortion 
coefficients and other model-related referencing variables may also be included in 
the off-line data (Lind et al., 2005).  
 
As the initialisation stage encompasses the main structure of the system, the way in 
which these components are configured with one another has a large influence in the 
overall performance of the system. The selection of the descriptive features 
associated with the object also plays a vital role. 

 
2.2.2 Features and Cues Selection 
 
This section discusses the features that can be extracted from images which have 
special meaning (i.e. are semantic). Only features associated with images acquired in 
the visible spectrum are considered here, however, various other features can be 
identified from image sensors sensitive to other bands in the electromagnetic 
spectrum.  
 
It is desirable for a tracking system to have access to the descriptive ‘feature’ 
information of the target object so that it can be reliably validated and re-located 
after analysis. However, the computational cost and efficiency of the feature 
extraction processes need to be practical in respect to the application. Each feature is 
also required to be found reliably to prevent errors in subsequent estimation or 
recognition stages. Therefore only features that reliably and efficiently describe the 
target object should be selected.  
 
Features can be classed as temporal, spatial, valued, or textural. Examples of 
temporal features found across images are velocity and acceleration which can be 
determined over time when motion occurs. Spatial features are point(s), edge(s) or 
shapes of various size and body measurements. Value features are image-specific 
values such as colour information acquired from an image colour space. Textural 
features are a group or range of features such as colours, intensities, edges, points 
and shapes which can be combined into a textural feature or template. A feature can 
also derive its own characteristic distribution over time. In general, the data 
describing each feature contains information that is redundant and can be represented 
in a more efficient and compressed format. An explanation of techniques such as 
PCA that can be used to convert the feature data into a more efficient representation 
can be found in Appendix A. 
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For the remainder of this chapter, a ‘feature set’ will indicate a collection of image 
derived features which describe an object within an image. Furthermore, as an 
animal’s behaviour is likely to be the result of an environmental stimulus or goal-
driven need, the concept of ‘features’ should not be restricted to only those features 
directly related to the target object. For example, a nocturnal animal will exhibit very 
different behaviour depending on whether its environment is ‘light’ or ‘dark’; so here 
illumination is the stimulant. Therefore, illumination may be an important external- 
variable and necessary to adequately defining the behaviour in this example. Other 
external variables such as temperature, air quality, and the location of feed and 
drinking stations can also be considered features which explain the current 
conditions.  After the image-related feature set is chosen certain techniques must be 
applied to effectively identify, segment and track them in and across each image 
frame. 
 
2.2.3 Tracking 
 
The process of tracking involves the combination of two processes (i) segmentation 
and (ii) temporal correspondence. Segmentation involves the process of extracting 
target feature(s) from images. Thus a ‘feature set’ describing the object and any other 
conditions will be the result of the segmentation process. Temporal correspondence 
refers to the process of associating (linking) one or more features in an image frame 
to adjacent frames by continuously collecting and referring to prior feature 
information. The correspondence can also be described as spatial-temporal indicating 
that there are space and time body measurements factored in during the tracking 
process. This process can dramatically improve the chance and speed in relocating 
the feature(s) of interest in subsequent frames and therefore helps with the overall 
efficiency of the segmentation process.  
 
Four classes of techniques are used to recover the ‘feature set’ from the image in the 
segmentation and temporal correspondence processes. These are (i) scene-based, (ii) 
motion-based, (iii) shape-based and (iv) appearance-based techniques. Scene based 
techniques aim to describe the background scene so that any object entering it can be 
easily segmented when the background scene is removed. Scene based techniques 
include subtraction methods and Mixtures of Gaussians (MoG). In a subtraction 
method the pixels’ values in subsequent frames are subtracted from one another 
resulting in an image containing the ‘new’ information relative to the assumed static 
background. A MoG approach learns to recognise the image background overtime 
using a series of adaptive distributions to describe the background. The background 
model is then used to identify regions that are not highly correlated to the derived 
background model which indicates that they are a foreground object and could 
potentially be the target object (Stauffer and Grimson, 1999).  
 
Motion based techniques use temporal correspondence between frames to determine 
the movements of objects within scenes. The velocity and acceleration (optical flow) 
of the ‘movement’ of light representing the target object within the image can be 
found. This movement can be characteristic of some form of behaviour. For example, 
boxers fighting in a ring will have periods of fast moments which indicate attacking 
moves and slow movements during defensive moves or when planning attack. These 
fighting motions have been studied in rodents through manual observation (Pellis and 
Pellis, 1987).  
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Shape based techniques strive to recover unique dimensional attributes of the target 
object(s) from edges and points located within the image. Active Shape Models 
(ASM) is an example of a shape based method used to find shape information within 
the image. The model can locate shapes based on reference to previously defined 
shape information on the target object. Appearance based techniques utilise the 
image colour properties such as intensity, saturation and hue to form a basis to 
segment the image (Cootes and Taylor, 1992). Similar to ASM are Active 
Appearance models (AAM) which can locate appearance features based on reference 
to previously defined appearance information of the target object (Cootes et al., 
1998).  
 
These four classes of techniques can be used in any sequence. As an example, a 
scene based technique may be used to segment an object, then a shape and 
appearance based technique can be used to describe it. In another example, an 
appearance based technique can be used to find certain colours in an image followed 
by a shape based technique to describe the boundaries of the colour region(s). These 
four classes can also be used in combination to form textures. An example is 
appearance-shape textures which can be derived using a combination of space and 
appearance techniques. Blob analysis utilises an appearance-shape texture method as 
the image values and their respective spatial positioning are used in combination to 
provide grounds for segmentation (Wren et al., 1997b). Generally vision systems use 
a combination of the results from one or more of these techniques to arrive at feature 
set which describes the object(s). Generally before a technique is applied to extract a 
feature set from an image(s), the image values are manipulated to assist with the 
feature extraction in a process known as enhancement some enhancement methods 
and edge detection methods can be found in Appendix F.  
  
2.2.4 Pose Estimation and Recognition 
 
The following sections deal with the ‘brains’ of the system: how to estimate pose(s) 
and recognise behaviour based on an extracted feature set. Here pose estimation is 
the successful identification of the subject, its orientation, position and/or current 
movement (a movemes); determining the correspondence between a feature set and a 
pose. The recognition phase is the correct identification or labelling of a sequential 
combination of poses using a cross-reference to previously obtained data. Similar 
processes are used when recognising behaviour from a sequence of poses and when 
estimating a pose from a given ‘feature set’.  
 
2.2.4.1 Behavioural Modelling Methods 
 
One of three different data storage and retrieval methods can be programmed into a 
vision system to derive a target object’s feature set(s) or to use an existing stored 
feature set(s) for validation. These three methods which structure the data-flow are 
model free, direct and indirect methods. Here the word ‘model’ refers to the 
characteristic distributions (clusters or groups) that represent dissimilar feature sets 
(the data which describes the observations). Systems that do not use prior 
knowledge, build their recognition database (feature set groupings or clusters) online 
while the system is running. They are model free at initialisation. These systems are 
widely researched and their application in artificial surveillance is promising as 
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systems that operate model free can effectively learn and categorise anything 
systematically. Hence, they are commonly called ‘machine-learning systems’. 
However, there is one limitation for a model free system; intuition. As external 
intelligence is required to correctly label or interpret the discovered data clusters for 
a particular pose/behaviour (see Figure 3).  
 

 
Figure 3: The Validation Process: Comparing a Computer and a Human’s Interpretation of a 

Behaviour from Xue and Henderson (2006) 
 
Alternatively, to minimise the solution search-space, a direct data-retrieval method 
can be adopted which uses previously stored knowledge such as the kinematic and 
dimensional characteristics of the target object. The feature set(s) of the target object 
are collected, modelled and labelled before initialisation so that specific information 
can be retrieved for goodness of fit between a new observation and the existing 
labelled observations. However, the restriction of a method that directly cross-
references to a database is that it cannot adapt, the system is only as good as the 
constraint data representing the target object in its predefined model. Assume for 
example that an animal is involved in a fight and sustains an injury which severely 
affects its gait. As a result, the kinematic movement and perceived shape of the 
animal is distorted. If the referenced data distributions are not flexible enough to 
correctly respond to problems like this, identifying the behaviour of the animal (in 
this case, walking) may be unrecognisable. For this reason an indirect method can be 
used which is a combination of both model free and direct methods.  
 
An indirect method self-learns in a similar manner to the model free method only 
with constraints which restrict the adaptation of the model. The updates to the model 
only occur when the observed feature set is highly correlated to a cluster representing 
a built-in feature set. New clusters can form when there is significant evidence to 
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support the proposal that a new cluster exists. Therefore, this method can be used to 
help confirm the integrity of the initial a priori model distribution(s) and labelling 
over time. However, if not done correctly the indirect model can update and 
compound the reference data (and thus models) with errors if false positives are 
frequently introduced into the model. The balance between whether the system 
updates its model (or not) is known as the plasticity of the system. This balance is 
based on how well the observed feature data relates to the existing model. The 
control and flexibility in the indirect data storage and retrieval method make it well 
suited for ‘recognition type’ vision systems that observe deformable bodies which 
continuously change.  
 
If a method other than model free is chosen, then information on the target object 
needs to be collected to form the feature sets. This a priori data can be collected in 
one of the three following ways: 
 
(i) Actively by attaching sensors to the subject 
(ii) Passively by observing the subject using a sensor device such as a video camera   
(iii) Using markers, which involves a combination of active and passive techniques  
 
More detail of these data collection methods can be found in Appendix B. Once 
sufficient information of the target object has been acquired, the underlying 
definition of the behaviour(s) or poses under investigation must be described and 
programmed into a computer readable model. This model is categorised using three 
techniques known as (i) clustering, (ii) classification and (iii) training. 
 
A basic recursive training process containing classification and clustering stages is 
illustrated in Figure 4. Condition 1 refers to a classification stage. At this point the 
system cross-references between the stored model and the incoming features set and 
a calculation is made that determines whether or not the feature set belongs to one of 
the distributions (or clusters) defined within the model. If the feature set does belong 
to one of the predefined distributions then the distribution’s meaning or label is used 
for the output. If it does not then Condition 2 (a clustering routine) is executed which 
deals with the adaptation of the model. In the clustering stage, the incident feature set 
is cross-referenced between all other (previously stored) feature sets which did not 
have a significant relationship with any of the distributions in the model. If a group 
of stored feature sets share significant similarities and have accumulated to reach a 
defined threshold level then the group’s distribution can be integrated into the model 
and can appear in the next classification stage. This recursive process where the data 
is categorised is known as training. Some common forms of clustering and 
classification algorithms are discussed in Appendix B.  
 
The clustering and classification stage will result in the information being 
structurally represented so that the computer can make an association with the 
incoming feature set extracted from the image. However, before a feature set is either 
classified or clustered, it must be scaled appropriately to represent the data efficiently 
and effectively. 
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Figure 4: Supervision: A Classification and Clustering Process 

 
There are two types of scale relevant to identifying behaviour. These are spatial and 
temporal scale. Objects can vary in size and shape (spatial) and the size and shape of 
objects can vary over a random period of time (temporal). The modelled distributions 
are required to be normalised into scales which can easily translate to, or represent, 
checkpoints states during an observed physical action. For example, it may take a 
child less than a second to sit down but it may take and elderly person half a minute. 
How can a system intuitively interpret this as the same action? In a spatial example, a 
person walking away from a camera will continuously have a decreasing amount of 
pixels associated to his or her body. How can a system interpret this as the same 
object across all frames?  
 
In both cases a single method is required to facilitate these changes of scale within 
the image and across the image sequence. A basic system that neglects temporal 
scale altogether can be considered ‘static’ as correlations between new observations 
and prior data references are only made within the scene at the current time step. 
Here matching is performed to identify only the desired final pose, like an 
observation in a photograph. This process is often called template matching where 
the segmentation, pose estimation and behaviour recognition are found 
simultaneously. However, using such a system severely limits the ability to forecast 
behaviour as it does not take advantage of the prior sequence of actions leading into 
the final interpretation and physiological reasoning behind the behaviour.  
 
Several different methods are used overcome the problems associated with temporal 
and spatial scale in and across images. In general, these methods are based on 
dynamic Bayesian networks (DBN). A DBN is a data structure that supports different 
‘states’. The states within the DBN are defined by training a collection of feature sets 
corresponding to a sequence of behaviour. So, if the system observes a behaviour 
that has been included in the DBN before initialisation or during adaptation, we can 
expect a feature set found within an image of the behaviour to have a strong 
correlation to a predefined state within the DBN. A state does not have to be an exact 
match but just the closest match above a given threshold. The match is based on 
conditional probability. A DBN can be thought of conceptually as a path which 
defines the behaviour. The feature set is used to determine the location (the state) of 
the subject on the behaviour path. Once the position on the path is found, the system 
can transition between adjacent states based on the fit between the feature set and the 
DBN. Monitoring the timing and frequency of transition patterns between states can 
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be used to track, recognise and forecast a given behaviour. Techniques for modelling 
behavioural scale can be found in Appendix A.  
 
2.2.5 Commercially Available Vision Systems that Determine Behaviour 
 
Commercially available behaviour monitoring systems have been developed for both 
humans and animals. Two different types of behavioural vision systems are 
presented in this section. First, a motion capture system is presented which is an 
example of a system that can be used to record the biomechanical model (a priori 
data) for a particular behaviour. The second system presented recognises and 
quantifies the behaviour based on streaming video. This section concludes with a 
description of the state of the art in human-based behaviour monitoring applications 
which has the potential to be transferable to the behavioural assessment of any living 
organism.  
 
2.2.6 Biomechanical Recording Systems 
 
Several companies pride themselves on the ability to geometrically record and 
reconstruct models of certain body postures based on motion capture using vision 
systems. These systems provide a tool for determining the underlying prior constraint 
data describing the biomechanical model for a given sequence of movement by an 
animal. These systems do not recognise and identify the behaviour, they only record 
the behaviour so the information (body measurements, angles, timing) recorded can 
be used for building the model of the target object and subsequently used as a 
reference by the vision system. The information found using these systems still needs 
to be programmed into an automatic and computer readable model to form the 
artificial intelligence of an automated vision system. 
 
Vicon Systems (Vicon 2010) has a range of systems for life sciences animation and 
engineering that have the ability to record and reconstruct models of human and 
animal movement. They have systems which can record behaviours in 2D, 3D with 
the use of markers (active) and in 3D without the assistance of any markers (passive). 
Landmarks (kinematic reference points) on the body surface can be user-defined 
when using the passive system to highlight certain body movements. Tolerances of 
0.01 mm can be achieved for the reconstructed body surface mesh. The kinematic 
model is captured in 3D using a system composed of up to 10 cameras. The system is 
capable of presenting real-time 3D information such as joint angles. Some Vicon 
systems can achieve frame rates between 1 and 2000 fps. The company also provides 
systems designed for the capture of animals biometric information (Vicon, 2010). All 
kinematic data is transferable to third party software packages such as Matlab and 
Labview for further analysis in the form of a C3D file. Vicon systems have been 
used to record the biomechanical function of animals for later off-line analysis in 
numerous research projects on animals including pigs (Liu et al., 2007; Herring et 
al., 1993).  
 
2.2.7 Behaviour Recognition Systems 
 
The majority of the behaviour recognition systems that are currently commercially 
available can only generate and analyse behaviours that involve the spatial tracking 
of the animal over time. A large percentage of the systems are designed for 
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laboratory type experiments in simplified and controlled environments. These 
controlled environments assist in the segmentation task of separating the animal from 
the background. Given the small size of the animals, the experimental enclosure can 
be easily constructed, controlled and maintained. Structured lighting can be applied 
easily and the integrated image processing techniques can be relatively simple. 
However, behavioural recognition systems become far more complex when they are 
required to assess large or multiple animals outside the comfortable setting of a 
laboratory such as in commercial farm environments.  
 
Difficulties in commercial farm environments were experienced by a number of 
authors (Lind et al., 2005; Šustr et al., 2001). The main reason for the increase in 
complexity is due to the animals’ housing environment. Not only is there variation 
between housing layouts, but environmental factors such as temperature and air 
quality are harder to control. These factors can also cause certain animal behaviours; 
such as coughing in relation to air quality for example. Of the systems presented in 
this section, only one had the potential to determine more complex behaviour based 
outside of the recorded spatial co-ordinates of the animal in the enclosure. Robust 
and generic system designs are unavailable. Behaviours such as grooming and 
fighting must be manually defined within the system and the operator must either 
prompt the system to record these complex behaviours when the behaviour is taking 
place, or they must be identified off-line after the experiment is completed. In most 
systems a stimulant (such as the movement of doors, light changes, shock and 
sounds) can be automatically inferred into the test subject’s environment. Because 
the techniques used by these companies are similar, a general introduction and 
description with highlights are presented. 
 
2.2.7.1 Animal Surveillance and Tracking Systems 
 
Behaviour recognition systems can be classified into either laboratory or field-type 
implementations. Laboratory type implementations allow for the additional 
expenditure on control (building, enclosure or environmental alterations) that may 
not be feasible to operate in commercially realistic environments. Field-type 
implementations are flexible and can be integrated into existing commercial 
environments (which are variable) with little or no control required. Furthermore, the 
type of behaviour assessed by the system can be categorised into either tracking or 
pose related behaviour, where tracking relates to the co-ordinate position of the 
animal relative to its surroundings and pose relates to is actual physical actions.  
 
In general, the commercially available systems found during the review had the 
objective to record the spatial movement of a laboratory animal performing a set 
task. Observational tests carried out using vision systems included tracking the 
rodent through various maze types to analyse the animal’s behaviour when subject to 
certain environmental conditions. Other vision systems recorded fear conditioning 
experiments, light-dark-testing, tail suspensions, swim tests and novel object 
recognition. Recorded variables included, time resting, time moving, entry to a zone, 
time in a zone, locomotive speed, distance travelled, contact between different 
coloured animals and condition-place-preference. The systems generally export data 
output into Microsoft Office Excel (Microsoft Corporation, Redmond, WA, United 
States) and facilitate a visual output of the tracking plot. In most tracking systems 
presented here, the animals were identified and tracked by their geometric centre 
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after segmentation. A description of the main features of some commercially 
available systems follows.  
 
The Video Mot2 (TSE Systems GmbH, Bad Homburg, Germany) system can track 
and record the position of an animal over time in a controlled environment. The 
system can support up to 6 cameras per computer. Each camera image can be divided 
by the operator into an unlimited number of image sections (arenas) which are the 
boundaries for an experiment involving either one or two animals. The system can 
also be configured for day and night recording. The animal in the experiment can 
trigger the collection of data based on predefined positions or zones within the image 
arena defined by the user. For example, the animals can start or pause the experiment 
by moving between different locations inside the image (TSE-Systems, 2010).  
 
Actimetrics (2010) has four vision systems Freeze Frame, Water Maze, Limelight 
and Big Brother (ActiMetrics, Wilmette IL, USA) which are all marketed at different 
testing environments. Freeze Frame is a fear conditioning software which is used to 
determine the animal’s motion when it is subject to a fear provoking stimulant such 
as loud noise or uncomfortable environment. This motion recognition system can 
detect the movement of limbs (grooming, sniffing turning and rearing) when an 
animal (mouse or rat) is stationary, however, it has no ability to recognise, label or 
record these movements. Water Maze has a project planning component where the 
user can enter an experimental design before running an experiment. The system then 
notifies the user which animals should be introduced into to the experiment, and the 
timing of their introduction. The animal’s movement can be used to trigger different 
recording properties of the experiment in a similar way to the TSE system mentioned 
above. An algorithm compensates for lighting changes and shadows within the 
image. The Limelight system can track up to four arenas at once using one camera. 
Complex behaviours are manually labelled or scored (offline or online) by an 
operator. A novel feature of the Limelight system is the ability to monitor body 
length which indicates different stretch-attend behaviours caused by changes in the 
body length of the test animal. For example from the camera’s top view, the body 
length will be shorter when the animal is in a rearing position (sitting). Over the 
course of the experiment, the body lengths are divided into short, medium or long 
body lengths manually. These three data clusters are then used to cross examine the 
spatial locations in which the animals are situated at the time the change in body 
length occurs, and to identify any relevant patterns. The Big Brother system is a 
system which is capable of tracking a large number of laboratory animals from above 
in open field type tests (in the laboratory). Each camera’s image can be divided into 
50 sections to define the boundaries of 50 arenas containing a rodent to be tracked. 
Thus, four cameras can be used to track the movement of up to 200 animals 
(Actimetrics, 2010). 
 
Med Associates Inc (2010) also has a range of systems for monitoring lab animals. A 
fear conditioning and tracking system which utilises video recorded of the near 
infrared spectrum, an open field video tracking system with test enclosure, and a 
water maze and video tracking software designed to determine the path co-ordinates 
undertaken by the animal and other motion variables that occur during a Water Maze 
test.  
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Qubit Systems Inc (2010) has two video systems. The QUATTRO (Qubit Systems 
Inc., Kingston ON, Canada) system can track animals in three dimensions using two 
cameras (top and side view). The system determines and tracks the animal’s 
geometric centre. A mask (image-based filter) is applied to remove false positives 
improving identification. Another one of Qubit’s products called Video Tracking 
Software, can track an animal in a range of the different observation type tests 
previously listed. Qubit Systems, Inc also offers a system called DanioTrack, which 
can determine the tracking information of multiple danio (zebra fish) in one arena 
from pre-recorded video (Qubit Systems Inc, 2010). 
 
Biobserve (2010) has four vision systems. The Trackit2D (BIOBSERVE GmbH, 
Augustin, Germany) system uses a pan-tilt-zoom (PTZ) camera to automatically 
follow the object and keep it within the boundaries of the image. Trackit 3D uses the 
top and side view of the animal’s arena to obtain the x, y and z co-ordinates of the 
test subject. The system can be used to track fish species in a tank. The Viewer 
system tracks the centroid, nose and the tail of mice and rats. Additional movement 
can be identified using these three points such as the animal moving its head from 
side to side (head wagging), stretching and freezing (when the animal stops 
abruptly). The Forced Swim Test or FST system is designed to observe the reaction 
of an animal from the side view when it is placed in water. The system automatically 
determines whether the animal is struggling, swimming or floating by measuring its 
position between predefined zones on the surface of the water (Biobserve, 2010). 
 
Noldus (2010) has a wide range of products targeting animal and human behaviour. 
The Observer XT (Noldus Information Technology BV, Wageningen, Netherlands) 
software can be used to organise a behavioural assessment during an experiment or 
observation trial. The user pre-configures and defines the behavioural actions to be 
witnessed and recorded during a given experiment. The user then manually 
documents the behaviour as it takes place from either streaming video or pre-
recorded video files. The software organises the data so that results of certain 
behaviours can be easily accessed by querying the acquired data. EthoVision® XT is 
a vision system which can track the nose point, centroid and tail base of a laboratory 
animal. From these three points the body elongation can also be found. Catwalk XT 
is a novel system to analyse the gait of mice (Deumens et al., 2007). The mice walk 
over a LED illuminated glass plate which reflects the light of all points within the 
glass plate except for where the animal is in direct contact. The feet of the animal can 
be observed and are automatically classified by the system. The tail or other parts of 
the animal’s body which are not required in the analysis can to be removed manually 
by the operator (Noldus, 2010).  
 
IBM’s smart surveillance solution (S3) is a commercially available surveillance 
software package for tracking humans. The system simultaneously monitors different 
levels of surveillance. For example, the system can be used to track a car, its number 
plate, and its occupants in the parking space surrounding a building. Lower level 
cameras monitor the entry and exit points of the building and provide a means of 
facial and appearance recognition. Using this surveillance framework the movements 
of the car’s occupants can be tracked in a time line from when their vehicle arrives to 
when it leaves. The system is structured to be able to accept queries to classify 
events. For example, someone or a vehicle remaining in the camera view for an 
extended period of time could be considered loitering or abandoned so a query can 
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be set to sift through all events bounded by this criterion. Other search criteria 
consider the target-object type, size, image-region, and appearance (Chiao-Fe et al., 
2005). 
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2.3 RESEARCH BASED VISION SYSTEMS THAT DETERMINE 
BEHAVIOUR 

 
There are many applications of vision systems in agriculture and other industries 
which essentially fit within three broad research categories of surveillance 
applications, control applications and analysis applications (Moeslund et al., 2006). 
The following section presents various research projects using machine vision 
systems to determine animal and human behaviour.  
 
A number of vision systems have been created specifically for animal production. 
Most applications are designed to reduce animal handling and improve efficiency in 
comparison to traditional methods. Some examples are systems which survey the 
linear or angular body measurements of livestock such as cattle and pigs for sorting 
or weight estimation (Banhazi et al., 2009b; Schofield et al., 1999; Schofield et al., 
2002; Brandl and Jørgensen, 1996). A vision-based control application was 
demonstrated by Wouters et al. (1990) who applied imagining techniques to housed 
piglets. The application used the spatial behavioural characteristics of piglets as 
observed in images to determine parameters to control the thermal comfort level of 
their housing. More recently a number of authors (Xin, 1999; Shao and Xin, 2008; 
Xin and Shao, 2002) created a similar system, also basing their control system on the 
resting behaviour of the pigs found using a vision system. In an effort to determine 
the behaviour of pigs in relation to their housing requirements, researchers have 
created and simulated models of pigs’ behaviour based on spatial-temporal 
information recorded of live pigs (Stricklin et al., 1998; Gonyou et al., 1997).  
 
Another example of a control application can be found in Sumpter et al. (1997) 
where a ‘robotic sheep dog’ was developed to herd a group of ducks. In the study a 
vision system was used to control the path of the robot by determining the location of 
the robot in respect to the ducks. A behavioural simulation model was built based on 
parameters acquired from observing the behaviour of the ducks. Vaughan et al. 
(2000, p 117) later reported the success of the ‘robotic sheep dog’ project in both the 
simulation and real world applications, concluding that the “methodology is 
appropriate for future animal-interactive robotics experiments” and that 
uncomplicated mathematical models could be used to model basic flock behaviour. 
  
Vision systems have also been designed to function as tools to analyse complex 
biomechanical movements of humans and animals in research and clinical 
applications. An example is gait analysis which often includes muscle movement and 
force generation (Bharatkumar et al., 1994; Chen and Lee, 1992; Rohr and Systeme, 
1997; Little and Boyd, 1998; Aydin et al., 2010; Favreau et al., 2006). Gait analysis 
has been used in the development of sports simulation models to improve the athletic 
performance of both humans and animals. The objective measurement of complex 
biomechanical movements such as gait should increase the accuracy of measurement 
by eliminating human error and thus facilitate the conduct of experiments, by 
automating data capture and collation.  
 
Locomotor activity of the animal has also been determined though the observation of 
body parts other than a direct observation of the legs. Burghardt et al. (2004) and 
Burghardt and Calic (2006) devised an image processing technique to determine in 
the loco-motor behaviour of wild lions based on head posture and facial recognition. 
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Numerous experiments in psychology and pharmacology, involving visual 
observation of the interaction between humans and machines, and animals and 
objects can be found in literature.  
 
A large number of analysis methods also focus on animal tracking. In the poultry 
industry, researchers used a vision system to detect and track broiler chickens to 
identify the birds interacting with the drinker and feeder (Sergeant et al., 1998). Kato 
et al. (1996) used a vision system in an aquatic environment to track and record the 
position and velocity of fish in a tank and successfully identified the left and right 
turning behaviour of the fish. In a similar manner, Cangar et al. (2008) determined 
the spatial movement of a cow in a barn using a vision system. Measures of walking 
trajectory, distance walked, orientation of the main axis, body width/length ratio, hip 
length and back area were recorded. Eating, drinking, standing and lying behaviours 
were derived from the continuous monitoring of these variables in relation to its 
enclosure.  
 
EthoVision, a generic behavioural assessment software, has been described in the 
literature (Noldus et al., 2002). The software has been used to study insects in 
various applications such as the time taken for cockroaches to reach the odour bait 
and the behavioural interaction between other insects including wasps, aphids, ticks, 
beetles, flies, and spiders (Noldus et al., 2001). 
 
Šustr et al. (2001) used the EthoVision system and their own software to create a 
hybrid system to enable them to study the interactions of pigs during pre and post 
weaning. The study focused on behaviours related to contact such as fighting. 
Markings were made on the pigs and identified by the system to track the pig’s 
movements. Like Šustr, Lind et al. (2005) developed a basic vision system to 
overcome some of the limitations of the EthoVision software in tracking the 
movements of pigs. Their study involved the administration of apomorphine to 
minipigs to observe and record the locomotor behaviour of the subject. Perner (2001) 
used a side viewing angle to successfully track the movement of pigs based on 
motion parameters and time.  
 
Vision systems have also been developed to determine when an animal’s welfare is 
compromised based on certain behavioural characteristics. Duarte et al. (2009) 
identified the behaviours or activity of flat fish ‘taking off’ and ‘surface swimming’ 
as a preliminary measure of their welfare. Branson and Belongie (2005) also 
developed a vision system to monitor the behaviours of multiple mice from a side 
view, to give an indication of the animals’ welfare through various activities. 
Complex behaviours such as grooming frequency and basic postures such as stretch, 
sit and walk were identified. Systems have also been designed to monitor herds to 
detect their behaviour during milking (Kaihilahti et al., 2007).  
 
Identification of multiple animals within the field of view presents additional 
challenges as multiple regions within the image containing individual animals need 
to be identified and analysed. Tweed and Calway (2002) demonstrated the ability to 
identify and track multiple birds (during flight) using image processing techniques. 
Kalafatic et al. (2001) tracked multiple mice in a laboratory setting using a contour 
tracking technique that was based on the animals’ movements.  
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A large number of vision systems are targeted at specific human-behaviour 
applications. One such example is given by How-Lung et al. (2006) who developed a 
system which can monitor people in an aquatic environment.  The application acts as 
a virtual life guard for a swimming pool. As their system was aimed at preventing 
drowning, they monitored the surface of the pool for people acting in distress.  
 
Several large-scale multilevel surveillance research projects are also being 
undertaken in an effort to enhance the safety of the general public. The HERMES 
system (Human Expressive graphic Representation of Motion and their Evaluation in 
Sequences) is a blanket system designed to track people using pan-tilt-zoom (PTZ) 
cameras. The system has three levels of recognition. Level one identifies the object 
or ‘agent’ which can be done from a long distance. The system then automatically 
instructs the camera to zoom in on the agent to perform another level of analysis. At 
the next stage the agent is classified based on its posture or movement. For example, 
the system determines whether agent is a car or human. If further detailed 
information can be acquired from the agent, such as a face, a third level is used to 
identify the face and/or facial expression. The system is structured to learn and has 
the ability to recognise the movement patterns and shape for certain silhouette 
postures (HERMES, 2009). The W4 project has similar aims and objectives to the 
HERMES project (Haritaoglu et al., 2000). Wren et al. (1997a) created a system 
called ‘Pfinder’ (People finder) an improved derivative of the ALIVE system (Maes 
et al., 1997) which can identify the head, hands and body of a person in real time 
using a camera with a fixed view. It is suggested that the system could potentially be 
used to track vehicles and animals. 
 
2.4 FUTURE RESEARCH POSSIBILITIES 
 
A system which can identify complex behaviours in and between animals, such as 
fighting, is not currently commercially-available. Given the techniques used, the 
performance of the commercial systems reviewed would be questionable if applied 
outside the laboratory environment. Therefore, a vision system would need to be 
designed to monitor both simple tracking and complex behaviours in a commercial 
farm environment. For example, a significant amount of information can be gained 
by simply determining the pose of an animal. For instance, if a sow can be 
automatically and reliably identified in a standing posture the result can lead into two 
useful surveillance applications. When the sow is not standing it must be lying down 
or sitting, therefore by detecting when the sow is not standing one can assume that is 
beginning to lie down. This transition can be used to activate a control system to 
prevent her crushing her piglets (Weary et al., 1996). Using the same identification 
scheme, one can log the time taken in a standing pose in addition to the general 
activity of the sow or gilt which can be used for oestrus detection during their 
interaction with boars (Cornou, 2006; Ostersen et al., 2010). It may also be possible 
to detect when a sow is on heat from the distinct lack of motion (freezing), pricking 
of its ears and the arching of its back, which shortens the perceived length of the 
animal. This form of automated oestrus-detection system could result in up to 30% 
labour-cost savings by both minimising the manual labour required to facilitate the 
interaction between the sow and boar(s) and the non-productive days (Freson et al., 
1998).  
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The potential to identify welfare-compromised animals through other motion 
characteristics or spatial characteristics can also be explored. Systems that identify 
dead animals or animals with poor mobility can be developed by tracking the 
movement of the animals around the pen (Tillett et al., 1997). Animals with poor 
mobility or dead animals can also be found by averaging the image over time and 
observing the animals which have greatest presence in the background image. The 
mobility or condition of the animal may be achieved by a gait analysis as performed 
by a vision system (von Wachenfelt et al., 2010; Favreau et al., 2006; Aydin et al., 
2010).  
 
Tracking the animal around its enclosure can also lead to the discovery of other 
important behaviours such as the time taken at the feeder or drinker and help to 
optimise the animal’s requirements, such as the number of feed stations or space 
requirements. The behavioural activity around certain parts of the enclosure has the 
potential to assist with disease prevention. For example, an outbreak of diarrhoea can 
be traced back to excessive water consumption of individual animals (Pedersen and 
Madsen, 2001). A system that identifies sufficient space requirements based on the 
posture or activity of the animals is also a possible application area (Ekkel et al., 
2003).  
 
Stressors or threats can be recognised from animals’ freezing and abrupt lack of 
motion in the image. Tail biting in groups of pigs or wounds from animals fighting 
can be identified in images based on blood colour information. Single tail biting 
events are suggested to be strong indicators of a larger outbreak approaching and 
therefore, if identified early enough may provide sufficient information to implement 
management strategies to control the problem (Statham et al., 2009).  Fighting 
behaviour may also be detected from various motion characteristics (Pellis, 1988). 
  
Thermal infrared cameras give an indication of the thermal comfort of an animal 
which can be based on a particular body reference region. For example, Andersen et 
al. (2008) determined that a pig’s ear temperature relates to its thermal comfort and 
behaviour. An infrared vision system can potentially be used to determine the 
required thermal level for input into the environmental control system in a similar 
manner to what was demonstrated previously by Shao and Xin (2008) and Wouters 
et al. (1990). The difference would be that the control would be based using the 
actual temperatures of the individual animals not on their spatial characteristics.  
 
Potentially, the same system could also be used to monitor the animal’s health 
(through variations in temperature) and its relationship to its behaviour, as IR 
imaging has been used for the detection of disease and flu symptoms (Gariepy et al., 
1989; Rainwater-Lovett et al., 2009; Schaefer et al., 2007; Stewart et al., 2007; 
Banhazi et al., 2009a). This would also immensely improve traceability. Ng and 
Acharya (2009) described how Thermal IR was used during the 2003 SARS out 
break to identify people who might have been carrying the H5N1 virus. The same 
concept can potentially be undertaken at piggeries to identify an outbreak or localise 
animals or groups of animals with flu or disease like symptoms based on their 
temperature profile.  
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Temperature may also be related to types of behaviour. For example, fighting 
animals may have increased temperatures. Monitoring temperature could help with 
the identification of fighting behaviour (Pedersen et al., 1998).  
 
Temperature has also shown a correlation to the level of pen fouling as pigs may 
choose to lay on surfaces that are zoned for excreting to satisfy their thermal comfort 
(Aarnink et al., 2006). In addition, inflammation around wounds may also be able to 
be identified from heat characteristics giving some indication of fighting, tail biting 
or injury to the hoofs (FLIR, 2010). Another advantage of using thermal IR is that 
segmentation of the animal from the resulting images is relatively straight forward if 
the surrounding temperature is not similar to animal temperature. This segmentation 
benefit could also be used to document when and where the animal excretes within 
its enclosure. Despite these benefits, the major problem with Thermal IR video 
cameras is that their expense which limits their application on farms. However, in 
future as they become cheaper and operate at higher resolutions, they will be the 
preferred choice for most applications (Banhazi et al., 2009a). 
 
2.5 CONCLUSION 
 
An animal welfare is the primary reason for its behaviour to be monitored. Hence, 
the main focus is to identify behaviours that lead up to the event that causes an 
animal’s welfare to be compromised. In particular, the behaviours which may result 
in long-term adverse effects need to be targeted. To achieve this, first tools to assess 
animal welfare are required (Smulders et al., 2006). Machine vision systems are able 
to facilitate this assessment and overcome problems related the level of individual 
animal attention, labour and welfare assessment. It is possible for a machine vision 
system to recognise the critical points in an observed behavioural sequence that 
indicates welfare problem. At one end of the scale the basic motion derived 
behaviours such as freezing (no-motion) and an animal’s movements relative to its 
environment can be tracked using relatively straight forward techniques. At the other 
end of the scale are complex behaviours which require more demanding 
reconstruction, validation and adaptation of models to document behaviour in detail. 
 
Numerous experiments in psychology and pharmacology, involving visual 
observation of the interaction between humans and machines, and animals and 
objects were found in the literature. It was found that using vision systems to 
automatically track or monitor moving objects, such as laboratory animals in 
research projects, is becoming more common. The majority of commercially 
available behaviour recognition systems, analysed behaviours that occurred in 
relation to an animal’s spatial position within its enclosure over time. In general, 
these systems were designed for laboratory-type experiments. Given the small size of 
the animals, the variables associated with the construction and control of the 
experimental enclosure could be managed with relative ease. For example, structured 
lighting could be applied to simplify image processing techniques. However, 
application of this technology to monitor the health, welfare or production of 
commercial livestock on farms is a relatively new concept. No commercially 
available behaviour monitoring system was found that recognised complex 
behaviours in humans besides a facial recognition system by Noldus (2010) which 
could identify several facial expressions of humans. However, some research papers 
did demonstrate the ability to reconstruct relatively complex body movements from 
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images and then recognise them. Behaviour recognition systems in commercial farm 
environments require more complex controls and sophisticated algorithms to be 
useful, as they need to assess large animals, large groups of animals and operate in 
dirty and often corrosive environments with non-uniform lighting. For these reasons, 
a number of authors experienced difficulties implementing behaviour recognition 
systems in commercial farms. Systems which can identify complex behaviours in 
and between animals are not currently commercially available. Given the techniques 
used, the performance of the commercial systems reviewed would be questionable if 
applied outside the laboratory environment. Therefore, further development is 
required to realize the full potential of vision-based techniques in monitoring and 
recognising the complex behaviour of livestock in commercial farm environments. 
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Chapter 3   
 
Methodology: Linking Body Pose and Weight Estimation 
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ABSTRACT 
 
The preceding two review chapters have provided background understanding and a 
knowledge base to shape the project’s direction. The review undertaken in the first 
chapter concluded that more work is required to further minimise the error of (i) 
group average daily weight estimates, (ii) individual animal weight estimates, (iii) 
group weight deviation and enhancing the robustness of the apparatus to function in 
commercially realistic environments. Development tasks were also required to focus 
on enhancing automation, minimising invasive environmental control, maximising 
precision and repeatability during body measurement recovery and identifying and 
controlling the effect of any bias in estimation. 
  
The review undertaken in Chapter 2 delved into the behavioural side of the problem, 
highlighting techniques for pose recognition that are applicable during weight 
estimation, and detailing the potential behavioural monitoring applications which 
may be integrated into the software in the future. No commercial system was 
available to recover the pig’s body from images, so techniques were required to be 
developed, however, this knowledge base provided a starting point for the 
development of techniques found in this methodology chapter.  
 
This chapter begins with a description of the task at hand, followed by a breakdown 
of the generic attributes of livestock-scales; providing insight into the various 
functional elements required in a livestock-scale design. Potential equipment and the 
working environment is then reviewed and equipment selection, configuration and 
installation positioning is justified. The individual software methods that were 
created in support of a scale’s functional elements are explained and illustrated.  
 
These methods identified a pig, its posture and determined its live weight from the 
body measurements extracted from images. During the development of the system 
the relationship between pose and weight became a focal point as the pose of the 
animal needed to be well defined and automatically recognisable to minimise 
uncertainty in body measurements. Consequently filtering techniques were created. 
After integration, these combined methods formed the PiGUI system which was used 
to test the hypothesis of the study. Simulated results can be found at the end of this 
chapter.  
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3.1 AN INITIAL ASSESSMENT OF THE STATE OF THE ART  
 
A commercially available vision system was tested for its ability to determine the 
growth of grower and finisher pigs (refer to Chapter 8 Comparison between PiGUI 
and a Commercial System). The problems encountered during trials using the 
commercial system prompted the system development found in this study. The 
weight information acquired from the commercial system was not within the 5% 
precision stated by the software vendor. The system was also not easy to use, 
calibrate and understand. This raised concerns about its implementation at farm level 
where technical skills may be limited. Reported weight estimates of the commercial 
system can be found in Table 60 in Chapter 8. The development processes 
documented in this thesis overcome various limitations in respect to those 
experienced during testing of the commercially available system. 
 
This study aims to develop a system that can collect a daily sample to represent the 
daily pen average weight for a population of housed pigs as industry has identified 
this as being important (Cambell pers. comm.). 
 
3.2 THE TASK AT HAND 
 
The previous review chapters have given insight into the processes necessary to 
undertake the weight estimation task. However, no formal taxonomy has been 
created to describe this process. Consequently, a hierarchical approach to the weight 
estimation process is now defined based on the review findings. The process is as 
shown in Figure 5 and is a revised version of the taxonomy outlined by Moeslund et 
al. (2006) for human motion capture and analysis to include weight estimation.  
 
The four processes which combine and integrate the hardware, software and data 
components into the complete vision system to estimate weight are: (i) initialisation, 
(ii) tracking, (iii) pose estimation, and (iv) weight estimation (Figure 5).  
 

 
Figure 5: The Process Involved in Estimating an Animal’s Weight from Images  

 
These methods can be created and linked together to perform a weight estimation 
task using vision-based techniques and artificial intelligence. Of these methods, the 
core components are segmentation classification and the weight estimation models. 
These three critical stages underline the processes that (i) retrieve the associated 
animal information from the image along with at least one of its body measurements, 
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(ii) validate that it is an animal and (iii) perform the weight estimate using a weight-
estimation equation. The other methods reinforce the performance of these three 
fundamental processes.  
 
3.3 SCALE DESIGN CONSIDERATIONS 
 
There are certain functional elements which need to be considered when designing or 
choosing an appropriate method to undertake the automatic weighing of livestock. 
The following section breaks down a scale’s main function into the smaller 
functional elements necessary for it to operate correctly within the pen environment. 
The various design flaws and strengths of theses lower level functions of the four 
livestock weighing methods presented in Chapter 1 are discussed and considered in 
the subsequent project development. The potential causes of weight-related error 
(bias) from various elements are also highlighted. 
 
3.3.1 A Breakdown of the Scale and its Interaction with Livestock  

 
This section presents a breakdown of interaction between the animal and scale into 
smaller functional elements. The different essential functional elements which the 
scale exploits in order to automatically obtain the animal’s weight are emphasised. 

 
Occlusion handling is a term given to indicate how well a scale system can prevent 
two animals interfering with a single sample weight estimate. Through design, one 
can handle occlusion either passively or actively. Passive occlusion handling 
involves identifying and removing the occurrence of occlusion in an estimate or 
sample. Passive methods are generally a software related filter assisting in the 
removal of errors post-assessment. In a vision-based scale, this is the ability to 
distinguish between two separate animals that are in contact or obscuring one another 
from the camera. In a load-cell-based scale, it is the ability to discriminate between 
the force-time pattern of an individual animal when more than one animal is present 
on the scale.  
 
Active occlusion handling involves putting procedures in place to prevent occlusion 
occurring before weight assessment in an effort to automatically single out animals 
during weight assessment. An automatic cage scale uses the sensors on its gates to 
control occlusion in an active sense, as do the barriers which can be installed at the 
feeder. Generally, active methods act as a hardware filter pre-weight-assessment and 
consequently increase the invasiveness of the method due to physical changes to the 
animals’ environment. 

 
Another design consideration stems from the fact that an animal may not use the 
weighing device correctly as a result of its body position. For example, an animal 
may not have all its weight on the platform during assessment on a load-cell type 
scale. Foreleg weighers rely heavily on the way the animal positions itself at the 
feeder and consequently the distribution of its body weight on its front legs and the 
platform. An animal that sits to feed or fails to place both hooves on the scale 
correctly will produce erroneous weight estimates. A vision-based scale may also 
experience limitations related to body pose as it may require the animal’s pose to be 
quantitative so body measurements can be referenced and repeated to form reliable 
weight estimates. 
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Problems also occur when an animal is completely on the weighing device during 
assessment. Hence, animal behaviour may cause the device to function incorrectly. 
For example, an animal may jump or bounce on a load-cell type scale (exerting an 
uneven force), and cause errors in weight samples. This scenario may increase the 
sample variation, which is a term indicating the variation in weight estimates taken 
from the animal during a weight assessment. The steady state read is the mean value 
of this variation. A similar effect can occur during weight estimation using a vision 
system, where partial segmentation of the animal from the image, incorrect 
extraction of body measurements from the animal’s body contour, or movement in 
posture can cause a fluctuation in weight estimates.  
 
Closely linked to the sample variation is the sampling period which is time duration 
that satisfies the correct function of the weighing device. For example, the length of 
time to either let the load-cell scale reach a steady weight reading, or the amount of 
time required to obtain a steady vision-based estimate with sufficient confidence to 
support its integrity and validity. The sampling period may also depend on the speed 
at which an animal walks such as during a weight-assessment on a walkthrough 
scale. 
 
The weighing device may also not zero (tare) correctly before the next animal enters, 
resulting in a re-zero error. In a 2D vision system the (re-zero) calibration relies on 
the installation height between the camera lens and ground. If the height of waste 
build-up on the ground becomes excessive, cleaning of the pen space is required to 
effectively re-zero the instrument. Re-zero on a load-cell type scale occurs when the 
instrument reaches a steady state within a certain deviation from its initial reading. If 
the scale maintains a reading outside this deviation, a re-zero error will cause 
systematic errors. 
 
Prevention of access to the scale or behaviour of the animals towards the scale may 
cause bottle necking. Automated cage-type scales may experience bottle necking if 
an animal chooses to lay (or sleep) on the scale or a power failure or gate fault 
occurs. Bias may occur if an animal chooses to lie on the scale over a long period, as 
during this time the weight sampling of other animals is prevented. Bottle necking 
may compromise the animal’s welfare in a negative flow arrangement if the animal is 
obstructed from food, water or other stimulant for prolonged periods. Walkthrough 
scales suffer from the similar congestive problems. Bottle necking may also occur if 
barriers are used to restrict the access to the feeder to a single animal as certain 
animals may dominate the feed space. This scenario may also cause bias in 
measurements and adversely affect animals feeding behaviour (Schofield et al., 
1999). Notably this bias may also occur without the barriers in place, constituting a 
layout related bias. 
 
Training is directly related to the behaviour of the animal and the invasiveness of the 
instrument. It is a measure of the willingness of the animal to use the scale regularly. 
Those systems set up around a feeder or drinker require little or no training as the 
animal is generally oblivious to the assessment process. Automated cage-type scales 
generally require training to help the animals understand that the scale is a 
thoroughfare and to overcome the fear of confinement within the scale during weight 
assessment. 
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Identification relates to the individual identification of animals. None of the methods 
are able to identify individual animals. All methods require radio frequency 
identification to pair sample estimates with individual animals so that individual 
weight estimates can be obtained.  
 
Frequency, capacity and service: Frequency refers to the period of time the device 
requires to take a sample or make an estimate. Capacity refers to the number of 
weight assessments possible by the device at one time. Service refers to the number 
of animals one device can handle. The vision-based scale can view a large area and 
potentially perform the weight assessment of multiple animals from a single frame 
making it far superior in its scalability compared to other methods which can only 
facilitate the measurement of one animal at a time.  However, the service of a vision 
system is limited by the number of feed spaces or the size of the pen space it 
observes. In certain layouts some animals may religiously use feeders or pen spaces 
which are outside the view of the camera, which could potentially cause a bias in 
group weight estimates. Platform type scales located at the feeder such as the ACCU-
ARM® Weigh Race cannot service large numbers of animals as one system can only 
facilitate 12-15 pigs. Therefore, facilitating the multiple feeder spaces encountered in 
large group sizes is not feasible. Automated cage scales can service large group sizes 
of up to 500 animals effectively, however, they have limited scalability as they can 
only assess a single animal at a time. Cage scales may also be limited in terms of 
frequency if using the scale is optional for the animals. 
 
Manoeuvrability refers to how easily the device can be moved by farm staff to a new 
location. The major benefit of a vision-based scale is that it can be effectively placed 
at any location without the need for additional infrastructure or any physical contact 
between the scale and the animal. A vision system is the only automated system to 
have this level of flexibility as the unit-weight of a vision system and its peripheral 
mounting equipment are considerably less (or negligible) in comparison to the 
weight and size of the alternatives. Some smaller load cell-type scales have wheels to 
assist with transportation, however, once placed at their destination they are often 
required to be fixed to the ground to prevent movement over time. 
 
Safety relates to the level of risk the device poses to the animals and farm workers. 
Additional stress or injury can occur from machine controlled gates which have 
limited intelligence to constrain the animal correctly and do not have intelligence to 
sympathise with animals should they become trapped. An automated cage scale may 
in some cases, also cause negative disruptions to the animals’ routines and feeding 
behaviour due to bottle necking. Vision systems have no moving parts so there is 
negligible safety risk to operators or animals during system operation.  
 
Determining the bodyweight of livestock using manual methods is dangerous and 
physically demanding. Animals which have not been manually handled or exposed  
to new environments or confined spaces before, are likely to show some level of 
resistance, become stressed, and begin to exhibit defensive behaviours which may 
compromise worker or animal safety. For these reasons, and the inefficiency 
involved in weighing a large number of animals, the weight assessment of animals 
using this technique is undesirable. Studies report that 6% of livestock related trauma 
cases were caused by simply standing in close proximity to a livestock animal 
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(Criddle, 2001). Mechanization of agricultural processes have also been attributed to 
increases in injury in the agricultural industry (Erkal et al., 2008). Therefore, systems 
developed for agricultural purposes should always keep safety as a high priority. 
 
Maintainability relates to the level of maintenance required to ensure the device 
functions correctly. Load-cell type scales are more susceptible to damage as they are 
in direct contact with the animal and its environment. The physical presence of the 
scale in the pen also causes it to be a target for misuse by the animals. In addition, 
the scale and surroundings require frequent cleaning to prevent any measurement 
errors arising from the build-up of manure (White et al., 2004). The benefit of a 
foreleg weigher is that it requires less frequent cleaning compared to an automatic 
cage scale and the animal is not required to be confined during weighing (Ramaekers 
et al., 1995b). The vision system may require periodic cleaning of the lens if an air 
curtain is not present. An insect deterrent could also be used to prevent insects from 
landing on the lens and equipment. Certain mechanised systems may also require 
routine inspection. For example, daily observations may be required to prevent any 
adverse effects caused by bottle necking in a negative-flow cage-type system as 
animals are forced to use the scale as a thoroughfare. 
 
The growth of (i) individual animals and (ii) the growth of animals as a group can be 
obtained from a continuous and automatic weighing process. However, as all 
automated weighing techniques rely on the cooperation of the animal to initiate the 
assessment, it is not possible to guarantee that a weight assessment of each animal 
will occur each day. Consequently, various forms of estimation bias may occur in a 
daily group-average estimate as a result of:  
 

• Certain animals re-visiting the scale area more than others and remaining in 
the scale for longer durations 

• Missed weight recordings due to multiple animals in the scale area causing 
errors 

• Missed weight recordings due to certain animals not visiting the scale area 
• Large daily weight fluctuations from excessive fouling, health or nutrition 

problems 
• Manual removal of sick or market ready animals from the pen 

 
Identification bias may occur in a vision-based scale as certain animals may be 
filtered out of analysis or sampled more frequently during the filtering process. For 
example, Lines et al. (2001) noted that the error handling used to identify and pass 
image information for mass estimation has the potential to cause bias if favouritism 
is inadvertently given to a particular fish of certain characteristics (such as size or 
shape) within the population. Other contributing factors related to identification bias 
include the gender of the animal and the variability in body type as some animals 
have larger shoulders where as others have larger posteriors (Baxter, 1984; 
Ramaekers et al., 1995b). Consequently, different filters accommodating different 
classes of body type or appearances may be required as there is evidence that specific 
estimation equations are required for different breeds of animals (Brandl and 
Jørgensen, 1996; White et al., 2003). 
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3.3.2 Scale Positioning and Behavioural Interaction 
 
The design considerations presented in the previous section have highlighted how 
important it is to consider the interaction between animals and the scale within their 
environment, as this may have a major effect on how well or often weight sampling 
will occur. Therefore, in the early stages of development a behavioural assessment 
should be undertaken between a proposed automated livestock handling or 
monitoring tool and the animal. Frameworks coordinating the design of automated 
management tools have been formed to assist with the efficient development and 
implementation of systems to eradicate pest species in Australia (Bengsen et al., 
2008). The underlying principles of such frameworks can be adopted to accelerate 
the automation of livestock handling and monitoring processes. A fundamental 
property of the framework is extensive knowledge of the behaviour of the animal, as 
the animal must be a willing participant in what will be an automatic process. Thus, 
the behaviour of the animal needs to be considered in the design stage, as it may 
provide opportunity to simplify solutions. For example, some designs exploit a 
unique physical ability or instinct of an animal to assist in its capture. In such a 
system, strategic placement of the apparatus in the animal’s environment may also 
maximise the likelihood of the animal’s behaviour occurring. 
 
A second and equally important stage in the framework is discovering or obtaining 
detailed biometrics of the animal which can again lend itself to many opportunities in 
the system’s design as a form of validation or identification from unique physical 
constraint(s). Weight, body measurements, sound and appearance all assist in the 
correct identification and validation of different species. For example, Dunn et al. 
(2003) demonstrated how several different species of animals were classified using a 
visual inspection of their shape. A third and fundamentally important stage which 
can easily be overlooked is determining the perception of the technology in the 
public arena and how the system may impact or appear to impact the welfare of the 
animal(s) adversely.  
 
Fortunately, in livestock production the automation process is somewhat simplified 
as the animals environment can generally be controlled to better accommodate their 
needs and basic instinctive behaviours, such as those that arise from the need for 
food and water, can be exploited to assist in gathering data automatically. A systems-
based account of the requirements of an integrated livestock management system can 
be found in Wathes et al. (2001). The four different automated systems described in 
Chapter 1 either strategically manipulate the layout of the enclosure or use an 
existing feature within it to automate the weighing process. Although the vision-
based scale, foreleg weigher and the platform race are not restricted to the feeding 
and drinking space, they can effectively automate the sampling process by exploiting 
the need for the animal to feed or drink at these locations each day (illustrated in 
Figure 6 (a) and (c)). Often the feeder is the desired choice as it has been found that a 
pig will spend four times longer at the feeder than the drinker (Ramaekers et al., 
1995a). Feed barriers, also known as stalls, may be installed at these locations to 
restrict access to the feeder and drinker to a single animal (Figure 6 (a)). These 
barriers prevent additional animals from affecting the instrument during a weight 
reading and fighting between animals over access to feed, which also affects weight 
reading. 
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Figure 6: Examples of Different Weighing System Layouts/Locations in Piggeries 
Feeding Stall (Feed Barriers) (A),  Walkthrough/Automatic Cage (B), Drinker (C) 

 
Walkthrough scales and automatic cage scales require adjustment to the enclosure in 
order to channel the animals through the instrument (illustrated in Figure 6 (b)). 
There are two different types of layouts for automated scales of this type; positive 
and negative flow. A negative flow system is strategically placed within a network of 
smaller pens or paddock sections to provide a single thoroughfare between feed, 
water, space or other stimulant. Alternatively, in a positive flow system, animals can 
always access feed and water, and choose whether or not to pass through the scale 
(Donkersgoed, 2004). However, the thoroughfare may be shut periodically to train 
the animals to use the scale or to obtain more precise individual or group weight 
estimates on particular days (Donkersgoed, 2004). 
 
These layout and behavioural considerations are important as the interactive 
behaviour between the animal and scale can contribute to bias (Chedad et al., 2000; 
Stacey et al., 2004). Animal curiosity, physical limitations or territorial behaviour 
may have an adverse effect. Turner et al. (1984a) and Mollah et al. (2010) discuss 
these factors in their scale design as the shape and location of their scale within the 
environment needed to cater for various physical limitations of the animals to 
provide automatic, daily, unbiased weight estimates. 
  
3.3.3 Practical Precision of the Weight Estimation Task 
 
In addition to the design considerations, the variability associated with the body 
weight and size of livestock was reviewed to determine what level of accuracy could 
be considered practical precision.  
 
3.3.3.1 The Effect of Gut Fill 
 
Gut fill was used as a guide to determine a practical error margin for measuring the 
weight of individual pigs across the course of a day. The amount of an animal’s total 
body weight which is made up of food, digesta and faeces is known as its gut fill 
(GF) and is responsible for the majority of the animals day-to-day weight variance. 
Here two levels are considered: (i) where the gut is assumed to be the healthy mean 
weight (live body weight LBW) and (ii) empty (empty body weight EBW) where the 
digestive systems is empty. Therefore, an acceptable range of error in an individual 
weight measurement can be half of the gut- fill (the weight difference between LBW 
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and EBW (De Lange et al., 2003)); assuming the animal always has access to food 
and water. The digestive systems and gut-fill of several different livestock species 
have been modelled, however, some ambiguity remains as to what percentage the 
gut-fill is relative to the LBW. This is understandable considering the many input 
variables involved in the calculation of gut fill such as animal breed, digestive time, 
conversion efficiency, diet and age which contribute to the density, duration and 
amount of storable waste able to be treated by an animal’s digestive system at any 
given time. For example, the gut-fill of pigs was attributed to be approximately 6% 
of the pigs’ LBW by  (Boisen et al., 2000) and 5% by  Agricultural Research Council 
(ARC) (1981) and Stranks et al. (1988). Alternatively, pigs at 20 and 100 kg LBW 
have been shown to demonstrate GF from 9% to 4.5% respectively by both 
Whittemore et al. (1988) and Lorschy et al. (1997). A predictive equation for gut-fill 
is provided by De Lange et al. (2003) derived from Whittemore et al. (1988) and 
Lorschy et al. (1997) : 

𝐺𝐹 = 0.277 × 𝐿𝐵𝑊0.612 

Therefore the error bounds for estimating the weight of pigs (∆𝑊) can be given by:  
 

∆𝑊 =  0.5 × 𝐺𝐹 = 0.1385 × 𝐿𝐵𝑊0.612 
 

And, one could reasonably expect that two LBW weight samples of the same animal 
taken at separate times within a 24hr period should be within ∆𝑊 of one another. 
Some errors for different weighing methods relative to LBW are shown in Table 2 in 
respect to error posed by 50% gut fill (second row of Table 2).  
 

Table 2: Allowable Error in Individual Weight Estimates Based on the Predictive Gut Fill 
Equation Presented by De Lange et al. (2003) 

𝑳𝑩𝑾(𝐤𝐠) 20.0 40.0 60.0 80.0 100.0 120.0 140.0 
GF Error ∆𝑾 (kg) 0.9 1.3 1.7 2.0 2.3 2.6 2.9 
Scale Error ∆𝑾 (kg) ±1%  0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Vision ∆𝑾(kg) 2.1% (mean) 0.4 0.8 1.3 1.7 2.1 2.5 2.9 
Foreleg ∆𝑾(kg) >5%  1 2 3 4 5 6 7 
Proportion of GF Error to LBW (%) 4.5 3.3 2.8 2.5 2.3 2.2 2.1 

 
According to De Lange’s equation, as animals grow the proportion of their gut fill to 
LBW weight decreases and thus contributes to a smaller variation in total weight. 
This can be observed in the last row of Table 2. Consequently, as the LBW increases, 
the precision in weight estimation also needs to increase. Generally scales that utilise 
load-cell technology can estimate the weight of an animal to ±1% accuracy. Given 
the variability of weight due to gut fill, these load-cell type scales perform well 
within what can be deemed acceptable error (Table 2). This level of precision may 
even be considered of little relevance in pig production due to the fact that an 
animal’s weight can fluctuate dramatically within a short period of time (Brandl and 
Jørgensen, 1996). Some semiautomatic vision-based weighing devices have been 
able to perform to 2.1% mean error which is also within the error bounds attributed 
to gut-fill in the 20 to 140 kg weight-range (Minagawa et al., 2003).  
 
To give a preliminary indication of how quickly the weight of groups of animals may 
vary, a small observational study was performed. Three groups of animals were 
moved to a clean pen area for a 40 minute period. No feed was available during this 
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time. After moving the animals back to their enclosure the solid waste was collected 
and weighed to the nearest half kilogram. It was found that over this small time 
frame 0.47 kg per animal was lost for the first group containing 15 animals with an 
initial average weight of 97.10 ± 4.77 kg. Group 2 containing another 15 animals had 
a weight loss of 0.57 kg per animal with an initial group average weight of 95.23 ± 
4.44 kg and the last group of 11 animals had a 0.41 kg loss in weight per animal with 
an initial average group weight of 85.05 ± 6.26 kg. It is important to note that the 
weight of liquid waste was not obtained during the test which would have further 
contributed to the amount of weight loss. The proportion of each animal’s 
contribution to the total waste was also not documented. Therefore, it is not known 
whether individual animals contributed a significant amount of the total waste 
collected.  

 
Table 3: Weight Loss from Solid Waste of Three Groups of Finisher Pigs over a 40 Minute 

Period  
No. Pigs Group Average Weight (kg) Waste (kg) kg Loss / pig 

15 95.23 8.5 0.57 (0.6%) 
15 97.1 7 0.47 (0.5%) 
11 85.05 4.5 0.41 (0.5%) 

 
A group of 17 smaller pigs with an average weight of 28.8 kg were also weighed 
twice within a 40 minute period. During this time the collective weight lost per pig 
was 0.7% of their starting weight as shown in Table 4. 
 

Table 4: Weight Loss of a Group of 17 Grower Pigs over a 40 Minute Period  
No. Pigs Group Average Weight (kg) kg Loss / pig 

17 28.79 0.21 (0.7%) 
 
These figures indicate the GF does alter weight within a short period of 40 minutes 
by solid waste alone. Therefore, it was plausible that given a longer duration for the 
test the weight loss attributed to gut fill would have reached the levels defined by De 
Lange’s equation, however, weight levels are less likely to occur closer to EBW. As 
a guide half of the total GF as given by De Lange’s equation has been used to define 
the expected level of precision of a device performing the assessment of individual 
animals over the course of a day. Ideally weight estimates will fall within this range 
given an animal’s actual LBW. 

 
3.3.3.2 Potential Morphological Effect on Precision 
 
A critical component of the identification of an animal is its shape and appearance. It 
is well known that each animal will vary geometrically depending on its genetic 
history (White et al., 2004). However, a not so obvious fact is that the environmental 
conditions to which the animal is exposed may cause immediate variation to its 
geometry during its growth cycle. Allen (1877) and Bergmann (1847) created two 
separate rules based on a similar underlying theory that the climatic conditions to 
which an animal is exposed, will morphologically alter its appearance. Allen’s rule 
was based around the observation that animals exposed to colder climates had a 
reduction in the size of their extremities compared to that of animals exposed to 
warmer climates. The underlying rational for the rules are that in a colder climate an 
animal will adapt such that it has a smaller surface area to conserve energy so that it 
is less susceptible to a reduction in heat transfer. The inverse is also true where, in 
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warmer climates, animals will adapt by growing longer appendages to create more 
surface area to dissipate heat. Bergmann’s rule follows a similar sentiment, along 
with the proposal that the temperature also slows the sexual maturity of the animal, 
resulting in a prolonged growth period to reach full maturity. Although the physical 
change related to size is most relevant in this study, other forms of adaptation have 
also been observed in order to acclimatize the body such as insulation in the form of 
hair, fur, and tissue density. 
 
To assess the validity of these rules, Weaver and Ingram (1969) conducted a study on 
a litter of large white pigs which were divided into two separate climates (5°C and 
35°C) to determine whether any morphological changes would be experienced 
during their growth. There were apparent differences in the body shape between the 
animals housed in the 5°C and 35°C enclosures. Although the animals shared similar 
growth in terms of weight, the animals housed in the 5°C climate were shorter, 
stockier and had shorter tails and smaller ears (effectively half the surface area). For 
comparative purposes, an image of a pig from the 5°C and 35°C housing are shown 
in Figure 7 from Weaver’s study. 
 

 
Figure 7: Morphology in Pig Growth when Exposed to Extreme Temperatures  

35°C Conditions (Left) and 5°C Conditions (Right) from Weaver and Ingram (1969) 
 

Due to Australia’s harsh and variable climate and the fact that pigs cannot regulate 
their thermal comfort easily (as pigs cannot sweat), most piggeries have some form 
climate control within their buildings or shelters, such as shade, sprayers or air-
conditioning. Therefore, it is believed that the morphological effect in the controlled 
experiment presented above would not occur to this extreme in practice, however, it 
may have some effect (such as seasonal variation in body geometry), so it is 
worthwhile noting.  
 
3.4 CAMERA SELECTION 
 
The elements and installation aspects that will help make the developed system 
function automatically and appropriately have been determined. Limitations related 
to precision have also been discussed. Therefore the data capture device can be 
selected with these and the following considerations in mind: (i) spectral band 
recorded, (ii) camera configuration and (iii) installation environment.  
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There are various types of sensor which can be used in this application. Selection and 
justification of the most appropriate type of apparatus to obtain the information is 
now discussed. Potential sensor configurations include 2D, 3D perspective, 3D 
stereo. The potential recording environment conditions include day, night and 
thermal conditions, and the intensity recorded includes black and white, colour, NIR, 
IR, UV and thermal.  
 
3.4.1 Spectrum Sensed 
 
An image is often thought of as a sensor based re-construction of incident light 
(irradiance) in the visible range, however, there are many different frequency ranges 
which are sensed to create an image (see Figure 8). The common wavelength ranges 
which use the sun’s irradiation to form images are visible light (VIS 400-700nm), 
ultra violet (UV 200-400nm) and Infrared (IR 700nm-1mm) of which Near Infrared 
(NIR 700-1400nm) is used (Figure 8). The sensors which operate in the visible 
spectrum have been used to grade and assess based on colour, appearance, body 
measurements and mass in both agricultural and manufacturing industries. Examples 
in agricultural industries are meat grading and inspection, fruit grading, animal 
tracking and behavioural studies (Bull, 1993; Brosnan and Sun, 2002; Chao et al., 
2002; Chao et al., 2000; Stajnko et al., 2004; Dusenbery, 1985; Harmsen and 
Koenderink, 2009; Shao et al., 1998; Shao and Xin, 2008).  
 
A disadvantage of using vision equipment that operates in the visible spectrum is that 
the lighting arrangement of the scene is often uncontrollable and may inhibit the 
function of the system if not properly designed or compensated for by using some 
form of environmental control. Spectral band-pass filters can be placed in front of the 
imaging sensor to restrict the observable wavelengths to a specified range. This 
technique can be used to identify an object of a certain colour by filtering out 
wavelengths of light from all other bands. Most cameras have an infrared (IR) cut-off 
filter which reflects near infrared (NIR) light away from the sensor such that the light 
in the IR range does not impact the visual appearance of the image to the human eye. 
However, NIR imaging can be used to an advantage during the day and night. During 
the day NIR can be used to help segment objects which have different textural 
qualities but the same colour. During the night sensors sensitive to NIR can generate 
images effectively with the help of illuminators. However, as pigs are generally 
asleep and are not active at night, the benefit of using NIR and structured lighting, 
day or night, for weight estimation purposes is negligible. There is more merit in 
having this additional equipment to record feeding behaviour in low light conditions 
such as in the morning and afternoon or occasionally during the night. Having 
additional equipment will also reduce the reliability of the system due to additional 
parts and increases the system’s installation and maintenance requirements. If 
structured lighting were to be used it would be desirable to use a wavelength that 
would not affect the animals. There is still debate as to the colour range in which pigs 
are believed to be able to see (Lomas et al., 1998). Pigs are believed to have the basis 
for dichromatic colour vision with each of the two cones having an average 
maximum sensitivity of 439 nm and 556 nm (Neitz and Jacobs, 1989). 

 
Other devices record images from radiation produced from the source directly. For 
example, sensors that acquire thermal infrared (IR 1400nm to 1mm) use radiated heat 
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from objects to form images (thermograph). These images also contain feature 
information on the temperature of the target object. This technology has been 
explored in livestock applications. For example, Stajnko et al. (2008) assessed 
different age classes of Simmental cattle for parameters that could be used to 
determine their live weight using thermal imaging techniques. Thermal imaging was 
used to overcome segmentation issues using RGB images surrounding the non-
homogeneous nature of the cattle’s appearance (brown, red and white). The 
environment was controlled to some extent by placing the bull in cold-concrete 
surroundings (Stajnko et al., 2008). Schaefer and Tong (2000) determined that the 
thermal radiation emitted from livestock can also be used to estimate the animals 
composition. Such technology may also be more applicable to the weight estimation 
of sheep where the fleece would otherwise distort weight estimates when based on 
visual appearance alone.  
 
Alternative imaging techniques include X-ray, Computer Tomography (CT), 
Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) 
which are created by absorbing the radiation which passes through the object. These 
are used for precise diagnosis of the organism while stationary or sedated. These 
methods can provide an accurate means for modelling a priori data such as body 
measurements both internally and externally. For example, MRI, CT and X-ray are 
known to be powerful tools for the estimation of muscle and fat tissue in pigs and 
sheep (Vangen and Jopson, 1996; Mitchell et al., 2002; Kvame and Vangen, 2006).  

 

 
Figure 8: Electro-Magnetic Spectrum 

 
3.4.2 Perspective View and Configuration  
 
In addition to the selection of the image sensor device, the camera configuration and 
its installation location must also be considered. There are predominately three 
methods, (i) 2D, (ii) 3D perspective or (iii) 3D stereo, which can acquire information 
from an animal’s body through an image. These three methods come under the 
broader study area of photogrammetrics.  
 
Conceptually, a 2D image of a pig is a single plane record of the actual physical body 
of the animal in a static pose. From different viewing angles the shape and 
appearance of the pig (in an image) will appear completely different. Each one of 
these 2D observations is a compressed representation of the animal’s body which 
describes a certain proportion of the entire body. An accumulated set of observations 
covering all perspectives of the animal can be used to ‘virtually’ illustrate the animal 
in three body measurements (Wu et al., 2004).  The number of different animal poses 
that can be recorded by these means is extensive. Consequently, in the interest of 
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efficiency, the camera configuration chosen in this study needs to only accommodate 
a range of this body and pose information which enables weight estimates to be 
determined to practical levels of accuracy for both individual pigs and groups of 
pigs. 
 
Although it does record the most detailed representation of the animal, a 3D stereo 
reconstruction requires a larger quantity of data storage and imaging equipment and 
thus also increases demand on the processor and peripheral computer equipment. In 
addition, as the extracted body measurements of an animal depend on its posture, a 
weight-estimation equation built from the body measurements taken from multiple 
cameras (or cameras in motion) will require the animal to maintain a suitable pose 
for all the camera’s perspectives to prevent missed weigh events or motion-based 
time delay errors. 
 
The top and side views (3D perspective) have been used in several machine vision 
applications in this area. Yang and Teng (2008) use a side and top view of the pig to 
determine the live weight of pigs. This is arguably a poor design choice as, in 
practice, a side view will increase the requirement for infrastructure, maintenance, 
and decrease the likelihood of a weight assessment event taking place. 
 
In order to obtain accurate measurements of the animal’s body from a 2D perspective 
side-view, the distance the camera is away from the animal needs to be determined or 
the animal must be positioned parallel to the lens of the camera at a known distance 
(refer to Section 3.5.3 Projecting Extracted Pixel Dimensions to Metric at Ground 
Level). This distance can be recovered using a laser telemeter (Tasdemir et al., 2011; 
Negretti et al., 2007a) however, such equipment is likely to come at an additional 
cost as well as make the system more complex and sensitive during calibration. To 
overcome these calibration issues a barrier may be used to keep each animal a fixed 
distance from the camera during a weight-assessment from the side view. This 
configuration is inherently prone to issues, however, as the vision system will be in 
close or direct contact with the barrier, the animals’ and the animals’ environment 
and therefore would undoubtedly demand frequent cleaning, be more susceptible to 
damage and potentially nullify its non-invasive quality. Another inherent problem 
associated with the side-view is occlusion caused by animals obscuring one another 
from the cameras view.   

 
The 2D top view has also been used to extract the body measurements of pigs from 
images by many authors (Schofield, 1990). Refer to Section 1.3.1 Livestock Body 
Measurements and Their Correlation to Weight for more examples. The top view is 
the preferred perspective to acquire the body measurements of the animal for the 
following reasons: (i) more than one animal can be assessed in a single image, (ii) 
the distance of the animal’s body measurements are always relative to the ground, 
(iii) the background surrounding individual animals is less likely to contain other 
animals and therefore provides better contrast between the animal and background 
(enhancing the chance of correct segmentation), (iv) the background is more likely to 
be uniform as issues presented by direct solar radiance and surrounding objects are 
minimised as the camera is facing downward (v) the system does not have to come in 
close proximity with the animal and its surroundings, (vi) the system is more likely 
to observe the animals in a pose suitable for weight estimation as varying body 
measurements caused by articulated joints (legs) are hidden from view, (vii) the 
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animals can be tracked relative to their location within the pen and finally (viii) the 
entire enclosure or a region of interest within the enclosure can be observed without 
obstruction. The main limitation of the 2D top view is that the height of the animal is 
required (or could potentially be estimated) to obtain an approximation of the 
animals real-world body measurements. Where weight estimation is concerned, the 
effect that height has on weight estimation precision also needs to be established and, 
if required, potential 2D height recovery techniques need to be reviewed. 

 
3.4.3 Hardware Selection 
 
Ideally, the chosen imaging device would be a camera device operating in the 
thermal infrared band due to the potential ability to determine aliments of the animal 
as well as assisting in segmentation. However, due to the high cost of thermal 
imaging equipment its use on-farm is currently not feasible as short to midterm 
replacement is likely. However, the algorithms developed to extract and interpret the 
pig-related information present in the images will be similar regardless of imaging 
device. Therefore the essence of this research does not need to be constrained by the 
image format presented by the chosen imaging device, as the method created to 
automatically extract and interpret the information within the images can be applied 
to images acquired from other imaging devices (such as thermal) in future with 
minor modification.  
 
The main benefit of using a 3D stereo configuration is that it virtually recreates the 
surface of the animal and thus the height information and other dimensional 
information can be recovered precisely. However, there are several reasons why a 3D 
configuration may not result in the optimum solution. Reasons include increased 
system cost, increased processing burden, further complication of processing tasks, 
increased storage requirements, increased infrastructure and calibration, potential to 
decrease the system’s non-invasive nature (may require a stall) and inability to assess 
multiple animals at the same time. 
 
Therefore, to avoid potential over-complication of the system, first the weight 
estimation potential of a 2D configuration should be revised to determine whether 
results can be achieved reliably, within practical accuracy and comparable to 
conventional weighing method such as those obtained from electronic livestock 
scales.  
 
By fixing a 2D camera system’s view to observe the animal from above, the 
observed scene is greatly simplified which results in four flow-on benefits: (i) a 
number of the body measurements of the animal become hidden and therefore less 
information is required to describe it, (ii) these hidden body measurements are the 
most variable (such as the legs) which  ensures that the observed body measurements 
will be easier to repeat while the animal is standing, (iii) consequently less data 
storage and processing is required, and (iv) there is less chance of pigs obscuring one 
another from the camera. However, this fixed viewing constraint comes at the cost of 
losing some body information. A task for this study is to determine whether this lost 
body information is necessary to achieve practical precision in weight estimates for 
both groups and individual animals.  
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Historically, most estimation equations are based on measurements taken physically 
from the animal’s body and work on the basis that the animal is an approximation of 
a cylinder and thus a length and girth measurement is required. However, a fixed two 
dimensional vision system can only observe one perspective and therefore is not able 
to determine the girth measurement taken around the circumference of the main axis 
of the body behind the front legs. Therefore, in this study the animal’s width 
becomes an approximation of the girth measurement and the area of the animals back 
is an approximation of the animal’s three dimensional body; a compressed 
representation of the 3D object. To obtain the approximate real world body 
measurements of a pig using the 2D system an actual or estimated height 
measurement will be required. The camera should also have a wide angle lens and 
where possible have onboard post processing to correct for off-angle effects (image 
distortion) such that it can observe a large pen area from a small height with a high 
resolution.  
 
3.5 OVERVIEW OF THE SYSTEM DEVELOPMENT PROCESS  

 
This section provides an executive summary of the software development undertaken 
in this PhD and forms the remainder of this methodology chapter.  
 
Datasets were collected and analysed off-line to: (i) define the strength of the various 
body measurement(s) in respect to estimating weight (3.6.1 Modelling), (ii) build and 
validate the weight estimation models (3.6.1.1 Modelling the Weight-Estimation 
Equation) and to (iii) construct the body measurement (3.5.4 Filtering the Extracted 
Body Measurements for Weight Validation) and shape filters (3.5.5 Filtering the 
Shape for Pig Recognition and Pose Validation). 
 
Many of the methods used to extract the data from videos in order to build the weight 
estimation models were subsequently used in the online version of the software. 
Matlab with image acquisition and processing toolboxes was the chosen IDE to 
create the software (MathWorks, Inc., Natick, MA). In Matlab, function files (m-
files) encapsulate code-instructions, including those instructions required to acquire 
images from the camera, create a graphical user interface, perform operations on the 
image matrix and to write the extracted information result to text file. The image-
matrix operations developed had the specific functions to: (i) segment, (ii) extract, 
(iii) convert, (iv) track and validate the (v) shape and (vi) body measurements of a 
pig within the image. 
 
The segmentation operations were required to first separate the animal-related 
information from the background information within the image and then to prepare 
the animal-information for feature extraction (see Section 3.5.1 Segmentation 
Development). These functions followed with the feature extraction operations 
responsible for determining points of reference along the animal’s body contour and 
extracting the corresponding body measurements (see 3.5.2 Feature Extraction 
Development). A conversion stage then undertook the task of converting the 
recovered body measurements from pixels to millimetres to approximate the real 
world body measurements of the pigs and to free equation coefficients from 
projection errors related to installation height (see Section 3.5.3 Projecting Extracted 
Pixel Dimensions to Metric at Ground Level). 
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Filtering functions were then produced to regulate the system’s input and output 
based on perceived shape and measurements relative to weight (see Section 3.5.4 
Filtering the Extracted Body Measurements for Weight Validation and Section 3.5.5 
Filtering the Shape for Pig Recognition and Pose Validation). 
 
Finally, a tracking stage determined the appearance-based attributes of the pig within 
the image to assist with the recognition and subsequent re-location of the pig 
between image frames (see Section 3.6.6 Determining the Appearance-Based 
Attributes of Pigs for Tracking).  
 
These functions were integrated to form the piGUI system. 
 
The following sections discuss these functional elements of the piGUI system in 
greater detail. The effect that these functions have on weight estimation is presented 
when appropriate in Section 3.6 Simulation Results in the later part of this chapter, 
followed by the chapter conclusions. 
 
3.5.1 Segmentation Development 

 
Early segmentation attempts for the basic prototype system were based on the 
articles Kollis et al. (2007) and Wang et al. (2008) and involved the segmentation of 
the animals using thresholding techniques.  
 
Thresholding segmentation attempts progressed from manually selected 
thresholding, to adaptive thresholding of the entire image and then to localised 
thresholding of various image subsections (Otsu, 1979). Thresholding is a technique 
adopted for its simplicity and because others had used it in the same application area. 
However, this technique proved to be cumbersome. The problems associated with 
these thresholding techniques reflect those encountered by Brandl and Jørgensen 
(1996) who decided to manually trace the contour of the pig’s body after the 
selection of manual thresholding did not find the precise contour of the pig’s body. 
Dirt on the pig’s back, poor contrast between the pig’s body and background often 
lead to poorly defined contours and incorrect association between the animal’s back 
and the background. An additional classification routine was also required to identify 
and remove non-pig objects that remained in the resulting image after thresholding. It 
became apparent that this technique required controlled lighting and environmental 
control such as providing a black background and clean animals for it to work 
reliably. These factors indicated that the thresholding segmentation technique was 
not well suited to a commercial environment for the purpose of weight estimation. 
Segmentation development focused on gradient-based techniques which had 
potential to find the precise outline of the pig’s body inside the image. 

 
3.5.1.1 Using the Image Gradient to Determine the Frames that Contain a Pig  
 
Prior to segmentation, a processing task was created to determine when a pig was 
likely to be present within the image. This task needed to quickly assess each image 
(accept or reject it) so that: (i) time was not wasted assessing images which had little 
chance of obtaining the correct information and that (ii) the processing time did not 
inhibit the flow of the incoming data stream and introduce the need for buffering. 
Thus a fast filtering process was required to make this discrimination between frames 
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so that the real-time capabilities of the application were not compromised and 
information throughput was maximised. 
 
Investigating the intensity surrounding the animal brought about a new method to 
identify the animal named “the cross hair method”. This low level filtering method 
targeted large steps in intensity which indicated a transition between a foreground 
object and background object.  The cross hair method aimed to reduce the processing 
time by observing the intensities at four line segments of the image shown as the 
different colours in Figure 9. 
 

 
Red = Section 1 (Front),  

Green = Section 2 (Middle),  
Blue = Section 3 (Rear),  

Magenta = Section 4 (Length)  
Figure 9: Example Image of the Cross 

Hair Method  
Figure 10: Pixel Intensity Profile Along the Line 

Segments of Figure 9 
 
Figure 10 shows the output of the intensities of the various sections of Figure 9. The 
magenta line in Figure 9 begins in the background and the RGB intensities increase 
as the magenta line crosses the fingers. Comparing this magenta line directly with the 
’intensity profile length’  in the bottom of Figure 10, the two fingers can be clearly 
observed as jumps in intensity (red is dominant). 
 
This can be used to identify the pig’s presence in the field of view of the camera. The 
following Figure 11 is an image of the background directly before a pig walks into 
the cameras field of view (FOV). This frame may also be used to subtract the 
proceeding good frame of the pig. The histograms and intensity profiles are shown in 
Figure 12. As expected the intensities are all very low referring to the darkness of the 
image. 

 
Figure 11: Background Image of the Cross Hair Method 
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Figure 12: Histogram and Pixel Intensity Profiles of the Line Segments of Figure 11 

 
Figure 13 shows a pig entering the FOV. The rear image section represented by the 
blue line has peaked and the respective histogram (Figure 13 (b) top right) also 
indicates that there are high intensity pixels present. The image section represented 
by the magenta line (length) has also peaked indicating that some portion of the pig 
was in the middle of the frame. The progression of the pig across image can be 
monitored using this method, by analysing the position of the peak across the 
image’s x-axis (distance along profile: see bottom of Figure 13 (c)).  

 

   
(a) (b) (c) 

Figure 13: (a) Pig Entering the FOV; (b) Histograms of the Line Segments in (a); 
(c)  Pixel Intensity Profiles of the Line Segments in (a) 

 
Once the pig was entirely within the FOV (Figure 14) the approximate width of the 
pig could be recorded by determining the step up and down in intensity along the 
green line section in the middle of the image (Figure 14 (c) top middle). The 
midpoint of this width was identified and an image section relative to the x-axis of 
the image was acquired through this point. The approximate length was determined 
by identifying the step up and down intensity along this line (Figure 14 (c) bottom). 
A ratio between the length and width was then calculated to determine whether the 
image was likely to hold a pig shape, prompting further analysis. The half brown pig 
shown in Figure 13 and 14 is similar in colour to the background, highlighting some 
of the complexities involved in the identification and segmentation task. The profile 
of the length (magenta line) shows the intensity drop off dramatically in the brown 
coloured half of the pig (Figure 14 (c) bottom). 
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(a) (b) (c) 

Figure 14: (a) Pig Inside the FOV; (b) Histograms of the Line Segments in (a); 
(c) Pixel Intensity Profiles of the Line Segments in (a) 

 
This task was effective at identifying the pig when it was in the FOV of the camera 
and gave an early indication of the size of the pig, where size was determined by 
finding the distances between edge points representing the transition between a 
foreground (pig) and background pixels along the width and length sections. Further 
investigation of this method led to the development of the algorithm used to obtain 
the complete shape of the animals contour (presented in the following section). 
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3.5.1.2 The Final Segmentation Method 
 
The software process undertaken to extract the contour of pigs after the system is 
commissioned is shown in Figure 15 below. Figure 15 also contains references to 
Figures found later in this section that illustrate various stages in the process.  
 

 
Figure 15: Flow Diagram of Operations Undertaken to Recover the Pig’s Body Contour  

 
 
The image gradient locates boundary information between objects in the image. The 
gradient image of the image in Figure 16 is shown in Figure 17.  
 

Figure 25 

Figure 18 

Figure 19 

Figure 21 

Figure 20 

Determine the gradient along the middle section of the image  

Create array for the filters movement 

Function (Image, Trim %, Filter Size) 
 

Determine the size of the image 

Determine the middle of the image  

Determine the maximum gradient along the section 

Store the co-ordinate 

Minimise the gradient values around the first maximum 

Find the second maximum gradient along the section 

Store and sort the co-ordinates 

Check and make sure that the starting co-ordinates of the filters are within the image body 
 

Create memory space for the top and bottom arrays 

Assign the starting points for the filters 

Execute a loop that increments from the middle of the image outward 

Check and make sure that the starting position of the filter is within the image body 
 

Determine the gradient within the four filters 

Record the co-ordinate point of the maximum gradient in the respective filter array 

Concatenate the recorded points to form the top and bottom 
  

Determine the orientation of the object using the midline 

Trim the curve taking into consideration the orientation of the object and the Trim % 

Assign an artificial curve to either end which takes into consideration the orientation of the object and encloses the shape 

Create a spline curve based on a number of evenly spaced points taken from contour of the enclosed shape 

Figure 23 
 
Figure 24 

Figure 26 
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Figure 16: Original Image of a Pig’s Body Figure 17: Image Gradient of a Pig’s Body 

 
The method extracts the image intensity values of a midline within the image running 
perpendicular to the length of the pig (Figure 18). The gradient of the image is 
calculated along this section (shown in Figure 19 as the black line). The green line in 
Figure 19 indicates the intensity values along the section shown in Figure 18 (scaled 
between 0 and 1). Two starting edge points are found either side of the animal. The 
location of these points are indicated by the red stars in (Figure 19 and Figure 20). 
Two filters are located at the ‘Top’ starting point and two at the ‘Bottom’ starting 
point.  
 

 

 
Figure 18: Assessment of the Middle Portion 

of the Pig 
Figure 19: Locating Starting Points Along the 

Edge of the Pig’s Body  
 
Each filter is continuously incremented outwards by one column sequentially and in 
different directions shown by the red dashed arrows in Figure 20.  

 

  
Figure 20: Top and Bottom Starting Points Figure 21: Flow of Four Localised Gradient 

Detection Filters 
 

Top 

Bottom 
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The filter (7x1 green) and its movements with respect to the edge gradient are 
demonstrated in Figure 22. At stage ‘A’ (starting point) column ‘B’ is searched for 
the location of the maximum gradient using the same position as the filter in stage 
‘A’. The maximum gradient point in stage ‘B’ is then identified as one point below 
the existing maximum gradient point at stage ‘A’. Consequently the filter is then 
moved down one space for stage ‘C’. Meanwhile the movement from the starting 
point ‘A’ and the maximum gradient co-ordinate is recorded for stage ‘B’. The filters 
move incrementally in this fashion until the edges of the image are reached. Figure 
21 illustrates the complete traced path of the four filters movements. The filter can be 
set to different size or shape and work in the same manner as long as it is 
incremented through the image or for a set number of iterations. 
 

Filter 
Movement 

 
Gradient Edge 

A B C D E  A B C D E 

3 3          
2 2 3 3        
1 1 2 2 3       

0 0 1 1 2       

-1 -1 0 0 1       

-2 -2 -1 -1 0       

-3 -3 -2 -2 -1       

  -3 -3 -2       

    -3       

Figure 22: 7x1 Filter Movement in Respect 
to Located Maximum Gradient in the 

Image Columns AE 
 
After the contour is located it is then trimmed to ensure that the variance caused by 
the movement of the pig’s head does not impact the measurements taken from the 
body (Figure 23, Figure 24 and Figure 25). For more detail refer to Section 3.5.1.4 
The Trimming Method to Remove the Head and Tail.  
 

  
Figure 23: The Body Contour Recovered after 

Gradient Detection 
Figure 24: Determining the Orientation of the 

Pig’s Body 
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Figure 25: The Body Contour After Trimming the Operation  

 
A curve is created to join the end points of the Top and Bottom contour to enclose 
the body shape. At this point the contour still may be affected by fluctuations caused 
by the filter in the detection of the gradient. A spline curve is then fitted to a sample 
of the original points to remove or smooth-out any outlying points, thus reducing the 
chance of extracting erroneous measurements from the contour (Figure 26). 
 

 
Figure 26: The Final Body Contour: An Enclosed  Spline Curve 

 
An investigation into how the calculation of the gradient within the filter effected the 
selection of contour points is found in following section.  
 
3.5.1.3 Calculating the Gradient of the Body Contour  
 
The gradient calculation performed within the filter neighbourhood directly affected 
the point selected as a contour point. Therefore, testing was undertaken to determine 
the best method to calculate the gradient within the filter neighbourhood (illustrated 
in Figure 22). Gradient operations, both in the negative and positive x, y directions 
were undertaken (Figure 27). Incorporating the gradient in the x direction proved to 
cause errors as can be seen in Figure 27 (a) and (d). This was due to the fact that the 
animal was horizontal in respect to the main axis of the image and gradients 
calculated within the neighbourhood in the x direction were less likely to reference 
the boundary gradient between the animal and the background.  
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(a) (b) 

  
(c) (d) 

Figure 27: Determining the Appropriate Gradient Calculation within the Filters 
 
The gradient operations in the y direction Figure 27 (b) and (c) were more desirable 
given the orientation of the camera installation within the pen environment.  These 
gradient operations in the y direction were assessed further. It was noted that the 
rising or falling edge of the calculated gradient would directly affect the point 
selection. This resulted in of all points in either of the Top or Bottom array being 
offset by one pixel, which was undesirable. The effect can be seen in Figure 28 (a) 
and (b) where the gradient is offset into the actual body of the animal. If not 
accounted for, the Top and Bottom array may have a 1 pixel error along the entire 
length of the animal.   
 

  
Figure 28: The Contour Incorrectly Identified Using a Single Gradient Calculation on Both 

Sides of the Pig’s Body 
 
Subsequently, a combination of the operations shown Figure 27 (b) (for the Top 
contour) and (c) (for the Bottom contour) were used to determine the edge gradient 
as they enabled the highest precision in representing the true edge of the contour 
surrounding the animal. These operations were formed by selecting the points 
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located at the falling edge of the gradient on either side of the animal. The result is 
shown in Figure 29.  
 

 
Figure 29: Final Method Used to Determine the Contour from the Gradient 

 
After the Top and Bottom lines of the contour of the pig were recovered, a trimming 
operation was performed.  

 
3.5.1.4 The Trimming Method to Remove the Head and Tail 
 
Pilot testing had indicated that head of the animal introduced larger variance in area 
assessment due to its frequent motion. The removal of the head and tail was also 
undertaken by other authors for the same reason (Brandl and Jørgensen, 1996; 
Schofield, 1990; Wang et al., 2008). Despite this fact, other researchers have chosen 
to keep the head as part of the analysis (Minagawa, 1997). 
 
Originally the head trimming task was performed using a technique described by 
Wang et al. (2008). In Wang’s method the binary image of a pig was rotated to the 
horizontal plane before summating the pixels along the image’s x-axis. The resulting 
curve from the summation of the pixels along the x-axis can be seen in Figure 30. A 
minimum reference point (the neck) could be found from this array and used to 
remove the pixels (associated with the head) from further analysis (Figure 30).   
 

 
Image colums 

Figure 30: Using the Summated Columns of the Pig’s Body Contour to Trim the Head 
Based on a Method Found in Wang et al. (2008) 

 
This trimming method did work in some scenarios when the pig was completely 
straight. However, as soon as the pig’s posture changed, the procedure to identify the 
trimming point became problematic. The vertical trim resulted in some ambiguity 
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when trying to reference a repeatable trim point on successive frames as the neck of 
the animal and the head posture resulted in different neck thicknesses and different 
reference points. This variability in the trimming operation had a direct effect on the 
body area and would, therefore, impact the variability of weight estimates (as the 
area is regarded in literature as the best predictor of weight). In addition, the 
trimming method would ideally not require a complete image rotation and could be 
performed regardless of the orientation of the animal. For these reasons Wang’s 
method was modified extensively.  
 
Development focused on defining suitable and reliable reference points along the 
contour for trimming to occur. Information, gathered during the contour trace, was 
used to overcome these rotation and variability issues. Once the Top and Bottom line 
of the contour were discovered the midline between these two sets of points was 
determined (see Figure 31 (a)). The slope of this midline was also determined as the 
orientation of the animal within the image. If one were to rotate the image, this slope 
could be used to get the animal positioned along the horizontal axis. However, to 
avoid time wasting the slope of the midline was used to shift the points in the Top 
and Bottom arrays such that they were aligned adjacent to one another at the angle of 
the line perpendicular to the midline (see Figure 31 (b)). Therefore, by determining 
the distance between adjacent points in the Top and Bottom array, a width profile 
could be built similar to that shown in Figure 30 only rotating the image was not 
required. The head and tail portions were then trimmed. 
 
This trimming process first involved determining a trimming width value. To find 
this value the three widths were found at sections along the summated profile of the 
contour. These three widths were then averaged and multiplied by 85% to form the 
trimming width (shown in Figure 24). This process to determine the trimming width 
ensured that the trimming method was adaptable to different weight ranges and sizes 
of pigs. This trimming width was then passed over the width profile and the first 
points at either end of the width array less than the trimming width were identified. 
The information on either side of these two points was removed; effectively cropping 
the head and tail of the pig. After the trim operation, the shape was enclosed.  
 

  
(a) (b) 

Figure 31: Determining the Width Profile without Rotating the Body Contour 
(a) Before and (b) After Performing a Shift Operation to Align Angular Body Co-ordinates to 

the Horizontal Plane 

Shift 

∆y 

∆x 

m =∆y / ∆x 
 

Angular 

Vertical 

Angular = Vertical 
 

Bottom 

Top 

Midline 
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3.5.1.5 The Stitching Method to Enclose the Contour Shape 
 
To provide continuity, the shape needed to be closed after the trim operation. 
Originally the contour points at the front and rear sections of curve were constructed 
using polynomial fitting. However, the fit created variance in the area measurement 
(see Figure 32). Consequently, alternatives were explored.  

 

  

   

 
Figure 32: Constructing and Fitting Polynomial Curves to Enclose the Ends of the Body 

Contour  
 
The first alternative was to simply create an artificial curve (arc of an eclipse) that 
connected the Top and Bottom curves. This resulted in a complete contour with less 
variance due to a similar curve being created each frame. However, problems 
occurred in the construction of this arc when the animal was orientated in a direction 
other than horizontal. This issue was subsequently overcome by aligning the curve to 
the main axis of the animal’s body using the orientation information found during the 
trimming process. 
 
Another method was developed to determine the precise contour of the rear. An arc 
and two ‘o’ points (one blue and one red) can be observed in Figure 33 at either end 
of the pig indicating the starting point of the search algorithm. This method involved 
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creating an array of values along a line between the arc and the ‘o’ points at every 
iteration. These ‘o’ points are the midpoints between the Top and Bottom arrays’ end 
points. The function performs in a similar manner to a wind-screen wiper where a 
filter is rotated across the ends of the pig; recording the maximum gradient along 
each line segment from the ‘o’ point to the arc as it rotates. The result is a more 
precise contour of the rear of the pig (Figure 33). In addition the variability in the 
contour’s ends could be used to distinguish the end containing the pig’s head. 

 

 
(a)  

  
(b) (c) 

 
(d) 

Figure 33: Performing a Trace to Determine the Curves at the Ends of the Body Contour 
(a) Front and Rear Arc Search Paths; (b) Start; (c) Half Way; (d) Completed Search 

 
Although this method found the precise edge points of the rear of the pig, it was too 
slow for integration into the system. The remaining presence of the tail also required 
additional operations to remove it.  However, this algorithm does have potential to 
replace the existing method of finding the contour in future by seeding points inside 
the boundary of suspected animals within image and performing a 360 degrees trace 
in the same manner. In this fashion, multiple pigs in a single image might be found 
and have their weight estimated simultaneously. In spite of this, the artificial curve 
was used to enclose the shape in this study due to its efficiency. After enclosing the 
ends of the contour, a spline curve was fitted to the contour to smooth out any 
abnormalities. The contour was then ready to have its measurements determined. 

 
3.5.2 Feature Extraction Development  
 
The feature extraction stage involved developing a method to determine points of 
reference along the animal’s body contour. These reference points were related to the 
body measurements, which were required to be recovered automatically using the 
software. The contour of the pig is the enclosed shape, derived from the edge of the 
pig’s body (transition between the pig and the background) excluding the tail and the 
head as viewed from above. 
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Figure 34 shows the 16 body measurements on the contour of the pig which were 
targeted during feature extraction development. The majority of these body 
measurements coincide with those recovered by the system presented in White et al. 
(2004). However, body measurements MLRho, FMLa, RMLa,  mWFa and mWRa have 
not been associated with any similar study found in literature. Note that the ‘a’ 
denoted in mWFa and mWRa indicates that that the measurement can be found at any 
angle. 

 

 

Dimension  Key 
L1 MWFa  M Max 
L2 mWFa  m Min 
L3 MWMida  W Width 
L4 mWRa  L Length 
L5 MWRa  F Front 
L6 MidL  R Rear 
L7 ML  Mid Middle 
L8 FMLa  A Area 
L9 RMLa  a angular 
A1 AFc  c curvature 
A2 AMidc  T2 Spline 
A3 ARc  Rho centroid 
A4 AT2    
L10 WFc    
L11 WRc    
L12 MLRho    

Figure 34: The Body Measurements Extracted from the Pig’s Body Contour 
 
The body measurements WFc and WRc in Figure 34 refer to the widths that link the 
points directly behind the front legs and in front of the hind legs respectively. These 
body measurements are often different from the minimum widths recorded (mWFa, 
mWRa) due to the pose of the animal. The subscript ‘c’ indicates that WFc and WRc 
are derived from points of curvature rather than global minima or maxima like other 
width and length measurements. The MLRho measure is the maximum distance from 
any point on the contour to the shapes centroid. Body measurements FMLa and 
RMLa were calculated for pose discrimination purposes as their angles could 
potentially indicate the degree of bending of the animal and their magnitude could 
potentially determine whether the head and tail trimming operation was performed 
satisfactorily. FMLa and RMLa are the maximum distance between the midpoint of 
mWFa and the contour of the front section and the midpoint of the mWRa and the 
contour of the rear section, respectively. 
 
A major aim of this study was to devise the methods required to automatically and 
repeatedly identify the reference points that correspond to the body measurements 
shown along the pig’s contour in Figure 34. 
 
Additional body measurements might need to be recovered to enhance precision. For 
example, it has been stated that incorporating a height parameter in the weight 
estimation equation will reduce the mean relative weight estimation error of 
individual animals (Minagawa et al., 1997). However, deciding to incorporate a 
height measurement needs to be well justified as an animal’s height differs over its 
curved back-area relative to its posture. This makes the pig’s height difficult to 
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reference correctly using both manual and automatic techniques. Including height as 
a variable in the weight-estimation equation will further complicate the system and 
may contribute to errors or missed weigh events if the height measurement is 
unavailable or not referenced correctly every time sampling of other body 
measurements takes place. However, in contrast, a height related error may also 
occur if two animals (one with long legs and one with short legs) have the same 
weight as they will both produce different pixel areas relative to how close they are 
to the camera. Therefore, the height of the animal may be a critical parameter worth 
perusing to correct for such a scenario. To overcome this issue, the role height has in 
the estimation of weight needs to be investigated in this study. Section 3.6.1.3 later in 
this chapter is dedicated to this topic.  
 
3.5.2.1 Extracting Vertical Body Measurements 
 
Initially, the width-array was divided into three sections to determine various body 
measurements of the pig’s contour (shown in Figure 35). The first section of the 
width-array was searched for a minimum value, corresponding to the trimming point 
(refer to Figure 30 of the width array in Section 3.5.1.4 The Trimming Method to 
Remove the Head and Tail). The other divisions were used to find minima and 
maxima along the body contour. First the array was halved and a minimum was 
found either side of the halfway point using a gradient-based approach. These were 
the positions at which the minimum width front (mWF) and the minimum width rear 
(mWR) were found. The maximum point between the two minimum points was 
recorded as the maximum width middle (MWMid) and the maximum points found 
on the exterior side of the minimums were the maximum width front (MWF) and the 
maximum width rear (MWR). The length was simply the length of the array after 
performing the trim. 
 

 

  
Key 

M Max 
m Min 
W Width 
L Length 
F Front 

Mid Middle 
R Rear 
A Area 
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Figure 35: Original Verticle Measurments Extracted 
 
The resulting vertical measurements of the widths are illustrated on a pig in Figure 
36 below.  

72 
 



 
Figure 36: An Example of the Verticle Measurments Extracted from a Pig’s Body 

 
Although this method performed reasonably well, it was limited to extracting the 
measurements along the vertical and horizontal plane of the image.  Consequently, 
the true body measurements were not recorded correctly, as in most instances the 
pig’s posture was not completely straight and symmetrical. For this reason, methods 
to extract the angular measurements from the body of the pig needed to be 
developed. 
 
3.5.2.2 The Final Method Used to Extract Body Measurements  
 
Work was undertaken to devise a method that could determine the precise 
measurements of the pig’s body contour. This required the automatic identification 
of pairs of reference points on the pigs’ contours to repeat the various width and 
length measurements. The contour of the pig’s body had been recovered during the 
segmentation process (described in Section 3.5.1.2 The Final Segmentation Method). 
Therefore, the measurements that needed to be extracted were within the pairs of 
points bounded by the contour shape. Thus the problem was approached holistically, 
where all of the point to point distances (Euclidean distance) between the points on 
the curve were calculated using Pythagoras theorem (Equation 1).  
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Equation 1: Using Pythagoras Theorem to Construct a Euclidean Distance Matrix 
 
The resulting matrix stored all possible distances between any two points on the pig’s 
body. Two views of the resulting distance matrix are presented in Figure 37 (a) and 
(b). The width profile can be observed within the distance matrix Figure 37 (a). 
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(a) (b) 
Figure 37: Looking Down the Main Diagonal (a) and Angular View Down the Main Diagonal (b) 
of the Euclidean Distance Matrix of the Body Contour (Z-axis point-to-point distance in pixels) 

 
The various body measurements presented in Section 3.5.2 Feature Extraction 
Development needed to be found and extracted from this matrix. The matrix is 
organised such that the main diagonal is a zero vector (the distance of a point to the 
same point) and, as the diagonals are analysed away from this starting point, the 
distance between points within the contour array is also incremented. Subsequently, 
the matrix can be indexed to refer to the points on the contour that created any given 
distance. For example, Figure 38 (a) shows the original contour used to create a 
distance matrix. The two red stars in Figure 38 (b) were found by referencing the 
point in the matrix surface corresponding to the maximum distance between any two 
points on the contour. Hence, this distance is the maximum peak in the matrix 
surface and refers to the maximum length of the animal’s body. Using this method 
the various body measurements of the pig’s contour can be found regardless of its 
angular orientation.  
 

  
(a) (b) 

Figure 38: Original Body Contour (a) and Maximum Angular Length (b) 
 
Additional methods were required to determine the points (distances) on the matrix 
surface that represented the pig’s other (key) body measurements reliably (refer to 
Figure 34 for a list of extracted body measurements). 
 
3.5.2.2.1 Initial Method to Find the Points of Curvature on the Pig’s Body Contour 
 
The next two distances determined from the matrix surface corresponded to the 
minimum widths (mWFa and mWRa). These measurements were chosen because 
they lay at minima within the Euclidean distance matrix and therefore there was no 
ambiguity in determining their location precisely. Initially these measurements were 
determined by first locating points in the distance matrix surface that were in close 
proximity to the minima (WFc and WRc) and then searching surrounding area for the 

Angular Mins 
 

Angular Max 
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true minima (mWFa and mWRa). The distance matrix was not used to determine the 
measurements WFc and WRc. Instead the curvature of the contour shape was 
assessed to determine the reference points. 
 
To determine WFc and WRc the contour array was first broken into two halves based 
on the points which corresponded to the maximum angular length. These two halves 
were then halved again so that four sections could be assessed independently. These 
sections are illustrated in Figure 39 (a). The red star in Figure 39 (a) is the starting 
point of the contour array and the two black stars indicate from where the four 
coloured sections are derived. 

 

  
(a) (b) 

Figure 39: (a) Divisions of the Body Contour; (b) Identifying Points of Minimum Curvature  
 
Each of the four segments were then analysed to find the points of minimum 
curvature. The points of minimum curvature were found using (Equation 2) and are 
shown as black stars in Figure 39 (b) on the pig’s contour. For more information on 
determining curvature see (Pressley, 2010). The 𝑦𝑦′′ in Equation 2 denotes the second 
derivative of the Cartesian y co-ordinate, likewise 𝑥𝑥′ is the first derivative of the x 
co-ordinate. 
 

𝑘𝑎𝑝𝑝𝑎 =  
𝑥𝑥′𝑦𝑦′′ − 𝑦𝑦′𝑥𝑥′′

(𝑥𝑥′2 + 𝑦𝑦′2)
3
2

 

Equation 2: Curvature Equation  
 
The black stars in Figure 39 (b) coincide with the endpoints of the widths WFc and 
WRc. These endpoints were then used to calculate the body measurements (distance) 
of WFc and WRc. As these endpoints lay on the contour, the resulting distance 
calculated for WFc and WRc was represented within the distance matrix. Therefore, 
the location of WFc and WRc could be found in distance matrix by either indexing 
the endpoints or searching for it for the matching distances. Figure 40 displays the 
top view of the distance matrix with the located end points of the minimum curvature 
(WFc and WRc) represented by black dots. 
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Figure 40: Top View of the Euclidean Distance Matrix of the Body Contour 

Points of Minimum Curvature Marked as Black Dots 
 
3.5.2.2.2 Finding the Minimum Widths of the Pig’s Body 
 
Two slices were taken out of the distance matrix around these two points. An 
example of the front and rear slices of the distance matrix surrounding the WFc and 
WRc points are displayed in Figure 41 (a) and (b) respectively; Dark blue refers to 
smaller distance values corresponding to the minima. These points lie within close 
proximity to the angular minimums presented in the side view of the distance matrix 
in Figure 37 (a). 
 

  

  
(a) (b) 

Figure 41: Slices of the Euclidean Distance Matrix that Contain the Absolute Angular 
Minimums 

(a) Front and (b) Rear 
 
The mWFa measurement was found by searching the front slice Figure 41 (a) for its 
minimum value. The procedure was then repeated for the mWRa measurement. 
Figure 42 shows the WFc and WRc measurements (red lines) in respect to the mWFa 
and mWRa measurements (light blue).  
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Figure 42: The Curvature Width Measurements WFc and WRc (Red) and Minimum Width 

Measurements mWFa and mWRa (Light Blue) 
 
WFc and WRc are then used to break the pig’s body contour into three area sections; 
AFc , AMidc and ARc. These are different than the area sections that would result if 
the pig was divided into sections based on the body measurements mWFa and 
mWRa. 
 
3.5.2.2.3 Finding the Maximum Widths of the Pig’s Body 
 
As mWFa and mWRa are referenced reliably during the process they were chosen as 
reliable starting points to determine the other angular measurements; MWFa, 
MWMida and MWRa. Notably, recovering these widths reliably is slightly more 
complicated as the magnitude of the width recovered is dictated by the angle at 
which it is referenced. 
 
To determine the widths, first the distances were extracted along a line section 
running through the minima (mWFa and mWRa) of the Euclidian Matrix (refer to the 
black line in Figure 43).  
 

 
Figure 43: The Location of Extracted Body Measurements within the Matrix 

Maximum Length (Blue ‘o’), Maximum Widths (Red ‘o’) and Minimum Widths (Green ‘o’). 
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The extracted information along the line is illustrated Figure 44 (some cropping is 
performed automatically). The widths (distances) of this line section were analysed 
further for the MWFa, MWMida and MWRa measurements. As the minimums were 
known, the width profile was could be broken into three sections. In a similar manner 
to the process performed earlier using the vertical measurements, each of these 
sections was assessed to recover one of the maximums MWFa, MWMida and MWRa. 
These maximum locations are illustrated as the red circles in Figure 44 on the width 
profile and along the black line in the distance matrix Figure 43.  
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Figure 44: Distances Found Between Points on the Pig’s Body Contour as Extracted Along the 
Line Segment of the Euclidean Distance Matrix 

 
The four remaining measurements to be determined were the front length angular 
(FMLa), middle length angular (MidL), the rear length angular (RMLa) and MLRho. 
These measurements were calculated to give some indication of the animal’s body 
posture. For example, if the body is stretched or compressed. The MidL 
measurement was found by first determining the mid-points of WFc and WRc. The 
distance between these two mid points became the MidL measurement. The FMLa 
and RMLa measurement was determined by constructing a spline curve around the 
front and rear section of the pig’s body and determining the maximum distance from 
it and the midpoint. The MLRho measurement was found by averaging the x and y co-
ordinates of the contour to obtain the centroid of the shape and then finding the 
furthest distance from the centroid to any point on the contour. More details on how 
this measurement was determined can be found in Section 3.5.5 Filtering the Shape 
for Pig Recognition and Pose Validation. A sequence of frames illustrating the 
extracted body measurements is shown in Figure 45. Table 5 documents the size in 
pixels of the extracted body measurements (MLRho is not included). 
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Figure 45: Sequence of Frames with the 15 Extracted Body Measurements Overlayed on the 

Pig’s Body 
 

Table 5: The 15 Body Measurements Recorded from the Video Sequence in Figure 45 
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R
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L a
 

m
W

F a
 

M
W

M
id

a 

m
W

R
a 

M
W

F a
 

M
W

R
a 

1 4586 5549 4375 14511 66.9 65.8 217.7 67.8 85.1 66.2 66.1 72.3 65.5 76.6 78.6 
2 4623 5181 4605 14409 65.8 65.2 218.4 68.5 82.1 68.9 64.9 71.1 65.0 77.0 78.2 
3 4537 5226 4611 14375 67.1 65.8 219.1 66.9 84.6 69.0 65.1 71.7 65.6 77.1 78.3 
4 4683 5181 4589 14454 66.8 66.0 218.1 68.5 82.2 68.7 66.4 73.7 66.0 77.1 78.9 
5 4732 5315 4604 14652 64.9 67.7 217.1 69.5 79.7 69.3 64.8 72.1 66.6 76.9 79.8 
6 4625 5837 4399 14861 66.9 65.2 221.2 68.1 87.5 67.1 64.4 71.4 65.1 77.1 79.6 
7 4615 5399 4592 14606 67.1 67.1 217.4 67.7 82.1 68.9 65.1 73.9 66.2 76.6 78.8 
8 4602 5412 4573 14588 67.1 66.6 216.7 67.2 82.1 68.5 65.5 73.4 66.0 77.1 79.5 
9 4586 5600 4392 14579 66.0 67.1 216.9 67.3 85.1 66.1 65.3 73.5 66.6 77.2 78.9 

AVE 4621 5411 4527 14560 66.5 66.3 218.0 67.9 83.4 68.1 65.3 72.6 65.8 77.0 78.9 
STD 57 219 104 147 0.77 0.91 1.41 0.83 2.37 1.27 0.64 1.07 0.59 0.24 0.59 
CoV 0.012 0.041 0.023 0.010 0.012 0.014 0.006 0.012 0.028 0.019 0.010 0.015 0.009 0.003 0.007 

*All measurements in pixels, AVE = average, STD = deviation 

3.5.2.2.4 Final Method Used to Find the Minimum Widths of the Pig’s Body 
 
At this stage of the development there was still a critical processing step which was 
causing a problem in many frames.  This problem was due to the necessity of finding 
the correct points of curvature (close to the true minimum) so that the correct width 
measurements could be obtained. In some animal postures these points of curvature 
were very difficult to automatically recognise as these points are subject to a wide 
level of variance as the animal moves. An alternative method was undertaken to 
eliminate the dependency on the points of curvature (WFc and WRc) to find the 
minima.  
 
To prevent dependency on the points of curvature, the minima had to be referenced 
from the distance matrix directly. The proposed method was to determine a line 
section similar to that shown in Figure 43 and use the distance information from this 
line segment to find the locations which were likely to be in close proximity to the 
minima (mWFa and mWRa) in a similar manner to what was done using the points of 
WFc and WRc.  

 
To achieve this, each diagonal section of the distance matrix (starting at the main 
diagonal and ending at the corner) was analysed for its variance and minimum value. 
The minimum value of each diagonal section is plotted over the distance matrix in 
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Figure 46 as a black line. It can be seen that part of the line that intersects the axis of 
the matrix that needs to be sampled. 

 

 
Figure 46: Minimum Value along Each Diagonal of the Euclidean Distance Matrix 

 
As distance values along each diagonal are an equal index-spacing away from 
adjacent points (this spacing increments by one for each diagonal from the main 
diagonal). The variance within each of these diagonal sections is the variability (in 
distance) of each point to an adjacent point an equal distance away in the contour 
array. The highest variability can be found when both small and large distances are 
found along a diagonal. This occurs between the two peaks of the maximum point to 
point distances; as can be seen between the red sections of Figure 46. By 
thresholding the minimum array (black line in the Figure 46) with a limit on variance 
(var<0.05) the section of the minimum line that needs to be sampled can be 
determined; where the minimum and maximum body measurements of the contour 
are located (Figure 47).  
 

 
Figure 47: Remaining Array of Minimum Values after Applying a Threshold Based on Variance 

along Each Diagonal 
 
Using a least squares approach a line approximation was derived from the remaining 
section of the minimum line section as seen in Figure 48. 
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Figure 48: The Least Squares Line of the Co-ordinates of the Array of Minimum Values 

 
The distance measurements were then extracted from the matrix along this line. The 
resulting array is shown in Figure 49. The array has been broken into two sections to 
locate the minimums (red and green circle in Figure 49) which will be in close 
proximity to the actual true minimums within the distance matrix.  
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Figure 49: The Distances Extracted along the Least Squares Line Section 
 
The areas of the distance matrix surrounding these minimums are searched in the 
same manner as shown earlier in Section 3.5.2.2.2 Finding the Minimum Widths of 
the Pig’s Body. Figure 50 shows the location of the points of the initial minimums 
found along the line segment as the red and green ‘o’. The red and green dots 
represents the true location of the minimums (mWFa and mWRa) located nearby. 

 

 
Figure 50: Final Method Used to Find the Measurements, mWFa and mWRa  
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3.5.2.2.5 Final Method Used to Find the Points of Curvature on the Pig’s Body 
Contour 

 
An alternative and more reliable method was developed to determine the points of 
curvature such that the locomotion of the animal might be detected. The contour was 
first broken up into sections as demonstrated by Figure 39 (a). These sections were 
then broken down further into eighths (Figure 51) such that a point of curvature lay 
somewhere along each of the contour segments. 
 

 
Figure 51: Sections of the Contour Used to Determine the Maximum and Minimum Points of 

Curvature 
 
To determine each of the points of curvature, a line was created joining the end 
points of each segment Figure 52. These line segments have the same amount of 
elements as the contour section. The line was then used as a reference axis such that 
each point on the contour was some distance away from it. The point of curvature 
was then found by determining whether the segment was on the top or bottom of the 
contour and then finding the maximum distance or minimum distance away 
respectively. A plot of the distance between the contour and each of the four line 
segments can be seen in Figure 52. 
 

 

    
Figure 52: Final Method Used to determine the Maximum and Minimum Points of Curvature 

 
These extraction methods were used to obtain the 16 pig body measurements from 
within the image.  However, these methods were systematic and did not have the 
ability to determine the integrity of the contour shape from which the body 
measurements were extracted. Therefore, filtering methods were required to validate 
both the segmented contour and its extracted body measurements. However, before 
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this filtering took place, the body measurements extracted needed to be converted to 
millimetres at ground level to standardise input for the weight-estimation equation 
and filtering operations. 

 
3.5.3 Projecting Extracted Pixel Dimensions to Metric at Ground Level 
 
The raw body measurements extracted from the image are originally found as pixel 
lengths or pixel areas. However, it is important to recover the actual body 
measurements of the animal in a metric measurement for a better understanding of its 
body measurements and to build estimation equations appropriately. A combination 
of factors surrounding: (i) the installation height between the camera and the object 
(animal or ground), (ii) the field of view of the lens and sensor assembly and the (iii) 
cameras resolution setting, are required to perform the conversion from pixels to 
metric measurements. The conversion method between pixels and metric adopted by 
the system in now discussed.  
 
Figure 53 illustrates a typical installation, where the height of the camera ℎ𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is 
known (from lens to ground) and the height of the pig ℎ𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 is unknown.  
 

 
Figure 53: Basic Diagram of a Typical Installation of the System 

 
When ℎ𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is known, the characteristics of the field of view and sensor size of 
the camera can be used to determine the pixel to millimetre relationship at ground 
level. The specific characteristics that are required for the conversion are the sensor 
size 𝑙 × 𝑤 and the focal length (𝑓) of the camera lens and sensor assembly. The focal 
length of the camera used in this study was 𝑓 = 3.7 𝑚𝑚𝑚𝑚 and the sensor size was 
1/3.2”, meaning the height and width of the sensor was 𝑙 = 3.416 𝑚𝑚𝑚𝑚 and 𝑤 =
4.536 𝑚𝑚𝑚𝑚 respectively. Using these parameters, the field of view could be 
determined using simple calculations to determine the angles 𝑎𝑤𝑤,  𝑎𝑑𝑑 and 
𝑎ℎ illustrated in Figure 54.  
 
 
 
 
 
 

ℎ𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝  

ℎ𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑦𝑦𝑤𝑤 

𝑥𝑥𝑤𝑤 
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Figure 54: Determining the Real World Co-ordinates Using the Lens and Sensor Characteristics 
 
Calculations of these angles for the camera used in this study are shown in Table 6. 
 
 

Table 6: Equations Used to Determine the Angles of the Cameras Field of View 

𝛼𝛼𝑤𝑤 = 2𝑎𝑟𝑐𝑡𝑎𝑛 �
𝑤
2𝑓
� = 2𝑎𝑟𝑐𝑡𝑎𝑛 �

4.536
2 × 3.7

� = 63.01434319 

𝛼𝛼ℎ = 2𝑎𝑟𝑐𝑡𝑎𝑛 �
ℎ

2𝑓
� = 2𝑎𝑟𝑐𝑡𝑎𝑛 �

3.416
2 × 3.7

� = 49.55813687 

𝛼𝛼𝑑𝑑 = 2𝑎𝑟𝑐𝑡𝑎𝑛 �
𝑑

2𝑓
� = 2𝑎𝑟𝑐𝑡𝑎𝑛 �

√3.4162 + 4.5362

2 × 3.7
� = 75.00186484  

 
As the actual sensor size of the camera used in this study was not given by the 
camera manufacturer a simple test was performed to recover it. The camera was 
orientated so that its sensor was facing parallel to a wall. Markers were then placed 
on the wall such that they could be observed at the corners of the resultant image. 
The angles of the lens could then be derived from the distance between the markers 
in the resulting images and the working distance between the camera and the wall. 
The equations presented in Table 6 were then rearranged to determine 𝑙 and 𝑤. 
Tables containing standard sensors sizes were then used to determine the actual 
sensor size, and lens angles based on closest match to 𝑙 and 𝑤. 
 
These angles could then be used to determine the pixel to millimetre ratio at ground 
level for any resolution setting or installation height. For example, if the camera 
system is installed at a height of 2 m and set to UXGA resolution (1600x1200 pixels) 
then the number of millimetres that each pixel represents at ground level can be 
determined using simple trigonometry with the field of view angles  (αw

2
 or αh

2
). 

Figure 55 illustrates how to calculate the distance of the image width at ground level 
in this scenario. 
 
 

 
 
 
 
 
 
 

Figure 55: Calculating the Real World Image Dimensions at Ground Level 
 

 

 

𝛼𝛼𝑤𝑤
2  

𝛼𝛼𝑑𝑑
2  

𝛼𝛼ℎ
2  

2𝑚𝑚 
 

𝛼𝛼𝑤𝑤
2

= 31.507 

 

𝑥𝑥 
 

𝑥𝑥 =  2tan �
𝛼𝛼𝑤𝑤
2
� 

𝑥𝑥 =  2tan(31.507) = 1.2259𝑚𝑚 
 
Multiplying 𝑥𝑥 by 2 to get the entire image width at ground level 
 
Image width = 2𝑥𝑥 = 2.4519m 
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Using this information, the pixel to millimetre ratio can be determined as 2451.9 mm 
/ 1600 pixels = 1.5324 mm / pixel. Hence every pixel represents 1.532 mm at ground 
level at an installation height of 2 m when using UXGA resolution using this 
particular camera. In the same manner, a conversion can be carried out across any 
selected resolution as long as the installation height is given.  
 
This conversion process is very important, as it can be used to standardise the space 
for equation input in this study, meaning that weight-estimation equations can retain 
the same coefficients regardless of installation height or selected resolution. This is 
possible as the camera observes growth (from above) relative to ground level. Thus 
body measurements in pixels can always be converted to metric at ground level using 
the procedure discussed above. Therefore, by creating equations at the ground 
reference plane and converting the obtained pixel body measurements to metric at 
this plane, the equation coefficients will always relate to the correct input body 
measurements. It is believed that this conversion feature was incorrectly 
implemented into the commercial system’s software tested in Chapter 8 Comparison 
between PiGUI and a Commercial System.  
 
However, it is important to note that the converted body measurements do not relate 
to the real world body measurements of the animal in millimetres, but are the size of 
the animal in millimetres relative to the ground. To obtain the actual real world body 
measurements of the animal the same principal is used. If the approximate height of 
the animal is known, then the same millimetre to pixel conversion can be performed 
over a distance that is the installation height minus the estimated height of the pig. 
This then results in a pixel conversion that will approximate the actual real-world 
body measurements of the animal. To achieve this, however, a height estimate or 
height measurement of the pig is required. Several methods have been used to 
recover the height of the animal. These techniques include: 
 

• Using multiple cameras (stereo or 3D camera configuration) to recover depth 
from images  

• Using a single camera techniques such as light striping   
• Using a side view image 
• Using a single camera in motion to build stereo pairs 
• Using markings on the pig of known body measurements 
• Calculating the focal distance between two regions within the image (animals-

back area and the background) to be estimated (Fear and Herz, 2008)  
 

Notably, the height measurement is only approximate as it is difficult to measure 
precisely due to the curved surface of the pig’s back. To avoid system over-
complication, the role height plays in weight estimation was revised (see Section 
3.6.1.3 The Effect of Height as a Variable Input into the Weight-Estimation Equation 
later in this chapter).  
 
3.5.4 Filtering the Extracted Body Measurements for Weight Validation 
 
The body measurement extraction methods presented in Section 3.5.2 Feature 
Extraction Development were applied to a large number of video frames to determine 
the body measurements of pigs. Although the extraction methods were effective at 
finding the body measurements from the contour, they did not have intelligence to 
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determine whether the body measurements that they extracted were obtained 
correctly from the contour of a pig. Subsequently, a filtering procedure was required 
to perform this validation task.  
 
This involved modelling a curve for each body measurement in respect to weight. 
The curve of each body measurement could then be used to validate the weight of an 
animal. An example of the model-curve between weight and the area body 
measurement AT2 is shown in Figure 56.  
 
A software program (named limits) was written to construct the filter’s constraints so 
that the filter could be easily fine-tuned (shown in Figure 56). To begin the process, 
the data of sample video frame weights and their respective (extracted) body 
measurements were stored in a table. This data table was then referenced by the 
limits software when the user chose to apply confidence limits to any given weight 
and body-measurement relationship. The software user has the option to select a 
confidence limit value from 1% to 99% for each weight and body measurement 
model. A 1% confidence limit indicates that 1% of the data are captured within the 
upper and lower limit of the modelled relationship, while setting the confidence 
limits to 99% will ensure that 99% of the data are captured within the upper and 
lower limit of the modelled relationship. These two settings indicate the strictest and 
loosest settings for filtering the dataset respectively. When the Save button is pressed 
the upper and lower limits are saved to a table which is later referenced by the main 
program during operation.  
 
The resulting filter makes the decision to include or exclude contours for weight 
output based on their extracted body measurements in respect to their estimated 
weight. For example, if a contour produces a weight estimate during normal 
operation of the piGUI system then the limits validation function (filter) will be 
called. This function first determines the body measurements extracted from the 
contour that have been selected for filtering using the limits software. These body 
measurements are then compared with the limiting range specified for each body 
measurement’s weight estimate. The weight is outputted if the extracted body 
measurement(s) fall within the limiting range provided and disregarded otherwise. 
The performance of the filter is documented in Section 3.6.4 The Dimension Limiting 
Filter. 
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Figure 56: Setting the Confidence Limits on Body Measurement Data for Validating each Body 

Measurement 
 
Many thousands of contours were successfully identified as a pig using this limiting 
method. However, there were inconsistencies in the poses of the animals which 
passed though the limiting filter and, on occasion, a false positive would occur (see 
Figure 76). The limiting filter was also applied late in the processing loop, 
immediately before weight output, so redundant data identified at this late stage 
caused undesirable disruptions to processing time. Due to these limitations another 
filter was created that could determine the integrity of the contour sample to remove 
redundant information early in the process. As a result a new filtering method was 
investigated surrounding the segmented shape.  
 
3.5.5 Filtering the Shape for Pig Recognition and Pose Validation 
 
The literature survey found numerous authors who stated that the variability in the 
animal’s body pose was likely to have led to errors in the extracted body 
measurements, causing errors in the resulting weight estimates. Therefore, an effort 
was made to create a method which could identify an animal within the image when 
it was in a specific pose. This method would enable the body measurements to be 
referenced and repeated reliably during the extraction stage and consequently a 
higher-level of control could be maintained in respect to the body measurements that 
were passed into the weight-estimation equation.  
 
3.5.5.1 Building the Average Pose Based on a Template Shape 
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The shape filtering method began by first selecting a frame of a pig that was in the 
desired pose; standing with its head and body straight and its legs obscured from the 
camera. The contour was then recovered from this pose to form the initial template. 
An example is given in Figure 57. The Cartesian co-ordinates of the contour were 
converted into polar co-ordinates such that the contour could be reconstructed from 
an angular vector THETAt (Figure 58 (b)) and a magnitude vector RHOt (Figure 58 
(a)). These vectors were then extrapolated so that they both had 1500 points. The 
procedure used to recover a reference contour from an image can be found in 
Appendix C.  
 

 
Figure 57: The Specified Template Shape of a Pig’s Body Pose 

 
The characteristic appearance of the angle and magnitude vectors of the template 
shape (and pose) are shown in Figure 58 in respect to the shape’s centroid.  

  
(a) (b) 

Figure 58: The Characteristic Profile of the Polar Co-ordinates of the Template Shape 
(a) The Magnitude of the Contour Points (RHOt); (b) The Angles of the Contour Points 

(THETAt) (radians) 
 
The vectors of the template shape could be compared against the vectors of other 
body contours to determine their fit against one another. However, the magnitude 
was required to be normalised first so that the comparison could be carried out for 
different sized animals over a range of weights. This involved determining the 
greatest magnitude within the magnitude vector and then dividing the magnitude 
vector by this value. The result ensured that the largest magnitude within the vector 
was 1. Once the reference contour and a sample contour were in this format they 
could be compared directly. 
 
To perform this comparison, a convolution between the template shape magnitude 
vector (RHOt) and the sample vector (RHOs) was undertaken. This involved 
recursively shifting RHOs over RHOt and recording the difference between the two 
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vectors. After the RHOt vector had completely passed over the RHOs vector the 
stored matrix of differences was evaluated to determine where the minimum 
difference between the two vectors had occurred. This evaluation involved finding 
minimum absolute variance within the matrix and the iteration in which it occurred. 
This iteration indicated when the alignment of the two contours magnitudes was 
closest. An identical shift operation was performed on the angle vector so that the 
angles were also in the best possible alignment.  Figure 59 to 61 illustrate this 
process. Figure 59 shows two different segmented pig contours that are in similar 
postures but orientated at different angles. Figure 60 shows the blue contour in 
alignment with the red contour as result of finding the minimum absolute variance 
within the difference matrix created during the convolution. Figure 61 illustrates the 
two contours after they have both been normalised. There is a noticeable similarity 
between the shapes of the different sized and weight pigs after this step. 
 

 
Figure 59: Comparing the Contours of Different Pigs  

Template shape (RHOt, Red), Contour Sample in (RHOs, Blue) 

  
 

Figure 60: Aligning the Contours  Figure 61: Scaling the Contours 
 
The difference between the best fit between the reference contour and a sample 
contour was recorded as the residual (Figure 62). This residual could then be used to 
discriminate between two shapes. Various calculations indicating the fit between the 
two shapes could be made based on this residual. Examples are the sum or absolute 
of the residual error, sum of squared error (SSE), the variance, the correlation 
coefficient (r) or the coefficient of determination (R2).  
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Figure 62: The Residual Difference Between the Sample and the Template shape 

 
3.5.5.2 Testing the Residual as a Basis for Shape Filtering 
 
To test the residual as a basis for shape filtering, the comparison between the 
magnitude and the angle was carried out across a small collection of 700 contour 
samples in respect to the template shape. Figure 63 shows the variance of these 
samples’ residuals in respect to the template shape. In Figure 63 the variance has 
been sorted from minimum variance (best fit to RHOt) to maximum variance, (worst 
fit to RHOt) over all the 700 samples. Alternatively two other sorting methods could 
have been used in a similar manner: (i) using the angle vectors or a (ii) combination 
of the both the angle and magnitude vectors. 
 

 
 

Figure 63: Sorting Contour Samples Based on the Absolute Variance of the Residual between 
the Sample and Template Shape  

 
After sorting the samples, a gradual increase in variance can be observed (see Figure 
63). The samples on the far right of this figure indicate the most poorly fitted 
contours and have the highest pose-related error from the template shape pose. To 
give a preliminary indication of how well this method might determine the pose 
related to the template shape, the first and last samples in the sort array 
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(corresponding to best and worst poses) were identified. These two samples are 
shown in Figure 64 (a) and (b).  
 

  
(a) (b) 

Figure 64: Using the Absolute Variance of the Residuals to Determine the (a) Best and (b) Worst 
Fitting Contours to the Template Shape  

 
Figure 64 (a) is of a pig in an almost perfect posture as defined using the template 
shape earlier. The body measurements have also been recovered correctly. In 
contrast, Figure 64 (b) is not even the contour of a pig and should have been rejected. 
Figure 65 shows the clear differences between the magnitude and angle of the 
template shape and the sample contour shown in Figure 64 (b).  
 

  
Figure 65: Using the Template Shape to Identify Errors in Contours 

The Contour Sample in Figure 64 (b), Shown in Blue and the Template Shape Shown in Red 
 
It would be inappropriate to base the shape filtering component of the system on a 
single template shape as abnormalities may be associated with it. Consequently, the 
sample contours which fitted closely to the template shape were grouped together 
and combined to form an average template shape. This was a simple process, as all 
angles and magnitudes of the contour samples had 1500 points and were in alignment 
and scaled appropriately. Subsequently, the average template shape could be formed 
by averaging the angle and magnitude vectors on a point by point basis for the group 
of selected samples. 
 
This process was carried out over a dataset containing over 750 videos of 586 pigs 
with weights between 12.5 and 306 kg. In total 22419 contours (THETA and RHO 
vectors) were recovered from the frames of these videos after segmentation.  
 
The average shape created from all these 22419 THETA and RHO vectors is shown 
in Figure 66. Considering that during the segmentation process the system was free 
to collect shapes with only basic constraints, the resulting shape has surprisingly 
maintained an appearance resemblant of a pig contour. This is likely to be the result 
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of the tracking procedure described later in Section 3.6.6 which managed to locate 
the pig in the majority of frames. 

 
Figure 66: Average Shape of All 22419 Samples 

 
However, the averaged shape, in Figure 66, is built from many erroneous contours 
which should be removed. To determine the contour samples which should be 
included or excluded in the average template shape, the fit to the template shape was 
used. In the following example an R2 fit between the contours was used. This 
involved first calculating the sum of squares of the residual between the template 
shape and each sample (SSE) and the sum of squares of the regression (SSR) 
between the average value of the template shape and each sample. Using this 
information the R2 fit of the 22419 shapes to the template shape was determined. 
Figure 67 below shows the worst two fitting contour vectors as decided (after 
sorting) based on the magnitude Figure 67 (a) and angles Figure 67 (b) respectively.  
 

  
(a) RHOs (R2 =0.36) (b) THETAs (R2 = 0.24) 

Figure 67: The (a) Worst Fitting Rho and (b) Theta Vectors to the Template Shape (Black) Out 
of All 22419 Contour Samples  

 
In contrast, Figure 68 (a) shows the best fitting contour based on sorting the R2 of the 
magnitude and the angle (Figure 68 (b)) vectors separately. Both sorting methods 
have resulted in the selection of sample contours which closely resemble the pose of 
the pig in the template shape. A similar result was achieved earlier using the variance 
of the residual and sorting based on magnitude, highlighting that different methods 
can be used to determine the fit (or rank) of the samples. 
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(a) RHO (R2 = 0.9971) (b) THETA (R2  =0.9999) 

Figure 68: Best Fitting Rho (a) and Theta (b) Vectors to the Template Shape from All 22419 
Contour Samples 

 
The magnitude and angular R2 fit between all the 22419 contour samples is shown 
Figure 69 in order of best to worst fit. 

 
Figure 69: All 22419 Contour Samples Sorted in Order of Highest to Lowest R2 Based on Theta 

and Rho 
 
Figure 69 indicates that the angle vectors of the contour shapes correlate highly over 
majority of the dataset. Thus a small negative deflection in the angular fit from the 
template shape indicates a potentially large change in shape. The R2 value for the 
angle vector will drop if there is a delay in the angular progression around the sample 
contour in relation to the template shape. For example, if the angle slows down, stops 
or reverses (as Figure 67 (b) demonstrates) as it indicates that the contour has been 
sampled sub-optimally from the image. The variation about the average deviates 
more dramatically for the magnitude vector in Figure 69 indicating that a small 
deflection in the R2 fit of the magnitude will result in a more modest change in shape.  
 
Therefore, those samples to the left of Figure 69 are candidates for contour selection 
to form the average template shape as they fit the closest to the template shape pose. 
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3.5.5.3 Forming the Average Template Shape 
 
Two methods were used to determine how many of the contour samples should be 
used to build the average template shape. These were: (i) organising the shapes into 
order of fit using either the variance, SSE or R2 and determining a cut-off value or 
(ii) determining those samples which had all points lye within a certain deviation of 
the template shape. A flow diagram documenting these different processes is shown 
later in Figure 77.  
 
3.5.5.3.1 Method 1: Determining the Average Template Shape Iteratively 
 
The first method involved progressively including a new sample contour into the 
average template shape. At each iteration a new average template shape was formed 
and compared with the previous average template shape. As sample contours were 
introduced into the average shape the difference between successive average 
template shapes tended to zero. After the first nine contours the absolute difference 
between the current and preceding average template shape was 0.0011. After the 
inclusion of the top 1136 fitting magnitude and 6899 angle vectors the difference 
between the current and preceding average template shape was less than 1x10-7 based 
on an R2 sort. At this point the magnitude and angular vector components of the 
average template shape was only changing a small amount so it could be 
approximated as zero.  These vectors were then average and used to build a new 
average template shape as shown in Figure 70 below. 
 

 
Figure 70: The Average Template Shape Iteratively Built from the Best Fitting Contour Shapes  
 
3.5.5.3.2 Method 2: Determining the Average Template Shape on a Point by Point 

Basis 
 
The second method involved the comparison between the contour samples and 
template shape’s magnitude and angular vectors on a point by point basis. In this 
method the template shape’s vectors formed a base reference to which a deviation-
based limiting range was applied. This is illustrated in Figure 71.  
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(a) (b) 

Figure 71: The (a) Magnitude and (b) Angle Vectors with Deviation Limits 
 
The standard deviation of the 22419 contour samples was determined for both the 
magnitude and angle vectors. The initial filtering limit was set at 1.3 times this 
standard deviation. Subsequently, all the 22419 sample contours were compared with 
the reference vectors and limiting range to see whether all the contours’ points 
passed within these deviation limits. This is illustrated in Figure 72.  
 

  
(a) (b) 

Figure 72: Determining the Number of Contour Points (Red) within the Deviation Limits 
(Green) 

 
The samples which had all their 1500 points pass within these limits were selected 
for use in the following stage of the average template shape building process. This 
next stage involved determining the mean and deviation of the samples that passed. 
The filtering limit was then set to 2.5 times the calculated deviation of the selected 
samples. Those samples which passed through this secondary filtering process were 
averaged to form the final average template shape (shown in Figure 73). A total of 
1229 magnitude and 6927 angle vectors were used to build the contour shape. The 
deviation figures of 1.3 and 2.5 were determined by observing the predictive 
response (precision and number of good quality weight estimates) of the built shape. 
A table containing the results from different variations of deviation rejection bounds 
for filtering and modelling the weight-estimation equation can be found in Section 
3.6.3 Adjusting the Bounds of the Shape Filter.  
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Figure 73: The Average Template Shape Built from the Contours which had the Highest Rate of 

Points Passing within a Certain Deviation of the Template Shape 
 
These methods both produced a similar average template shape from a similar 
number of samples. However, the second method was chosen for reasons explained 
later in Section 3.6.1.2.1 Ranking and Selecting Estimates Based on their Contour 
Shape. To avoid the likelihood of the average template shape having a bias toward a 
particular weight range, the animal weights of the sample contours that were used to 
build the average template shape were revised.  
 
3.5.5.4 Determining the Weight Distribution of Samples Used to Create the 

Average Template Shape 
 
The preferential order in which certain pigs made up the average template shape was 
determined so that the weight range of the animals that had derived the average 
shape could be assessed further.  There were 1229 magnitude and 6927 angle vectors 
which contributed to the average template shape. These samples represented frames 
from 503 of the 703 videos and 416 of the 586 pigs, as 87 pigs had a second video 
which had at least one frame used to help build the average template shape. It was of 
interest to see what the weight distribution was for the pig shapes used to build the 
average template shape to avoid the likelihood of any bias to particular weight 
ranges. Figure 74 shows the frequency of the animal weights included in the average 
template shape based on the videos that had frames which contributed to the contour. 
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Figure 74: Frequency of Pig Weights Included in the Average Template Shape  

 
The weights of the animal contours used to build the average template shape are a 
reflection of the number videos available for analysis in each weight category (refer 
to Figure 74). This suggests that there has been no contour-weight-related bias in the 
selection of sample contours into the average template shape during the building 
process. Table 7 shows the percentage of available videos within each weight 
category that were used to build the average template shape. 

 
Table 7: Frequency of Pig Weights Included into the Average Template Shape  

Weight Range (kg) All Included % 
0-13 1 0 0 

13-24 50 37 74 
24-35 58 40 69 
35-46 27 21 78 
46-58 64 53 83 
58-69 59 46 78 
69-80 149 123 83 
80-92 138 94 68 
92-103 84 52 62 

103-114 5 2 40 
114-125 1 0 0 
125-137 0 0 0 
137-148 0 0 0 
148-159 0 0 0 
159-171 0 0 0 
171-182 8 6 75 
182-193 8 5 63 
193-204 13 5 38 
204-216 8 5 63 
216-227 16 10 63 
227-238 6 2 33 
238-250 4 1 25 
250-261 0 0 0 
261-272 0 0 0 
272-283 1 1 100 
283-295 0 0 0 

295-More 3 0 0 
 
Table 7 further demonstrates that it is unlikely that favouritism or a bias may exist 
towards a specific weight as between 60% and 83% of sample videos had at least one 
sample included in the equation, within each weight category between 13 and 103 
kg. The other categories vary, however, this is suspected to be a result of the limited 
availability of data (less than 20 videos) in these categories.  Noticeably, a more 
conclusive dataset for pigs less than 13 kg and greater than 103 kg could be 
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collected, however, pigs in this weight range are outside the scope of this study as the 
apparatus focuses on pigs in their grower and finisher phase from 30 to 120 kg. What 
is reassuring, is that the contour vectors of every weight range have been 
incorporated into the average template shape from 13 to 277 kg and majority of these 
(92.6%) come from pigs in their grower or finisher phase; the target weight range. 
This indicates that the filter should be suitable to recognise pigs across this weight 
range.  
 
This average template shape formed the base for the shape filter which was 
subsequently used in the model building process. 
 
3.5.6 Modelling 
 
This section presents the model development from the first dataset obtained during 
the late stages of the CRC project through to the finalised dataset obtained and used 
during this PhD study to construct the weight-estimation equation. Nomenclatures 
for the abbreviations found in this section are shown below in  
Table 8. 
 

Table 8: Nomenclature for Abbreviations used for Equation Building and Selection  
DFe Degrees of freedom for the error, used in the calculation of R2

adj 
DFr Degrees of freedom for the regression 

SSe 
Sum of squares error (of residuals) – the closer to zero the smaller the random error component 
and thus indicating it is more useful for prediction 

SSreg Sum of Squares Regression 
pi Equation Coefficient 
F F-Statistic for mean testing the final model versus no model 
R2 The proportion of variance accounted for by the model 

Sey 
Root Mean Square Error – an estimation of the standard deviation of the random component in 
the data, the closer to zero the smaller the random error component indicating it is more useful 
for prediction. 

Seb The standard error value for the constant p2 
Sen The standard error values for the coefficients 
 
3.5.6.1 Extracted Body Measurements and their Correlation to Weight: Early 

Findings 
 
The initial assessment was undertaken on a dataset consisting of a collection of 177 
video segments of a random number of pigs. A corresponding CSV file with the 
animals’ actual weights and six extracted body measurements also formed part of the 
dataset. These extracted body measurements were obtained from the videos using a 
vision system that was not part of this development. The body measurements 
included total body area (PixelArea,), area of Gut (GutArea), the diameter of the 
front and rear sections (ForeDia and RumpDia), the Body Length and the Maximum 
body width. The statistics of the different body measurements are presented in  
Table 9.  

 
Table 9: Statistics of Dataset Obtained from the Original Vision System Developed in the CRC 

Project  
Statistic PixelArea RumpDia ForeDia BodyLength MaxWidth GutArea 

p1 1.31E-03 0.34 0.43 0.16 0.36 -1.84E-07 
Sen 3.40E-05 0.01 0.02 8.30E-03 7.70E-03 2.20E-07 
R2 0.28 0.27 0.21 0.12 0.35 3.96E-04 
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F 1521.26 1455.87 726.49 347.69 2141.61 0.70 
SSreg 104880.49 101574.38 28972.69 15639.45 132750.62 31.56 
p2 7.81 4.15 -6.76 6.25 -0.75 33.78 
Seb 0.77 0.89 1.51 1.48 0.84 0.16 
Sey 8.30 8.35 6.32 6.71 7.87 6.74 
DFe 4006.00 4006.00 2672.00 2668.00 4006.00 1755.00 
DFr 1 1 1 1 1 1 
Sse 276187.23 279493.34 106560.81 120010.40 248317.10 79621.20 

 
The statistics in Table 9 indicate that the linear least squares fit between weight and 
the body measurements are poor. There are two possible causes for these poor 
relationships: (i) the body measurements were recovered precisely and the data 
collected is a true representation of the variability between the weight and each of the 
body measurements relationship or (ii) the body measurements were recovered 
inaccurately and the variability is a result of careless errors occurring during image 
analysis by the apparatus. Drawing on the findings of the literature survey, it can be 
identified that the latter of these two causes is likely to be the reason behind these 
poor relationships as several authors have demonstrated high correlation between 
some of these body measurements such as pixel area (Minagawa and Ichikawa, 1994; 
Schofield, 1990). Figure 75 below exemplifies this fact by showing the erratic spread 
of the max width records (R2 = 0.35) taken from the dataset. Despite the large 
number of outliers, a solid cluster of data can be seen which potentially describes the 
underlying relationship between the extracted maximum width measurement and 
weight. 

 
Figure 75: Variation in the Maximum Width Measurement as Recorded by the Original Vision 

System Developed in the CRC Project 
 
Although the equations derived from this dataset are not likely to be conclusive, a 
small test was undertaken to determine the weight estimation ability of the body 
measurements extracted using the CRC Project vision system. This could then be 
used as a benchmark for the work undertaken in this study. The p1 and p2 values in  
Table 9 are the coefficients of the linear equation for each of the extracted body 
measurements (see Equation 3). 
 

𝒇(𝒙)  =  𝒙𝒑𝟏  +  𝒑𝟐, where 𝒙 =  𝐏𝐢𝐱𝐞𝐥𝐀𝐫𝐞𝐚𝐚,𝐑𝐮𝐦𝐩𝐃𝐢𝐚𝐚… 𝐞𝐜𝐭  
     

Equation 3: Linear Equation Used to Estimate Weight 
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These equations were built using half the acquired data located in the CSV file. The 
other half of the data samples were used to test the equations. Not all body 
measurement vectors had the same number of elements. It was believed that this was 
due to certain body measurements being excluded during the analysis when they 
were not extracted correctly. The number of data pairs (weight and body 
measurements) used to building and test the equations is shown in Table 10. 
 
Table 10: Division of Data Used for Modelling and Testing the Data Obtained from the Original 

Vision System Developed in the CRC Project 
 PixelArea RumpDia ForeDia BodyLength MaxWidth GutArea 

Modelling 4008 4008 2674 2670 4008 1757 
Testing 4008 4008 2674 2670 4008 1757 

 
The tests results were presented in seven weight error categories indicating various 
levels of estimation precision. The weight error in Table 11 is the absolute error 
between the actual weight obtained from the electronic livestock scale and the vision 
systems weight estimate (West). The categories shown in the first column of Table 11 
contain the number and percentage of weight estimates which occurred within the 
seven precision ranges 
 
Table 11: Weight Estimation Performance of Equations Derived from the Data Obtained from 

the Original Vision System Developed in the CRC Project  
Error Category (kg) PixelArea RumpDia ForeDia BodyLength MaxWidth GutArea 

west < 0.5 kg 423 (11)* 347 (9) 244 (9) 247 (9) 409 (10) 156 (9) 
0.5 kg ≤ west < 1kg 408 (10) 339 (8) 229 (9) 229 (9) 362 (9) 132 (8) 
1 kg ≤west < 2 kg 655 (16) 652 (16) 458 (17) 408 (15) 837 (21) 179 (10) 
2 kg ≤ west < 3 kg 553 (14) 499 (12) 439 (16) 453 (17) 564 (14) 239 (14) 
3 kg ≤ west < 4 kg 496 (12) 442 (11) 382 (14) 365 (14) 491 (12) 242 (14) 
4 kg ≤ west < 5 kg 272 (7) 371 (9) 283 (11) 273 (10) 334 (8) 97 (6) 

west ≥ 5 kg 1201 (30) 1358(34) 639 (24) 695 (26) 1011 (25) 712(41) 
Total Samples 4008 4008 2674 2670 4008 1757 

west < 2 kg 1486(37) 1338(33) 931(35) 884(33) 1608(40) 467(27) 
* Count (Percent) 

 
The results from the CRC Project dataset indicated that the CRC Project system had 
the potential to estimate individual animal weights within ±2 kg approximately 40% 
of the time if the derived weight-estimation equation was used during online 
operation (refer to MaxWidth in Table 11). The large number of estimates that were 
greater than or equal to ±5 kg ( > 24%) reinforces the point made earlier that there is 
a large amount variability in the extracted measurements that formed the dataset; a 
direct cause of poor weight estimates.  
 
3.5.6.2 The Start of the Vision System Development: CRC PhD Study 
 
The current benchmark for estimating the weight of both individual and groups of 
animals was set using the results of the previous Section (3.5.6.1 Extracted Body 
Measurements and their Correlation to Weight: Early Findings), trial results with a 
commercially available system (see Chapter 8 Comparison between PiGUI and a 
Commercial System) and figures as reported in literature.  
 
An early attempt was made to extract information from the videos within the CRC 
Project dataset. Although majority of the images were poor quality, those that were 

100 
 



salvageable (such as when the pig was moving slowly beneath the camera and under 
relatively uniform illumination) were analysed. Primitive versions of the extraction 
methods presented earlier were used to process the videos and extract the body 
measurements to form the basis of the first estimation model. 
 
Using these methods, twelve measurements were extracted: Max Length (ML), Max 
Width (MW), Max Width Front (MWF), Max Width Middle(MWM), Max Width 
Rear (MWR), Minimum Width Front (mWF), Minimum Width Rear (mWR), Area 
Front (AF), Area Middle (AM), Area Rear (AR), Skeleton Length (SL) and Total 
Area (AT). In total, 159 pigs were analysed from the 177 videos within the dataset. 
The 12 body measurements extracted from each pig across the video frames were 
averaged out to form a single 1x12 vector. These 159 sample vectors were broken in 
half for modelling (nm = 80) and half for testing (nt = 79) to determine each of the 
body measurements’ ability to estimate weight. The exception was the skeleton 
length which only returned 148 samples (nm = nt = 74) as, on occasion, it was not 
referenced correctly during processing and as a result was sometimes discarded.  
 
The results of the initial methods used to extract body measurements of the pigs from 
images are shown in Table 12. The absolute error between the actual weight and the 
weight estimates (West) of the individual animals were grouped into the same seven 
error categories as presented previously.  
 

Table 12: Off-line Estimation Performance of Equations Derived from Early Image Analysis 
Techniques Developed in this PhD Study 

Error 
Category 

(kg) 
ML MW MWF MWM MWR mWF mWR AF AM AR AT SL 

west < 0.5 kg 12(15)* 9(11) 14(18) 10(13) 14(18) 13(16) 8(10) 10(13) 8(10) 9(11) 17(22) 6(8) 
0.5 kg ≤ 

west < 1kg 12(15) 14(18) 10(13) 11(14) 13(16) 9(11) 13(16) 5(6) 7(9) 6(8) 17(22) 4(5) 

1 kg ≤west < 
2 kg 20(25) 27(34) 21(27) 20(25) 20(25) 20(25) 19(24) 14(18) 16(20) 11(14) 23(29) 9(12) 

2 kg ≤ west 
< 3 kg 12(15) 14(18) 15(19) 19(24) 14(18) 20(25) 17(22) 12(15) 19(24) 18(23) 9(11) 10(14) 

3 kg ≤ west 
< 4 kg 10(13) 11(14) 8(10) 10(13) 7(9) 10(13) 7(9) 6(8) 13(16) 16(20) 12(15) 15(20) 

4 kg ≤ west 
< 5 kg 5(6) 2(3) 6(8) 4 (5) 7(9) 4(5) 8(10) 5(6) 4 (5) 6(8) 1(1) 7(9) 

west ≥ 5 kg 8(10) 2(3) 5(6) 5(6) 4(5) 3(4) 7(9) 27(34) 12(15) 13(16) 0(0) 23(31) 
Total 

Samples 79 79 79 79 79 79 79 79 79 79 79 74 

west < 2 kg 44(56) 50(63) 45(57) 41(52) 47(60) 42(53) 40(51) 29(37) 31(39) 26(33) 57(72) 19(26) 
* Count (Percent) 

 
Table 13 shows the statistics for each of the derived equations for the 12 body 
measurements extracted from the CRC Project dataset. 
 

Table 13: Statistics and of the Goodness of Fit for the 12 Body Measurements Extracted from 
the CRC Project Dataset 

Statistic ML MW MWF MWM MWR mWF mWR AF AM AR AT SL 

p1 
2.65E-

01 
4.75E-

01 
4.91E-

01 
4.12E-

01 
4.70E-

01 
5.02E-

01 0.42 1.43E-
03 

1.38E-
03 

2.94E-
03 

1.35E-
03 

6.65E-
02 

Sen 
1.95E-

02 
2.48E-

02 
3.31E-

02 
3.04E-

02 
2.91E-

02 
3.10E-

02 0.03 3.44E-
04 

1.57E-
04 

3.50E-
04 

5.70E-
05 

3.52E-
02 

R2 0.71 0.83 0.74 0.71 0.77 0.77 0.68 0.18 0.50 0.48 0.88 0.05 
F 185.76 367.65 220.50 184.25 259.68 261.18 165.90 17.17 77.24 70.50 564.62 3.58 

SSreg 1499.50 1753.77 1572.09 1495.91 1635.98 1638.12 1448.70 386.83 1062.17 1013.80 1866.53 96.57 
p2 -39.49 -15.75 -15.80 -8.03 -12.62 -13.13 -3.74 22.07 18.95 11.28 -0.46 20.45 
Seb 5.30 2.54 3.28 3.02 2.83 2.85 2.85 2.61 1.62 2.58 1.41 6.53 
Sey 2.84 2.18 2.67 2.85 2.51 2.50 2.96 4.75 3.71 3.79 1.82 5.19 
DFe 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 72.00 
DFr 1 1 1 1 1 1 1 1 1 1 1 1 
Sse 621.57 367.30 548.99 625.16 485.10 482.95 672.37 1734.25 1058.91 1107.27 254.55 1943.11 
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These early extraction techniques demonstrated an increase in precision compared to 
those used previously in the CRC Project development. For example, the PixelArea 
previously had a coefficient of determination of 0.28 whereas the equivalent 
measurement (AT) extracted using the developed techniques was higher at 0.88 
(refer to Table 13 and Table 9). According to the test-set the Area measurement (AT) 
could be used to estimate the weight of individual pigs within ±2 kg approximately 
72% of the cases with negligible errors (west ≥ ±5 kg). 
  
There were two likely reasons that this enhancement occurred. The first was that the 
previous method was automated, and had very little supervision except for what had 
been written into the software to control the extraction of the pig’s body 
measurements. In contrast, the body measurements recovered using the developed 
extraction techniques were found under supervised circumstances and in most cases 
each of the sample body measurements recovered had been validated to ensure that 
they had been taken in close proximity to their actual location. The second reason is 
that the results of the analysis found in Table 12 and Table 13 were based on pigs 
weighing between 20 and 45 kg. This lower weight range was the result of the 
limited availability of video frames of larger pigs (>45 kg) where their body was 
entirely in the FOV of the camera. As a consequence, the task of correctly extracting 
the body measurements of these larger pigs became much more complicated and, as 
a result, they were excluded from the analysis. Therefore, when comparing the two 
datasets, it is possible that the increase in precision within the second analysis is due 
to the resulting equations being better suited to a specified weight range. 
 
Comparatively, the two analyses on the CRC Project dataset suggested the obvious 
scenario: that as variability in determining the extracted body measurements 
decreases, the ability to estimate weight more precisely will increase. Consequently, 
it appeared that the poor weight estimates (40% < ±2 kg and 25% ≥ ±5 kg) from the 
previously developed CRC Project system was a result of the incorrect extraction of 
the body measurements from the image. 
 
Therefore, the system development needed to be based around three aspects to work 
towards the optimum solution. These were that: (i) the weight-estimation equation 
needed to be built from information that was as error free as possible (to optimise the 
estimation model), (ii) performance benefits may occur by applying different weight-
estimation equations to different weight ranges and (iii) the level of control needed to 
be increased such that the body measurements were automatically referenced and 
extracted correctly. These three areas would complement one another making 
subsequent weight estimates more reliable.  
 
3.5.6.3 The Results from the New Dataset 
 
Although there was limited practical use of the original CRC Project dataset, it 
contributed to the understanding of acceptable conditions to make a weight-
assessment, and what needed to be done to enhance the chance of correct 
segmentation. As the image is the foundation of the analysis that follows, the videos 
collected were required to have a good dynamic range to maintain adequate contrast 
between the animal’s contour and its surroundings. 
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There were also three other considerations to take into account while collecting the 
new dataset. First, so each pig’s body measurements could be referenced and 
extracted in respect to one another, each video sample should contain frames of the 
pig entirely in the field of view and should also be in a stationary pose to avoid any 
motion blur. Second, more appropriate data on pigs weighing more than 45 kg and 
up to 120 kg was required. Third, critical information that was not recorded along 
with the new dataset such as the camera’s sensor height from the ground (working 
distance) as well as other specific characteristics of the camera such as the focal 
length needed to be documented.  
 
The new dataset was collected inside a commercial facility with a camera that 
enhanced the collected video quality (Logitech Quickcam Pro 9000, Logitech, 
Quarry Bay, Hong Kong). 
 
Development surrounded two of the key aspects mentioned in the previous section. 
These were that: (i) to optimise the estimation model, it should be built from 
information that was as error free as possible and (ii) that an increased level of 
control was required so that the body measurements could be automatically 
referenced and extracted correctly and subsequently the amount of data available to 
the model could be maximised. 
 
The extraction process was again supervised to ensure that the weight and body 
measurements would be modelled correctly. Thus body measurement data were only 
included in the model when it was observed to have been referenced correctly. The 
weights of the pigs included in the new dataset were between 9 and 137 kg to cover 
the grower-finisher stage. The extraction and trimming method had also been 
revised. Now rotation of the image to the horizontal was not required  before 
extracting the body measurements. Furthermore, the body measurements could be 
extracted regardless of the angular orientation of the pig (instead of the vertical 
measurements, refer to 3.5.2.1 Extracting Vertical Body Measurements).  
 
The goodness of fit of both the angular and vertical based measurements obtained 
using the new dataset can be seen in Table 14 in order of lowest to highest R2.  

 
Table 14: The Goodness of Fit between Vertical Body Measurements and Angular Based Body 

Measurements (Linear Regression) 
Weight Vs. p1 Sen R2 F SSreg Seb Sey DFe DFr SSe

 

AT2 7.14E-03 1.08E-04 0.984 4335.80 54418.88 1.13 3.54 72 1 903.68 
AT1 7.16E-03 1.09E-04 0.983 4288.64 54409.11 1.14 3.56 72 1 913.45 
AT 7.48E-03 1.23E-04 0.981 3712.95 54270.17 1.22 3.82 72 1 1052.39 

AMXa 1.14E-02 2.25E-04 0.973 2596.67 53829.97 1.46 4.55 72 1 1492.59 
MWRa 2.10 5.48E-02 0.953 1464.77 52730.60 3.41 6.00 72 1 2591.95 
MWM 2.55 7.15E-02 0.946 1269.16 52352.57 4.04 6.42 72 1 2969.99 
MW 2.12 6.21E-02 0.942 1167.97 52110.20 3.86 6.68 72 1 3212.35 

MWR 2.08 6.08E-02 0.942 1167.08 52107.89 3.75 6.68 72 1 3214.66 
mWRa 2.35 8.05E-02 0.922 849.29 50999.02 4.00 7.75 72 1 4323.53 
mWF 2.34 8.30E-02 0.917 798.06 50744.46 4.33 7.97 72 1 4578.09 
MWF 2.19 7.90E-02 0.915 771.09 50598.03 4.60 8.10 72 1 4724.53 
mWFa 2.34 8.47E-02 0.914 761.23 50542.08 4.35 8.15 72 1 4780.47 
mWR 2.39 8.92E-02 0.909 717.15 50275.07 4.57 8.37 72 1 5047.49 
ML 0.77 2.88E-02 0.908 710.01 50228.97 4.92 8.41 72 1 5093.59 

MWFa 2.18 8.29E-02 0.906 693.46 50118.88 4.85 8.50 72 1 5203.67 
ARa 1.85E-02 7.50E-04 0.894 609.18 49475.05 2.78 9.01 72 1 5847.50 

ARXa 3.20E-02 1.56E-03 0.854 419.96 47225.88 3.24 10.60 72 1 8096.67 
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AFXa 3.22E-02 1.67E-03 0.837 370.45 46319.83 3.24 11.18 72 1 9002.72 
AR 1.55E-02 8.50E-04 0.821 331.02 45439.02 3.25 11.72 72 1 9883.53 
AFa 1.61E-02 1.05E-03 0.764 232.48 42240.44 3.97 13.48 72 1 13082.12 
AF 1.99E-02 1.52E-03 0.704 171.13 38939.47 4.82 15.08 72 1 16383.08 
AM 1.55E-02 1.27E-03 0.674 148.95 37294.83 4.20 15.82 72 1 18027.72 

MidL 0.96 1.55E-01 0.348 38.34 19224.63 8.44 22.39 72 1 36097.93 
 
The majority of the body measurements extracted have a strong correlation to weight 
with relatively small random error components (refer to Table 14). Using the new 
dataset and enhanced extraction techniques, the goodness-of-fit has increased 
between the weight-body measurement models compared to those presented using 
the previous dataset. For example, the AT2 measurement (area) had a higher 
coefficient of determination of 0.98 (compared to 0.28 and 0.88 previously) 
indicating that there was now a good linear fit between the respective body 
measurements and the weight of the pigs. As this extraction process was supervised 
(semi-automatic) we know that the model coefficients derived from this dataset 
should have less error. However, the RMSE slightly increased. This increase was 
believed to be the result of the equation being generalised over a wider weight range. 
To indicate whether or not this was the case, the weight range was segmented and 
modelled in two, three and four categories to see whether estimation performance 
could be enhanced by targeting different equations to specific weight ranges. In this 
test, the first division (Division 1) was one equation between 9 and 137 kg, Division 
2 was two equations with weight ranges of < 60 and ≥ 60 kg, Division 3 was three 
equations, (< 45, 45 ≤ x < 90 and ≥ 90 kg) and Division 4 was four equations (< 30, 
30 ≤ x < 60, 60 ≤ x < 90 and ≥ 90 kg).  
 
Using the AT2 measurement as an example, Table 15 demonstrates that Division 4 
(assigning four different weight-estimation equations to four weight ranges) 
increases estimation performance marginally by 4% in comparison to one single 
generalised equation across all weights (Division 1). This indicated that the 
relationship was possibly non-linear. 
 

Table 15: Estimation Performance of Linear Equations Tailored for Specific Weight Ranges  
Error Category (kg) Division 1  Division 2 Division 3 Division 4 

west < 0.5 kg 14(19)* 8(11) 13(18) 14(19) 
0.5 kg ≤ west < 1kg 5(7) 9(12) 6(8) 9(12) 
1 kg ≤west < 2 kg 17(23) 21(28) 19 (26) 16(22) 
2 kg ≤ west < 3 kg 12(16) 15(20) 10(14) 17(23) 
3 kg ≤ west < 4 kg 10(14) 6(8) 11(15) 4(5) 
4 kg ≤ west < 5 kg 7(9) 9(12) 6(8) 5(7) 

west ≥ 5 kg 9(12) 6(8) 9(12) 9(12) 
Total Samples 74 74 74 74 

west < 2 kg 36(49) 38(51) 38(51) 39(53) 
    * Count (Percent) 

 
These results were also compared to the results obtained from the previous dataset. 
Notably, 19% fewer samples had been recorded within ±2 kg (53%) compared to the 
analysis of the previous dataset (72%). In fact the result was closer to the 40% that 
was the projected estimate obtained from the benchmark formed by the original 
dataset. A possible reason for the reduction in precision was that the results from the 
analysis shown in Table 15 were determined from a wider weight range (between 9 
and 137 kg). Therefore for comparative purposes the dataset was cropped such that it 
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obtained only the results of the pigs that were between 0 and 45 kg. The results are 
presented in Table 16 for the various equation divisions. 
 
Table 16: Estimation Performance of Linear Equations Tailored for Specific Weight Ranges for 

Pigs between 0 and 45 kg 
Error Category (kg) Division 1 Division 2 Division 3 Division 4 

west < 0.5 kg 7(30)* 6(26) 6(26) 7(30) 
0.5 kg ≤ west < 1kg 2(9) 2(9) 3(13) 4(17) 
1 kg ≤west < 2 kg 8(35) 10(43) 9(39) 6(26) 
2 kg ≤ west < 3 kg 1(4) 2(9) 2(9) 3(13) 
3 kg ≤ west < 4 kg 2(9) 1(4) 1(4) 1(4) 
4 kg ≤ west < 5 kg 0(0) 0(0) 0(0) 0(0) 

west ≥ 5 kg 3(13) 2(9) 2(9) 2(9) 
Total Samples 23 23 23 23 

west < 2 kg 17(74) 18(78) 18(78) 17(74) 
    * Count (Percent) 

Table 16 shows that the percentage of estimates within ±2 kg for pigs weighing 
between 9 and 45 kg was between 74 and 78 %; which is much closer to the 72% 
found during the previous analysis. Therefore, the system appeared to be ~25% more 
likely to estimate the weight of a pig in the range of 9 to 45 kg to within ±2 kg of its 
actual weight than a pig weighing greater than 45 kg. A possible reason for this is 
that as the animals grow their shape encounters greater variability, suggesting that 
they are more uniform in appearance when they are younger.  
 
3.5.6.4 Benchmarking the Early Prototype 
 
Variables were selected in a stepwise manner to form a multiple regression equation 
based on their estimation performance during testing (see Section 3.6.1.1.3 
Multivariate Linear Model). At this stage, some parameters were also intuitively 
selected or rejected on the basis of how often they could be successfully extracted 
from the images. The resulting equation was built using a combination of the AT2, 
MWFa MWMa, MWRa, mWFa, and mWRa measurements and was incorporated in to 
a prototype system for testing. 
 
Prior estimation performance (in the tables above) was determined from data that 
were recovered from images processed semi-automatically in a supervised process. 
The body measurements were only included in the model if they had been referenced 
and extracted correctly from the image. However, during operation, it is not feasible 
to perform this discrimination semi-automatically (such as using a human observer). 
To overcome this problem an artificial supervision method was required. A limit 
filtering procedure was incorporated into the code that determined whether a 
proposed weight estimate was valid given the size of the pig’s extracted body 
measurements (see Section 3.5.4 Filtering the Extracted Body Measurements for 
Weight Validation).  
 
To form the prototype system the segmentation, extraction, equation and limit 
filtering processes were all incorporated and integrated into software. The prototype 
was then benchmarked to see what stage the development was at. The system was 
setup at a commercial piggery (PPPI, University of Adelaide, Roseworthy campus) 
and 5 pens of between 10 and 19 animals were observed. The objective was to 
determine the group-weight average of all pigs in each pen and the system’s ability 
to determine the weight of individual pigs in a commercial setting. The pigs were 
first herded from their pen into the scale area before being individually directed 
underneath the camera. After a weight estimate was recorded by the system, the pig 
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was persuaded into a nearby electronic weigh-scale where its actual weight was 
recorded. The limits were set in the software to 95% confidence intervals meaning 
that if the supervised method used to configure the dataset was repeated 100 times, 
95 of the results would reside within the given interval. Hence, the limits were used 
to supervise the process automatically.  
 
In total, 98 sample weights from sixty-nine pigs were collected. Weight assessment 
of some pigs occurred more than once due to the automatic nature of the system and 
the inability to distinguish between identities. Thus, each of the 98 sample weights 
were formed by averaging weight estimates obtained over a number of video frames 
collected of each animal as it stood beneath the camera. A total of 306 image frames 
had successfully passed the limiting filter which formed the 98 sample weights in 
this manner.  
 
The average weight calculated by the prototype system for each of the four groups is 
shown in Table 17. Note, the pigs from pen one were weighed twice with two 
different confidence interval settings.  
 

Table 17: Testing the First System Prototype  
PEN # Pigs # Pigs Sampled AVE (kg) Vision AVE (kg) Error (kg) STD (kg) Error STD 

PEN 1 (99%) 10 10 84.6 85.7 1.1 6.4 6.8 
PEN 1 (95%) 10 7 84.1 84.0 -0.1 6.3 4.8 

PEN 2 9 8 97.7 91.1 -6.6* 4.6 19.4 
PEN 3 11 11 75.2 77.0 -1.8 3.5 3.1 
PEN 4 19 18 72.3 73.5 1.2 6.7 6.9 
PEN 5 11 11 80.0 83.3 3.3 4.4 4.0 

*Caused by an error where an object was identified that was not a pig, AVE = average, STD = deviation 
 
The results demonstrated that the average error of the system was 2.82 kg. It was 
discovered that the incorrect identification and weight assessment of an object that 
was not a pig caused a large proportion of this error. An example image of this error 
is shown in Figure 76(a) along with a typical image used to perform a weight 
assessment (b). 
 

  
(a) (b) 

Figure 76: Images Collected from Testing the First Prototype 
(a) A False Positive; (b) The Correct Capture of the Pig’s Body Contour 

  
Table 18 shows the same data only with the errors removed. As a result of the 
removal of the errors the group-average error drops to 1.67 kg. 
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Table 18: Results with Erroneous Contours and False Positives Removed from the Group 
Weight Estimate 

Average (kg) Vision Average (kg)*  Error (kg) 
84.6 84.53 -0.07 
84.1 84 -0.1 

97.72 96.6 -1.13 
75.23 77.04 -1.81 
72.32 74.27 1.95 

80 83.27 3.27 
                                            *With errors removed 

 
It was clear that the limiting process was working, however, the errors that passed 
through were having a large effect on the overall precision of the system during the 
experiment. In spite of this fact, the testing conditions potentially exaggerated this 
error as in practice the system will be setup above the pen and allowed to run 
continuously. Therefore, the system will have considerably more time and data 
available to form group average estimates than the short minute interval per animal 
used to collect the data in the test. Thus, the longer sampling period may minimise 
the effect of this type of error. 
 
The system’s ability to determine individual weights was also revised during the test.  
Identities were determined by pairing the time stamps recorded during weight 
estimation to those recorded when the animal’s actual weight was obtained.  
Table 19 shows the performance of the system in determining individual animal’s 
weights. 

 
Table 19: The Precision of Individual Weight Estimates Made During Testing of the First 

Prototype 
Error Category (kg) Count (%) 

west < 0.5 kg 12(12) 
0.5 kg ≤ west < 1kg 10(10) 
1 kg ≤west < 2 kg 18(18) 
2 kg ≤ west < 3 kg 14(14) 
3 kg ≤ west < 4 kg 4(3) 
4 kg ≤ west < 5 kg 13(13) 

west ≥ 5 kg 26(27) 
Total Samples 98 

west < 2 kg 40(41) 
 

The system generated 41% of the estimates within ±2 kg of the pig’s actual weight 
and 27% of the estimates had error greater than ±5 kg. Notably these two figures 
bare a close resemblance to the theoretical performance of the benchmark (40% < ±2 
kg and 25% ≥ ±5 kg) described in Section 3.5.6.2 The Start of the Vision System 
Development: CRC PhD Study.  
 
The three outcomes of the test were that: (i) the system was estimating the weight of 
individual animals on a similar level to the projected performance of the benchmark, 
(ii) the current average error of the system was 2.82 kg when calculating group 
weight estimates and (iii) the calculation of both group average weight and 
individual weights could be improved as errors were still making their way into the 
dataset and making large contributions to the overall error. Hence, further refinement 
of the filtering process was required. 
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Consequently, work focused on creating a method to recognise the animals pose(s) to 
overcome the distorted individual pig weight estimates associated with the contour 
not being extracted or identified correctly. It was also realised that if the variation in 
extracted body measurements could be minimised based on pose automatically, then 
the predictive quality of each of the body measurements and the individual weight 
estimates might be improved as well.  
 
3.5.7 Final Model Building Method: Linking the Pose Filter to the Weight-

Estimation Equation 
 
More information was required in order to gain a uniform understanding of the pigs’ 
body shapes to form grounds for discrimination. Over 750 videos were collected of 
586 pigs with weights ranging from 12.5 to 306 kg. Of these videos, 703 were used 
to build the shape model. Software was written to automatically identify the pig in 
each image frame, and rotate it to the horizontal before extracting the body 
measurements from it. As there was not a real-time constraint on extracting the 
dimensional data during model building, the code was modified such that the 
reliability of recognition was enhanced. In total, 22419 contours were recovered from 
the videos. The methodology described in earlier was then applied to filter the shape 
data and build the weight and pose model (see Section 3.5.5 Filtering the Shape for 
Pig Recognition and Pose Validation). Using this method, the body measurements 
extracted from a certain pose become the basis in forming the weight estimation 
equation, and thus the resulting estimation equation and template shape form a set to 
be used together to estimate the weight of pigs. Thus, weight assessments have 
greater potential to be enhanced and controlled as the weight-estimation equation is a 
function of a shape.  
 
A flow diagram of the shape and equation model building process can be seen in 
Figure 77. 
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Figure 77: The Process Used to Build the Template Shape and Weight-Estimation Equation 

 
Reasons why this method may be beneficial are:  
 

(i) It is efficient in terms of data storage as fewer (yet more accurate) weight 
assessment samples will be carried out daily (only a single accurate 
estimate per pig is required to make a very accurate daily group average 
(rather that collecting many more suboptimal images to form an average))  

 
(ii) Reduces processing load as the system spends more time searching for 

quality data rather than extracting body measurements from images that 
will have little positive effect on the resultant weight estimate and 
averages. The pose recognition filter can discriminate (accept or reject) 
the data early in the process, immediately after segmentation, 

 
(iii) Is more accurate than referencing body measurements from a pig that is in 

a largely unknown posture.  
 

1. Select a template contour for initial reference pose 

Function Start 

2. Convolute template across all contour data and collect residuals 

9. Halve the selected samples for testing and equation 
building 

10. Create equations based on the body measurements 
extracted from these samples (stepwise multivariate linear, 

 

Data_2010_PhD 

3. Sort residuals based on number of points passing within 
the set deviation from the template reference shape 

3. Sort residuals from highest to lowest based on a measure 
(R2, SSE, Absolute Variance) 

5. Select the contours which have had all (or a high 
percentage) of points pass between the set deviation from 
the template reference shape 

5. Iteratively include contours into an average shape and 
determine when its change is approximately zero  

 

6. Determine the mean and standard deviation of the 
selected contours 

7. Select the contours which have had all (or a high 
percentage) of points pass between the set deviation from 
the average template contour built 

8. Determine the mean and standard 
deviation of the selected contours and 

store the final average template contour 

11. Validate equations and shape using test set  

12. Evaluate the results; check the precision and 
check the weight range covered by the equation due 

to the shape filter  

For online shape-filtering  

For online weight estimation 
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(iv) Has an adaptable methodology which can be used to generate equations 
for different poses, pig shapes, breeds of pigs and potentially different 
species. With some modification the same methodology could be used for 
data acquired from alternate camera configurations such as 3D, by using 
the animal’s surface rather than its contour.  

 
3.6 SIMULATION RESULTS 
 
3.6.1 Modelling 
 
The magnitude and angle vectors used to form the average template shape were 
selected from the dataset in the manner described in Figure 77 in the previous 
section. However, as the average template shape was built from a combination of 
magnitude and angle vectors sourced independent of one another, there were a 
different number of magnitude vectors and angle vectors. Some of which were 
associated with the same sample. For example, the magnitude and angle of a 
particular sample may have been used in the build. Therefore, the position (or index) 
of these vectors within the dataset was determined for both components and only 
unique index values were determined to avoid duplication.  
 
In total 7276 of the magnitude and angle vectors were unique. The extracted body 
measurements of these 7276 vectors were used to construct the weight-estimation 
equation.  Some of the 7276 vectors did not have a corresponding height (284) or 
area measurement (11), so for comparative purposes these were excluded, leaving 
6981 weight and body measurement(s) pairs. The samples that had no area (177) or 
height (1348) information were also removed from the larger dataset (22419) leaving 
20894 complete contour/body measurement vectors of information. 
 
Those of the 20894 sample contours which passed the filter had their body 
measurement(s) modelled in respect to weight. An example is shown in Figure 89 
which is the result after shape filtering for the MLRho measurement. Another example 
of how these relationships were found in respect to the entire dataset can be found 
later in Section 3.6.2.1 Testing the Template as a Shape Filter. 
 
Several types of fit were tested on the filtered data. The majority of the body 
measurements in respect to weight were best represented by a curve, particularly at 
weights above 120 kg and less than 30 kg (as the MLRho measurement demonstrates 
in Figure 78). 
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Figure 78: The Weight vs. MLRho Relationship 

 
This relationship was not exponential as the natural logarithm of the dependant (y) 
variable (weight) did not yield a straight line when compared to the independent (x) 
variable of the measurement. It was also apparent that it was not purely linear either 
as Figure 78 illustrates. It was determined that a power relationship best represented 
the relationship between each body measurement and the animal’s weight. This 
relationship coincides with the findings of Minagawa and Ichikawa (1994) and 
Brandl and Jørgensen (1996). The only contradictions were the body measurements 
MidL and AMidc that demonstrated a slightly better fit as a linear equation rather 
than a power equation, and although some of the body measurements were 
approximately linear such as AT2 (refer to Figure 79) it was noted that a linear model 
might find it difficult to estimate the weight of pigs at the lower (< 30 kg) and upper 
(> 120 kg) portions of the relationship correctly.  
 
In this case two or three linear models could be assigned to respective weight ranges 
as shown in Table 16 in Section 3.5.6.3 The Results from the New Dataset. Note that 
these body measurements are not a real world representation of the actual metric 
body measurements of the pig; they are the metric body measurements relative to the 
ground level. The body measurements are required in this format to create a generic 
estimation model based on the installation height and camera parameters (refer to 
Section 3.5.3 Projecting Extracted Pixel Dimensions to Metric at Ground Level). 
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Figure 79: The Weight vs. AT2 Relationship 

 
3.6.1.1 Modelling the Weight-Estimation Equation 
 
Initially the weight-estimation equation modelled using sample contours and 
averaged body measurements obtained from 477 videos. The linear fits applied to the 
16 body measurements extracted from these videos are shown in Table 20 in order of 
R2. 
 

Table 20: The Goodness of Fit between Angular Based Measurements (Linear Regression) 
Weight Vs. p1 Sen R2 F SSreg p2 Seb Sey DFe DFr SSe 

AT2 2.20E-04 1.18E-06 0.986 34660.11 876371.15 -18.46 0.55 5.03 475 1 12010.24 
AMidc 5.81E-04 5.43E-06 0.960 11461.88 853030.33 -15.95 0.94 8.63 475 1 35351.06 

ARc 6.70E-04 6.56E-06 0.956 10425.99 849671.05 -13.47 0.96 9.03 475 1 38710.35 
AFc 6.68E-04 7.58E-06 0.942 7769.87 837200.35 -16.43 1.14 10.38 475 1 51181.05 
WRc 0.51 6.02E-03 0.938 7185.97 833299.46 -93.68 2.05 10.77 475 1 55081.93 

mWFa 0.50 5.99E-03 0.935 6861.63 830864.34 -95.95 2.13 11.00 475 1 57517.05 
WFc 0.48 5.85E-03 0.934 6726.31 829783.52 -95.13 2.14 11.11 475 1 58597.87 

MWMida 0.50 6.31E-03 0.929 6231.50 825460.15 -110.84 2.41 11.51 475 1 62921.24 
mWRa 0.51 6.81E-03 0.922 5584.10 818737.18 -97.46 2.38 12.11 475 1 69644.21 
MWFa 0.41 6.31E-03 0.901 4315.52 800294.71 -93.19 2.64 13.62 475 1 88086.69 
MLRho 0.31 4.86E-03 0.898 4168.20 797499.90 -109.21 2.93 13.83 475 1 90881.50 
 ML 0.16 2.43E-03 0.898 4160.94 797357.47 -109.02 2.92 13.84 475 1 91023.92 

MWRa 0.43 6.86E-03 0.891 3898.21 791889.18 -98.27 2.85 14.25 475 1 96492.21 
RMLa 0.43 8.15E-03 0.856 2823.72 760458.83 -86.52 3.13 16.41 475 1 127922.56 
Height 3.82 7.32E-02 0.852 2723.71 756458.97 -150.54 4.39 16.67 475 1 131922.42 
MidL 0.43 8.92E-03 0.831 2327.85 737826.90 -105.16 3.83 17.80 475 1 150554.49 
FMLa 0.44 9.96E-03 0.803 1930.60 712965.02 -93.07 3.93 19.22 475 1 175416.37 

 
As each body measurement was not linear in respect to weight, non-linear multiple 
regression was required to create the best representation of the weight as a function 
of the extracted body measurements over the complete weight range. However, linear 
multiple regression still remained a viable option for the model in this study as the 
relationship was close to linear in the grower finisher phase (between 30 and 120 kg). 
 
3.6.1.1.1 Linear Model 
 
Graphical output was used to document the effect that the average template shape 
had on weight estimation performance (see Figure 80). An explanation of the graph 
follows for the linear case where no average template shape had been used to sort the 
contour samples. Samples are arranged in ascending weight. The x-axis of Figure 80 
refers to the 20894 samples of the dataset. Each point along the x-axis represents a 
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sample consisting of a shape and the body measurements extracted from that shape. 
An equation has been applied to each sample’s body measurement(s) to estimate a 
weight. On the y-axis is the cumulative error category. Each sample has estimated a 
weight within one of these seven error categories. As samples are introduced (from 
left to right) each sample’s weight estimate will contribute to a certain error category 
which is represented by an increment in the y direction for that error categories line.  
Using this plot it is easy to observe the proportion of samples within each error 
category.   

  
Figure 80: Cumulative Weight Estimate Error of Contour Samples Using a Linear Model  

  
If a vertical line is overlayed anywhere across the x-axis (intercepting the cumulative 
counts of each error category), the point on the x-axis indicates the number of 
samples tested at that point. Furthermore, the point(s) at which the vertical line 
intersects the line of each cumulative error category is the relative proportion of the x 
number of samples which contain that error. 
 
For example, Figure 80 shows markers on the counts of each error proportion when 
the last of the 20894 samples has been included. The y proportions, when added 
become 20894 and therefore an accumulative percent of the error in each category 
can be determined. For example 7.41% (1549/20894) of the total samples had an 
estimation error within ±0.5 kg of the actual weight for the linear (AT2 area) equation 
used. Re-running the code with a different equation will yield a different result. It 
can be observed that the error category greater than ±5 kg (black line) grows steadily 
from the inclusion of the first sample at the far left of Figure 80 after a steep increase 
in errors at the beginning. This is most probably because the samples have been 
sorted in weight from lightest to heaviest pigs and the lightest pigs (< 30 kg) are 
possibly more prone to result in weight estimation error due to the fit of the linear 
model. 
 
3.6.1.1.2 Non-Linear Model: Power Equation 
 
As Figure 79 and Figure 78 have previously shown that a power equation better 
represents the relationship between weight and body measurements. Figure 80 was 
regenerated to see the effect when using a power equation (see Figure 81). 
 

113 
 



 
Figure 81: Cumulative Weight Estimate Error of Contour Samples Using a Power Model 

 
This power equation was built with half of the best fitting contours to the single 
original template (Figure 80). The power equation was then reproduced using the top 
samples derived from the averaged template shape. Figure 81 shows an improvement 
from the linear model as there has been a 3.38% (707 samples) reduction in the 
number of estimates greater than ±5 kg and a 9.29% (1942 samples) increase in the 
number of samples in the error category less than ±2 kg compared to the original 
linear model estimate. The smaller error categories (±1 kg < and < ±0.5 kg) have 
performed moderately better (~3% each). Noticeably, the jump in estimates greater 
than ±5 kg at the low weight ranges has also been suppressed (black line to the left of 
Figure 80 and Figure 81). What is also interesting is that the error greater than ±5 kg 
increases in a slightly curved manner with respect to weight (as samples are sorted in 
ascending weight). This possibly reflects previous results that demonstrated that is 
easier to estimate the weight of smaller animals more precisely (although they may 
be harder to capture).  
 
3.6.1.1.3  Multivariate Linear Model 
 
In an attempt to improve the estimation potential, multivariate linear regression was 
undertaken on the body measurements. This involved a stepwise selection of terms 
using the stepwisefit function in Matlab’s statistical toolbox (MathWorks, Inc., 
Natick, MA). This function adds and removes terms based on their statistical 
significance. The power of the model is compared as each term is included or 
excluded based on the p-value of an F-statistic. For a term to enter the model it had 
to have the minimum p-value of available terms and had to be within the entrance 
tolerance of 0.05. While the model is being built if the p-value of a term exceeds the 
exit tolerance of 0.10 then the term is removed.  
 
Various models were built and tested in this manner: 
 

M1. A model was built using intuitively selected variables of the 16 extracted 
body measurements 
M2. A model was built using a stepwise selection of the 16 extracted body 
measurements 
M3. A model was built using a stepwise selection of the 16 extracted body 
measurements and 11 angles 
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M4. A model was built using a stepwise selection of the 16 extracted body 
measurements and the 120 paired interactions between them 
M5. A model was built using a stepwise selection of the 16 extracted body 
measurements and 11 angles and the 351 paired interactions between them  
 
These five different model building methods were applied to: (i) half the extracted 
body measurements of the 6981 individual samples and to (ii) the average body 
measurements of each animal in the 477 videos. Details of the coefficients and the 
term names can be found in Appendix D. The other half of the data were used to test 
the methods and models. Output is shown in Table 21. 
 

Table 21: Comparison of Results between 5 Different Modelling Methods 
 Individual Data Count (%) Averaged Data Count (%) 

Error 
Category 

(kg) 
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

west < 0.5 kg 596 (17) 580 (17) 611 (18) 608 (17) 628 (18) 36 (15) 32 (13) 41 (17) 38 (16) 43 (18) 
0.5 kg ≤ west 

< 1kg 570 (16) 577 (17) 608 (17) 609 (17) 622 (18) 43 (18) 33 (14) 36 (15) 39 (16) 31 (13) 

1 kg ≤west < 
2 kg 905 (26) 931 (27) 924 (26) 946 (27) 911 (26) 60 (25) 71 (30) 70 (29) 55 (23) 56 (24) 

2 kg ≤ west < 
3 kg 534 (15) 543 (16) 561 (16) 609 (17) 604 (17) 34 (14) 31 (13) 28 (12) 35 (15) 34 (14) 

3 kg ≤ west < 
4 kg 357 (10) 347 (10) 331 (9) 337 (10) 332 (10) 20 (8) 23 (10) 25 (11) 31 (13) 19 (8) 

4 kg ≤ west < 
5 kg 231 (7) 238 (7) 209 (6) 152 (4) 175 (5) 12 (5) 14 (6) 11 (5) 12 (5) 20 (8) 

west ≥ 5 kg 297 (9) 274 (8) 246 (7) 229 (7) 218 (6) 33 (14) 34 (14) 27 (11) 28 (12) 35 (15) 
Total 

Samples 3490 3490 3490 3490 3490 238 238 238 238 238 

west < 2 kg 2071(59) 2088(60) 2143(61) 2163(62) 2161(62) 139(58) 136(57) 147(62)  132(55) 130(55) 

 
Table 21 indicates that if the software is programmed to generate a weight estimate 
for every recovered contour, then Model 4 or 5 should be used to model the 
relationship. If the software is programmed to collect and average the body 
measurements over a short period of time then Model 3 should be chosen to build the 
model. Overall, the models based on individual data have provided the best precision 
(west ≥ ±5kg <10%) and Model 5 is the most desirable choice to integrate into the 
system and generate weight estimates. This model was applied over the entire 20894 
sample dataset. The result is shown in Figure 82. 
 

 
Figure 82: Cumulative Weight Estimate Error of Contour Samples Using the Multivariate 

Model (Method 5)  
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3.6.1.2 Selecting the Weight-Estimation Equation 
 
Comparative results from the linear, power and multivariate equations are shown in 
Table 22. 
 

Table 22: Comparison of Performance between Linear, Non-Linear (Power) and Multivariate 
Equations  

Error Category (kg) Multivariate Non-Linear Linear 
west < 0.5 kg 2468(12)* 2300(11) 1549(7) 

0.5 kg ≤ west < 1kg 2344(11) 2216(11) 1576(8) 
1 kg ≤west < 2 kg 3787(18) 3608(17) 3057(15) 
2 kg ≤ west < 3 kg 2696(13) 2386(11) 2714(13) 
3 kg ≤ west < 4 kg 1553(7) 1552(7) 2136(10) 
4 kg ≤ west < 5 kg 979(5) 1128(5) 1451(7) 

west ≥ 5 kg 7067(34) 7704(37) 8411(40) 
Total Samples 20894 20894 20894 

west < 2 kg 8599(41) 8124(39) 6182(30) 
* Count (Percent) 
 

Table 22 shows the superior performance of the multivariate equation in comparison 
to the non-linear and linear models. Most improvement has been observed in the 
greater than ±5 kg category with the multivariate model recording 637 (3%) fewer 
samples than the non-linear model. The number of samples within ±2 kg of the actual 
weights predicted by the nonlinear and multivariate is around 40% which is similar 
to the results obtained previously. The 34% of sample greater than ±5 kg reflects the 
fact that one in every three contours included could not be used for weight estimation 
and need to be removed. This is not surprising considering that the automated 
extraction process had only negligible constraints on what shapes and body 
measurements were recorded in the database. The next section demonstrates the 
results after applying filtering methods to suppress these erroneous samples. 
  
3.6.1.2.1 Ranking and Selecting Estimates Based on their Contour Shape 
 
The previous figures and tables have highlighted the effect between weight estimates 
and the samples. For example, Figure 80 previously demonstrated that error will be 
included at a near constant rate if the fit of the contour-sample to the average 
template shape is not known. However, these figures have been ranked in order of 
ascending weight (ordered from left to right) and do not take into consideration the 
shape of the pose of the animal used to obtain the estimate. The previous figure 
(Figure 81: non-linear power equation) was regenerated after including the shape 
filter so that the samples were re-arranged in order of R2 from best to worst fit to the 
average template shape. The cumulative errors of these shape-sorted samples are 
shown in Figure 83 for three different sorting methods.  
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(a) R2 Sort Based on Rho (b) R2 Sort Based on Theta 

 
(c) R2  Sort Based on a Combination of Rho and Theta  

Figure 83: Cumulative Weight Estimate Error of Contour Samples Using the Power  Model 
after Sorting the Contour Samples Based on R2 Fit (Left to Right) to the Average Template 

Shape 
 
The various sorting methods presented in Figure 83 visually show how conformation 
of pose can be used to suppress the error rate during weight estimation. This can be 
seen to the left of Figure 83 where the error category greater than ±5 kg depresses 
while the quantity of estimates within ±2 kg error increases. The samples to the left 
are, therefore, less likely to contain error and can be selected for weight estimation 
output with greater confidence. Essentially this cumulative sum of errors graph 
indicates the potential rate at which erroneous samples can be removed for a given 
template shape and equation pair after filtering (sorting). These results are based on 
sorting and modelling based on Method 1 in Section 3.5.5.3.1. However, a secondary 
approach to filtering the shapes was also undertaken and involved determining those 
samples which had all their points pass within a certain deviation of the average 
template shape (see Section 3.5.5.3.2 for the alternative method). In this method the 
samples were then sorted based on the number of points which passed through the 
filter bounds. The identical power based area equation was used. 
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Figure 84: Sorting Contour Samples Based on the Number of Points that Passed the within a 

Certain Deviation of the Average Template Shape 
 
Figure 84 illustrates a desirable deflection in both the less than ±2 kg and greater 
than ±5 kg error categories for the first 2500 samples (the samples that had all point 
pass within the filter bounds). It can be observed that the weight estimation error rate 
increases as samples are introduced to the cumulative sum (from left to right) which 
coincides with samples that had fewer points pass within the limits of the average 
template shape. This deflecting effect can be improved further by enhancing the 
estimation potential or determining the uniqueness of those samples which have error 
greater than ±5 kg and attempting to remove them.  
 
Figure 85 illustrates the weight estimation results after applying the multivariate 
equation (see Section 3.6.1.1.3 Multivariate Linear Model) to the dataset and sorting 
based on both R2  (Figure 85 (a)) and the number of points passing within a certain 
deviation of the template average shape (Figure 85 (b)). 
 

  
(a) (b) 

Figure 85: Weight Estimation Results Using a Multivariate Model and Sorting Based on (a) R2 
and (b) the Number of Points Passing within a Certain Deviation of the Average Template 

Shape 
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Table 23: The Differences between Sorting Methods to Determine Samples Appropriate for 
Weight Estimation.  

Error Category (kg) Multivariate R2 Sort Multivariate Deviation Sort 
west < 0.5 kg 2516(12)* 2468(12) 

0.5 kg ≤ west < 1kg 2409(12) 2344(11) 
1 kg ≤west < 2 kg 4015(19) 3787(18) 
2 kg ≤ west < 3 kg 2527(12) 2696(13) 
3 kg ≤ west < 4 kg 1594(8) 1553(7) 
4 kg ≤ west < 5 kg 946(5) 979(5) 

west ≥ 5 kg 6887(33) 7067(34) 
Total Samples 20894 20894 

west < 2 kg 8940(43) 8599(41) 
* Count (Percent) 
 

Table 23 shows the results generated by the equations built with the subset of body 
measurements related to the contours which had strong coefficient of determination 
(Table 23, column 2) or had all their points pass within a certain deviation of the 
template shape (Table 23, column 3). The same body measurement variables were 
used to build the equation for both methods, however, each method was responsible 
for choosing the samples to build the equation and the average template shape (under 
minor constraint). The equation was built using half of these selected samples for 
both methods and tested using the other half. The test results for the selected samples 
are shown in Table 24. 
 
Table 24:  Contour Samples Appropriate for Weight Estimation: Results between Two Methods  

Method R2 Passed Deviation 
Error Category (kg) Count % Count % 

west < 0.5 kg 652 17.99 628 18.77 
0.5 kg ≤ west < 1kg 591 17.82 622 17.02 
1 kg ≤west < 2 kg 939 26.10 911 27.04 
2 kg ≤ west < 3 kg 550 17.31 604 15.84 
3 kg ≤ west < 4 kg 314 9.51 332 9.04 
4 kg ≤ west < 5 kg 193 5.01 175 5.56 

west ≥ 5 kg 234 6.25 218 6.74 
Total Samples 3473 100.00 3490 100.00 

west < 2 kg 2182 61.92 2161 62.83 
 
Both methods chose a similar number of samples to build the equation and yielded 
similar results within the test-set. However, this is only a small observation in respect 
to the entire dataset, and only holds partial value in the strength of the derived shapes 
overall filtering and estimation potential. With reference to Figure 85 the error rate 
and the number of samples within each error category is different between the two 
methods. These are different because different shapes were used to build the equation 
and different methods and average shapes were used to sort (filter) the data in order 
from least to most chance of error. Overall, the first method (based on a R2 sort) has 
fewer error-counts greater than ±5 kg compared to the second method, which is 
desirable. However, the second method based on the points passing within a certain 
deviation of the average template shape, actually performs better at filtering out the 
erroneous samples for the first 1000 samples, as Figure 86 and Table 25 demonstrate.  
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Figure 86: Comparing the Cumulative Weight Estimate Error greater than ±5 kg for the Two 

Sorting Methods 
 
Table 25 below shows the comparative results over the first 3500 samples after 
applying both sorting methods separately over the entire dataset.  
 

 Table 25: Weight Estimate Error of the Two Methods after Sorting the Entire Dataset 
(Observation at 3500 Samples) 

Method R2 Passed Deviation 
Error Category (kg) Count % Count % 

west < 0.5 kg 641 18.31 625 17.86 
0.5 kg ≤ west < 1kg 575 16.43 622 17.77 
1 kg ≤west < 2 kg 882 25.20 900 25.71 
2 kg ≤ west < 3 kg 603 17.23 612 17.49 
3 kg ≤ west < 4 kg 347 9.91 361 10.31 
4 kg ≤ west < 5 kg 169 4.83 162 4.63 

west ≥ 5 kg 283 8.09 218 6.23 
Total Samples 3500 100.00 3500 100.00 

west < 2 kg 2098 59.94 2147 61.34 
 
Method 2 performs better in both the greater than ±5 kg and less than ±2 kg 
categories compared to Method 1. These results also indicate that shape has a direct 
influence on the estimation performance, as building a weight estimation-equation 
and filtering data based on a particular contour can enhance the precision of weight 
estimates and the correct validation of weight estimates for output.  
 
3.6.1.3 The Effect of Height as a Variable Input into the Weight-Estimation 

Equation 
 
Previously the multivariate equation has not used height as a parameter. However, as 
height was recorded manually from the back of the animals during the data 
collection, its effect on the overall performance of the predictive response could be 
determined to justify the inclusion of any additional software or hardware to extract 
its value. The same multivariate equation (as previously used) was used to generate 
estimation output for the entire dataset twice, without height as a parameter and with 
height as a parameter. The cumulative sums of error categories for the estimates are 
shown in Figure 87 ; a positive effect can be observed when height is used as a 
parameter. 
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(a) (b) 

Figure 87: Multivariate Equation (a) Without Height and (b) With Height 
 
A direct comparison between the greater than ±5 kg category and less than ±2 kg 
category is shown in Figure 88. 
 

 
Figure 88: Cumulative Weight Estimate Error of the Multivariate Equation With and Without 

the Height Parameter 
 
Overall, the multivariate equation with height parameter has improved estimation 
precision by 7.34% in the less than ±2 kg weight-estimation category compared to 
the multivariate equation without the height parameter included (Figure 88). Overall, 
in the greater than ±5 kg error-category the multivariate equation with height 
parameter has improved (reduced) the erroneous estimates by 8.87% compared to the 
multivariate equation without the height parameter. However, the benefit of using 
height as a variable in the weight-estimation equation is reduced when the integrity 
of the contour shape is taken into consideration. For example, the first 3500 output 
results as selected (filtered) by setting the shape filter to a deviation of 2.8 is shown 
in Table 26 below. 
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Table 26: Comparison between the Output of the Multivariate Equation With Height and 
Without Height Using the Shape Filter Set to 2.8 Deviations from the Mean. 

 With Height Without Height 
Method Passed Deviation Passed Deviation 

Error Category (kg) Count % Count % 
west < 0.5 kg 760 21.71 625 17.86 

0.5 kg ≤ west < 1kg 662 18.91 622 17.77 
1 kg ≤west < 2 kg 945 27.00 900 25.71 
2 kg ≤ west < 3 kg 488 13.94 612 17.49 
3 kg ≤ west < 4 kg 315 9.00 361 10.31 
4 kg ≤ west < 5 kg 150 4.29 162 4.63 

west ≥ 5 kg 180 5.14 218 6.23 
Total Samples 3500 100.00 3500 100.00 

west < 2 kg 2367 67.63 2147 61.34 
  

When the shape confirmation is present, a smaller increase of 6.29 % occurred in the 
category less than ±2 kg and a 1.09% decrease occurred in errors greater than ±5 kg 
(Table 26). These modest improvements and the logistical difficulties surrounding a 
method of obtaining the height measurement in parallel with other body 
measurements weaken any justification for including height as an input parameter for 
weight estimation. However, there is potential for height to improve estimation 
precision in the future. In addition, results may have been different had the height 
measurement been taken directly from the image at the same time the pose and body 
measurements were extracted from the animal rather than taking the height 
measurement manually a short time later.  
 
3.6.2 The Shape Filter 
 
Previously contours have been selected based on their fit to a template shape. 
Subsequently the body measurements extracted from these selected contours have 
been used to create both a weight-estimation equation and an average template shape 
for filtering purposes. This selection process has been shown to have a direct 
influence on the filter’s performance and the selection of valid data for further 
processing. The filter’s performance can be measured by its ability to discriminate 
between the shape of an extracted contour that will yield a good weight estimate 
(West < ±2 kg) or a poor one (West > ±5 kg). The benefit of filtering using an average 
shape contour is that this discrimination can occur early in the processing cycle 
before body measurements are extracted and therefore can save valuable processing 
time. 
 
3.6.2.1 Testing the Template as a Shape Filter 
 
To demonstrate how the shape filter works, observe Figure 89 below. This figure is a 
comparison between the filtered and unfiltered output of 20894 points of the AT2 
measurement. Filtered values are based on plotting the AT2 values found from the 
top 3644 best fits between the samples and average template shape. This figure 
compares the result between a system with limited built-in intelligence to decipher 
whether the object observed is actually a pig and a system that can. It is clear to see 
that much of the randomness in the spread of data has been eliminated and the true 
representation between area and weight is clearly defined. 
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Figure 89: The Total Body Area Measurement (AT2) With and Without Using a Shape Filter 

 
This random error can also be observed in the original dataset that was collected by a 
system that is not part of this development (see Figure 90). The shape filter 
effectively and dramatically minimises the occurrence of this random error and also 
effectively automates the supervision process. Therefore, it was not necessary to 
manually go through the dataset to determine frames where the pig appeared to be in 
the correct posture as it could now be performed automatically based on shape 
recognition. 

 
Figure 90: Randomness of the pixel area in respect to actual weight as acquired by the Original 

Vision System Developed in the CRC Project 
 
3.6.3 Adjusting the Bounds of the Shape Filter  
 
The filter deviation bounds can be adjusted to control (loosen or restrict) the amount 
of samples which have all their points pass. Figure 91 illustrates this (refer to the 
black line representing the cumulative sum of errors greater than ±5 kg). 
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(a) 

 

(b) 

 

(c) 

Figure 91: Selecting Different Filter Boundaries (a) 2.8, (b) 3.2 and (4) Times the Deviation from 
the Mean  

 
During the equation and average template shape building process there are three 
different stages where an arbitrary deviation can be set. These are at Stage 5, 7 and 
12 of Figure 77.  
 
At Stage 5 the standard deviation over the entire dataset is determined and is 
multiplied by a factor to form a ± limiting boundary from which shapes must pass 
from the initial template shape if they are to be included in the subsequent model and 
shape building process. The deviation and the mean shape of the samples that pass 
are then calculated.  Similar to Stage 5, Stage 7 involves multiplying the calculated 
deviation of the selected contours by a factor to form a ± limiting boundary from 
which the selected shapes must pass from the preliminary average template shape if 
they are to be included in the subsequent building process. Those of the selected 
contours which pass between these limits are used to construct the final average 
template shape and its standard deviation. The standard deviation of the average 
template shape is then multiplied by a factor in a similar manner as before such that 
it can be used during an online process to discriminate between a shape that will 
yield a good weight estimate and a poor weight estimate.  
 
At these stages the multiplication factors used to construct the shape filtering are 
somewhat arbitrary. Therefore, testing was undertaken to determine what 
multiplication factors should be applied at these three stages to form adequate 
discrimination between a shape which would yield a good weight estimate and one 
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that would not. In total, 819 simulations were performed over the entire dataset of 
20894 samples using different multiplication factors on the deviation of the selected 
contour shapes at the three stages. Multiplication factors ranged in 8 step sizes 
between 1.1 and 1.7 for Stage 5, between 2.3 and 3.1 for Stage 7 and between 2.2 
and 4.6 for Stage 12.  Table 27 shows a selection of these results which confirmed to 
the following criteria: (i) a mean-relative error less than 4%, (ii) less than 6% of 
weight estimates that passed were in the greater than ±5 kg error category and (iii) 
more than 64% of weight estimates that passed were less than ±2 kg. 
 
Table 27: Filtered Weight Estimate Output Based on the Selection of Contours within Different 

Deviations from the Average Template Shape  
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1.2 2.9 3.4 18.64 3894 3.05 13 238 19.88 17.33 28.76 15.28 8.81 3.98 5.96 65.97 
1.3 2.5 2.8 13.90 2904 2.88 13 238 20.76 17.70 25.55 16.43 9.26 4.34 5.96 64.02 
1.3 2.6 3.2 20.93 4374 3.07 13 249 20.16 16.80 27.09 15.87 9.30 4.80 5.97 64.06 
1.3 2.8 3.0 17.81 3721 2.96 13 238 19.54 17.71 26.90 16.58 9.33 4.46 5.48 64.15 
1.3 2.8 3.2 21.12 4412 3.04 13 249 19.83 17.45 26.77 16.55 9.02 4.65 5.73 64.05 
1.4 2.3 2.6 14.53 3035 2.86 13 249 18.91 16.90 28.47 16.90 8.63 4.65 5.54 64.28 
1.4 2.3 2.8 18.46 3858 2.99 13 249 19.62 16.25 28.23 17.16 8.09 4.72 5.94 64.10 
1.4 2.6 3.2 26.61 5559 3.16 13 249 19.52 17.04 27.49 15.34 10.09 4.79 5.74 64.04 
1.5 2.4 2.8 24.69 5159 2.96 13 249 19.58 18.61 26.17 16.28 8.88 4.71 5.78 64.35 
1.5 2.4 3.0 29.08 6075 3.07 13 249 20.02 18.70 26.06 15.90 8.66 4.74 5.93 64.77 
1.5 2.6 3.0 29.42 6146 3.01 13 249 20.06 17.12 27.09 16.69 8.70 4.98 5.35 64.27 
1.5 2.7 3.0 29.51 6165 3.01 13 249 19.58 18.39 26.72 16.45 8.16 5.01 5.69 64.69 
1.5 2.7 3.2 33.42 6983 3.10 13 249 19.55 18.47 26.24 16.53 8.31 5.00 5.91 64.26 
1.6 2.3 2.4 20.56 4295 2.72 13 249 19.79 17.28 27.31 17.07 8.22 4.87 5.47 64.38 
1.6 2.3 2.6 25.83 5397 2.86 13 249 20.21 17.73 26.66 16.84 8.19 4.74 5.61 64.61 
1.6 2.3 2.8 30.51 6375 3.02 13 249 19.78 17.91 26.54 17.02 8.11 4.69 5.95 64.24 
1.6 2.4 2.6 25.98 5429 2.90 13 249 19.43 17.59 27.10 16.25 9.50 4.55 5.58 64.12 
1.6 2.4 2.8 30.68 6410 3.05 13 249 19.39 17.64 27.05 16.29 9.19 4.49 5.94 64.09 
1.6 2.5 2.6 26.14 5461 2.89 13 249 19.15 17.43 27.63 16.55 8.75 4.96 5.51 64.22 
1.6 2.5 2.8 30.85 6445 3.01 13 249 19.29 17.80 27.21 16.34 8.75 4.92 5.69 64.30 
1.6 2.7 2.4 21.03 4393 2.80 13 249 19.17 17.35 27.52 16.00 9.22 4.94 5.80 64.03 
1.6 2.7 2.6 26.34 5503 2.88 13 249 19.90 17.30 27.40 16.05 8.69 4.91 5.76 64.60 
1.6 2.7 2.8 31.07 6492 2.99 13 249 20.07 17.38 27.03 16.27 8.41 4.87 5.98 64.48 
1.7 2.3 2.4 25.11 5246 2.83 13 249 19.54 17.59 27.47 15.84 9.66 4.37 5.53 64.60 
1.7 2.3 2.6 30.24 6318 2.97 13 249 19.52 17.89 27.32 15.89 9.28 4.34 5.78 64.72 
1.7 2.5 2.4 25.39 5304 2.82 13 249 19.17 17.23 27.83 16.16 9.62 4.45 5.54 64.23 
1.7 2.5 2.6 30.57 6388 2.95 13 249 19.40 17.50 27.29 16.12 9.55 4.32 5.82 64.18 

 
The selection of the deviation bounds in each of the three stages can be chosen based 
on the simulated performance in these three criteria. There is not one single 
outstanding result, however, those settings that have passed a large percentage of 
samples while maintaining accuracy and minimising error are of more interest. 
Figure 92 below shows the average template shape (black) with the deviation bounds 
(Rho) under the settings highlighted in Table 27. This average template shape has 
been chosen because the hypothetical objective in this scenario is to produce the least 
amount of weight estimation errors greater than ±5kg. 
 

125 
 



 
Figure 92: The Average Template Shape Constructed with Weight Ranges from 13 to 249kg  

 
According to this particular simulation, when operating online, approximately 64% 
of the individual weight estimates which pass the filter shown in Figure 92, should 
reside between 0 and 2 kg error of the actual weight of the sample, and errors greater 
than ±5 kg should occur at a rate of less than 6%. Furthermore, the mean-relative 
error of the estimates which passed through the filter should be approximately 3.0% 
in the range of 13 to 249 kg. However, this figure depends on the weight range of the 
group observed. For example, a 3% mean-relative error on a 12 kg pig is just 0.36 kg 
as opposed to a 120 kg pig which is 3.6 kg. The average weight estimation error of 
the 6146 samples which passed through the shape filter was 1.94 kg using the 
settings highlighted in Table 27.  
 
Most importantly the selection of a shape filter in this manner will provide a 
preliminary assessment of the integrity of the pose of the pig in relation to its weight 
estimate. Consequently, contours and their body measurements can be extracted 
efficiently and with confidence.  
 
The body measurements were then validated further using the limiting filter. The 
body measurement limiting filter is assessed independently in the following section 
and then the two filters are combined in Section 3.6.5 Combining the Dimension 
Limiting Filter and Shape Filter 
 
3.6.4 The Dimension Limiting Filter 
 
During normal operation, each contour sample that passed through the shape filter 
generated a weight estimate. However, in order for the weight estimate to be 
validated, the extracted body measurements were required to pass between 
previously defined limits (upper and lower) at the estimated weight range. The data 
used to define these upper and lower limits consisted of the 16 body measurements 
extracted from each of the contours that were used to build the average template 
shape. Confidence bounds (limits) were applied to each of the body measurements 
using the software.  
 
The entire dataset of contours (total of 20894) was subject to the limiting process 
(without prior shape filtering) to assess the limiting filter’s performance. During the 
performance testing, the limits of each body measurement were set to the same 
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confidence bounds. An example is given in Figure 93. If a given sample contour’s 
body measurements was not within the upper or lower limit of the relationship 
defined by the limits software, the sample (estimate, frame and measurements) was 
disregarded preventing the estimate making its way through to output. 
 

 
Figure 93: Setting the Confidence Bounds to 95% for the Total Body Area Measurement (AT2) 

Over the Dataset 
 
In order to test the filter, a weight estimate was required. The multiple regression 
equation was applied to the body measurements of the 20894 samples (see Section 
3.6.1.1.3 Multivariate Linear Model). These weight estimates were then used to 
compare the extracted body measurements with those of the weight and body 
measurements models. If all of the extracted body measurements passed within the 
limiting boundaries specified by the limiting software then the sample passed and its 
weight estimate was considered valid output.  
 

Table 28: Weight Estimate Output after Setting the Dimension Limiting Filter to Different 
Confidence Bounds 
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99% 69.74 14572 6.41 12.5 306 17.18 15.18 24.75 16.07 9.30 5.70 11.82 57.12 
95% 65.49 13684 5.74 12.5 306 17.90 15.83 25.67 16.36 9.35 5.43 9.45 59.41 
90% 62.63 13085 5.40 12.5 306 18.23 16.10 26.20 16.58 9.32 5.21 8.35 60.53 
85% 60.08 12554 5.19 12.5 306 18.58 16.19 26.52 16.70 9.34 5.17 7.50 61.29 
80% 57.47 12008 5.06 12.5 306 18.85 16.41 26.77 16.81 9.28 4.99 6.91 62.02 
75% 55.15 11524 4.97 12.5 249 19.18 16.56 26.83 16.95 9.13 4.99 6.37 62.57 
70% 52.91 11054 4.80 12.5 249 19.51 16.79 26.98 16.95 9.00 5.01 5.75 63.28 
65% 50.49 10549 4.77 12.5 249 19.68 16.99 27.02 16.97 8.82 5.05 5.48 63.68 
60% 47.88 10005 4.70 12.5 234 19.85 17.10 27.28 17.08 8.70 4.92 5.08 64.23 
55% 44.87 9375 4.71 12.5 234 20.15 17.19 27.18 16.99 8.80 4.83 4.85 64.52 
50% 41.62 8696 4.68 12.5 234 20.41 17.36 27.36 17.09 8.73 4.55 4.50 65.13 
45% 38.28 7998 4.65 12.5 234 20.63 17.49 27.62 16.92 8.61 4.53 4.20 65.74 
40% 34.71 7253 4.64 12.5 183.5 20.94 17.30 27.91 17.04 8.49 4.44 3.87 66.15 
35% 30.98 6473 4.67 12.5 183.5 21.47 17.40 28.52 16.64 8.31 4.03 3.63 67.39 
30% 26.87 5615 4.77 12.5 109.5 21.80 17.49 28.62 16.74 8.14 3.90 3.31 67.91 
25% 22.56 4714 4.84 12.5 109.5 22.30 17.56 28.91 16.53 7.96 3.69 3.05 68.77 
20% 17.68 3694 5.02 12.5 103 22.77 18.19 29.53 16.13 7.34 3.38 2.65 70.49 
15% 12.88 2691 5.07 12.5 103 23.56 19.03 29.84 15.68 6.47 2.86 2.56 72.43 
10% 8.10 1693 5.21 12.5 103 24.39 20.44 30.42 14.77 5.43 2.48 2.07 75.25 
5% 3.11 650 4.84 12.5 98 27.69 24.00 30.15 13.08 3.54 1.38 0.15 81.85 
4% 2.27 475 4.82 12.5 98 28.21 22.95 32.63 12.21 2.53 1.26 0.21 83.79 
3% 1.38 289 4.56 13 95 32.18 21.11 34.26 10.03 2.42 0.00 0.00 87.54 
2% 0.66 137 4.09 13 95 38.69 23.36 29.20 8.03 0.73 0.00 0.00 91.24 
1% 0.11 22 2.53 15.5 29 68.18 18.18 13.64 0.00 0.00 0.00 0.00 100.00 
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The results after applying the limits at 24 different confidence bounds accounting for 
between 1 and 99% of the model relationships in each of the 16 weight and body 
measurement models are shown in Table 28. Table 28 shows that uniform narrowing 
of the limits of each body measurement, decreases the chance of errors greater than 
±5 kg, while increasing the proportion of estimates within ±2 kg. This is desirable, 
however, the number of samples that pass through the filtering stage also drops 
considerably and the weight range narrows. Consequently, when configuring the 
limiting filter settings there is a trade-off between the inclusion of error and the 
volume and weight range of samples the system will collect. Potential confidence 
bounds settings are between 2 and 40% for grower-finisher pigs. A 1% or 2% 
confidence bound setting offers the highest accuracy but may be too selective in 
practice. A 40% confidence bound is less likely to be selective but is more likely to 
let through errors. Selection within this range will depend on various factors such as 
the variably in the environment caused by, non-pig objects, non-uniform lighting and 
dirty animals as these scenarios may reduce the quantity and quality of the available 
data. For this reason the software in Figure 93 was created so that the bounds could 
be modified easily during installation and setup.  
 
Figure 94 shows the percentage relative error of each of the samples that passed 
through the filter when set to 10% confidence bounds; the black line indicates the 
percentage mean-relative error of the samples that passed. The mean-relative error of 
estimates for the weight ranges less than 40 kg is higher as a small error is a large 
proportion of a lighter animal.  

 
Figure 94: Percentage Weight Error of the Samples that Passed at 10 Percent Confidence 
Bounds The Black Line Indicates the Mean-relative error (%) of All the Samples that Passed 
 
To generate the results in Table 28 all the limits of each body measurement have 
been changed in unison to the same percentage. However, it is also possible to 
change or remove any of the 16 limiting bounds independent of one another, which 
consequently could improve future filtering performance. To tune the limits filter, the 
feedback of the filters actions can be used. For example, Table 29 shows each of the 
body measurements and how they reacted in relation to the samples. The Column 
labelled Correct Remove corresponds to a sample which generated a result that was 
greater than ±5 kg and was filtered out, Correct Leave corresponds to a sample 
which generated a result that was less than ±5 kg and was left to output its weight 
estimate. Incorrect Remove is a false negative and Incorrect Leave is a false positive. 
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Table 29: The Dimension Limiting Filters Actions for Each of the 16 Body Measurements at 
10% Confidence Bounds 

Measurement Correct  
Remove 

Correct  
Leave 

Incorrect  
Remove 

Incorrect  
Leave 

MWFa 262 61 390 1 
MWMida 50 5 160 0 

MWRa 476 92 373 1 
AFc 161 6 21 0 

AMidc 167 0 2 0 
ARc 298 1 22 0 
AT2 155 0 0 0 
WFc 247 15 169 0 
WRc 196 7 242 0 
 ML 108 8 64 2 

FMLa 1086 854 2515 42 
MidL 2224 2203 4143 94 
RMLa 823 223 1076 13 
mWFa 60 33 430 1 
mWRa 154 87 935 3 
MLRho 86 20 27 0 

TOTAL 6553 3615 10569 157 
 
As the MidL body measurement has contributed to the most false negatives, 
removing it from the limits filter has had a positive impact on the filtering results at 
10% confidence bounds (see Table 30).   
 

Table 30: Enhancing the Limits Filter by Excluding Certain Body Measurements 
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10% With MidL 8.10 1693 5.21 12.5 103 24.39 20.44 30.42 14.77 5.43 2.48 2.07 75.25 
10% Without 

MidL 9.96 2081 5.04 12.5 103 25.04 20.47 30.42 14.37 5.38 2.45 1.87 75.93 

 
Note that this may not always be the case for other body measurements. 
 
3.6.5 Combining the Dimension Limiting Filter and Shape Filter 
 
Two different methods have been developed to restrict the output of incorrect weight 
estimates. These are based on the body measurements and shape extracted from the 
image, As the pig’s shape is the first variable recovered from the image, it is 
important to determine the shape’s prospect of providing an accurate weight-estimate 
before undertaking the extraction process. The shape filter has achieved this 
objective, as a shape and equation pair can effectively restrict erroneous results 
greater than ±5 kg to less than 6% at this early stage. If a sample passes through the 
shape filter they are then subject to the limits filter, which validates the weight 
estimate in respect to the body measurements extracted from the contour.  
 
The dataset was filtered based on the average template shape at a deviation setting 
highlighted in Table 27 in Section 3.6.3 Adjusting the Bounds of the Shape Filter and 
under a number of different limit settings between 1 and 99% confidence bounds. 
The results are presented in Table 31. 
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Table 31: Weight Estimate Output after Filtering the Contour Samples Based on Shape and 
Body Measurements 
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99% 6146 5873 2.98 13 228 20.43 17.57 27.79 16.94 8.36 4.92 3.98 65.79 
95% 6146 5757 2.97 13 228 20.65 17.65 27.98 16.90 8.27 4.90 3.65 66.28 
90% 6146 5657 2.96 13 228 20.79 17.69 28.21 16.90 8.20 4.70 3.50 66.70 
85% 6146 5525 2.96 13 201 21.01 17.63 28.29 17.00 8.18 4.65 3.24 66.93 
80% 6146 5326 2.95 13 201 21.22 17.86 28.56 16.92 8.00 4.43 3.02 67.63 
75% 6146 5149 2.96 13 180 21.48 17.93 28.45 17.01 7.85 4.37 2.91 67.86 
70% 6146 4984 2.97 13 180 21.63 18.16 28.33 16.91 7.70 4.47 2.79 68.12 
65% 6146 4804 2.98 13 109.5 21.79 18.23 28.29 16.80 7.66 4.50 2.73 68.32 
60% 6146 4602 2.99 13 109.5 21.90 18.27 28.44 16.84 7.58 4.32 2.63 68.62 
55% 6146 4339 3.01 13 109.5 22.24 18.18 28.35 16.73 7.65 4.29 2.56 68.77 
50% 6146 4052 3.04 13 103 22.24 18.34 28.46 16.78 7.63 4.10 2.47 69.03 
45% 6146 3742 3.07 13 103 22.31 18.47 28.75 16.46 7.54 4.09 2.38 69.54 
40% 6146 3396 3.12 13 103 22.56 18.23 28.86 16.52 7.54 4.03 2.27 69.64 
35% 6146 3026 3.12 13 103 23.07 18.11 29.64 16.33 7.30 3.54 2.02 70.82 
30% 6146 2622 3.16 13 103 22.85 18.50 30.17 16.55 6.79 3.36 1.79 71.51 
25% 6146 2199 3.25 13 103 22.69 18.42 30.47 16.69 6.91 3.23 1.59 71.58 
20% 6146 1688 3.41 13 103 23.52 19.49 30.04 16.35 6.64 2.43 1.54 73.05 
15% 6146 1221 3.59 13 103 24.90 20.39 29.65 15.15 6.14 2.13 1.64 74.94 
10% 6146 764 3.72 13 103 26.44 22.51 29.97 13.09 4.71 1.57 1.70 78.93 
5% 6146 278 3.67 13 98 30.94 27.70 27.34 10.43 2.88 0.72 0.00 85.97 
4% 6146 201 3.76 13 98 31.34 26.87 31.34 7.96 1.99 0.50 0.00 89.55 
3% 6146 125 3.79 13 95 32.00 28.80 29.60 7.20 2.40 0.00 0.00 90.40 
2% 6146 61 3.17 13 95 40.98 31.15 21.31 4.92 1.64 0.00 0.00 93.44 
1% 6146 12 2.32 15.5 25.5 66.67 25.00 8.33 0.00 0.00 0.00 0.00 100.00 
 
Table 31 indicates that higher limiting filter settings (greater than 40% confidence 
bounds) are acceptable when using the samples that have passed through the shape 
filter, compared to the results obtained when the filters are used independently. Thus, 
when using the filters in combination, limiting bounds between 2 and 75% are 
acceptable for pigs in the grower finisher range. However, as mentioned previously, 
the configuration of the both the shape and limit filter settings can be adjusted 
respect to the conditions that the system will be exposed too. For example, if the 
system was observing clean white pigs in a controlled black environment with 
structured lighting, then a satisfactory capture rate may occur at limit-filter settings 
of less than 20%. Selecting lower confidence bounds may also be more appropriate 
in practice, as on average the duration of the videos sampled to create the dataset  
only consisted of 41 frames (8.2 seconds of footage).The maximum duration of any 
one video was 33 seconds. Consequently, during these simulations the opportunity to 
collect a sample frame with the animal in the correct pose was limited in respect to 
what would occur around the feeder in normal production circumstances. Online 
testing in the installation environment needs to be undertaken to optimise filter 
settings in respect to the number of images acquired and the accuracy of the system. 
This can be achieved by adjusting the software settings in respect to Table 27, Table 
28 and Table 31. 
 
3.6.6 Determining the Appearance-Based Attributes of Pigs for Tracking  
 
The pigs can be tracked in order to: (i) enhance segmentation, (ii) determine pig 
attendance at the feeder and (iii) determine bias in feeding behaviour. 
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Software was written to automatically extract and store data from video. This 
involved the in the automatic identification of the pig within the image using 
thresholding. Although thresholding was not effective at recovering the precise 
contour of a pig in the observed scene, it was useful for determining its approximate 
location . This localised region became the starting point for a search for the pig in 
subsequent frames and assisted with segmentation. 
 
The first step in the identification process involved the application of an adaptive 
threshold (Niblack, 1985) over subregions of the image. This was followed by an 
erode operation on the binary image to separate any touching objects. An opening 
procedure was then applied, which removed any small to medium sized objects from 
the image that could not be a complete or larger proportion of a pig. A dilation 
procedure followed which joined large areas together that were in close proximity. If 
a shape that was consistent with a pig shape was identified in consecutive frames, a 
subtraction took place, such that all the information surrounding the region 
containing the pig was suppressed. An opening operation then limited the area of any 
remaining object to within a specified range of pixels. This range ensured pigs 
between 12.5 and 306 kg would not be excluded. Finally, the object was validated on 
several image-based attributes including: 
 

• Standard deviation of the shapes pixel values (uniformity of appearance)  
• Area (the original area found by applying a threshold algorithm (Niblack, 

1985) over image regions across the entire image) 
• Solidity (proportion of the area to the convex hull of the area)  
• Mean Intensity (of the shape’s pixels)  
• Orientation  
• Perimeter  
• Eccentricity (ratio between the foci of an ellipse containing the shape and the 

length of its main axis)  
• Area versus Perimeter Ratio 
• Major Length versus Minor Length Ratio  
• Minor Axis Length  
• Major Axis Length  
• Euler Number (number of objects in the region minus the number of holes in 

the objects) 
• Area 2 (the area found after applying a threshold algorithm (Niblack, 1985) 

over the segmented image region that was likely to contain a pig) 
 
These parameters were stored during the extraction process so that the parameters of 
the shapes used in the construction of the average template shape could be recovered. 
These recovered attributes, defined ranges for the image-based representation of a 
pig that would promote a good result. Table 32 shows the various statistics of twelve 
of these attributes as chosen by the system during the shape building process as 
highlighted in Table 27.  
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 Table 32: Image-based Descriptors of a Pig for Early Identification 

 W
ei

gh
t 

St
an

da
rd

 
D

ev
ia

tio
n 

A
re

a 

So
lid

ity
 

M
ea

n 
In

te
ns

ity
 

Pe
ri

m
et

er
 

E
cc

en
tr

ic
ity

 

A
re

a 
Pe

ri
m

et
er

 
R

at
io

 

M
aj

or
 L

en
gt

h 
M

in
or

 L
en

gt
h 

R
at

io
 

M
in

or
 A

xi
s 

L
en

gt
h 

M
aj

or
 A

xi
s 

L
en

gt
h 

E
ul

er
 N

um
be

r 

A
re

a 
2 

Max 238.0 0.114 523892 0.951 0.834 5639.7 0.975 142.2 4.457 460.5 1680.20 1.0 545071 
Min 13.0 0.015 44927 0.643 0.350 996.2 0.883 38.0 2.132 140.6 413.57 -43.0 31707 

Range 225.0 0.099 478965 0.308 0.484 4643.5 0.091 104.2 2.325 319.9 1266.63 44.0 513364 
STD 39.3 0.015 73614 0.041 0.050 563.7 0.009 14.7 0.297 53.5 181.49 3.9 80751 
AVE 74.5 0.057 194180 0.838 0.444 2654.3 0.954 71.3 3.383 276.4 931.62 -2.6 184444 

 
These ranges can be used as references in future developments. For example, if all 
the observed pigs are white then the standard deviation of the pixel values on the 
animals back may indicate the cleanliness of the pig. The area may also be used to 
give a preliminary indication of the weight of the object being assessed. Hence, if the 
object area is too large or small in respect to the group average weight found on the 
previous day then the recovered object can be discounted. The minor and major axis 
length, eccentricity and perimeter can also be used in a similar manner. The grey-
scale mean-intensity of the pixels making up the pig’s back were collected so that the 
values could be applied as thresholding boundaries to suppress non-pig objects 
during image analysis. If the database was to be formed a second time, the mean 
intensity from the three separate colour channels would also be recovered to 
determine potential thresholding boundaries to suppress non-pig objects across the 
colour image. However, these thresholding boundaries will undoubtedly change with 
environmental conditions such as the luminance of the scene in respect to the time of 
day. As a result, further data collection may be required.  
 
This attribute recovery facilities continuous-improvement code, thus in future it may 
be built-into the system to recover the image-based representation of pigs. This 
information would provide valuable feedback about the conditions that the system is 
operating under and consequently help with the optimisation of system settings.  

 
3.6.6.1 Tracking and Recording Pig Attendance at the Feeder 
 
Rather than searching and identifying the pig in every frame, it is much faster and 
easier to re-identify the pig in the subsequent image using its location in the current 
frame; using some form of temporal correspondence. A tracking routine can use 
temporal correspondence to link features recovered from a frame to an adjacent or 
subsequent frame.  
 
The tracking method created during this study is linked to the shape filter. The shape 
filter was able to recognise the pig within a certain range of posture by the number of 
points which passed within a certain deviation of a constructed average template 
shape. If all the points passed this process then the shape passed through to have its 
body measurements extracted. However, if some of the shape’s points did not pass 
the shape filter, then the information was not discarded entirely. Instead, the value of 
points which did pass the shape filter relative to the pass requirement (1500 points) 
was determined giving an indication of how likely the object was a pig and how 
close it was to the required pose. Even though the shape was not suitable for weight 
estimation it could be used to identify the pig with a high level of confidence. Hence 
the region within the image where a pig was in attendance could be determined and 
subsequently tracked to maximise the chance observing a pose appropriate to 
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undertake a weight estimate in subsequent images. Figure 95 below shows the 
bounding box surrounding the pig during a successful capture. The co-ordinates of 
this box region are relayed to the subsequent image to localise the image search 
space containing the pig and maximise the chance of relocation. 
 

 
Figure 95: The Region from which the Pig was Re-identified 

 
3.6.7 System Precision 
 
Section 3.3.3.1 The Effect of Gut Fill earlier made assumptions about what the 
practical precision of a device weighing pigs should be given the effect of gut fill. 
Table 33 shows the performance of the developed system at 65% limit settings over 
various weight ranges compared to the assumed practically obtainable precision of 
weighing pigs. This assumed acceptable error margin is 50% of the total range of 
gut-fill of the animal at a given weight. 
 

Table 33: Comparing Simulated Precision with Acceptable Error 
Simulated piGUI System Performance Acceptable Error 

Weight  
Range 

Number Samples 
Passed Filter 

Mean Weight  
Error (kg) 

Mean  
Weight (kg) 

Mean Relative  
Error (%) Weight 

50% GF GF 
GF 

Error 
∆𝑾 (kg) 

GF 
/LBW 
(%) 

GF 
Error 
(kg) 

GF/ 
LBW 
(%) 

15   25 331 1.07 20.96 5.08 20 0.87 4.33 1.73 8.66 
25   35 498 1.49 28.34 5.26 30 1.11 3.70 2.22 7.40 
35   45 263 1.49 39.57 3.77 40 1.32 3.31 2.65 6.62 
45   55 477 1.24 49.61 2.50 50 1.52 3.04 3.04 6.07 
55   65 447 1.46 59.54 2.45 60 1.70 2.83 3.39 5.66 
65   75 695 1.74 70.81 2.46 70 1.86 2.66 3.73 5.33 
75   85 1169 1.73 79.38 2.17 80 2.02 2.53 4.05 5.06 
85   95 586 2.05 89.78 2.28 90 2.17 2.42 4.35 4.83 
95   105 295 2.28 97.99 2.33 100 2.32 2.32 4.64 4.64 

105   115 1 0.38 109.50 0.35 110 2.46 2.24 4.92 4.47 

 
From Table 33 it can be seen that, on average, the piGUI system successfully 
calculates the weight of individual pigs greater than 45 kg to practical precision. On 
average, pigs weighing between 15 and 45 kg do not reside within this 50% gut fill 
range. However, they are well within the maximum and minimum ranges for gut fill 
at these weight ranges (within 67.5% of the maximum range). Lowering the camera 
to these smaller pigs could possibly enhance the results in the weight-range of 15 to 
45 kg in future as body measurements can be obtained more precisely and subtle 
difference can be detected. 
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3.7 CONCLUSIONS 
 
A method was created to segment the body contours of pigs from images and to 
exclude the head and tail from further analysis.  
 
The reference points of sixteen body measurements along the contour shape were 
automatically identified and extracted using the developed techniques. Software was 
written to automatically carry out these functions on both streaming video and a 
database of collected videos.  
 
Code facilitating the conversion from pixels to millimetres was written into the 
software. This conversion was automatically applied when a resolution and an 
installation height was entered by the user. This software feature ensured that the 
equation coefficients could remain the same irrespective of installation height and 
selected camera resolution.  
 
Preliminary testing of the device highlighted areas of improvement. Subsequently, a 
filtering process was developed to validate the contour shape after segmentation. A 
filtering method in which each shape was evaluated on a point by point basis out 
performed an alternative method which attempted to describe the residual of the 
shape as a single value.  
 
To estimate the weight of the pigs from the extracted body measurements, linear, 
non-linear and multivariate linear equations were formed. Results indicate that a 
multivariate linear equation built using a stepwise selection of the 16 extracted body 
measurements, 11 angles and their 351 paired interactions performed the best, with 
3% less samples in the greater than ±5 kg category and 2% more samples in the less 
than ±2 kg error category than the closest non-linear equation.  
 
During off-line analysis the chosen shape filtering process was shown to maintain 
weight estimate error between 0 and 2 kg of the actual weight at a rate of 64% and 
errors greater than ±5 kg a rate of less than 6%. This indicated that 94% of weight 
estimates that passed through the shape filter were within ±5 kg of the actual weight 
of the pig. This ensured that the integrity of extracted contour shapes could be 
discriminated against early in the processing loop, thus enhancing efficiency and 
reliability.  
 
In addition, weight estimation precision was also enhanced by modelling the weight-
estimation equation as function of shape. Compared to previous benchmarks a 
favourable 24% increase in the number of weight estimates between 0 and 2 kg 
occurred, while the number of weight estimates greater than ±5 kg reduced by 19%. 
A secondary filter was developed to validate the estimated weight against the body 
measurements extracted from the contour. During off-line analysis this limit filtering 
process was shown to maintain weight estimate error between 0 and 2 kg of the 
actual weight at a rate of 68% and errors greater than ±5 kg a rate of less than 3.5% 
over the grower finisher range. When these two filters were combined during off-line 
analysis the weight estimate error between 0 and 2 kg of the actual weight was 
maintained at a rate of greater than 68% and errors greater than ±5 kg a rate of less 
than 3% over the grower finisher range. Tables provided from these simulated results 
give grounds for the selection of the filtering parameters. This selection may be 
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based on the environment that the device will be exposed too and the weight range 
observed.  
 
As pig height was manually determined during data collection, height was included 
in the weight-estimation equation to determine its effect on the performance of 
weight estimation. Over the entire dataset the multivariate equation including the 
height parameter improved estimation precision by 7.34% in the less than ±2 kg 
weight-estimation category and  by 8.87% in the greater than ±5 kg category 
compared to the multivariate equation without the height parameter. However, 
heights positive effect was reduced when a subset of the dataset was considered 
based on the integrity of the contour samples. As after sorting, and selecting the first 
3500 samples, the multivariate equation including height contributed to 6.29 % in the 
less than ±2 kg error category and only 1.09% in the greater than ±5 kg error 
category (compared to the multivariate equation without height as a parameter). 
Hence, due to the marginal benefit in precision and the practical issues related to 
finding a reliable reference point to obtain the height measure in practice, the height 
measurement was not pursued in this study. However, it may be considered for future 
work.   
 
The image-based attributes of the pigs that were used in the shape and equation 
building process were recovered for use in future development, as they provide 
potential starting points for tracking and segmentation functions. A tracking 
procedure was integrated into the software to relocate the pig in subsequent frames 
and to enhance the likelihood of obtaining weight estimates. This tracking procedure 
was linked to the shape filtering stage, as a contour that did not pass the shape filters 
criteria could still be used to identify the presence of a pig. 

 
Additional work can be carried out in several areas related to this methodology. First, 
the methodology itself is applicable to the weight estimation task of other livestock 
species. The code used to generate the database automatically from videos can be 
used to automatically extract the body measurements of other livestock species from 
video frames and store them in a format ready for analysis (some modification may 
be required). The code used to generate the equation and average template shape 
(shape filter) is directly linked to the database structure such that it can be used in a 
‘plug-in’ manner. The shape building process may also be used to define a 
behavioural action. This can be done by first building a library of shapes describing 
the sequence of the action using the developed code. Then a sequence of average 
template shape can be used to validate a behavioural action when it is observed by 
cross-referencing between extracted contours obtained while tracking the animals. 
Other work surrounds the further development of the functional elements of the 
software.  
 
During the shape filtering process the residual can potentially be used identify and 
repair sample contours that have not been segmented correctly. A second pass of the 
image frame could validate the re-constructed contour.  
 
The technique described in Section 3.5.1.5 The Stitching Method to Enclose the 
Contour Shape can potentially be used to identify multiple pigs. First, a blob analysis 
can be performed using the appearance information unique to pigs defined in Section 
3.6.6 Determining the Appearance-Based Attributes of Pigs for Tracking. The 

135 
 



centroid of each blob can be calculated and the sweeping algorithm can be applied to 
each object determining its gradient boundary. As the sweep progresses the extracted 
contour information could potentially be validated with the magnitude vector so that 
processing can terminate on blobs objects that are not likely to be pigs. However, 
removal of the tail and head may pose additional challenges using this technique.  
 
On average, for individual pigs weighing in the range of 45 to 115 kg the system 
operated within an acceptable error margin of 50% of the gut fill. For pigs in the 
weight range of less than 45 kg, on average, the system operated within 67% of the 
weight attributed to gut fill. The percentage mean-relative error was between 5.1 % 
and 3.7% for pigs weighing between 15 and 45 kg and less than or equal to 2.5% for 
pigs between 45 and 115 kg. These results indicate that the system will, on average, 
operate to within the error margin attributed to gut fill. Therefore, this indicates that 
the system will be able to calculate the animal’s body weight effectively and to 
practical precision. However, it will be unable to detect the small variation in body 
weight caused by the gut.  
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Chapter 4   
 
Growth Recorded Automatically and Continuously by a Machine 
Vision System for Finisher Pigs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tscharke, M. &Banhazi, T. M. (2011).Growth recorded automatically and 
continuously by a machine vision system for finisher pigs. In The Bi-annual 
Conference of the Australian Society of Engineering in Agriculture (SEAg 2011), 
454-464. (Eds C. Saunders and T. Banhazi). Gold Coast, Australia: Australian 
Society of Engineering in Agriculture. 
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ABSTRACT 
 
Conventional livestock weighing methods require direct contact with the animals. 
Such contact is both physically demanding and hazardous for those undertaking 
weighing activities. Alternatively, a livestock animal’s weight can be estimated from 
its body measurements using non-invasive methods. This chapter presents recent 
improvements in the ongoing development of a completely automatic, two 
dimensional machine vision system labelled the piGUI system, designed to obtain 
body measurements of pigs in order to estimate their live weight. Results comparing 
livestock weights obtained by a conventional method and the vision-based method 
are reported for pigs in their finisher stage of growth. 
 
During off-line testing of a video dataset, the piGUI system demonstrated that it was 
capable of estimating the average group weight to within 2.5% error of the actual 
group average weight. In addition, the weight deviation of the groups was estimated 
within ±1 kg error of the actual group weight deviation. During on-farm testing the 
average group weight was accurate to 2.5% relative error and the estimated weight 
deviation was within ±2 kg of the actual weight deviation.  
 
Recording the continuous live weight change of livestock (growth) is important as it 
can be used to measure animals’ responses to various factors such as the surrounding 
climate, housing environment and nutrition. Assessing the animals’ responses to 
these conditions is essential in improving the efficiency and welfare of livestock in 
both research and commercial settings. 
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4.1 INTRODUCTION 
 
Recording the growth of livestock animals is important from an animal production 
perspective, as livestock produces rely on growth information to initiate and improve 
management procedures (Whittemore et al., 2001; Whittemore, 2004). For example, 
periods of substandard growth may indicate poor health and may prompt further 
investigation and treatment (Maltz, 2010). The ability to detect such problems relies 
on the availability of growth data. 
 
Conventionally, growth data has been determined by manually drafting the animals 
through an electronic livestock scale. This method is labour-intensive and hazardous. 
The data acquired is also often coarse, as it is only feasible to collect a few data 
points over the production cycle (Brandl and Jørgensen, 1996; Lundqvist and 
Gustafsson, 1992; Hartman et al., 2004).  
 
Alternatively, mechanised weighing methods can automatically record the growth of 
livestock animals on a daily basis (Weight Watcher™, Osborne Industries, Inc., 
Kansas, USA). However, despite their usefulness, the benefits of these automatic 
cage-type scales can easily be counteracted if (i) batches of animals are not 
successfully trained to (willingly) move through the scale, (ii) if the farmer fails to 
learn how to run and maintain the equipment accordingly or (iii) if the correct space 
allocation, gate placement and barn layout is not achieved during installation 
(Morrison, 2004). Notably, majority of the problems surrounding mechanised scales 
arise from (i) the physical interaction between the scale and the animals it services 
and (ii) the ‘control’ facilitated by the skilled workers drafting or training the 
animals. 
 
Subsequently, machine vision systems are being developed which require no 
confinement or interference towards livestock during weight assessment (Banhazi et 
al., 2011b). Machine vision systems determine livestock growth by first estimating 
each animals weight based on its image-derived body measurements, and then 
forming a group average weight estimate based on a representative sample of the 
individual estimates over the course of a day (Marchant et al., 1999; Schofield et al., 
1999). In this manner, machine vision systems can determine both group and 
individual growth information automatically and continuously. Thus, information 
can be readily obtained daily, without depleting labour resources. Consequently this 
method overcomes much of the safety risk and costs associated with conventional 
and mechanised methods (Tscharke and Banhazi, 2011).  
 
Previously a machine vision system was developed to estimate the weight of  pigs 
during the grower-finisher growth period (Banhazi et al., 2011b). The main aims of 
the work reported in this chapter were to determine whether (i) the group average 
weight and (ii) the group weight deviation of groups of finisher pigs could be 
estimated within practical accuracy using the system, thus, further extending the 
concept of the developed vision-based weighing system.  
 
4.2 MATERIALS AND METHODS  
 
A machine vision system was developed to acquire and process images obtained 
from a camera (Quickcam Pro 9000, Logitech, Quarry Bay, Hong Kong). Several 
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processing routines were programmed in Matlab (MathWorks, Inc., Natick, MA) to 
search the image, identify a pig shape, extract a pig’s body measurements, estimate a 
pig’s weight and finally validate the weight with reference to the body 
measurements. These routines ensured that no operator involvement was required to 
obtain weight estimates, as all required intelligence was built into the program. The 
process is illustrated in Figure 96. The systems processing tasks were undertaken by 
a nettop PC (fit2PC, CompuLab Ltd, Technion, Haifa, Israel). This computer was 
chosen to overcome several problems experienced using desktop computers in the 
piggery environment. The compactness of the PC (115 × 101 × 27 mm) reduced the 
chance of rodent or insect infestation. The small size also enabled the system to be 
easily mounted and transported and its fan-less operation prevented moisture and 
dust from being drawn into the PC.  
 
Two filters were constructed in order to recognise a pig within an image when it was 
in a particular pose. The first shape filter was created from an average of different 
sample contours of a set weight reference pose. The second filter contained the 
various body measurements of pigs at different weights. These filters were then used 
to validate a segmented body contour as a ‘pig shape’ and to cross-validate between 
body measurements and weight estimates.  
                 

 
 
Figure 96: The Main Steps Used During the Image Analysis and the Weight Estimation Process 
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4.2.1 Experimental Setup and Location of the PiGUI System 
 
To determine the relative precision of the system, an off-line validation and on-farm 
validation was conducted using the data collected from a commercial research 
piggery (PPPI, University of Adelaide, Roseworthy campus).  
 
4.2.1.1 Off-line Validation 
 
For the off-line validation, 412 videos of finishing pigs (55 to 125 kg) were acquired 
directly before they entered an electronic weigh scale (Pig Weigh Crate, Ruddweigh, 
Guyra, Australia, ±1%). The weights of the animals were recorded to the nearest 
±0.5 kg. The videos were taken at a resolution of 1200x1600 and at a height of 2 m 
lens to ground. The 412 videos were separated into three groups; Group 1 containing 
all 412 male and female pigs, Group 2 containing 242 male pigs and Group 3 
containing 170 female pigs. The pigs in the three groups were also evaluated on an 
individual basis by the system.  
 
The filtering processes ensured that the estimations made would be as accurate as 
possible by removing redundant data, such as when the pig’s body pose was not 
suitable for weight assessment. The underlying philosophy of both the off-line and 
on-line trial was to measure a single pig once daily to get a good estimate (similar to 
an electronic scale) rather than obtaining many erroneous measurements and 
attempting to average them out. In addition, it was noted that if each individual 
weight measurement was precise enough, the deviation of the animals’ weight as a 
group may be estimated. In practice, this measure may prove to be a valuable gauge 
to assist farmers in maintaining their pigs in groups of similar weight ranges.  
 
4.2.1.2 On-farm Validation 
 
The farm trial involved setting up the piGUI system above a small pen at the piggery. 
Located inside the pen were 15 male pigs and a single feeder and drinker. The 
camera was placed above the feeder to give the system adequate opportunity to 
assess each pig’s weight of over the course of the day. Thus at this location, 
sufficient data would be available to estimate the average weight of the group. To 
guarantee that the system could successfully operate under natural lighting 
conditions in commercially realistic environments, artificial lighting was not used 
within the pen. The automatic exposure feature of the camera compensated for much 
of the light variation encountered.  
 
Figure 97 (a) provides a top view of the experimental setup and location and Figure 
97 (b) shows the equipment interface. Radio frequency identification was integrated 
but not active during this trial. 
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(a) (b) 
Figure 97: (a) The Experimental Setup at the Facility; (b) The Equipment Interface 

 
After the piGUI system was setup and initialised, the following key information was 
recorded when successful weight assessment had taken place: (i) an image of the pig 
with an overlay of contour shape detected (Figure 98 (a)), (ii) the shape information 
of the contour, (iii) the body measurements used to estimate the weight (Figure 98 
(b)), (iv) an weight estimate using several equations and (v) a time-date stamp of 
when the image was taken.  
 

  
(a) (b) 

Figure 98: (a) An Image Recorded by the System; (b) An Image with the Extracted Body 
Measurements Overlayed 

 
In total, 15 body measurements were extracted from the body of the pigs observed in 
the images (Figure 99). The body measurements WFc and WRc refer to the widths 
derived from the points directly behind the shoulders and in front of the hams 
respectively. These measurements are often different from the minimum widths 
recorded (mWFa, mWRa) due to the pose of the pig.  
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Dimension  Key 
L1 MWFa  M Max 
L2 mWFa  m Min 
L3 MWMida  W Width 
L4 mWRa  L Length 
L5 MWRa  F Front 
L6 MidL  R Rear 
L7 ML  Mid Middle 
L8 FMLa  A Area 
L9 RMLa  a angular 
A1 AFc  c curvature 
A2 AMidc  T2 Spline 
A3 ARc    
A4 AT2    
L10 WFc    
L11 WRc    

(a) (b) 
Figure 99: (a) The Locations of the Various Body Measurements which were Extracted from the 

Images of Pigs; (b) A Key Giving Further Detail on the Name of Each Dimension  
 
To validate the vision systems group average and individual weight estimates, the 
entire group of animals were weighed manually seven times over a 22 day period 
using the pig weigh crate specified previously. The weigh crate had a relative error of 
±1% according to manufacturing specifications and was located a short distance from 
the experimental pen. To enable easy identification by visual observation on future 
weigh days, the pigs’ backs were marked with livestock paint in a unique pattern 
during weighing.  
 
The pigs chosen for the experiment were in their finishing stage, weighed between 
60 and 120 kg and were a cross between a Large White, Landrace and terminal sire. 
This is a common Australian breed-combination for pigs produced for their meat. 
Twelve pigs were observed in total during the field trial, however, one of the pigs 
was only in the pen for a short period of two and a half days.  
 
Weights were estimated using 22 different equations. A lookup table was created and 
used to determine the ability of each of the 15 body measurements in estimating the 
animals’ group average weight. The first column of the lookup table consisted of 0.5 
kg increments of weight from 10 to 120 kg and the remaining adjacent 15 columns 
contained the corresponding body measurements at the weight located in the first 
column. These body measurements were based on the extracted measurements from 
a separate data sample. The table was used in reverse such that the closest match of 
each of the 15 body measurements obtained from the image was found before 
recovering the corresponding weight estimate from the first column. The average of 
the each of the 15 individual weight assessments became a further mean-body 
measurement weight-estimation equation. The remaining six equations were a 
mixture of linear equations constructed from regression and multiple regression 
analysis and power based equations. A list of the equations and their respective 
variable input and type can be found in Table 34.  
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Table 34: List of Equations and Respective Variable Input Dimension(s) 
Equation Type Variable(s) 

EQ1 Lookup Table MWFa 
EQ2 Lookup Table MWMida 
EQ3 Lookup Table MWRa 
EQ4 Lookup Table AFc 
EQ5 Lookup Table AMidc 
EQ6 Lookup Table ARc 
EQ7 Lookup Table AT2 
EQ8 Lookup Table WFc 
EQ9 Lookup Table WRc 
EQ10 Lookup Table  ML 
EQ11 Lookup Table FMLa 
EQ12 Lookup Table MidL 
EQ13 Lookup Table RMLa 
EQ14 Lookup Table mWFa 
EQ15 Lookup Table mWRa 
EQ16 Average LUT (EQ1+EQ2+EQ3…+EQ15) /15 
EQ17 Linear Regression AT2 
EQ18 Power AT2 
EQ19 Multiple Regression MWFa, MWRa, AT2, mWFa, mWRa 
EQ20 Multiple Regression All 15 Variables MWFa mWRa 
EQ21 Multiple Regression MWFa MWMida MWRa WFc WRc  ML mWFa mWRa 
EQ22 Multiple Regression 14 Variables MWFa mWRa excluding AT2 

 
4.3 RESULTS AND DISCUSSION 
 
4.3.1 Off-line Trial Results 
 
During the off-line trial, the frames of the 412 videos were subject to an automatic 
extraction procedure, whereby the body contour and measurements of the finisher 
pigs were recovered. The extracted information was used to make a weight estimate 
only when the shape and limits filter deemed it appropriate. Each frame that passed 
the filtering processes was used to assess the system’s ability to determine the weight 
of individual pigs. As radio frequency identification is unavailable during normal 
system operation, the daily group average weight estimate must be formed by 
averaging all individual weight estimates, regardless of whether estimates have been 
collected of each pig uniformly. Hence, this method has potential to yield a different 
result than obtaining the group average weight by dividing the combined weight of 
the pigs by the number of pigs. Results presented in this section show the error 
between these approaches and determine the group average estimates both before and 
after the filters’ actions. During these tests the shape filter was set to 1.5, 2.6 and 3 
deviations and the limits filter was set to 80% bounds. 
 
4.3.1.1 Individual and Group Average Weights 
 
Group 1 contained all 412 video samples of a mixture of 412 male and female pigs. 
Table 35 shows the vision system’s ability to calculate the group average weight with 
and without the filters. Two actual weights are also presented. The first, ‘Actual 
Weight Frames’ is the actual average weight and deviation based on weights 
obtained from the electronic livestock scale for the frames that were extracted from 
the videos (see Before Filtering on row 1). The second, ‘Actual Weight Videos’ is 
the actual average group weight and weight deviation based on weights obtained 
from the electronic livestock scale for the each of the pigs in the 412 videos (see 
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Before Filtering on row 1). Hence, the result given on the row one containing the 
unfiltered Actual Weight Videos is the average (80.3 kg) and deviation (12.3 kg) of 
the group as determined by conventional means. All other results are based on the 
data that were available to the system after the extraction (row 1) and various 
filtering operations (rows 2 to 4). 
 

Table 35: Performance of the piGUI System Estimating the Weight of Group 1 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 79.6 40.6 79.3 12.2 80.3 12.3 

Limit Filter 77.6 12.0 77.8 11.6 79.3 12.2 
Shape Filter 78.9 11.9 79.0 11.7 79.3 12.0 

Combined Filters 78.8 11.7 78.9 11.5 78.7 12.1 
 
Table 36 shows the error in individual weight estimates of the sample frames which 
passed through the filtering processes. Each sample has been assigned to an error 
category based on the difference between the weight estimate and the actual weight.  
  

Table 36: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 1 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 1473 11.0 760 18.4 1065 16.8 630 19.1 
0.5 kg ≤ west < 1kg 1362 10.1 643 15.6 942 14.9 516 15.6 
1 kg ≤west < 2 kg 2364 17.6 1118 27.0 1660 26.2 921 27.9 
2 kg ≤ west < 3 kg 1779 13.2 774 18.7 1218 19.2 621 18.8 
3 kg ≤ west < 4 kg 1146 8.5 410 9.9 679 10.7 301 9.1 
4 kg ≤ west < 5 kg 729 5.4 240 5.8 386 6.1 194 5.9 

west ≥ 5 kg 4586 34.1 190 4.6 391 6.2 120 3.6 
Total Samples 13439 100.0 4135 100.0 6341 100.0 3303 100.0 

west < 2 kg 5199 38.7 2521 61.0 3667 57.8 2067 62.6 
 
Group 2 contained all 242 video samples of male pigs. The result for the weight 
estimates of Group 2 can be seen in Table 37, with individual weights for the group 
presented in Table 38.  
 

Table 37: Performance of the piGUI System Estimating the Weight of Group 2 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 80.2 46.3 81.1 14.1 82.4 13.8 

Limit Filter 78.7 14.4 79.2 14.1 81.0 14.0 
Shape Filter 80.2 14.8 80.5 14.7 80.9 14.1 

Combined Filters 80.5 14.4 80.8 14.3 80.4 14.1 
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Table 38: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 2 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 724 9.7 372 19.0 514 16.5 301 19.3 
0.5 kg ≤ west < 1kg 634 8.5 275 14.1 430 13.8 226 14.5 
1 kg ≤west < 2 kg 1114 14.9 487 24.9 767 24.6 410 26.3 
2 kg ≤ west < 3 kg 903 12.1 373 19.1 602 19.3 294 18.8 
3 kg ≤ west < 4 kg 584 7.8 214 10.9 337 10.8 156 10.0 
4 kg ≤ west < 5 kg 418 5.6 127 6.5 218 7.0 104 6.7 

west ≥ 5 kg 3114 41.6 109 5.6 246 7.9 71 4.6 
Total Samples 7491 100.0 1957 100.0 3114 100.0 1562 100.0 

west < 2 kg 2472 33.0 1134 58.0 1711 55.0 937 60.0 
 

Group 3 contained all 170 video samples of female pigs. The result for the weight 
estimates of Group 3 can be seen in Table 39, with individual weights for the group 
presented in  
Table 40.  
 

Table 39: Performance of the piGUI System Estimating the Weight of Group 3 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 78.9 32.0 77.0 8.7 77.5 9.2 

Limit Filter 76.5 8.9 76.4 8.2 77.1 8.9 
Shape Filter 77.7 8.2 77.6 7.9 77.5 9.1 

Combined Filters 77.4 8.3 77.3 8.0 77.0 9.1 
 

Table 40: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 3 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 749 12.6 388 17.8 551 17.1 329 18.9 
0.5 kg ≤ west < 1kg 728 12.2 368 16.9 512 15.9 290 16.7 
1 kg ≤west < 2 kg 1250 21.0 631 29.0 893 27.7 511 29.4 
2 kg ≤ west < 3 kg 876 14.7 401 18.4 616 19.1 327 18.8 
3 kg ≤ west < 4 kg 562 9.5 196 9.0 342 10.6 145 8.3 
4 kg ≤ west < 5 kg 311 5.2 113 5.2 168 5.2 90 5.2 

west ≥ 5 kg 1472 24.8 81 3.7 145 4.5 49 2.8 
Total Samples 5948 100.0 2178 100.0 3227 100.0 1741 100.0 

west < 2 kg 2727 45.9 1387 63.7 1956 60.6 1130 64.9 
 
4.3.1.2 Discussion of Off-line Results 
 
Coincidently, the unfiltered data obtained from Group 1 yielded the closest average 
group estimate of 79.6 kg to the actual group average weight of 80.3 kg (see Table 
35 Before Filtering). However, the integrity of this estimate should be scrutinised as 
the weight deviation of the samples used to form this estimate was 41 kg when it 
should have been closer to 12 kg. This indicated that there was a large range and 
variability in the estimates used to form this average and therefore these errors 
should ideally be removed. Subsequently the filtering operations did successfully 
remove these erroneous samples. This can be seen in the drop in the weight deviation 
to a level that resembles the actual group weight deviation of around 12 kg (refer to 
the last three rows of STD in the ‘Estimated Weight Frames’ column of Table 35). 
This demonstrates how it is possible to obtain the correct group average weight from 
datasets where large weight estimation errors are present, it appeared that the 
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commercial system tested in Chapter 8 worked on this merit (refer to the variability 
in weight estimates in Figure 142 between the piGUI system and the commercial 
system ‘System-A’). 
 
The results in Table 35 also indicate that the frames containing information of the 
heavier pigs were rejected during the extraction process, which has impacted the 
ability to estimate the actual group average. This can be seen in the average of the 
‘Actual Weight Frames’ column of Table 35 where the frames successfully extracted 
from the videos have formed an average weight of 79.3 kg; a difference of 1 kg from 
the actual group weight determined from each pig (80.3 kg). This difference was not 
surprising, as on average each video contained just 43 frames over a ~9 second 
period and during this time the pig was required to conform to a rough range of a 
particular pose in order for its shape and body measurements to be extracted. Only 
the information that made it through these loose constraints during extraction could 
be used to form the ‘Actual Weight Frames’ and the systems weight estimates. In this 
case the videos of the heavier pigs contained a large amount of redundant frames and 
data which was excluded at the extraction stage. Subsequently the filters could only 
refine the data that were available to them; data which were inclined to a group 
average of 79.3 kg and a weight deviation of 12.2 kg in Group 1 after the extraction 
process was complete. 
 
This system behaviour is not too concerning as in practice far more time than nine 
seconds will be available for the system to extract good quality data from each 
animal to form group averages. However, it does highlight a limitation of the method 
if only a limited amount of quality data are available of certain animals. 
 
The Group 2 results indicate that the heavier pigs which were missed during the 
extraction procedure were male. The actual group average of the males was 82.4 kg, 
while the average based on the frames differed by 1.3 kg at 81.1 kg. 
 
The performance of the filters can be seen in the first column (‘Estimated Weight 
Frames’) of Table 35, Table 37 and Table 39 rows 2 to 4. The combined shape and 
limit filtering method has performed very well over all three groups, as the actual 
average weight of the frame samples which made it through the extraction stage 
(‘Actual Weight Frames’) and passed through this filtering method resulted in 
estimates with errors no greater than 0.6 kg from the actual group average weights 
determined by conventional means.  
 
Group 3 containing the female pigs represented a case where ‘good quality’ 
information was available for the system to extract and assess. Here actual group 
average weight was 77.5 kg while the frame based average was similar at 77.0 kg. 
Subsequently, the filter successfully passed pigs in all weight ranges representative 
of those in the group and after the combined filtering processes the group. 
Consequently, after the combined filtering processes, the average group weight 
estimate differed by only 0.1 kg from the actual group average weight. 
 
The weight deviation of Groups 1, 2 and 3 was calculated within ±1 kg for the 
combined filtering process indicating that the system also has strong potential be 
used to determine the group weight deviation. Although, in practice the duration and 
frequency in which each pig is captured may vary and impact weight estimates so 
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on-farm validation is required. The individual weight assessment of Groups 1, 2 and 
3 indicate that when using the combined shape and limit filter the piGUI system can 
obtain 60% or more of the weight estimates of finisher pigs within ±2 kg while 
estimation errors greater than ±5 kg are reduced to less than 5%. 
 
4.3.2 On-Farm Trial Results 
 
More extensive testing was undertaken at the piggery to assess the precision of the 
programs weight estimates for both individual pigs and groups of pigs.  
 
4.3.2.1 Group Growth 
 
Results for the group average weights are presented in this section over the period 
between the 24/1/11 and the 15/2/11. During this period the animals were weighed 
seven times using the electronic livestock scale. Figure 100 shows the actual group 
average weight in conjunction with the piGUI systems daily group average estimate, 
which was formed by averaging the weight estimates which passed through the 
combined filter on each day. To show a direct comparison between scale-based and 
vision-based estimates the average weight of the group determined by the vision 
system on the days other than these seven days have been removed. The standard 
growth curve derived from Carr (1998) has been projected from the first actual 
weight recorded over the period (see Appendix E). 
 

 
Figure 100: Comparison between the Estimated Group Average Weight determined by the 

piGUI System and the Actual Weights Obtained from the Electronic Scale 
 
The errors between the estimates and actual weights are shown in Table 41 for 
Figure 100. 
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Table 41: Estimated and Scale Weight Data Obtained from the Trial; Values Coincide with 
Figure 100 

 Weight (kg)  Deviation (kg) 
Date Vision Estimate  Scale Error   Vision Estimate Scale Error 

24/1/11 76.2 76.6 -0.4  4.14 4.80 0.66  
27/1/11 80.6 80.2 0.4  3.47  5.04 1.57  
1/2/11 80.4 82.1 -1.7  4.53  4.74 0.21  
4/2/11 84.9 84.7 0.2  7.17  5.25 -1.92  
8/2/11 87.8 88.7 -0.9  5.10  5.10 0.00  

11/2/11 93.6 92.9 0.7  6.30  6.19 -0.11  
15/2/11 97.5 97.4 0.6  N/A  5.51 N/A  

 
During the on-farm trial, the precision of the piGUI system was within ±1 kg error of 
the actual group average weight on six of the seven days when an actual group 
weight was obtained (see Table 41). The worst error recorded on 1/2/11 was also 
possibly due to three pigs in the group jumping over a pen gate into an adjacent pen, 
sometime between the 1/2/11 and 4/2/11. The temporary removal of these three 
animals may have contributed to the 1.7 kg error in group weight.  
 
The ability of the vision system to determine the weight deviation of the group was 
also calculated using the data obtained from the vision system each day. The system 
determined the deviation of the group within ±2 kg on all days when the actual 
weight deviation was recorded. 
 
4.3.2.2 Individual Growth 
 
As the pigs were marked with livestock paint, their individual growth could be 
recovered by matching the sample images taken of them with their weight and body 
measurement information. This was carried out for all days when an actual weight 
observation was made, except for 15/2/11, as on this day the unique markings were 
unrecognisable due to wet conditions. Figure 101 of ‘Pig 7’ shows that the growth of 
the individual pigs was not as smooth as one might expect, although it does bend its 
way according to the standard growth curve derived from Carr (1998) which has 
been projected from the first actual weight recorded over the period. 
 

 
Figure 101: Actual Growth of Pig 7 and its Estimated Weight According to the PiGUI System 
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The piGUI system recorded the growth of Pig 7 reasonably well as it follows its 
actual growth (see Figure 101). However, on average the systems estimates are 1.9 
kg less than the actual growth recorded. This indicates that the system needs to be 
refined further to improve the growth estimation of individual pigs to practical levels.  
 
4.4 CONCLUSIONS 
 
The system performed well during both the off-line and on-farm trial in comparison 
to the conventional method. During off-line testing, weight estimates were obtained 
within 2.5% relative error of the actual group average weight. During the farm trial, 
the precision of the piGUI system was within ±1 kg error of the actual group average 
weight on six of the seven trial days where comparative information was available. 
This indicated that piGUI system was recording growth to sufficient practical 
accuracy. Relative weight estimation errors were within 2.5% of the actual weight on 
all seven of the days during the on-farm trial reinforcing the results obtained during 
the off-line trial. 
 
The weight deviation of the group was also estimated well, as during off-line testing 
the weight deviation of all three groups was estimated within ±1 kg using the 
combined filtering process. During the farm trial the vision system estimated the 
weight deviation to within ±2 kg.  
 
Discrepancies in the weight deviation recorded by the system indicate that there is 
potentially bias occurring. This is a result of either favouritism toward certain 
animals from the systems filtering operations or the availability of data of each pig 
from their attendance in the sampling area of the pen. Therefore, further studies 
involving the individual identification of animals within the sampling region of the 
pen may be necessary to determine whether these types of bias in estimates can 
occur. Refining the filter settings to obtain optimum acceptance rate of weight 
samples may overcome the former of these two potential causes of precision loss.  
 
Sixty percent or more of individual weight estimates generated by the vision system 
were within ±2 kg of the finisher pigs’ actual weight, while estimation errors greater 
than ±5 kg were reduced to less than 5% using the combined shape and limit filtering 
method. The growth recorded by the system of the individual pigs was similar to 
their actual growth. However, it is apparent that adjustments are required to improve 
the accuracy of the system in this area. To counteract this type of error, different 
equations might be adapted to suit to the shape or body measurements of particular 
animals. A commercially feasible method to determine individual identities of the 
pigs is also required (such as RFID) so that individual growth data can be determined 
efficiently from within the group. 
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Chapter 5   
  
Determining the Growth of Grower Pigs in Commercial Facilities 
Using Machine Vision: Off-line and On-line Results 
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ABSTRACT 
 
A vision system was developed to determine the live weight of pigs from their body 
measurements non-invasively. This chapter presents off-line and on-farm results 
obtained from the piGUI system while estimating the weight of grower pigs. Off-line 
results indicated that the group average weights of the grower pigs could be 
estimated within ±1.3 kg error and group weight deviations within ±1.2 kg error. 
More than 65% of all the estimates of individual pigs were within ±2 kg of their 
actual weight, while estimates greater than ±5 kg in error were restricted to less than 
5% of all estimates. During the on-farm trial the system recorded the growth of four 
successive batches of grower pigs at a commercial piggery. Subsequently, the 
systems practical potential in helping to diagnose undesirable conditions was 
founded, as according to the system extreme summer temperatures decrease the 
activity of the animals and have an adverse effect on growth.  
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5.1 INTRODUCTION 
 
Monitoring and managing livestock growth is desirable as growth information can be 
used to increase the efficiency and productivity of farms. Specifically, growth 
information can be used to (i) optimise market sale date (Korthals, 2001), (ii) 
determine future feed, space and transport requirements (Petherick, 1983; Pastorelli 
et al., 2006), (iii) identify disadvantaged animals which display periods of poor 
weight gain (Maltz, 2010), (iv) minimise the competitive behaviour between animals 
by sorting them based on weight (Morrison, 2004), and (v) optimise and standardise 
the production process via monitoring and analysing the animals’ response to 
different feed and environmental scenarios (Green and Whittemore, 2005; Frost et 
al., 1997; Doeschl-Wilson et al., 2005; Whittemore and Schofield, 2000). 
Addressing these issues can increase the profitability of livestock production and 
improve the welfare of the animals concerned (Niemi et al., 2010; Black et al., 2004; 
Morrison, 2004) 
 
Conventional methods used to determine the growth of livestock are time consuming 
and pose a safety risk to both the animals and farm workers involved (Criddle, 2001; 
Erkal et al., 2008; Brandl and Jørgensen, 1996). Consequently, automated techniques 
that do not require physical contact between the weigh scale and animal, and the 
worker and animal, are preferable. Machine vision systems present an effective non-
invasive solution to these problems while maintaining the ability to estimate the live 
body weight of livestock to practical precision (Schofield, 1990; Green et al., 2003; 
Tscharke and Banhazi, 2011).  
 
A machine vision system was developed to determine the daily average weight of 
groups of pigs so that their growth could be monitored (Banhazi et al., 2011b). This 
chapter reports further findings as determined from the data collected in Banhazi et 
al. (2011b) and additional data collected from an commercial Australian piggery in 
relation to growth, temperature and animal activity.  
 
5.2 MATERIALS AND METHODS 
 
A camera (Logitech Quickcam Pro 9000, Logitech, Quarry Bay, Hong Kong) a 
computer and Matlab software (MathWorks, Inc., Natick, Massachusetts, USA) were 
interfaced to form a machine vision system to estimate the live weight of grower 
pigs. Routines within the software automatically searched the image, determined pig 
shapes and extracted various body measurements. Other routines were then used to 
estimate and validate the pigs’ weights based on their shape and body measurements. 
 
5.2.1 Experimental Setup and Location of the PiGUI System 
 
5.2.1.1 On-Farm Validation  
 
The on-farm validation involved installing and testing the vision system at a 
commercial facility where it was left to operate continuously. During this time the 
system observed a section of a pen which housed between 100 and 165 pigs. The 
installation location of the system within the pen is shown in Figure 102. When a 
successful weight assessment took place, key information was recorded including: (i) 
an image of the animal with an overlay of contour shape detected, (ii) the body 
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measurements used to estimate the weight, (iii) the weight estimate and (iv) the time 
and date. Feed information was also collected during the trial period and can be 
found in Banhazi et al. (2011a). The location of the feed-meter can be observed in 
the yellow dashed rectangle in Figure 102. The computer was accessed periodically 
using a remote desktop connection and the information recorded was downloaded. 
Using this remote connection link, the status of the computer and software was 
monitored, and revised versions of the software were uploaded and tested.  
 
Groups of pigs are currently weighed (at most) a few times during the production 
cycle, so determining daily weight estimates of groups of pigs would be a marked 
improvement. The system did not focus on obtaining a weight estimate of every pig 
within the pen. Instead a representative sample was collected and used to estimate 
the average weight of the group of pigs. Hence, the systems main focus was on the 
quality of the weight assessments rather than quantity of assessments made. 
 

 
Figure 102: The Experimental Setup at the Commercial Facility  

 
5.2.1.2 Off-line Validation 
 
The off-line validation involved an analysis of video data collected of grower pigs 
between 25 and 65 kg from a commercial research piggery. The videos were taken at 
1200x1600 resolution and at a height of 2 m from the lens of the camera to the 
ground. Directly after each video was captured, pigs were weighed to the nearest half 
kilogram in a pig weigh crate (Ruddweigh, Pig Weigh crate ±1%).  These video files 
were then subjected to off-line testing to determine the relative precision of the 
system for both individual and groups of grower pigs.  
 
5.3 RESULTS AND DISCUSSION 
 
5.3.1 On-Farm Trial Results 
 
In a six month period between July 2009 and January 2010, approximately 16,000 
images and weight samples were collected using the piGUI system at the facility. 
During this time four batches of grower pigs were recorded as they grew in the range 
of 30 to 60 kg. Staff kindly provided the actual weights of the +100 pigs within the 
pen on five occasions. As staff resources were limited, the actual group weight 
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information was used as a reference in conjunction with a standard growth curve to 
estimate the performance of the system within the batches. The standard growth 
curve equation (found in Appendix E) was first re-arranged to determine the age of 
the group of pigs at their actual weight. It was then used to project the weight from 
this age over the days of the trial period.  
 
5.3.1.1 System Performance 
 
The ability of the system to work automatically under commercially realistic 
conditions was assessed. During the trial period the system successfully determined,  
when a pig was inside the field of view of the camera, its contour,  its body 
measurements and  its weight estimate. Figure 103 demonstrates the system’s ability 
to recognise and assess pigs of different sizes and also highlights the size variation 
within the pen. 
 

  
Figure 103: Difference in Size of Pigs Captured in Consecutive Days within the Same Pen 

 
Many of the images collected illustrate the variation caused by natural lighting 
conditions and difficulties caused by dirt on the pigs’ backs and non-uniform skin 
colour. Figure 104(a) highlights the difficulty in obtaining the contour of a spotted 
pig that has similar skin colour to the background. Figure 104(b) illustrates the 
system correctly identifying the contour in non-uniform lighting conditions.  
 

   
(a) (b) 

Figure 104: Images Recorded by the System; (a) A Spotted Pig with Partial Error Circled; (b) 
Correct Capture in Largely Variable Lighting 

 
Occlusion was also a problem in this environment. Figure 105 shows the successful 
capture of the pig’s body contour which has avoided any occlusion with surrounding 
animals. 
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Figure 105. Sequence of Successful Captures Avoiding Occlusion of Surrounding Pigs 

 
On occasion the system returned false positives where the animals’ contour had not 
been recognised correctly. This was largely a consequence of the animal’s posture 
and environmental factors. Despite these issues the piGUI system managed to 
automatically identify and extract measurements of the pigs’ bodies out of the 
images and recorded growth over the four trials.  
 
5.3.1.2 Growth Records of Batches of Grower Pigs 
 
During testing the system was in a continuous state of development. Consequently, 
alterations were made to the software based on the data output obtained during the 
four grower growth cycles. The data for the last three batches of pigs presented in the 
following sections can be found in Banhazi et al. (2011b). However, the data found 
here has been fitted to a standard growth curve obtained from literature (Carr, 1998) 
(see Appendix E). Thus, the growth recorded by the system for these batches is 
revisited in relation to standard growth. 
 
5.3.1.2.1 Batch 1 
 
The growth of the first group of grower pigs is shown in Figure 106. Piggery staff 
recorded the average weight of the group of pigs as 42.6 kg on 12/8/09. This average 
was determined by weighing half of the ~100 pigs using an electronic scale. The 
standard growth curve was then fitted to the data point corresponding to the actual 
weight in order to make comparisons with the system.  
 

 
Figure 106: Comparison between Standard Growth and the Growth Recorded by the PiGUI 

System for the First Batch of Grower Pigs 
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As Figure 106 illustrates, the daily average weight estimate for the group recorded by 
the piGUI system compared reasonably well with the standard growth curve from 
4/8/09 onward. This was encouraging considering that, on average, only 26 samples 
were being recorded of the group daily due to a software-related problem. This small 
quantity of samples was believed to be responsible for the noisy (jagged) appearance 
of the data. The growth before 4/8/09 was also of interest as it tended to be higher 
than the standard growth curve. 
 
5.3.1.2.2 Batch 2 
 
While the software was being debugged and modified, four actual group average 
weights were obtained by staff for a second batch of 165 pigs. The software was 
updated and restarted remotely on 5/10/09 after the software problem was resolved.  

 
Figure 107: Comparison between Standard Growth and the Growth Recorded by the PiGUI 

System for the Second Batch of Grower Pigs (Banhazi et al., 2011b) 
 

The standard error curve in Figure 107 was fitted to the first actual group weight 
obtained. The three subsequent actual group weights were within 0.8 kg of the 
standard curve indicating that the standard curve was effective at describing the 
growth data relative to days of age. As in the previous trial, the system managed to 
record the weights of the second batch closely in respect to the standard growth 
curve (Figure 107). The modifications to the software had successfully increased the 
average samples collected daily to 188 samples and the growth data recorded 
appeared smoother. The software was then left operating to record the growth curve 
of subsequent batches of pigs. 
 
5.3.1.2.3 Batch 3 
 
The third batch also followed the standard curve reasonably well (Figure 108). 
However, up to the 1/11/09 and after the 16/11/09 there was a noticeable deviation 
away from the standard curve. Consequently, the software settings were revised to 
identify whether a problem was present. 
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Figure 108: Comparison between Standard Growth and the Growth Recorded by the PiGUI 

System for the Third Batch of Grower Pigs (Banhazi et al., 2011b) 
 
At the start of the third batch, the system was set to record pigs weighing between 30 
and 100 kg. To determine whether the convergence and divergence was caused by 
the software excluding weights above or below these limits, the distribution of 
weight data collected over these periods was evaluated. Figure 109 shows the 
distribution of weight samples acquired over the first days of the trial period to the 
4/11/09. 
 

  
(a) (b) 

  
(c) (d) 

Figure 109: Weight Distribution According to the Weight Samples Acquired on: (a) the 27/10/09 
(b) the 29/10/09 (c) the 31/10/09 and (d) the 4/11/09. 
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Figure 109 (a) through to (c) show a clear bias in the weight distribution of the group 
of pigs as a direct result of the software excluding pigs weighing less than 30 kg 
from analysis. As a result, on the 1/11/09, the setting was changed to include pigs 
weighing more than 25 kg. The result was a normal distribution of weight estimates 
(shown in Figure 109 (d)) which had a mean value coinciding closely with the 
standard growth curve (Figure 108).  
 
The weight distributions recorded on the days after the 16/11/09 were also observed 
to identify whether a similar cause of bias was responsible for the deflection away 
from the standard curve later in the trial. There were no obvious issues with the 
distribution of the acquired data (Figure 110).  
 

 
Figure 110: Weight Distribution According to Acquired Weight Samples on (a) the 18/11/09. 

 
Therefore, the cause of the growth deflection from the 16/11/09 onward was 
unknown.  
 
5.3.1.2.4 Batch 4 
 
During the fourth batch the system estimated the group’s weight within 1.3 kg of the 
standard curve up to the 1/1/12 indicating that the bias experienced in the first and 
third batches was no longer having a dramatic effect. An unknown problem caused 
the computer to shut down on the 1/1/12 which was rectified on the 15/1/12. The 
system then operated without fault until the 27/1/12 when the pigs were removed. 
 

 
Figure 111: Comparison between Standard Growth and the Growth Recorded by the PiGUI 

System for the Fourth Batch of Grower Pigs (Banhazi et al., 2011b) 
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A clear deviation could be seen away from the standard curve in similar manner to 
that experienced in the third batch of growers. The temperature was investigated as 
the growth recorded of the third and fourth batches of pigs was obtained during the 
summer months. 
 
5.3.1.3 Possible Temperature Effects on Batches of Grower Pigs 
 
In this study, the temperature information was obtained from a weather station 
located a distance of 8 km from the piggery (Bureau of Meteorology, 2010). The 
maximum temperature information was compared to the growth data acquired during 
the third and fourth batches. This is graphically shown in Figure 112. 
 

 
Figure 112: Maximum Temperature and Growth during the 3rd and 4th Batches of Pigs 

 
Coincidently, the maximum temperature profiles between the third and fourth batch 
were remarkably similar when the pigs of both batches were at the same stage of 
growth (Figure 112). The piGUI system also recorded a similar deflection away from 
the standard curve during both of these batches. However, the growth recorded by 
the system for the second batch of grower pigs followed the standard growth curve 
well. The following figures (Figure 113 and Figure 114) compare the growth and 
temperature results of the second and third batches and the second and fourth batches 
respectively.  
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Figure 113: Maximum Temperature and Growth during the 2nd and 3rd Batches of Pigs 

 

 
Figure 114: Maximum Temperature and Growth during the 2nd and 4th Batches of Pigs 

 
Figure 113 and Figure 114 demonstrate that the pigs in the second batch were 
exposed to far cooler temperatures (average maximum daily temperature of 18.9°C) 
than the third and fourth batches. The growth encountered during the second batch 
followed the standard growth curve closely, however, the third and fourth batches of 
pigs experienced average temperatures of 31°C and 33.8°C respectively and a 
negative deflection in growth occurred (see Figure 113 and Figure 114). This appears 
to indicate that the hotter summer temperatures played a role in the poor growth 
performance recorded in the third and fourth batches. Supporting evidence lies in the 
fact that the temperature was above 35°C for consecutive days immediately prior to 
the growth deflection. With the third and fourth batches of pigs experiencing seven 
and five consecutive days of temperatures greater than 35°C, respectively, with three 
of the five days in the fourth batch also greater than 42°C. Therefore, the deflection 
in growth data acquired by the system is most probably the result of prolonged heat 
stress. Alternatively other factors related to hotter conditions may have indirectly 
affected the health and growth of the animals.  
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Heitman and Hughes (1949) studied the effects of temperature and humidity on pig 
growth. In their study the respiration and pulse rate of grower-finisher pigs were 
monitored in relation to different temperature and humidity scenarios. Temperatures 
greater than 38°C caused noticeable distress to the animals when housed in a room 
with a dry floor. Wetting the floor of the room had a cooling effect and subsequently 
the animal’s distress only became noticeable at higher temperatures (46°C). It was 
determined that pigs in the grower range (between 32 and 65 kg) grew at the optimal 
rate (minimum feed consumption and maximum weight gain) at temperatures around 
24°C. The feed utilisation and weight gain of the pigs decreased either side of this 
average temperature.  
 
More recent studies indicate that voluntary feed intake begins to reduce at 
temperatures greater than 25.4°C (Huynh et al., 2005). These figures are consistent 
with the poor growth of the pigs recorded by the system in this study where 
consecutive days of temperatures greater than 35°C were experienced. Notably, 
prolonged exposure to high temperatures also raises concerns about the welfare of 
the animals as, during Heitman and Hughes (1949) study, a 103 kg pig lost 8 kg and 
died after being exposed to temperatures of 38°C for 5 consecutive days in a room 
with a dry floor. 
 
5.3.1.4 The Activity of Grower Pigs in Relation to Temperature  
 
As the piGUI system required the pig to be standing or moving around the vicinity of 
the feeders to make a sample estimate, the system was evaluated to see whether the 
number of samples it recorded daily could be used to determine the level of animal 
activity. The total numbers of samples collected daily were then compared to the 
maximum daily temperature to see whether temperature and activity were related. 
The activity versus temperature relationship is shown in a scatter plot in Figure 115 
for the third and fourth batches of grower pigs.  

 
Figure 115: Comparing the Total Number of Samples Recorded by the PiGUI System Daily 

(Activity) to the Maximum Daily Temperature of the 3rd and 4th Batches of Grower Pigs 
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degrees Celsius. A similar optimum room temperature was specified for the grower 
weight range by Heitman and Hughes (1949). The activity shown in Figure 115 also 
tends to decrease with increasing temperature from 23 degrees onwards. This is 
consistent with other studies which report that lying behaviour increases with 
temperature increases (Aarnink et al., 2006). Heitman and Hughes (1949) state that 
at temperatures greater than 26°C pigs are more likely to lie on the cooler concrete 
flooring and conserve energy rather than move around. Blackshaw and Blackshaw 
(1994) found that in temperatures greater than 35°C, 93.9% of grower pigs lay in the 
shade. Spikes in activity recorded during the batches also coincide with gaps between 
periods of hotter weather as Figure 116 below illustrates. However, outlying peaks in 
activity on the 24th, 25th and 26th of December were experienced (refer to circled data 
points in Figure 115 and Figure 116). This is possibly due to the animals exploring 
their surroundings or fighting after their introduction to the pen on the 23rd of 
December (Stukenborg et al., 2010). 
 

 
Figure 116: Comparing the Total Number of Samples Recorded by the PiGUI System Daily 

(Activity) to the Maximum Daily Temperature of the 4th Batch of Grower Pigs  
 
As the pigs’ activity was monitored in close proximity to the location of the feeder, 
an investigation into the relationship between the activity levels and feed 
consumption was performed. Results published in Banhazi et al. (2011a) show that 
temperature and level of activity do appear to relate to each other, and to feeding 
behaviour and consumption during the fourth trial (see Figure 117 below).  
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Figure 117: The Amount of Feed Delivered vs. Thermal Conditions at a Commercial Piggery 

(Banhazi et al., 2011a) 
 
Consequently, the deviation away from the standard growth curve is probably the 
result of the animals consuming less feed in a hotter environment. Further large scale 
validation of the instrument would help confirm and quantify these effects. 
 
5.3.2 Off-line Trial Results 
 
Modifications to the software were carried out after testing to further fine-tune the 
instrument to enhance the group weight estimates. Videos of pigs in different weight 
ranges were then acquired so that the system’s performance could be simulated off-
line. A total of 180 videos of male and female grower pigs were obtained. A total of 
6304 contour shapes were automatically extracted from these videos. After each 
contour was extracted it was subjected to two filtering processes to determine 
whether it was satisfactory to form a weight estimate, or should be discarded. 
Consequently, the data that passed through the filters gave an indication of the 
performance of the filtering methods and, more importantly, the expected 
performance of the system when tested on-farm. Thus, the system’s ability in 
determining both the weight of individual grower pigs and groups of grower pigs was 
evaluated using this filtered data.  
 
The videos were broken into three groups:  
 
Group 1: Female and male pigs (all 180 videos) 
Group 2: Male pigs (103 videos)  
Group 3: Female pigs (77 videos) 
 
The weight deviation was also calculated for the groups as it may be useful for 
gauging when it is appropriate to sort the animals into weight classes. The grower 
pigs analysed weighed between 25 and 65 kg. The shape filter settings were set to 
1.5, 2.6 and 3 deviations and the limits filter setting was set to 80%. 
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5.3.2.1 Individual and Group Average Weights 
 
Group 1 contained all 180 video samples of female and male pigs. The vision 
systems ability to estimate the group average weight using different filtering methods 
is shown in Table 42. 
 
Two different ‘actual’ group average weights were calculated using the weight 
information obtained from the electronic scale and videos. The first group’s average 
weight (AVE) can be found on row one and contains the unfiltered data ‘before 
filtering’ (see Table 42 under the column ‘Actual Weight Videos’). This group-
average weight has been determined by conventional means: dividing the group’s 
total weight by the number of pigs in the group (180). However, during operation, 
the vision system uses a different method to form the group average weight as the 
system relies on the frames sampled from the group to make an estimate. 
Consequently, a second group average has been formed to demonstrate the 
information that was available to the system after the extraction process. This 
involved summing the actual weight of the pig in each extracted frame sample and 
then dividing this value by the total number of frames extracted (refer to column 
Actual Weight Frames). Notably, this average may yield a different result compared 
to the actual group average depending on how many frames of each pig were 
sampled and what their weight was. The different filtering operations then selected 
sample frames that would yield a good result from the total pool of extracted frames 
(rows 2 to 4). 
 

Table 42: Performance of the PiGUI System Estimating the Weight of Group 1 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 48.5 29.2 45.5 12.7 45.3 12.4 

Limit Filter  44.2 12.4 44.4 12.7 45.5 12.4 
Shape Filter  45.8 12.4 45.9 12.6 46.3 12.3 

Combined Filters  45.3 12.4 45.4 12.6 46.4 12.4 
 
The errors attributed to the samples which passed through the filtering processes are 
categorised in Table 43. These errors are based on the difference between the weight 
estimate for a frame-sample and the actual weight of the pig as recorded from the 
electronic scale.  
 

Table 43: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 1 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 989 15.7 484 24.4 869 20.4 455 24.6 
0.5 kg ≤ west < 1kg 883 14.0 410 20.7 778 18.3 391 21.2 
1 kg ≤west < 2 kg 1368 21.7 592 29.9 1217 28.6 566 30.6 
2 kg ≤ west < 3 kg 784 12.4 268 13.5 660 15.5 249 13.5 
3 kg ≤ west < 4 kg 463 7.3 129 6.5 344 8.1 110 6.0 
4 kg ≤ west < 5 kg 247 3.9 56 2.8 146 3.4 46 2.5 

west ≥ 5 kg 1570 24.9 42 2.1 237 5.6 30 1.6 
Total Samples 6304 100.0 1981 100.0 4251 100.0 1847 100.0 

west < 2 kg 3240 51.4 1486 75.0 2864 67.4 1412 76.4 
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Group 2 contained all 103 video samples of male pigs. The result for the weight 
estimates of Group 2 can be seen in Table 44, with individual weights for the group 
presented in Table 45. 
 

Table 44: Performance of the piGUI System Estimating the Weight of Group 2 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 47.2 25.9 45.0 13.6 44.9 13.7 

Limit Filter  43.6 13.1 43.8 13.3 45.2 13.7 
Shape Filter  45.2 13.4 45.3 13.6 45.6 13.8 

Combined Filters  44.6 13.3 44.7 13.4 45.6 13.8 
 

Table 45: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 2 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 748 17.9 373 26.6 656 22.2 350 26.5 
0.5 kg ≤ west < 1kg 638 15.2 321 22.9 568 19.2 306 23.2 
1 kg ≤west < 2 kg 985 23.5 428 30.5 879 29.7 412 31.2 
2 kg ≤ west < 3 kg 530 12.7 173 12.3 447 15.1 162 12.3 
3 kg ≤ west < 4 kg 287 6.9 79 5.6 219 7.4 70 5.3 
4 kg ≤ west < 5 kg 143 3.4 20 1.4 84 2.8 17 1.3 

west ≥ 5 kg 855 20.4 10 0.7 108 3.6 4 0.3 
Total Samples 4186 100.0 1404 100.0 2961 100.0 1321 100.0 

west < 2 kg 2371 56.6 1122 79.9 2103 71.0 1068 80.8 
 
Group 3 contained all 77 video samples of female pigs. The result for the weight 
estimates of Group 3 can be seen in Table 46, with individual weights for the group 
presented in Table 47. 
 

Table 46: Performance of the piGUI System Estimating the Weight of Group 3 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 50.9 34.7 46.4 10.8 46.0 10.5 

Limit Filter  45.6 10.6 45.7 11.2 45.9 10.3 
Shape Filter  47.4 9.2 47.3 9.9 47.4 9.8 

Combined Filters  47.3 9.3 47.2 10.1 47.5 9.8 
 

Table 47: Performance of the piGUI System Estimating the Individual Weights of the Pigs in 
Group 3 

Method Before Filtering Passed Shape Passed Limits Combined 
Error Category (kg) Count % Count % Count % Count % 

west < 0.5 kg 241 11.4 111 19.2 213 16.5 105 20.0 
0.5 kg ≤ west < 1kg 245 11.6 89 15.4 210 16.3 85 16.2 
1 kg ≤west < 2 kg 383 18.1 164 28.4 338 26.2 154 29.3 
2 kg ≤ west < 3 kg 254 12.0 95 16.5 213 16.5 87 16.5 
3 kg ≤ west < 4 kg 176 8.3 50 8.7 125 9.7 40 7.6 
4 kg ≤ west < 5 kg 104 4.9 36 6.2 62 4.8 29 5.5 

west ≥ 5 kg 715 33.8 32 5.5 129 10.0 26 4.9 
Total Samples 2118 100.0 577 100.0 1290 100.0 526 100.0 

west < 2 kg 869 41.0 364 63.1 761 59.0 344 65.4 
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5.3.2.2 Discussion of Off-line Results 
 
The combined filter has worked exceptionally well calculating the weight deviation 
and the average weight of Group 1 (refer to the actual average group weight and 
deviation in row ‘Before Filtering’, column ‘Actual Weight Videos’ in Table 42 and 
estimated group average weight and deviation in row ‘Combined Filters’ and column 
‘Estimated Weight  Frames’). This has occurred because there was sufficient good 
quality data available during analysis that represented the actual weight of the group 
well (row ‘Before Filtering’, column ‘Actual Weight Frames’). Subsequently, the 
data which passed through the filters estimated the average weight and weight 
variability correctly. 
 
A similar effect occurred in Group 2, Table 44, where the group average has been 
estimated to 0.3 kg. However, the estimates of the females in Group 3 were less 
accurate, with a 1.3 kg error in the estimate of the group’s average weight and a 1.2 
kg error in the estimate of the group’s weight deviation. In this case the filters have 
excluded some of the data from the videos which has directly affected the estimates. 
However, this is not too concerning considering that on average only ~9 seconds of 
video footage was captured (of each animal) to form these estimates. In practice, far 
more time than this will be available for the system to extract quality data while it is 
operating continuously in the pen. Overall, the data that passed through the filters 
maintained the correct group averages and weight deviation, indicating that they 
were not causing any bias in the samples which were considered valid. However, the 
data of the females in Table 46 does highlight a potential cause of system bias if 
good quality samples of certain animals are not available. 
 
Individual weight estimation results for Groups 1, 2 and 3 (found in Table 43, Table 
45 and Table 47) show that combining the shape and limiting filter restricts the 
output of weight estimates that are greater than ±5 kg in error to less than 5% while 
increasing the number of weight estimates within ±2 kg error to above 65%. In 
addition, when using these filters in combination, 20% or more of the frame samples 
(that passed) were found to be within ±0.5 kg of the actual weight. 
 
5.4 CONCLUSIONS 
 
The piGUI system’s performance while operating in a commercial facility, was 
evaluated and its diagnostic power explored. The system automatically identified and 
extracted measurements of grower pigs from streaming video and used the 
information to record growth over four batches of grower pigs. Issues related to 
occlusion, and other environmental variables such as natural lighting and pig 
appearance were highlighted. Hardware problems caused by the harsh environment 
were also encountered. 
 
A standard growth curve obtained from literature was effective at describing weight 
relative to days of age. The output of piGUI system also followed this standard 
growth profile during the second batch and during periods of the other three batches 
of grower pigs. A software setting caused a bias to be recorded, which was identified 
and rectified during the third batch. A deflection away from the standard growth 
curve was experienced in the third and fourth batches when the pigs reached weights 
greater than ~45 kg. It is believed that these growth deflections may have been 
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caused by stress (related directly or indirectly) to temperature. The level of animal 
activity recorded by the system, the temperatures leading up to the growth 
deflections and figures reported in literature support this theory (Heitman and 
Hughes, 1949; Aarnink et al., 2006; Huynh et al., 2005). 
 
Given these preliminary findings, further large scale testing of the system at 
commercial facilities is warranted. These should specifically target quantifying and 
monitoring the effect of temperature on growth, the system’s ability to determine 
animal activity and its relationship to growth, feed consumption and temperature. 
 
After testing and further code modification, a simulation was run off-line to 
determine the system’s ability to evaluate the individual weight and group average 
weight of grower pigs. Results indicated that the group average weights of grower 
pigs could be estimated within 1.3 kg error and group weight deviations within 1.2 
kg error. When using the two filters in combination, the weight of individual pigs 
were estimated within ±2 kg of their actual weight more than 65% of the time, while 
estimates greater than ±5 kg in error were restricted to less than 5%. These filters did 
not cause bias during the selection of valid samples, as the average weight and 
weight deviation of the group remained relatively steady for all filtering methods. 
However, the occurrence of any bias related to sampling in the actual installation 
environment should also be investigated. 
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Chapter 6   
 
Weight Estimation of Sows during Pregnancy 
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ABSTRACT 
 
The body condition of sows, before and during pregnancy, has been shown to affect 
the quality and survivability of their offspring. Therefore, it is desirable to monitor 
and manage the body condition of sows to ensure that their nutritional and 
environmental requirements are met. A sow’s condition can be determined from its 
body shape, back-fat measurement and weight relative to its age and parity. 
However, often these factors are not monitored frequently due to the high level of 
labour required. As weight is a strong indicator of condition, a machine vision 
system was developed to continuously estimate, without operator involvement, the 
weights of pigs from their size. This chapter presents the weight estimation results 
achieved by the system for sows between days 71 and 82 of pregnancy, and a brief 
insight into the morphological changes in two sows’ body measurements determined 
by the system which occurred in the days before and after giving birth. The system 
determined the average weight of the group of pregnant sows to within 1.5% mean-
relative error of the actual group average weight. Eighty-two percent of the 
individual weight assessments of these sows were within ±5 kg of their actual weight 
using the system’s combined limit and shape filtering method. The system identified 
clear changes in body measurements for two sows before and after giving birth. The 
effect that pregnancy has on the shape and body measurements of sows should be 
investigated further as it is likely to be a contributing factor to poorer weight 
estimates. Body measurements may also be used to model and classify condition or 
the onset of pregnancy. 
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6.1 INTRODUCTION 
 
It is important to manage the body condition of sows closely as their body condition 
has proven to enhance the survival prospects of their progenies (O'Dowd et al., 
1997). Sows with poor body condition are more likely to have (i) small litter sizes, 
(ii) fewer piglets born alive and (iii) piglets with low birth weights. Further 
implications are also experienced, as generally piglets with low birth weights will 
have poor growth performance throughout their lives (Gondret et al., 2005; Rehfeldt 
et al., 2008). To classify the condition of sows, back-fat thickness and body weight 
are generally used along with other visual cues (Maes et al., 2004; Charette et al., 
1996). 
 
The conventional method used to acquire condition-related information, involves 
moving and confining each sow to a weigh scale, before determining its weight and 
back-fat depth using an ultrasonic device. Alternatively, a sow’s weight can also be 
estimated from its body measurements. In this method, the heart girth and length of 
the sow are determined using a tailor’s rule and then used in an equation which 
estimates the weight of the sow to within 3% (Pope and Moore, 2002; Yeo and 
Smith, 1977). Condition scoring can also be performed visually by skilled workers or 
using the physical body measurements of the sows (Charette et al., 1996). The body 
measurements of sows have also been shown to increase during pregnancy and 
subsequently have been used to determine space requirements (McGlone et al., 
2004a). However, weighing and assessing large numbers of heavy animals by these 
means is laborious and also increases the risk of injury to the animals and workers 
involved (Brandl and Jørgensen, 1996). Consequently, automated methods have been 
developed which minimise the involvement of workers in these processes.  
 
The two previously described methods have evolved into new methods that 
automatically obtain condition-related information. These methods are electronic 
sow feeding systems (ESF) and machine vision systems.  
 
In an ESF system, an automated feed and weigh-station are integrated within the 
sows’ pen. For an ESF system to work automatically, each sow must be trained to 
progress through a series of raceways and gates which lead up to these stations. The 
primary functions of an ESF system are (i) to automatically manage each sow’s 
condition by controlling feed intake and body weight and (ii) to avoid competition 
for feed by separating each sow from its pen mates while it is feeding. However, 
despite the effectiveness of ESF systems, comparative studies between ESF systems 
and alternative housing methods indicate that most injuries occur in group-housing 
systems where ESF systems are utilised (McGlone et al., 2004b). These injuries are 
believed to be caused, indirectly, by the mechanical components of an ESF system 
(Jensen et al., 1995). Aggressive (possibly territorial) actions have also been noted 
towards the sow using the feeder in an ESF system (Edwards et al., 1988; Rhodes et 
al., 2005). Some studies indicate that aggressive behaviour and injuries may be 
reduced by giving sows access to multiple feeding locations (Rhodes et al., 2005). 
However, to be cost effective generally an ESF system only consists of a single feed 
and weighing station for a large group of sows. Hence, ideally, both the contact 
between the worker and pigs and the pig and condition-assessment-apparatus should 
be minimised. Furthermore, to reduce the risk of injury to sows in group housing 
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systems, it would be beneficial to determine the condition of sows located at separate 
feeding locations.  
 
A machine vision system is the most attractive method to determine the condition of 
sows, as condition assessment can be performed in a loose housing environment 
without making contact with the animal. A machine vision system can also 
simultaneously asses multiple animals. To make a condition assessment, a machine 
vision system infers a relationship between an image-based representation of an 
animal’s body measurements and its weight and fat content (Doeschl-Wilson et al., 
2005). The live weight of pigs have been estimated to within 5% using the machine 
vision method (Schofield, 1990). In future, to parallel the task of an EFS system, a 
machine vision system could be linked to feed delivery devices in order to deliver the 
correct feed ration to individual sows.   
 
To enhance their productivity and maintain their welfare, it is desirable that the 
condition of sows be monitored and managed during and after pregnancy. Condition 
assessment may be achieved using machine vision systems that do not require direct 
contact with animals and allow them to feed simultaneously, thus reducing the risk of 
injury (Rhodes et al., 2005). This chapter presents the preliminary results of an off-
line machine vision system in estimating the weight of sows in their early stages of 
pregnancy. The ability of the machine vision system to monitor morphological 
changes recorded during and after pregnancy is also briefly explored. 
 
6.2 MATERIALS AND METHODS  
 
A camera (Logitech Quickcam Pro 9000, Logitech, Quarry Bay, Hong Kong) a 
computer (fit2PC, CompuLab Ltd, Technion, Haifa, Israel) and Matlab software 
(MathWorks, Inc., Natick, MA) were interfaced to form a machine vision system to 
estimate the live weight of sows. The computer was chosen to overcome issues 
surrounding rodent infestation, dust, moisture, and corrosion that are commonly 
associated with the piggery environment. Routines within the software searched the 
image to determine pig shapes and extracted body measurements when they were 
found. Other routines were then used to estimate and validate each pig’s weight. 
Collectively these routines automated the weight estimation task (Banhazi et al., 
2011b).  
                   
6.2.1 Experimental Setup and Location 
 
Thirteen sows were weighed to the nearest half kilogram by an electronic scale at a 
commercial piggery (PPPI, University of Adelaide, Roseworthy campus). Directly 
after each sow exited the scale a number of short videos were recorded by a camera 
located 2 meters above the weighing area (layout shown in Figure 118). A total of 
twenty-seven videos were collected of the thirteen Large White × Landrace and 
Large White sows. During the recording period the sows were at different stages of 
their pregnancy. Eleven of the sows were recorded between day 71 and 82 of 
pregnancy. These eleven sows were considered to be a group which may be housed 
together. Subsequently, they were evaluated for their weight by the vision system on 
an individual and group basis.  In addition, the system recovered the shapes and body 
measurements of two Large White × Landrace sows before and after giving birth to 
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determine whether the system could detect any morphological alteration in the sows’ 
body shape. 
 

 

 
Figure 118: The Experimental Setup at the Facility 

 
Figure 119: An Analysed Video Frame 
with the Body Measurements Extracted 

Overlayed 
 
The following information was recorded by the machine vision system when a 
successful weight assessment took place: (i) the image frame of the sow with an 
overlay of contour shape recovered (Figure 119), (ii) the shape information of the 
sow’s body contour, (iii) the sow’s body measurements and (iv) the weight estimate. 
 
6.3 RESULTS 
 
6.3.1 Weight Estimation of Sows as a Group 
 
In total, 694 frames were processed off-line by the machine vision system. Of these 
frames, 444 successfully passed through to the body measurement extraction stage. 
The 444 frames that passed were then subjected to a shape and body measurement 
filtering procedure to determine whether the sows’ body poses were adequate to 
make a weight estimate. These frames were then used to estimate the weight of the 
sows between days 71 and 82 of pregnancy on both an individual and a group basis.  
 
Table 48 shows the actual average group weight of the sows and the systems weight 
estimates after analysing the video frames. The average weight of the group of sows 
was determined to be 201.3 kg by the electronic scale (see Table 48 row ‘Before 
Filtering’ column ‘Actual Weight Videos’). The average formed by averaging the 
actual weights from all the extracted frames was similar at 201.4 kg (see Table 48 
row ‘Before Filtering’ column ‘Actual Weight Frames’). These frames were then 
subjected to various filtering operations (rows 2 to 4) and those body measurements 
that passed were used to estimate the group average weight (column ‘Estimated 
Weight Frames’). 
 

Table 48: Performance of the PiGUI System Estimating the Weight of the Sows 

Filter Method Estimated Weight  
Frames (kg) 

Actual Weight  
Frames (kg) 

Actual Weight  
Videos (kg) 

 AVE STD AVE STD AVE STD 
Before Filtering 185.0 95.0 201.4 15.7 201.3 16.0 

Limit Filter  201.2 17.7 199.6 17.1 203.1 17.0 
Shape Filter  203.2 18.3 200.2 16.9 201.1 17.3 

Combined Filters  198.4 18.5 196.6 17.9 203.9 17.7 
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Table 49 shows the error between the actual group weight and the weight estimates 
after applying the filters to the 444 frames to remove redundant data.  
 

Table 49: Error in Weight Estimation of the Group of Sows Using the PiGUI Filters  

 Estimation Error (kg) 

 AVE STD 
Before Filtering 16.3 -79 

Limit Filter 0.1 -1.7 
Shape Filter -1.9 -2.3 

Combined Filters 2.9 -2.5 
 
The weight of the sows as a group was estimated using four different filtering 
methods.  
 
The unfiltered estimate on row one was made using the body measurements directly 
extracted from the videos. Other than some very basic filtering that occurred in the 
extraction stage, no attempt was made to remove redundant data for this estimate. As 
the redundant information was still included, a large amount of error was introduced 
to the group weight estimate which can be seen in the large standard deviation (STD 
= 95 kg).  
 
The second limit filter only included the frame samples which had all extracted body 
measurements of the sow within a range determined by its projected weight estimate. 
Thus, this filter cross validated between the estimated weight and extracted body 
measurements to give an indication whether they were recovered correctly. Of all the 
filtering methods, the limit filter was most accurate, estimating the group weight to 
0.1 kg of the actual group weight and the weight deviation of the group to 1.7 kg of 
the actual weight deviation.  
 
The shape filter removed redundant data based purely on the extracted shape of the 
sow. As the weight-estimation equation is built around a particular pose (the shape 
filter), ensuring that the sow conform to this pose during weight assessment would 
enable more robust estimates. However, the fact that the shape filter has not 
performed as well as the limit filter is not necessarily a reflection of the method, but 
is actually more likely to be the result of limited shape data being available that 
conformed to the pose required to make a weight estimate. On average 32 frames per 
video (6.4 seconds of footage) was acquired. The combined filter was also less 
precise at calculating the group average weight for this reason. Thus, collecting 
additional shape information for sows during pregnancy would be desirable in future. 
This would allow modelling and analysis of shape and weight differences between 
individual sows. 
 
Despite the limited amount of data available, the group weight estimates calculated 
using the shape and combined shape and limit filtering methods were still both 
within 1.5% of the actual group average weight.  
 
6.3.2 Weight Estimation of Individual Sows 
 
The manual method which uses a tailor’s rule to determine the weight of sows is 
accurate to within 3%. Therefore, individual image-based weight estimates within ±5 
to ±6 kg error can be considered practical as the average weight of the group of 
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eleven sows was 201.3 kg. Individual weights for the group of eleven sows are 
presented in Table 50. 
 

Table 50: Performance of the piGUI System Estimating the Individual Weights of the Sows 
Method Before Filtering Passed Shape Passed Limits Combined 

Error Category (kg) Count % Count % Count % Count % 
west < 0.5 kg 22 5.0 14 8.6 9 12.7 5 10.0 

0.5 kg ≤ west < 1kg 18 4.1 14 8.6 9 12.7 8 16.0 
1 kg ≤west < 2 kg 36 8.1 25 15.4 13 18.3 10 20.0 
2 kg ≤ west < 3 kg 27 6.1 21 13.0 8 11.3 6 12.0 
3 kg ≤ west < 4 kg 34 7.7 18 11.1 9 12.7 4 8.0 
4 kg ≤ west < 5 kg 29 6.5 15 9.3 10 14.1 8 16.0 

west ≥ 5 kg 278 62.6 55 34.0 13 18.3 9 18.0 
Total Samples 444 100.0 162 100.0 71 100.0 50 100.0 

west < 2 kg 76 17.1 53 32.7 31 43.7 23 46.0 
 
Table 50 shows eighty-two percent of the samples which passed the combined limit 
and shape filter were within a ±5 kg range of the actual weight of the sow. This 
indicates that the system can achieve practical precision when estimating the 
individual weights of sows. However, Table 50 also indicates that to enhance 
precision, additional data collection is warranted, as the shape filter is less accurate 
than was found in Chapter 4 and Chapter 5 for finisher and grower pigs. This is 
likely to be a consequence of limited shape data being available to build the shape 
filters in this trial and greater variability in the appearance of the sows than grower-
finisher pigs. 
 
6.3.3 Sow Shape Before and After Giving Birth 
 
The morphological change in the body of two sows before and after they gave birth 
was assessed. Large differences in the body shape of the sow were identifiable in the 
days immediately prior and after birth as Figure 120 illustrates. 
 

(a) 

  

(b) 

  
 (i) (ii) 

Figure 120: Change in Sow Body Shape Before (i) and After Giving Birth (ii); (a) Superimposed 
Transparency on the Original Image and Region Information; (b) The sow segmented from the 

image 
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Table 51: Changes in the Body Measurements of Two Sows Before and After Giving Birth as Determined by the Machine Vision System 

 

 
MWFa 
(mm) 

MWMida 
(mm) 

MWRa 
(mm) 

AFc 
(mm2) 

AMidc 
(mm2) 

ARc 
(mm2) 

AT2 
(mm2) 
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(mm) 
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(mm) 

mWRa 
(mm) 
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n 
= 

15
 

AVE 378.5 398.3 367.6 99419.3 162223.0 106541.4 368183.8 1057.3 305.2 428.2 325.9 360.6 352.0 
STD 4.6 8.2 1.5 7549.5 8250.5 3974.4 4884.0 26.1 23.9 21.8 12.3 10.2 7.0 
MIN 367.1 381.3 365.2 90391.7 150108.1 101300.6 363112.8 1026.1 277.0 386.8 310.6 348.0 340.9 
MAX 383.9 407.3 369.1 108638.7 172070.3 115033.8 377640.3 1103.2 331.7 453.1 352.3 377.6 362.7 

RANGE 16.8 25.9 3.9 18247.0 21962.2 13733.1 14527.5 77.1 54.7 66.3 41.7 29.6 21.8 

So
w
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A
fte

r 
B

ir
th

 
n 

= 
29

 AVE 367.1 329.1 350.9 102676.3 134957.9 103534.0 341168.2 1082.5 332.4 419.9 333.2 321.8 316.6 
STD 4.7 1.7 2.0 3890.2 4953.3 2827.6 3310.7 9.0 11.2 14.3 10.3 2.9 1.7 
MIN 356.7 325.9 347.1 95800.9 126427.3 98245.2 335823.7 1068.6 313.3 396.0 313.3 315.4 313.7 
MAX 374.4 331.6 356.0 112722.0 144802.7 109132.0 350062.8 1110.6 365.0 445.8 351.9 327.1 321.4 

RANGE 17.7 5.7 8.9 16921.1 18375.4 10886.9 14239.1 42.0 51.7 49.8 38.6 11.7 7.8 
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n 
= 

7 
AVE 398.0 402.8 379.5 103600.6 153429.7 109477.2 366507.5 1025.4 305.9 399.1 326.6 372.7 359.4 
STD 4.9 6.9 5.1 3108.0 4546.6 4500.6 1071.3 14.7 8.8 10.0 16.7 8.5 10.1 
MIN 391.1 393.3 373.4 98641.6 148205.3 104708.8 364794.8 1008.4 294.7 389.2 309.3 363.2 346.8 
MAX 403.0 410.8 387.1 106769.2 160533.7 116750.4 367755.6 1045.5 318.7 412.8 350.4 382.6 370.7 

RANGE 11.8 17.5 13.7 8127.6 12328.3 12041.6 2960.9 37.2 24.0 23.6 41.1 19.4 23.9 

So
w
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A
fte

r 
B
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n 

= 
20

 AVE 367.8 321.3 346.2 116683.9 136967.9 97795.2 351447.0 1138.2 377.6 433.9 329.0 316.9 302.9 
STD 2.9 4.3 1.1 3127.0 1893.5 1804.1 2782.4 12.5 10.5 4.8 6.7 5.1 3.3 
MIN 360.4 311.4 344.6 112113.1 134595.4 92457.0 344062.3 1109.3 363.7 424.8 309.0 311.4 298.3 
MAX 371.6 328.8 348.4 124641.6 141668.9 100227.8 357571.2 1167.6 407.7 443.8 338.0 326.8 311.7 

RANGE 11.2 17.4 3.8 12528.4 7073.5 7770.8 13508.9 58.3 44.1 19.0 29.1 15.5 13.4 
 

  MWFa 
(mm) 

MWMida 
(mm) 

MWRa 
(mm) 

AFc 
(mm2) 

AMidc 
(mm2) 

ARc 
(mm2) 

AT2 
(mm2) 

 ML 
(mm) 

FMLa 
(mm) 

MidL 
(mm) 

RMLa 
(mm) 

mWFa 
(mm) 

mWRa 
(mm) 

Weight 
(kg) 

Sow 1 
AVE Before 378.5 398.3 367.6 99419.3 162223.0 106541.4 368183.8 1057.3 305.2 428.2 325.9 360.6 352.0 234 
AVE After 367.1 329.1 350.9 102676.3 134957.9 103534.0 341168.2 1082.5 332.4 419.9 333.2 321.8 316.6 224 

% Difference -3.0 -17.4 -4.5 3.3 -16.8 -2.8 -7.3 2.4 8.9 -1.9 2.2 -10.8 -10.1 -4.3 

Sow 2 
AVE Before 398.0 402.8 379.5 103600.6 153429.7 109477.2 366507.5 1025.4 305.9 399.1 326.6 372.7 359.4 222 
AVE After 367.8 321.3 346.2 116683.9 136967.9 97795.2 351447.0 1138.2 377.6 433.9 329.0 316.9 302.9 205 

% Difference -7.6 -20.2 -8.8 12.6 -10.7 -10.7 -4.1 11.0 23.4 8.7 0.7 -15.0 -15.7 -7.7 

177 
 



The body measurements recovered from the n frames of the two sows in the days 
before and after giving birth are shown in Table 51. These body measurements have 
been converted from pixels to real world body measurements using the known 
characteristics of the camera lens, the installation height of the camera and the sows’ 
heights which were determined manually using a sliding right angled ruler.  
 
The large variability of the sows’ body measurements obtained using the machine 
vision system are small with, the width and length measurements having standard 
deviations less than or equal to 2.6cm. This indicates high repeatability in width and 
length measurements. Consequently, the differences between many of the 
measurements obtained before and after giving birth are clearly distinguishable. 
 
The percentage difference between the weight and the extracted body measurements, 
before and after giving birth, are presented in the last section of Table 51. The 
majority of these differences are negative indicating that the size of the sow 
decreased after birth. The sows’ weights decreased, with sow 1 and sow 2 loosing 10 
kg and 17 kg respectively. Not surprisingly, over this period the sows experienced 
the largest decrease in the width at their middle, with a reduction of greater than 17% 
in the MWMida measurement. The minimum width measurements of the sows, taken 
from behind the shoulder (mWFa) and in front of the ham (mWRa) have also 
decreased by 10% after giving birth. The area of the middle section has also reduced 
by greater than 10% for both sows. Many of these body changes are visually obvious 
in Figure 120.  
 
In contrast, some of the measurements have also increased. These measurements 
include the total length (ML) and the area of the front body section (AFc). These 
increases are most likely to be related to the head-trimming method which removes 
the pig’s head as a function of the pig’s width. Consequently, some modification of 
the software is necessary to facilitate the assessment of sows in the later stages of 
pregnancy as the changes in width may be impacting the front area and maximum 
length measurements. 
 
6.4 DISCUSSION AND CONCLUSIONS 
 
The sows between days 71 and 82 of pregnancy had their weight estimated 
accurately on both an individual and a group basis. The limit filtering method yielded 
the most accurate group weight estimate, within 0.1 kg of the actual group weight 
and to 1.7 kg of the actual weight deviation of the group. On an individual basis, 
eighty-two percent of the samples which passed the combined limit and shape filter 
were within a practical ±5 kg range of the actual weight of the sow. It is believed that 
these results could be enhanced further with additional data collection and modelling 
surrounding the shape and body measurements of sows throughout pregnancy. 
 
The metric body measurements of the two Large White × Landrace gestating sows 
recovered by the vision system in Table 51 are consistent with those manually 
measured by McGlone et al. (2004a) of 222 gestating sows of the same genotype. 
The shoulder width (MWRa) and ham width (MWRa) of the sows assessed during 
this study are within the 95% limit bounds of the same measurements reported in 
McGlone et al. (2004a). Furthermore, the sows were consistently wider at the 
shoulder than at the ham, and averages of sow shoulder width (40.4cm) and ham 
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width (38.1cm) reported in McGlone et al. (2004a) are similar to the measurements 
found here (which were in the range of 36.9 to 39.8cm and 34.6 to 38.0cm, 
respectively). In addition, McGlone et al. (2004a) reported that the body length of 
the sows (excluding the head), had a mean of approximately 115.6cm. The lengths of 
the two sows (head excluded) measured by the piGUI system were in this vicinity, 
ranging from 102.5 to 113.8cm. 
 
The information recorded by a device that can monitor the condition and 
morphological changes of sows may assist in solving and managing a wide variety of 
problems. Primarily the information can be used as a basis for (i) nutritional 
programs to ensure that each sow maintains an adequate level of condition and (ii) 
the design of housing systems during pregnancy and farrowing to ensure that 
adequate space requirements of individual sows are met. Furthermore, as the 
machine vision system is capable of pose recognition, the shape information can be 
used to identify important behaviours which may impact the survivability of a sow’s 
piglets. It is not uncommon for certain sows to savage (Chen et al., 2008) their 
piglets. Sows may also accidently crush piglets when they lie down during farrowing 
(Weary et al., 1996). Therefore, automatically identifying basic behaviours, such has 
the transition between a sow standing and sitting, could be useful in farrowing 
systems to instigate measures to prevent the occurrence of crushing (Banhazi and 
Tscharke, 2011). Although more complex, determining behaviours and 
environmental scenarios that promote fighting between sows or savaging of piglets 
may also be identified so that management protocols can intervene before fights and 
injuries occur (Banhazi and Tscharke, 2011). It is also possible that the 
morphological changes recorded may be used to recognise when a sow becomes 
pregnant and provide an alternative means to manual pregnancy checking. The shape 
and growth may also serve as an indication of a sow’s likely litter size. Also the 
variability in the appearance of sows may be sufficient enough to provide grounds 
for a machine vision system to individually identify sows.  
 
In order to extract the correct body measurements automatically, the morphology 
caused by movement and the morphology caused by growth must be separated. Thus, 
the ability to recognise body posture is very important, as it provides a base reference 
to determine the growth. The effect that the morphology caused by movement has on 
body measurements is suppressed by the shape filter used in this study, however, its 
effectiveness could be improved extensively by modelling the shape change 
throughout pregnancy and lactation.  
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Chapter 7   
 
Integrating RFID into the PiGUI System to Detect for Bias and 
Feeding Behaviour  
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ABSTRACT 
 
A machine vision system was developed to determine the live weight and growth rate 
of groups of pigs. During development, it was important to determine whether the 
sampling method had potential to cause bias and subsequent error in the daily weight 
estimates calculated by the system. Sampling bias can occur toward certain pigs 
because of their appearance or the frequency and duration in which they reside in the 
pen-region beneath the camera. To determine whether these forms of bias could 
occur, Radio Frequency Identification was integrated into the system to monitor the 
attendance of individual pigs in the pen-region observed by the camera. Test results 
indicated that both forms of bias had occurred as a result of the system’s filter 
settings and its installation position.  
 
As the system observed a single feeder space, the opportunity arose to analyse the 
data further and determine whether the feeding behaviour of individual animals could 
be recovered from their attendance at the feeder. Preliminary findings indicate that 
the attendance recorded by the RFID system at the feeder is related to weight gain 
and that attendance might be useful in detecting feeder demand and out of feed 
events. In addition, it is believed that the RFID-recorded interactions between pigs at 
the feeder may provide a novel way of automatically recording competitive 
behaviour between individual animals in a group.  
 
Continuously identifying individual pigs at the feeder helps to fine tune the vision 
systems parameters to overcome bias related issues concerning layout and sampling. 
Additional information can be gained by the RFID system which prompts further 
investigation. 
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7.1 INTRODUCTION 
 
A vision-based weight estimation system was developed to determine the average 
weight of groups of grower and finisher pigs (Banhazi et al., 2011b; Banhazi et al., 
2009c). During normal operation, the system observes a pen region and makes 
weight estimates when a pig is observed standing in a particular posture. Over the 
course of a day these samples are collected and averaged to form a daily group 
weight estimate. To ensure that each pig is assessed for its weight daily, the system 
was installed above a feeding space. However, at this location the feeding duration 
and frequency of each pig has the potential to cause bias in the group’s daily average 
weight estimate. Therefore, to determine and manage the presence of any bias, an 
analysis of the attendance of the animals (observed by the system) is required.   
 
Consequently, Radio Frequency Identification (RFID) was integrated into the system 
as it could be used to determine the feeding duration and frequency of each animal 
with respect to the frequency of weight estimates gathered by the vision system of 
each animal. This information could also be used to indicate whether bias toward 
certain animals was occurring due to the systems filtering operations. The systems 
filtering operations could then be loosened or tightened accordingly.  
 
Radio frequency identification is a standardised method for identifying individual 
animals (ISO 11784/11785). This form of identification is used to enhance the 
traceability of meat products as well as helping producers to determine, (i) individual 
growth rates, (ii) the location of pigs on-farm, (iii) pigs appropriate for breeding 
programs, (iv) feeding behaviour and (v) welfare issues. RFID devices can be either 
injected into an animal or attached to an external appendage such as an ear (Marchi 
et al., 2007; Stärk et al., 1998).  
 
As the RFID system monitored each pig’s attendance at the feeder, the data were 
subsequently analysed to determine both individual and group feeding behaviour. 
Feed behaviour has been monitored in this manner in previous studies (Brown-
Brandl and Eigenberg, 2011; Weixing et al., 2010; Eigenberg et al., 2008; Naas et 
al., 2001; Georgsson and Svendsen, 2002).  
 
This chapter is broken into two main messages: (i) to identify whether bias is present 
and thus whether the feeder is the appropriate installation position for the vision 
system and to (ii) determine whether the RFID system could pick up on the 
behaviour of the animals around the feeder. 
 
7.2 MATERIALS AND METHODS 
 
7.2.1 Experimental Setup and Location of the PiGUI System 
 
The piGUI vision system (Banhazi et al., 2011b) and a RFID system was installed 
inside a pen at a commercial research piggery (PPPI, University of Adelaide, 
Roseworthy campus). A Texas RFID reader (model RI-K3A-001A-00) was used to 
collect identification information via an ear tag transponder (Figure 122). The reader 
and antenna can be seen in Figure 121 (a). The reader was secured to the top-inside 
of a single space feeder located in the corner of the pen (reader location circled in 
Figure 121 (b)).  
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(a) (b) 

Figure 121: (a) The RFID Reader and Antenna; (b) An Image Recorded by the System and the 
RFID Reader (Circled)  

 

 
 

Figure 122: Allflex Ear-tag Transponder Used 
 
The antenna of the RFID system was fixed to the inside the feeder in close proximity 
to the trough. At this location the maximum read-range between an ear-tag 
transponder and the antenna was approximately 20 cm. The position of the antenna 
ensured that each pigs RFID ear tag could be read while its head was inside the 
feeder. The antenna was also installed at a height that avoided the chance of read 
errors occurring from pigs that were not feeding; such as when they were lying down 
in close proximity to the antenna. This ensured the best chance of logging individual 
feeding behaviour as well as preventing curiosity and damage from the pigs. 
 
Sixteen slow growing pigs weighing between 38.5 kg and 63.5 kg were selected to 
be observed in the trial. This particular type of pig was chosen to challenge the 
systems operation, as they would be most likely to have a different shape than 
normal due to their growth history and body condition. In addition, if the pigs were 
disadvantaged, their contour shape could be recovered and potentially used for future 
condition recognition purposes. The pigs were tagged with Allflex FDX-B electronic 
ear tags for identification purposes (diameter 2.6 cm, weight 5.12 g see Figure 122). 
As the trial progressed some pigs were removed from the pen to fulfil space 
requirements. 
 
The RFID logging feature of the piGUI software was activated. Consequently when a 
pig’s ear-tag transponder was within the read-range its unique identification number 
(Figure 122) was logged to two separate files. The first file logged the identification 
number under the condition that the pig was present; every time a successful read 
took place. The second log file recorded the identification number under the 
condition that the piGUI system had performed a weight estimate, so that each pig’s 
identity could be paired with the body measurements and weights determined by the 
vision system. These log files gave an indication of the minimum duration that the 
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each animal spent at the feeder and how often they were captured by the piGUI 
system, respectively. The second log file could also be used to determine individual 
growth and individual body characteristics. Logging preference was always given to 
the closest ID tag to the antenna. 
 
Every time a successful weight assessment took place the piGUI system recorded an 
image of the animal with an overlay of contour shape detected (Figure 121 (b)), the 
RFID tag number (Figure 122), the shape information of the contour, the body 
measurements used to estimate the weight, the weight estimate and a time-date stamp 
of when each image or RFID read was taken. Software was written using Matlab 
(MathWorks, Inc., Natick, MA) to automatically structure the acquired data so that 
each pig’s feeding time, duration and frequency could be compared against others in 
the group. 
 
During the trial the pigs’ backs were marked with livestock paint in a unique pattern 
to enable easy identification on future weigh days; as a RFID reader was not 
available in the location of the electronic scale. The pigs were manually weighed 
using an electronic weigh scale (Pig Weigh Crate, Ruddweigh, Guyra, Australia, 
±1%) on seven occasions during the period between the 18/3/11 and the 24/4/11. 
During this time, attendance and weight information was recorded around the feeder 
by the RFID system and piGUI vision system.  
 
7.3 RESULTS AND DISCUSSION 
 
7.3.1 PiGUI System Performance and the Data Collected 
 
The piGUI system began logging individual information via RFID on the 29/3/11 
(12:05). A RFID read timeout caused the piGUI system to crash on the night of the 
1/4/11 (21:00) and 16/4/11 (13:00). These issues were rectified on the 7/4/11 (9:15) 
and the 20/4/11 (12:15) respectively. The system continued to record identities and 
weight information until the 24/4/11 when the trial ended. In total 803,877 records 
were obtained using the RFID system over the period. Of these 72 were read errors 
and were discarded. The number of ID records of each pig can be seen in Table 52. 
As multiple reads occurred per second, Table 52 shows both the number of reads 
acquired for each animal and the unique data records which eliminate any repetition 
of ID-reads that occurred within a second. The total number of unique ID-reads 
collected was 282,758 (35% of the total ID-reads).  
 

Table 52: RFID Data Collected of Each Pig: Number of Successful Reads and Unique Read-
seconds 

Pig # 
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Unique ID Reads 
(per second) 49

57
3 

27
72

1 

26
93

6 

12
79
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7.3.2 Bias Detection 
 
7.3.2.1 Detecting Layout Bias 
 
The number of seconds each pig attended the feeder was calculated over each of the 
trial days using the unique RFID data to determine whether the time spent at the 
feeder by each pig could cause bias to occur in weight estimates of the group. The 
total number of images captured for each animal by the piGUI system was also 
calculated in the same manner. The results of the RFID and piGUI log file are shown 
in Table 53 and Figure 123.  
 

Table 53: Aggregated Data of the RFID and PiGUI Vision System 
Tag # Total Samples* Total Minutes^ 

4906205 229 826 
4906481 50 462 
4906764 42 449 
4906514 72 213 
4906217 44 247 
4906733 3 58 
4906356 7 116 
4906223 46 515 
4906816 22 140 
4906710 9 362 
4906826 34 303 
4906777 6 267 
4906776 7 12 
4906538 12 208 
4906610 40 157 
4906678 100 377 

* Samples recorded by vision system, ^ Minutes recorded by RFID 
 
The varying duration that the pigs spent at the feeder indicates that bias has occurred. 
This is most obvious for Pig 4906205 (row 1 of Table 53) which spent considerably 
more time at the feeder than its pen-mates, and as a consequence, contributed 
considerably more weight estimate samples to the vision system’s calculation of the 
group average weight (see top right corner of Figure 123). 
 

 
Figure 123: Total Weight Estimate Samples (Vision System) Versus Total Time (Minutes) Spent 

at the Feeder (RFID Reader) 
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The graph in Figure 123 abides by the logic that one would expect, which is that the 
number of weight estimates of individual pigs performed by the piGUI system 
increases with time spent at the feeder (the test location of the sampling device).  
 
7.3.2.2 Detecting Appearance-Based Bias 
 
It was important to determine whether the system’s filtering processes were correctly 
validating the geometry of pigs and that no bias was occurring as a result of the 
system discriminating between certain pig appearances. This was achieved by 
comparing the number of minutes each pig attended the feeder to the number of 
samples taken by the piGUI vision system; indicating how many minutes were 
required to obtain a sample for each pig. The results are show in Table 54. 
 

Table 54: Duration Required to Obtain a Weight Estimate Using the PiGUI System 

Tag # 

49
06

20
5 

49
06

48
1 

49
06

76
4 

49
06

51
4 

49
06

21
7 

49
06

73
3 

49
06

35
6 

49
06

22
3 

49
06

81
6 

49
06

71
0 

49
06

82
6 

49
06

77
7 

49
06

77
6 

49
06

53
8 

49
06

61
0 

49
06

67
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Minutes  / 
Sample 3.6 9.2 10.7 3 5.6 19.4 16.6 11.2 6.4 40.3 8.9 44.4 1.7 17.3 3.9 3.8 

 
The minutes required to take a sample depend on the parameters set in the piGUI 
vision system’s filtering settings, as they can be adjusted to record more or less 
estimates at the cost of accuracy. Under the particular settings used during the trial, 
the filtering procedure appears to show the most positive bias toward pig 4906776 
and then pigs 4906514, 4906205, 4906678, and 4906610 which all required four 
minutes or less of activity around the feeder to obtain a sample (Table 54). In 
contrast the vision system was less inclined to sample pigs 4906777 and 4906710 as 
the system required 40 to 45 minutes of activity around the feeder to obtain a sample 
weight estimate. These pigs are of particular interest as their body type, shape and 
appearance (possibly a consequence of health) may be hindering the system’s ability 
to sample them. However, it is also quite possible that this bias may have been 
caused by the pigs’ behaviour around the feeder as, throughout the trial, pigs were 
observed attempting to access the feeder trough from the side where the RFID 
antenna was mounted, while another pig was feeding.  
 
Two images in Figure 125 (a) and (b) of pig 4906777 illustrate how it was trying to 
gain access to the feeder at the time its ID was read. Thus, it is possible that these 
two pigs may have not been captured as frequently by the system due to the style in 
which they fed or from changes in their body posture due to other pigs pushing them 
out the way. Figure 125 also illustrates the competition around the feeder. Regardless 
of the cause of the bias the sampling was not normally distributed at the feeder 
location using the piGUI system for the slow growing pigs; the histogram of the 
minutes per sample in Figure 124 clearly illustrates this.  
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Figure 124: Histogram of the Minutes Taken for the PiGUI System to Obtain a Weight Estimate 

Samples of Each of the 16 Pigs 
 
Apart from pigs 4906777 and 4906710 located on the far right of Figure 124 another 
subgroup of three pigs were in the range of 16 to 20 minutes per sample which the 
system may have been discriminating against. Regardless of filter settings, the 
remainder of the pigs, requiring less than 12 minutes to sample, can be considered to 
be ‘normal’ and reflect the operation in respect to the filter settings used in this trial. 
From an appearance perspective, the system successfully identified pig 4906678 
which had a slight Duroc appearance once every 3.8 minutes it was in attendance at 
the feeder (Figure 125 (c)), indicating that the system was effective at capturing pigs 
with different skin colour under natural lighting conditions.  
 

   
(a) (b) (c) 

Figure 125: (a, b) Pig 4906777 (‘+’ Marking) Trying to Gain Access to the Feeder; (c) Pig 
4906678 with Duroc Appearance Being Captured by the System 

 
These findings indicate that there is a potential cause of bias related to the attendance 
of individual animals at the feeder or a combination of their shape, posture and 
behaviour at this location. Consequently the filter settings should be loosened in 
subsequent trials. Also the shape information of the animals with low and high 
sample pass rates should be cross-referenced to determine whether any large 
differences exist. In this manner, new shape types can be incorporated into the 
systems recognition procedure in future. 
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7.3.3 Feeding Behaviour 
 
7.3.3.1 Attendance at the Feeder and Weight Gain 
 
The fifteen pigs that were housed in the pen during the nine day period between the 
29/3/11 and the 7/4/11 were assessed for their weight gain and their attendance at the 
feeder. Two pigs lost weight over this period, with pig 4906733 loosing 6 kg and pig 
4906777 loosing 1 kg. The pig which lost 6 kg was medicated and removed from the 
pen altogether. Unfortunately some data for this pig was lost due to a read timeout 
error between the first and seventh of April. As a result, no feeding pattern could be 
recovered documenting its sickness for future diagnostic purposes. Only modest 
weight gain was experienced by majority of the remaining pigs which was to be 
expected as they were slow growers. The weights of the pigs used to calculate the 
weight gain over this nine day period are shown in Table 55 along with the other 
weight records collected. 
 

Table 55: Weights (kg) of the 16 Pigs Throughout the Trial 
ID-Tag 

# 
18/3/11 

(kg) 
23/3/11 

(kg) 
25/3/11 

(kg) 
29/3/11 

(kg) 
7/4/11 
(kg) 

14/4/11 
(kg) 

21/4/11 
(kg) 

4906205 55.5 59.5 63 69 77 84.5 97.5 
4906481 51.5 57.5 58 59.5 69 75.5 88 
4906764 63.5 67.5 68 71.5 79 86.5 99 
4906514 43 43.5 46.5 50 55 62.5 73.5 
4906217 50.5 57.5 55 58 62 68.5 80.5 
4906733 42 42 43.5 45.5 39.5   
4906356 38.5 41.5 42.5 47 48.5 48.5 57.5 
4906223 46.5 51 51.5 55.5 58 66.5 81.5 
4906816 61.5 67 69.5 73.5 79 85.5 97.5 
4906710 55 58.5 62 67 72.5   
4906826 47.5 53 50 54 55.5 63 72 
4906777 44.5 45.5 46 46.5 45.5 48.5 56.5 
4906776 57.5 60 63.5 69 72.5   
4906538 49 53 56 61    
4906610 48 52 52.5 57.5 60 65 75.5 
4906678 55 57.5 61 65.5 72.5   

 
Figure 126 shows the weight gain and minutes spent at the feeder during the nine day 
period after the RFID logging commenced versus the weight of the 15 pigs on the 
29/3/11. Two logical effects can be observed. Firstly, with reference to the blue 
diamonds in Figure 126, over the same growth period the smaller pigs have 
experienced less gain in respect to the larger pigs. This indicates that a pig will have 
different weight gain potential depending on its size. Secondly, the amount of weight a 
pig gains correlates with the amount of time it spent at the feeder. This can be seen by 
comparing both series represented by the circles and diamonds in Figure 126.  
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Figure 126: Weight Gain and Minutes Spent at the Feeder Vs. Starting Weight (29/3/11 to 

7/4/11) 
 
The data points in Figure 126 shows that the five pigs that spent the most time at the 
feeder gained the most weight. However, pigs 4906776, 4906514, and 4906610 spent 
only a small amount of time at the feeder yet had modest weight gain of 3.5 kg or 
greater (circled in Figure 126). These three pigs are of interest as they are likely to 
either have the best conversion efficiency, or do not dominate the feed space and 
therefore give more opportunity for other pigs to feed. It is possible that the low 
number of reads (minutes) of pig 4906776 was caused by the presence of cauliflower 
ear, although it did have the least gain of those pigs with a weight greater than 60 kg 
on the 29/3/11.  
 
The eleven pigs that remained in the pen for the duration of the trial between the 
29/3/11 and the 24/4/11 were also assessed. Figure 127 shows the relationship 
between weight gain of these pigs and time they spent at the feeder.  

 

 
Figure 127: Weight Gain and Minutes Spent at the Feeder versus Starting Weight (29/3/11 to 

21/4/11) 
 

Similar to Figure 126, the data in Figure 127 shows that the four pigs that spent the 
most time at the feeder gained the most weight. Also, the pattern between the 
minutes recorded at the feeder for those pigs that remained in the pen over the 23 day 
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period, is similar to that recorded by the RFID system over the shorter nine day 
period. Likewise a few pigs spent considerably less time at the feeder than the others 
and still maintained modest weight gain (circled in Figure 127). Pig 4906205 shown 
in the square in Figure 127 is of interest as it appears to dominate the feeder space 
and is also potentially overfeeding as it spent 1.8 times longer at the feeder than its 
nearest pen-mate (pig 4906481), while there was no difference in weight gain 
between these two animals (refer to Table 53 and Table 55). The poor gain 
experienced by the two pigs with the lightest starting weights (left of Figure 127) 
indicated that these two pigs were potentially sick. In fact these two pigs (4906356 
and 4906777) were medicated on the 7/4/11 and grew substantially after the 
treatment, indicating that the treatment had worked (see Table 55).   
 
7.3.3.2 Individual and Group Feeding Behaviour 
 
Each pig’s attendance at the feeder was broken into an hour by hour, minute by 
minute and second by second account. The matrices in Figure 128 contain the 
attendance at the feeder during the day in the columns and the ID of the pig that 
attended the feeder in the rows, as structured by the software. A green rectangle at a 
given hour (0-23) indicates that the pig was recorded present at the feeder for a 
second during that hour. All 16 pigs were recorded at the feeder. The left hand 
column of Figure 128 shows the first four days of logged data by the RFID system. 
The right hand column contains data collected from all the days when the RFID 
system was running. 
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Figure 128: An Hour by Hour Representation of the Feeding  
Behaviour of the 16 Pigs for the First 4 Days of Data  

Collected by the RFID System 
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The demand for the feeder can be observed across the days by looking down the 
columns at each hour of Figure 128.  During some hours all 16 pigs visited the 
feeder, while during other hours only two or three animals fed.  
 
To determine demand for the feeder, all of the complete days of data when the 
system was operational were assessed (30/3/11 to the 31/3/11, the 8/4/11 through to 
the 15/4/11 and the 21/4/11 through to the 24/4/11). The average hourly demand for 
the feeder was calculated by summating the number of seconds pigs were in 
attendance at the feeder within each hour from these days. A profile of the demand 
for the feeder over the course of a day based on the seconds of attendance within 
each hour can be seen in Figure 129. 
 

 
Figure 129: Demand Profile at the Feeder over the Course of a Day; Seconds Accumulated 

During Each Hour over 14 days 
 
Peak demand for the feeder in this pen occurs in the afternoon between 15:00 and 
16:00 and in the morning at 08:00. A considerable drop in presence at the feeder is 
experienced between 18:00 and 19:00 and a large increase is experienced between 
05:00 and 06:00. 
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Figure 130 shows the accumulated attendance at the feeder across each hour of the 
day for the 14 complete days of data. There are three key effects which can be 
observed from this Figure. First, the data logged on March 30th and 31st had the most 
attendance at the feeder. This is probably because, as the trial progressed, pigs were 
removed from the pen and demand decreased accordingly. This demand decrease can 
be seen between the 31/3/11 and the 8/4/11 as during this time two pigs were 
removed. Dates when pigs were removed are circled in the legend of Figure 130. 
 

 
Figure 130: Accumulative Attendance at the Feeder on 14 Trail Days 

 
The second effect can be seen on the 9/4/11 where there is considerably more activity 
around the feeder, even though another pig was removed on this day. This was 
potentially caused by the weather, as the 8/4/11 was the hottest day (31.0°C) since 
the 7/3/11. Thus, this may suggests that the pigs feed more frequently in the 
comfortable and relatively constant conditions occurring on the 9/4/11 (min 16.5°C, 
max 19.4°C). The third effect occurred on the 13/4/11 and 14/4/11 of April. The days 
surrounding this data are plotted again in Figure 131 for clarity. A plateau can be 
observed between 08:00 on the 13/4/11 and 07:00 on the 14/4/11 after a relatively 
normal attendance profile on the 12/4/11. This plateau meant that the pigs were not 
attending the feeder during this time.  
 

 
Figure 131: Accumulative Attendance at the Feeder on Four Trail Days Surrounding an Out of 

Feed Event 
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The likely cause of this lack of attendance was an out of feed event which was 
caused by coagulation of feed in the base of the feeder-hopper, which subsequently 
blocked the delivery of the feed through to the trough. A worker at the piggery 
discovered and fixed this problem on the 14/4/11, however, the plateau in attendance 
first began on the 13/4/11 which may indicate that the checks performed the previous 
day failed to detect the problem and the pigs were without feed for over a 24hr 
period. Such a delay in fault-identification would be understandable, as the 
underlying problem was well hidden by the fresh feed on the surface of the feeder 
hopper and was only visually identifiable by observing that the trough had been 
licked clean. All the feed had to be removed to get to the blockage and was spread 
around the pen which would have had an effect on the attendance at the feeder on the 
14/4/11. 
 
7.3.3.3 Competitive Behaviours between the Pigs 
 
Previously, Figure 128 presented the attendance of each pig at the feeder for each 
hour of the day. However, the content of the black region under each of the green 
rectangles in Figure 128 is hard to observe without first zooming-in. Figure 132 (a) 
and (b) show that the minutes that each pig was present are within these rectangles.  
 

  
(a) (b) 

Figure 132: (a) Observing the Minute by Minute Attendance at the Feeder between Pigs; (b) 
Close-up of the Rectangular Section Shown in (a) 

 
Overlapping minutes between two different pigs may indicate that a competitive 
interaction occurred to gain access to the feeder (Figure 132 (b)). Subsequently an 
investigation was undertaken to determine whether the system had logged any 
conclusive interactions between pigs at the feeder.  
 
To achieve this, a data search was undertaken to find seconds where the identity of 
two different animals had been recorded. Identification numbers recorded with 
identical timestamps indicated that both animals must have had their head inside or 
within close proximity to the single space feeder. Consequently, it is highly likely 
that one of the pigs involved was attempting to gain access to the feeder and an 
interaction between two pigs had taken place (examples have been shown previously 
in Figure 125 (a) and (b)). Over the complete days of data, there were 918 occasions 
when two or more ID reads were recorded in this manner.  
 
Table 56 shows the interaction between pigs ranked in order of most interactions to 
least interactions. Note that some of the pigs were removed over the trial period and 
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therefore will have fewer counts; these were pigs 4906733, 4906710, 4906776, 
4906538 and 4906678. 
 

Table 56: Interaction Matrix Between the 16 Pigs 
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4906764 0 27 33 4 20 33 21 30 18 8 13 4 6 10 0 12 239 71.5 99 
4906481  0 24 18 20 12 11 7 9 8 9 10 5 6 4 2 172 59.5 88 
4906826   0 10 22 13 14 4 2 16 8 9 4 0 9 1 169 54 72 
4906710    0 15 14 20 10 17 12 12 7 3 9 9 2 162 67  
4906223     0 6 6 12 6 12 13 8 6 3 4 0 153 55.5 81.5 
4906514      0 14 12 9 13 2 2 4 1 2 0 137 50 73.5 
4906777       0 6 2 4 7 1 11 4 3 0 124 46.5 56.5 
4906205        0 7 5 5 7 4 0 4 1 114 69 97.5 
4906678         0 8 9 5 11 1 1 1 106 65.5  
4906217          0 1 5 2 1 2 1 98 58 80.5 
4906356           0 3 1 1 1 2 87 47 57.5 
4906816            0 1 13 0 0 75 73.5 97.5 
4906610             0 0 2 1 61 57.5 75.5 
4906733              0 1 9 59 45.5  
4906776               0 3 45 69  
4906538                0 35 61  

 
The pig which experienced the most interactions (239) with its pen-mates was pig 
4906764. This pig was also the largest in the group when the group was formed; 
starting at 63.5 kg on the 18/3/11 and finishing at a 99 kg on the 21/4/11 (see Table 
55).  
 
To determine which pigs initiated the interaction and subsequent competitive 
behaviour the identity of the pig ID logged prior to the interaction was determined. 
This indicated which animal was at the feed space first; the one defending the feed 
space. The following table (Table 57) shows the previous matrix broken up into 
aggressive and defensive interactions based on this assumption.  

 
Table 57: Defensive and Aggressive Actions Between the 16 Pigs 
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4906764 125 14 11 3 7 14 10 16 12 3 8 1 5 3 0 7 239 71.5 99 
4906481 13 82 13 7 9 8 6 3 5 6 5 6 2 4 3 0 172 59.5 88 
4906826 22 11 74 5 12 6 11 1 1 9 2 5 3 0 6 1 169 54 72 
4906710 1 11 5 82 6 6 9 7 9 7 3 4 0 5 5 2 162 67  
4906223 13 11 10 9 74 3 2 5 4 7 8 4 0 2 1 0 153 55.5 81.5 
4906514 19 4 7 8 3 66 8 5 5 5 2 1 3 1 0 0 137 50 73.5 
4906777 11 5 3 11 4 6 65 2 0 3 6 1 5 1 1 0 124 46.5 56.5 
4906205 14 4 3 3 7 7 4 54 4 2 3 5 2 0 2 0 114 69 97.5 
4906678 6 4 1 8 2 4 2 3 56 4 4 4 5 1 1 1 106 65.5  
4906217 5 2 7 5 5 8 1 3 4 53 1 1 0 1 1 1 98 58 80.5 
4906356 5 4 6 9 5 0 1 2 5 1 47 2 0 0 0 1 88 47 57.5 
4906816 3 4 4 3 4 1 0 2 1 3 1 41 0 7 0 0 74 73.5 97.5 
4906610 1 3 1 3 6 1 6 2 6 2 1 1 25 0 2 1 61 57.5 75.5 
4906733 7 2 0 4 1 0 3 0 0 0 1 6 0 30 0 5 59 45.5  
4906776 0 1 3 4 3 2 2 2 0 1 1 0 0 1 23 2 45 69  
4906538 5 2 0 0 0 0 0 1 0 0 1 0 0 4 1 21 35 61  

 
The total number of potentially defensive actions that each pig was involved in are 
highlighted along the main diagonal of Table 57. The remaining cells in the columns 
show which individuals initiated the competitive interaction at the feeding space for 
the pig identity in the top row. The remaining cells along the rows show the 
potentially aggressive actions caused by each pig towards the others to gain access to 
the feeder. For example, pig 4906764 had 125 defensive actions out of 239 total 
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interactions. Of these interactions, pig 4906764 was most likely to be defending the 
feeder space against pig 4906826 which made 22 attempts to gain access to the 
feeder while it was feeding. Pig 4906764 was potentially most competitive and 
aggressive toward pig 4906205 as it made 16 attempts to gain access to the feeder 
while pig 4906205 was feeding. Interestingly pig 4906481 that had the second 
highest attendance rate and weight gain also had the second highest number of 
interactions, however in contrast, pig 4906205 which had the highest attendance at 
the feeder and greatest weight gain was in the middle of the list of interactions at 8th 
position.  Perhaps this indicates that other pigs were intimidated by pig 4906205 and 
avoided the feeding area while pig 4906205 was feeding. 
 
The percentage of aggressive and defensive actions for each pig was determined 
relative to the total interactions. These were also ordered in relation to their weight 
when the RFID system commenced operation on the 29/3/11 to indicate what role 
weight might play in these interactions. 
 

Table 58: Potentially Passive and Aggressive Actions from Each Pig within the Pen 
Pig Total Aggressive Passive Aggressive % Passive % Weight 18/3/11 Weight 29/3/11 

4906733 59 29 30 49 51 42 45.5 
4906777 124 59 65 48 52 44.5 46.5 
4906356 88 41 47 47 53 38.5 47 
4906514 137 71 66 52 48 43 50 
4906826 169 95 74 56 44 47.5 54 
4906223 153 79 74 52 48 46.5 55.5 
4906610 61 36 25 59 41 48 57.5 
4906217 98 45 53 46 54 50.5 58 
4906481 172 90 82 52 48 51.5 59.5 
4906538 35 14 21 40 60 49 61 
4906678 106 50 56 47 53 55 65.5 
4906710 162 80 82 49 51 55 67 
4906205 114 60 54 53 47 55.5 69 
4906776 45 22 23 49 51 57.5 69 
4906764 239 114 125 48 52 63.5 71.5 
4906816 74 33 41 45 55 61.5 73.5 

 
The data presented in Table 58 indicates that the lighter pigs were more likely to be 
pushed out of the feeder, while the most aggressive interactions were caused by pigs 
in the lower half of the middle of the group. The data indicates that the heavier pigs 
were also more inclined to be passive, although, of the heavier pigs 4906205 stood 
out as the most aggressive. The results from Table 58 are plotted in Figure 133 for 
the eleven pigs that remained in the pen for the duration of the trial. It is believed that 
this may illustrate the group dynamic on some level in respect to weight. 
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Figure 133: Plot of Potential Passive and Aggressive Actions of the Group 

 
7.3.4 Discussion on Feeding and Social Behaviour  
 
Previously, feeding systems that include individual identification have been used to 
determine the feeding behaviour of small groups of grower-finisher pigs. Georgsson 
and Svendsen (2002) found that pigs in the middle-weight group gained the most 
weight and “neither the large nor the small pigs showed any tendency to have 
different eating rates in the two treatments”. These comments are consistent with the 
weight gain trends shown in Figure 126 and Figure 127.The high rate of feeding by 
the middle-weight pigs in a pen with a single feeder is also consistent with their 
findings (shown in the trend of minutes spent at the feeder in Figure 126 and Figure 
127). Furthermore, this study arrived at similar theories why this was so. Large pigs 
“were expected to have high positions in the hierarchy and thereby had the privilege 
of eating in their preferred manner”, while medium pigs were “put under a higher 
social pressure” and were effectively trying to catch the larger ones (Georgsson and 
Svendsen, 2002, p 380-382). The smaller pigs struggled to keep up with the group 
(such as Pig 4906777 Figure 125 (a) and (b)). 
 
Gathering information in this manner may be useful in determining the social 
hierarchy within groups of pigs in production scenarios, as highly competitive 
animals may be identified and managed to benefit both animal production and animal 
welfare (Hoy et al., 2009). Some studies show that the order in which sows enter 
electronic sow feeding stations can be used to indicate the social hierarchy of the 
group on some level, with higher ranking sows entering the feed station earlier in the 
day (Jensen et al., 2000; Hoy et al., 2009). Alternatively, multiple RFID monitoring 
stations strategically placed in the pen environment can be used to record and model 
the behaviour of livestock species (Naas et al., 2001). RFID might also be used to 
identify and select placid, fast-growing pigs within breeding programs to improve the 
production performance of herds.  
 
7.4 CONCLUSIONS 
 
The piGUI system was integrated with RFID to facilitate the recording of individual 
animals. Subsequently, the piGUI system was tested under challenging commercial 
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conditions in a pen housing slow growing pigs. Feeding behaviour and bias in the 
vision system was determined at the installation location. Modifications were made 
to the software to overcome RFID communication issues. During the trial the piGUI 
system had difficulty identifying certain pigs. The three primary causes of this bias 
were, (i) certain pigs did not feed as frequently leaving less opportunity to gather a 
weight estimate for that individual (a layout bias), (ii) the shape filter was excluding 
the assessment of certain pigs as it was set to strictly or required further modification 
and (ii) the behaviour of the pigs around the feeder made it more difficult for 
estimates to take place, which is most probably related to feeder demand. The RFID 
system also produced potential causes of bias that the reader should be wary of 
including, (i) the body positioning (style) in which the pig feeds in relation to the 
antenna, (ii) the positioning of the ear tag on the pig’s ear, (iii) the condition of the 
pig’s ear (cauliflower ear), (iv) the position of the antenna in the feed space and (v) 
environmental interference such as a build-up of dirt on the ear tag. 
 
The minimum amount of time a pig spent in close proximity to the feeder was used 
to give an indication of its feeding behaviour (attendance). Weight gain appears to 
share a similar trend with the amount of time spent at the feeder, with the pigs that 
spent the most time around the feeder gaining the most weight. Certain pigs appear to 
dominate the feed space, potentially overfeeding while others are potentially 
underfeeding. Further trials and modelling in this area are warranted to determine the 
relationship’s strength and use in practice. Future trials in this area should also 
ensure that an ID read will occur every time a pig’s head is inside the feeder. This 
may require shielding and a secondary antenna.  
 
Peak demand for the feeder was found to be in the afternoon between 15:00pm and 
16:00pm and in the morning at 8:00am for the 14 days of data recorded. During these 
times the feed supply should be monitored and adjusted accordingly to ensure that 
the demand is fulfilled. The accumulative attendance data obtained in this trail 
indicated that the attendance at the feeder decreases when there is no feed available. 
If this is the case, a system with the ability to determine the presence of animal at the 
feeder (such as an RFID system or the piGUI system) has great potential to identify 
out of feed events so that they can be better managed. The accumulative attendance 
also has potential to be used to standardise or regulate the stocking density of a pen 
in relation to the number of feeders, as attendance appears to be related to weight 
gain. High levels of attendance may indicate under-supply and increased 
competition, while low levels may indicate space wastage. The accumulative 
attendance may also be used to identify when animals have been removed from the 
pen (traceability), to identify when workers undertake jobs within the pen and to 
quantify feeding behaviour in respect to temperature fluctuations. 
 
The number and type of interactions around the feeder was determined between pigs 
under the assumption that a pig was passive if it resided at the feeder, while a pig 
was aggressive if it was trying to gain access to the feeder. The pig with the heaviest 
starting weight and ending weight had the most number of interactions. The lighter 
pigs were more likely to be pushed out of the feeder, while the most aggressive 
interactions were caused by pigs in the lower half of the middle of the group. The 
data indicated that overall the heaviest pigs were also more inclined to be passive. 
These findings were consistent with similar studies. Interestingly, the most 
aggressive of the heavier pigs spent 1.8 times longer at the feeder and gained more 
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weight than any other pig. In future studies, the duration between the interactions at 
the feeder can be assessed over an extended interval of several seconds or more 
rather than just a single second, as this could be used to determine whether any 
regular swapping between animals occurred and whether certain pigs had a tendency 
to feed at particular times. 

 
Integrating both weight information from the piGUI system and the identification 
information from the RFID component can also be used to determine the growth and 
weight gain of individual pigs and provide more robust estimates of group averages. 
Although, related studies have demonstrated that the average weight of groups of 
pigs can be determined with acceptable practical accuracy without the aid of RFID 
tags. Potential also exists to identify pigs that are more likely to have good or poor 
feed conversion, and pigs that are likely to require medical treatment. The pigs that 
dominate or are competitive around the feeder can also be identified so that control 
measures can be implemented. The software written to analyse the RFID data 
presented here could be up-scaled to cater for much larger groups of animals and 
additional RFID stations at extra feeding points. 
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Chapter 8   
 
Comparison between PiGUI and a Commercial System  
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ABSTRACT 
 
Machine vision can be used to recognise and determine the live weight and growth of 
pigs. This chapter presents a comparative study between two vision systems 
performing this task. These two systems are (i) a commercially available system 
labelled ‘System-A’ and (ii) the system developed as part of this thesis named 
piGUI. Both of these methods are non-invasive and operate under very similar 
principles. They both extract the pig’s body measurements from video frames and 
use them to estimate the pig’s weight and subsequent growth. Despite following 
calibration and installation procedures correctly, System-A failed to yield accurate 
weight estimates during testing. During the second trial, the piGUI system estimated 
the group average weight to within 2.1% on each the seven days when the actual 
weight of the pigs were determined using the electronic scale. Over the same period, 
System-A reported group average weight estimates in excess of 16 kg error of the 
actual group average weight of the pigs on each of these seven days. Consequently, 
the data outputted by System-A would need to be scaled by a factor to obtain weight 
estimates close to actual group weights. Overall the piGUI system was more 
accurate, simpler to install, and was better suited to the environment. 
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8.1 INTRODUCTION 
 
Phillips and Dawson (1936) presented a manual method to estimate the weight of 
pigs from body measurements recovered from images. However, they experienced 
practical limitations related to identification and manual recovery of a pig’s body 
measurements within the images. Since the invention of computers, these limitations 
have been overcome. As intelligent software methods can now effectively automate 
the body measurement and extraction process. This allows for a continuous stream of 
weight estimates and growth information to be recorded with no operator 
involvement (Schofield et al., 1999).  
 
Only a few machine vision systems are currently commercially available that are 
able to provide, daily, non-invasive estimates of pigs’ growth rate. These systems 
such as eYeScan (Fancom, Panningen, The Netherlands) and Qscan (Innovent 
Technology Limited, Turriff Aberdeenshire, UK) are based on a system developed at 
the Silsoe Research Institute, and originally sold by Osborne Industries Incorporated 
as a product called Vista™ (Wang et al., 2006). Promotional material of these 
products, found on the respective company’s websites and in some articles (Stickney, 
2009), are synonymous with the features of the Vista™ system. Another separate 
development is the OPTisort system (Hoelscher & Leuschner, Emsbüren, Germany). 
This system operates as a vision-based classifier to sort the pigs into respective pens 
depending on their weight range. While this system operates under similar principles, 
it has invasive hardware components, such as sorting gates, which are physically 
present within the pen area and has environmental control in the form of artificial 
lighting. As this product’s characteristics do not align with the non-contact and 
flexible aims of the piGUI system it was not assessed.  
 
The literature states that machine vision systems have been shown to estimate the 
weight of pigs to within 5% of the pig’s actual weight in literature (Schofield, 1990). 
However, commercial systems claim that they can perform within a maximum 
deviation of 3% in precision. 
 
The commercial system tested and evaluated against the piGUI system in this chapter 
has been labelled ‘System-A’. System-A was chosen as it most similar in its function 
to the piGUI system.  
 
8.2 MATERIALS AND METHODS 
 
The software and hardware components (camera and frame grabber) of System-A 
were purchased and supplied from the company and installed. The software and 
piccolo frame grabber was installed on a Hewitt Packard DC7100 computer 2GB 
RAM, Pentium 4 (3 GHz) PC (frame grabber is pictured on the right of Figure 134 
and Figure 135). The dimensions of the PC were 100.3 × 337.8 × 378.5 mm. The 
piGUI system software developed as a part of this study was installed onto a Fit2pc 
(fit2PC, CompuLab Ltd, Technion, Haifa, Israel) (Figure 134 and Figure 135 left). 
This computer was chosen to overcome several problems experienced using desktop 
computers in the piggery environment. The compactness of the Fit2pc (115 × 101 × 
27 mm) effectively minimise the chances of rodent or insect infestation.  
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Figure 134: Comparison between equiptment size, PC for piGUI system (Left),  System-A’s 

frame grabber board (right) 
 
The Fit2pc is 40 times smaller than PC used for the System-A (see Figure 135) and 
uses a passive cooling system which avoids moisture and dust being drawn into the 
PC by fans. The small size of the PC used in the piGUI system enabled the system to 
be easily mounted and transported. 
 

 
Figure 135: Comparison between equiptment size; piGUI system (left top); System-A (right,  

frame grabber location dashed); System-A’s camera (top centre)  
   
8.2.1 Experimental Setup and Location 
 
For comparative purposes, both systems were setup to observe an identical location 
within a pen of finisher pigs at a commercial facility (PPPI, University of Adelaide, 
Roseworthy campus). In this manner the growth of the same group of pigs could be 
recorded by each systems simultaneously. The pigs’ weights were obtained 
periodically during the trial using an electronic weigh scale (Pig Weigh Crate, 
Ruddweigh, Guyra, Australia, ±1%). The cameras were positioned above a single 
feeder located in a corner of the pen which could house up to 17 finisher pigs (see 
Figure 136 for layout).  
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Figure 136: The Experimental Setup at the Facility 

 
8.2.1.1 System-A Installation 
 
System-A was calibrated according to instructions provided by the software 
distributer. This involved the creation of a bone-shaped template that the system was 
required to observe at initialisation of the system (Figure 137).  
 

  
(a) (b) 

Figure 137: (a) Example of System-A’s Calibration Setup and Bone-Shaped Template (a and b) 
 
According to System-A’s instructions, when calibrated correctly the weight estimate 
of the bone-shaped template should yield a result of 41 kg (Figure 137 (b)). During 
calibration, any image-distortion caused by the wide angle lens could also be 
corrected Figure 137 (a).  
 
System-A was installed at a height of 2100 mm and this value was entered into the 
software settings. The actual average group weight of the pigs was also entered into 
System-A’s settings as a guide to a base future estimates on (Figure 138). However, 
the installation height and calibration procedure for the System-A varied as attempts 
were made to calibrate the software to output accurate weight estimates. These 
calibration attempts failed to yield accurate weight estimates. 
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Figure 138: Setting the Average Weight of the Group of Pigs for System-A 

 
8.2.1.2 PiGUI Installation 
 
The piGUI systems camera (Quickcam Pro 9000, Logitech, Quarry Bay, Hong 
Kong) was installed at a height of 1680 mm. The only calibration and user input 
required for the piGUI system to operate correctly was the installation height of the 
camera (lens to ground) (see Figure 144). The piGUI systems camera firmware 
automatically took care of the image distortion and large light variances.  
 

 
Figure 139: Setting the Installation Height among Other Parameters in the PiGUI System 

 
8.3 RESULTS AND DISCUSSION 
 
8.3.1 Trial 1  
 
System-A and the piGUI system were set up to observe a group of finisher pigs 
between the  9/1/10 and the 11/1/10. A similar pattern of growth was recorded by 
both systems, however, System-A was reporting weights outside the finisher pig 
weight range (see Figure 140). 
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Figure 140: Weight Estimates Reported by the PiGUI System and System-A for Finisher Pigs 

 
A summary of the data collected can be found in Table 59. 
 
Table 59: Summary of Data Collected by System-A and the piGUI System from 9/1/10 to 11/1/10  

 
piGUI 
9/1/10 

System-A 
9/1/10 

piGUI 
10/1/10 

System-A 
10/1/10 

piGUI 
11/1/10* 

System-A 
11/1/10* 

Samples 315 60 454 140 164 35 
Images 1923 108 3476 296 1185 61 
Average 77.39 48.86 79.66 53.09 79.87 52.78 
Deviation 9.79 11.64 12.17 13.91 14.23 15.34 
Min 21.72^ 23.79 21.15^ 28.45 19.89^ 27.30 
Max 99.84 65.42 103.10 76.61 101.63 75.68 
Range 78.12 41.63 81.95 48.15 81.74 48.39 

*Results are shown up to 10:45am, ^Result of false of identification 
 
The cameras were mounted on the same stand above the same feeder. However, 
System-A captured considerably less data than the piGUI system under the same 
conditions, as the histograms of the acquired data in Figure 141 (a) and (b) illustrate. 
An identical Y-axis scale has been used to highlight the difference between the 
numbers of samples collected by the two systems. 
 

  
(a) (b) 

Figure 141: Comparing Histograms of the PiGUI System (a) and System-A (b)  
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A scatter plot of the raw data collected by the data piGUI system and System-A are 
shown in Figure 142 (a) and (b) respectively. The data collected by System-A is 
spaced out over a 40 kg range whereas the piGUI data are more heavily clustered 
around a mean value. 
 

  
(a) (b) 

Figure 142: Scatter Plot Weight Estimate Samples Obtained by piGUI (a) and System-A (b)  
 
Interestingly, it also appears that System-A did not pick up on the smaller pig (~60 
kg) within the pen shown in Figure 143.  
 

   
Figure 143: A Considerably Smaller Pig Identified by the piGUI System Within the Pen 

 
Further work on the piGUI system was required to eliminate the small number of 
errors (~1% of the total estimates) shown below 40 kg in Figure 142 (a). These errors 
generally occurred at dusk and dawn from false identification. 
 
8.3.2 Trial 2 
 
Twelve finishing pigs were housed in a pen between the 24/1/11 and the 15/2/11. 
The System-A and the piGUI system were installed and in a protected region of a 
pen adjacent to the trial pen. The cameras were orientated such that they observed the 
region surrounding the feeder (Figure 144 (a) and (b)). Both systems were checked 
routinely between the 24/1/11 and 27/1/11. During this time the average weight of 
the group of pigs was determined using an electronic scale so that the results of the 
two vision-based methods could be validated against the conventional weighing 
method. In addition, a shape filter was incorporated into the piGUI software to 
reduce the occurrence of the false positives experienced in the first trial.  
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(a) (b) 

Figure 144: Examples of Pigs Captured by the (a) PiGUI System and (b) System-A 
 
The pigs were temporarily removed from the pen by farm staff on the 1/2/11 for 
routine cleaning of the pens. A pig which had sustained an injury was set aside and 
the remaining eleven pigs were returned. On the 4/2/11 System-A reported an error 
and the backup camera settings were applied to correct the problem. It was 
discovered that backup settings applied to System-A on the 4/2/11 were incorrectly 
configured. Subsequently, the camera installation height and the zoom level and were 
modified. At this time the pigs were weighed. The average weight for System-A was 
set at 89 kg (88.7 kg) and System-A was calibrated to one of the animals. 
 
A comparison between the actual group average weight and the averages determined 
by the piGUI and commercial system is shown in Table 60. 
 
Table 60: Weight Estimates Calculated by System-A and the PiGUI System between the 24/1/11 

and 15/2/11 

 

 Average Error  

 

 Average Error 

24
/1

/2
11

 Scale (Actual)  76.6 -  

8/
2/

11
 Scale (Actual) 88.7 - 

piGUI 76.2 -0.4  piGUI 87.8 -0.9 

System-A 114.3 37.7  System-A * 50.4 -38.3 

27
/1

/1
1 Scale (Actual) 80.2 -  

11
/2

/1
1 Scale (Actual) 92.9 - 

piGUI 80.6 0.4  piGUI 93.6 0.7 

System-A 114.9 34.7  System-A 40 -52.9 

1/
2/

11
 Scale (Actual) 82.1 -  

15
/2

/1
1 Scale (Actual) 97.4 - 

piGUI 80.4 -1.7  piGUI 97.5 0.1 

System-A 115.8 33.7  System-A 43.3 -54.1 

4/
2/

11
 Scale (Actual) 84.7 -      

piGUI 84.9 0.2      
System-A 101.1 16.4      

* After 16:50pm System-A’s zoom was changed after applying backup settings 
 
System-A’s software consistently reported large errors in weight estimates (see Table 
60). Changing the zoom level increased this error. The fact that changing the zoom 
level of the camera changed the weight estimation output indicated that a 
fundamental hardware and software conversion procedure was absent in System-A. 
Despite System-A’s error margin, the data it recorded did indicate that it was 
recording growth on some level, but the recordings were considerably out of scale in 
relation to the installation instructions and zoom level settings. The raw weight data 
obtained from the piGUI and System-A system is shown in Figure 145. The effect 
that the change in zoom level had on System-A can be seen after the 8/2/11. The 
piGUI system estimated the group average weight to within 2.1% on each the seven 
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days when the actual weight of the pigs were determined using the electronic scale. 
Over the same period, System-A reported group average weight estimates in excess 
of 16 kg error of the actual group average weight. 
 

 
Figure 145: Comparative Data Recorded by the PiGUI system and System-A between the 

24/1/11 and the 
15/2/11 

 
8.3.3 Trial 3 
 
Both systems monitored a group of eleven pigs between the 22/2/11 and the 18/3/11. 
So that the weight estimates of both systems could be validated, the average weight 
of the pigs was determined using the electronic scale on three days during this 
period. The raw weight data obtained from the piGUI and System-A system is shown 
in Figure 146. 
 

 
Figure 146: Comparative Data Recorded by the PiGUI system and System-A between the 

22/2/11 and the 18/3/11 
 
On the 10/3/11 six pigs that were greater than 85 kg were removed from the pen to 
be taken to market. This separation occurred at 13:30. Hence, two data points are 
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given on the 10/3/11 in Figure 146 indicating the group average weight before and 
after the six pigs were removed. Both systems did not pick up on this step down in 
group average after the pigs were removed at 13:30. This is indicates that the larger 
pigs had not been captured up to this point of the day.  
 
Table 61: Comparative Data Obtained of the piGUI System and System-A between the 22/2/11 

and the 18/3/11 

 

 Average Error 

8/
3/

11
 

 

Actual 82.6   
piGUI 83 0.4 

System-A 61.8 -20.8 
10

/3
/1

1 
(a

) 
Actual 85   
piGUI 81.5 -3.5 

System-A 60.6 -24.4 

10
/3

/1
1 

(b
) 

Actual 79.5   
piGUI 81.2 1.7 

System-A 60 -19.5 

15
/3

/1
1 

 

Actual 85.9   
piGUI 87.1 1.2 

System-A 63.1 -22.8 
(a) Actual Group Weight recorded before 13:30; (b) Actual Group Weight recorded after 13:30 

 
8.4 DISCUSSION AND CONCLUSIONS 
 
System-A failed to estimate the group weight of the finisher pigs correctly during the 
trials. There were three potential causes for this error: (i) the error was indirectly 
caused during installation and calibration, (ii) the camera and installation settings did 
not match the hardware provided and consequently the weight-estimation equations 
coefficients distorted estimates, or (iii) the error was caused during weight 
assessment by the system. It was most likely that the second cause was responsible 
for the erroneous growth output as it was apparent that zoom level distorted weight 
estimates. Thus, it is clear that necessary conversions were not taking place within 
the software to normalise the extracted body measurements to suit weight-estimation 
equation coefficients. This would explain why the weight data recorded by System-A 
appeared to require a scaling factor to adjust the data to compensate for the large 
errors in weight estimates. 
 
However, a scaling factor is not required in practice as the piGUI system 
demonstrates. The piGUI system only requires one input for calibration which is the 
installation height from lens to ground. Conversions are then performed by the 
software based on the resolution and installation-height set by the user and the 
known angles of the FOV of the camera.  
 
System-A had two additional software calibration procedures that could be removed 
to un-complicate the installation and initialisation process. One of these was 
calibrating the bone shaped template. Every attempt to calibrate the system using the 
template required the pigs to be removed from the pen. Unfortunately during testing 
not once did the system report the correct weights of the pigs when they were 
reintroduced into the pen, although the template returned the correct weight during 
calibration. This was despite moving the pigs in an out of the pen dozens of times 
and making additional attempts to modify the installation instructions to get the 
system to work correctly. The template did not remain clean for long in its surrounds 
either making it unpleasant or impossible to handle. Although the distortion 
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correction achieved by this calibration procedure is critical when using a wide angle 
lens, many cameras overcome the need for such procedures with inbuilt firmware 
that automatically corrects for lens distortion. This calibration feature is built into the 
camera used by the piGUI system. The other user input used by the System-A for 
calibration was the actual group weight of the batch of animals. Some confusion 
surrounded its function within the commercial systems software for two main 
reasons. First, this information should not even be required as the piGUI system 
demonstrates. Second, although it is undesirable, the actual group average weight 
could be used by System-A to determine an offset value to correct for the apparent 
systematic error that was encountered in this study. However, entering the group 
average weight into the software had no effect on System-A reporting the correct 
weight information. In fact any one of the three calibration procedures active in 
System-A’s software could have been used by the software to output the correct 
weight output but seemingly not one of them worked independently or in unison to 
achieve this.  
 
Both systems suffered from similar problems related to image processing. During the 
tests both systems experienced contour related problems where the body outlines of 
certain pigs were not identified correctly. The frequency of this occurrence was 
dependent upon the filtering settings specified during setup of each system. System-
A offered a post processing tool for removal of these errors and to correct the 
weights obtained by the system (Figure 147).  
 

 
Figure 147: Incorrect Contour Recognition by System-A and Options to Adjust the Weight or 

Delete the Sample  
 
Although it only occurred several times, the false detection of pigs was also an issue 
for both systems, as false positives had potential to distort the systems estimates of 
the weight deviation and the weight range of the group. 
 
Both systems suffered from hardware and software related errors and limitations in 
relation to the piggery environment. A signal issue between the camera and the frame 
grabber board caused an error to occur in the System-A. The piGUI system restarted 
in safe mode during the trial, however, the cause of this event was unknown as no 
information was present in the log file.  
 
From an installation and transport point-of-view the piGUI system was by far easier 
to use as it is smaller than the commercial system. System-A requires a larger 
computer case to facilitate the PCI slot of the frame grabber.  
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The size of the System-A’s computer and its reliance on fans to maintain a safe 
working temperature led to insect and rodent infestation and excessive amounts of 
dust within the casing. Consequently, an additional protective casing was required to 
minimise these effects.  
 
The cameras of both systems required cleaning due to the build-up of dust and insect 
waste. The corrosive environment and insect waste also caused rust to occur on some 
of the cable connections.  
 
It is possible that new versions of System-A and the piGUI system may have 
overcome the shortcomings presented here. 
 
Despite many calibration attempts, the data outputted by System-A needs to be 
scaled by a factor to obtain weight estimates close to actual group weights. It was 
apparent that this was due to the absence of necessary conversions within System-
A’s software to normalise the extracted body measurements to suit weight-estimation 
equation coefficients. The comparative data obtained indicated that both systems 
were capable of estimating growth, however, only the piGUI system was capable of 
determining growth without scalar adjustment of output. The distribution of data 
recorded by the piGUI system was far more concentrated around mean values. The 
small size and fan-less operation of the piGUI system’s computer also overcame 
many of the issues posed by rodents, insects, dust and transportation within the 
piggery environment. Overall the piGUI system was better suited to the environment, 
obtained more accurate data and was simpler to calibrate.  
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Chapter 9   
 
Discussion and Conclusions 
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Chapter 1  reviewed four methods which could continuously and automatically 
monitor the weight of livestock species. Of these methods the vision-based method 
had the greatest potential to overcome the challenges of the farm environment while 
performing to practical precision. Specifically, the vision-based method was the 
preferred choice as it: (i) is non-invasive and does not make any contact with the 
animals, (ii) it can determine multiple animals’ weights in parallel, (iii) it has no 
moving parts and is therefore the safest of alternatives, (iv) it is the easiest to 
transport, (v) it is the easiest to maintain, (vi) it provides the greatest opportunity for 
additional functionality and is able to (vii) generate weight estimates accurate enough 
to be useful in practice. 
 
The Chapter 1 review found that the live weight of several different livestock species 
had been estimated using the vision-based method. The majority of the systems 
developed, estimated the weight of livestock to a practical level of accuracy. In some 
cases the vision-based method proved to be more accurate than conventional 
methods. Commercially available systems were also identified and a system was 
later subject to testing in Chapter 8 . Despite the many benefits of the vision-based 
approach, four key limitations of the method were identified. The following areas 
were identified for improvement: system automation, repeatability in measurements, 
environmental control and bias and fine tuning. 
 
The large majority of reported developments were not completely automated and 
therefore could not operate continuously without the incurring the cost of skilled 
operators. Consequently, the machine vision system, developed in this project, was 
required to be capable of continuous and automatic operation.  
 
Many authors indicated that the pose of the animal was likely to have led to 
fluctuations in the extracted body measurements which, in retrospect, may have 
introduced error into weight estimates. Thus, determining the body measurements 
precisely in respect to a given pose of the animal would potentially reduce error in 
weight estimates. The body measurements themselves were also used by researchers 
to record and classify genetic and body composition characteristics. Therefore, it was 
of added importance to construct a methodology that could extract certain reference 
body measurements from the images with high repeatability. Some studies indicated 
that removing the head and tail of the pig from the analysis would assist with this 
goal.  
 
Environmental control was considered. Integrating any form of hardware 
components into the animals’ environment was disregarded, as such a device would 
require frequent cleaning and, in some cases, would require additional labour 
resources and cost to move or train the animals to interact with it correctly. 
Furthermore, this would nullify many of the non-invasive benefits of a using 
machine vision system in the farm environment. The colour and cleanliness of the 
livestock created problems when distinguishing the boundaries between an animal’s 
body and the background. Extraction and filtering methods were required to 
overcome these issues. 
 
The conditions where bias may affect weight estimation precision were identified to 
understand the causes of the error in weight estimates. Bias may result as a 
consequence of: (i) the time of day when the livestock are assessed, (ii) certain 
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animals re-visiting the scale area more than others and remaining in the scale for 
longer durations, (iii) missed weight recordings due to multiple animals in the scale 
area causing redundant data, (iv) missed weight recordings due to certain animals not 
visiting the scale area, (v) large daily weight fluctuations from excessive fouling, 
health or nutrition problems and (vi) from manual removal of sick or market ready 
animals from the pen. Radio Frequency Identification (RFID) could be used to 
determine the presence of many of these forms of bias so actions can be undertaken 
to reduce or eliminate it.  
 
The findings of these reviews indicated that a large amount of work in this research 
area was still required, as the full potential of weight estimation using vision-based 
techniques had not been achieved.  
 
To appreciate the issues related to pose identification, Chapter 2  reviewed vision 
systems that could determine animal behaviour. It was found that behaviour 
recognition systems that can identify pose and complex behaviours in and between 
animals were not commercially available. Of the systems that were available 
commercially, the majority tracked a single animal inside a laboratory environment 
under controlled lightning conditions. However, in the piggery environment the 
developed device was required to assess individual animals within a group of 
animals, in dirty and challenging conditions, where the ability to provide and 
maintain structured lighting may be limited. Consequently, it was necessary to 
develop a machine vision system to recover the body pose of livestock for weight 
estimation. Furthermore, it was beneficial to generalize the body-pose identification 
method so that animal poses could be used as controlled building blocks during 
modelling of the weight-estimation equation, whereby the weight-estimation 
equation could become a function of the animal’s body pose. This approach would 
not only be suitable for weight estimation tasks, but may also be useful in creating 
welfare related applications to recognise animal behaviour based on body pose in 
future. 
  
Chapter 3 commenced with a breakdown of the functional elements of livestock 
weighing methods to provide an understanding of the types of software routines that 
may be necessary to facilitate the overall control and intelligence of the system. 
Hardware selection was discussed and devices suitable for use within the piggery 
environment were selected. Software was written to segment the body contour of 
pigs from images, excluding the head and tail.  
 
After the segmentation process was complete, the software automatically identified 
and extracted 16 body measurements from specific reference points along the pig’s 
body contour. Both the segmentation and extraction functions were adapted to assess 
streaming video and a database of collected videos.  
 
Software was written to automatically convert pixels to millimetres at ground level 
when either resolution or installation height was entered by the user. This ensured 
that equation coefficients could remain the same irrespective of installation height 
and selected camera resolution.  
 
Areas of improvement were identified during preliminary testing of the prototype 
device. Subsequently, a shape filtering process was developed to validate the contour 

216 
 



shape of the pig’s body after segmentation against an average template shape. The 
average template shape was built using a user specified template shape and an 
automatic selection of closely matching sample body contours which were identified 
within a database of over 20,000 pig body contours. The database contained both 
male and female pigs between 12.5 kg and 306 kg in weight. 
 
Linear, non-linear and multivariate linear equations were formed to estimate the 
weight of pigs from their extracted body measurements. Superior estimation results 
were obtained using a multivariate linear equation built using a stepwise selection of 
the 16 extracted body measurements, 11 angles and their 351 paired interactions. The 
multivariate linear equation estimated 2% more sample weights within ±2 kg error 
and 3% less sample weights greater than ±5 kg error than the closest non-linear 
equation.  
 
During an off-line analysis the shape filtering process controlled weight estimate 
error such that 64% of the shapes that passed resulted in a weight estimate between 0 
and ±2 kg of the actual weight and only 6% of the shapes that passed were greater 
than ±5 kg in error over the grower-finisher weight range. Thus, 94% of weight 
estimates that passed through the shape filter were within ±5 kg of the actual weight 
of the pig. The shape filtering process also ensured that the integrity of each 
segmented contour shape could be discriminated against early in the processing loop, 
and therefore, the overall efficiency and reliability of the system was enhanced. In 
addition weight estimation precision was also improved by modelling the weight-
estimation equation as function of shape. Results using the shape filtering method 
(compared to previous methods) indicate a favourable 24% increase in the number of 
weight estimates within ±2 kg of the actual weight of the pigs and a 19% reduction in 
the number of weight estimates greater than ±5 kg.  
 
A secondary filter was also developed to validate each estimated weight against the 
body measurements extracted from the pig’s body contour. During an off-line 
analysis this limit filtering process controlled weight estimate error over the grower-
finisher weight range such that 68% of body measurement vectors that passed 
resulted in a weight estimate within ±2 kg of the actual weight of the pigs, and only 
3.5% of the body measurement vectors that passed were greater than ±5 kg in error.  
 
The shape and limit filters were then combined in series and analysed off-line. The 
resulting filtering process controlled the weight estimate error over the grower-
finisher weight range such that: (i) 68% of the samples that passed resulted in a 
weight estimate between 0 and ±2 kg of the actual weight, and (ii) less than 3% of 
the samples which passed were greater than ±5 kg in error. Simulated results found 
in Table 27, Table 28 and Table 31 provide grounds for the selection of various 
filtering parameters. Selection of these parameters may be based on the environment 
in which the piGUI system is subject and the weight range of the pigs observed.  
 
Pig height was measured manually and was included in the weight-estimation 
equation to determine its effect on weight estimation performance. Overall the 
multivariate equation, including the height parameter, improved estimation precision 
by 7.34% in the less than ±2 kg weight estimation category, and  by 8.87% in the 
greater than ±5 kg category (compared to the multivariate equation without the 
height parameter). However, the positive effect of including the pig height as a 
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parameter in the estimation equation was reduced when a subset of the dataset was 
considered based on the integrity of each sample’s shape. After sorting and selecting 
the 3500 closest matching samples to the average shape template, the multivariate 
equation (including height) contributed a 6.29% improvement in the number of 
estimates within ±2 kg error and only a 1.09% improvement in the greater than ±5 kg 
error, category (compared to the multivariate equation without height as a 
parameter). Hence, due to the marginal benefit and the practical problems related to 
finding a reliable reference point to obtain the height measure in practice, the height 
measurement was not pursued in this study.  
 
A tracking procedure was integrated into the software to relocate the pig in 
subsequent frames and to enhance the likelihood of obtaining weight estimates. This 
tracking procedure was linked directly to the shape filtering stage as a body contour 
that did not pass the shape filters criteria could still be used to identify the presence 
of a pig.  

 
The piGUI system was found to operate within an acceptable error margin of 50 % of 
the gut fill, as on average, pigs in the weight-range of 45 to 115 kg had their live 
body weight estimated to within 3.16 % and 2.20 % of their respective actual live 
body weight, respectively. For pigs less than 45 kg in weight, the piGUI system 
operated on average, to within 67% of the weight attributed to gut fill or 1.07 kg 
error. During off-line simulations, the percentage mean-relative error obtained by the 
piGUI system was between 5.1 and 3.7% for pigs weighing between 15 and 45 kg 
and less than or equal to 2.5% for pigs between 45 and 115 kg. Therefore, on 
average, the system will operate to within the error margin attributed to gut fill and 
the system will be able to estimate a pig’s body mass effectively and to practical 
precision.  
 
In Chapter 4 the ability of the piGUI system to estimate the weight of finisher pigs 
was tested. Compared to the conventional method, the piGUI system performed well 
during the both the off-line and on-farm trial.  
 
The off-line analysis (see Section 4.3.1) determined how well the extraction and 
filtering processes performed on the data available for finisher pigs. The actual group 
average weight of the finisher pigs was calculated based on the average weight of all 
the pigs in the videos. The data available to the piGUI system was determined by the 
frames which passed a loosely bound body measurement extraction stage. The 
average actual weight of the pigs in all frames which passed this stage was also 
calculated. The weight averages of these two groups gave an indication of how the 
actual average group weight would be collected in practice using the sampled frames 
of individual pigs in respect to the actual weight and total data available. Considering 
on average each video contained just 43 frames over a ~9 second period, the results 
obtained from the sample frames were close to the actual average weight of the 
group based on both the videos and individual sample frames (within ±1.5 kg). These 
frames were then subject to four filtering and estimation methods; before filtering, 
limit filter, shape filter, and combined shape and limit filter. The information was 
divided into three groups consisting of males and females (Group 1), males (Group 
2), and females (Group3).  
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Coincidently, the unfiltered data obtained from Group 1 yielded the closest average 
group estimate to actual group average weight. This demonstrated how it was 
possible to obtain the correct group average weight from datasets where large weight 
estimation errors are present. It appeared that the commercial system tested in 
Chapter 8 worked on this merit. The filtering operations successfully removed 
erroneous samples indicated by the ability to calculate the weight deviation of 
Groups 1, 2 and 3 within 1 kg using the combined filtering process. The estimated 
group average weight of Groups 1, 2 and 3 were all within 2.5% of error of the actual 
group average weight using the combined filtering process. An individual weight 
assessment of the finisher pigs in the three groups was also undertaken. When using 
the combined filtering process, more than 60% of the samples that passed were 
within ±2 kg of the actual weight, while errors greater than ±5 kg between the actual 
weight and weight estimates were reduced to less than 5%. 
 
During the farm trial the precision of the piGUI system was recorded within ±1 kg 
error (~1%) of the actual group average weight on 6 of the 7 trial days where 
comparative information was available. This confirmed off-line results and indicated 
that the piGUI system could record growth to sufficient practical accuracy in 
practice. Relative weight estimation errors were within 2.5% of the actual weight on 
all seven of the days during the on-farm trial. The vision system calculated the 
weight deviation of the group to within ±2 kg of the actual weight deviation during 
the farm trial. The increased error in the estimate of the group’s weight deviation 
indicated that there was potentially some form of bias occurring during the farm trial. 
The growth of the individual pigs recorded by the system was similar to the actual 
growth they experienced.  
 
Chapter 5  explored the diagnostic power of the piGUI system and contained an 
evaluation of its performance in estimating the weight of grower pigs both off-line 
and on-farm. During testing on-farm, various hardware and software problems 
related to the piggery environment were encountered. The majority of these issues 
were overcome by the software, including those related to occlusion, natural lighting, 
pig appearance and posture. Once these issues were resolved, four batches of grower 
pigs were monitored by the piGUI system.  
 
To provide an adequate growth reference, an equation for standard pig growth found 
in literature was validated against growth data obtained from the farm. The equation 
was found to be effective at describing the pigs’ group average weight relative to 
days of age. The piGUI system’s growth output agreed with the equation for standard 
growth during the second batch of pigs, and for periods of the other three batches. A 
deflection away from the standard growth curve was experienced during the third 
and fourth batches when the pigs reached weights greater than ~45 kg. These growth 
deflections were believed to be caused by stress directly or indirectly related to 
temperature, as Summer temperatures reached over 38°C during these batches. This 
theory is supported by the level of animal activity recorded by the system, the 
temperatures leading up to the negative deflection in growth and figures found in 
literature. 
 
After testing and modification of the software code, a simulation was run off-line to 
determine whether the piGUI system’s ability to evaluate the group average weight, 
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the group weight deviation and the individual weight of grower pigs (see Section 
5.3.2). 
 
The group average weights of three groups of grower pigs were estimated within 1.3 
kg error from their actual average group weight. The three groups had their weight 
deviation estimated to within 1.2 kg from their actual group weight deviation.  
 
The individual pigs within these three groups were also assessed. Using the system’s 
combined filtering process, more than 65% of the individual weight estimates output 
were within ±2 kg of the pig’s actual weight and less than 5% of the individual 
weight estimates were greater than ±5 kg in error. As the average weight and weight 
deviation of the group remained relatively steady for all filtering methods it was clear 
that the filters did not cause a dramatic level of bias during the selection of valid 
samples. However, this was based on a short video of each animal. In practice the 
duration and frequency in which each pig is present beneath the camera may differ 
and therefore cause bias in group weight estimates in the pen environment. As a 
result, in Chapter 7  the system was tested to determine whether this form of bias 
could occur. 
 
Chapter 6 determined whether the piGUI system could estimate the weight of sows 
in their early stages of pregnancy and whether the system could detect changes in the 
body measurements of individual sows before and after giving birth.  
 
The group of sows, which were between days 71 and 82 of pregnancy, had their 
individual and group weight estimated accurately. The most accurate group weight 
estimate was within 0.1 kg of the actual group weight performed by the limit filtering 
method. The same method also estimated the weight deviation of the group to 1.7 kg 
of the actual weight deviation of the group.  
 
Eighty-two percent of the samples which passed the combined filtering process were 
within a practical ±5 kg range of the actual weight of the sow. It is believed that 
these results could be enhanced further, with additional data collection and modelling 
surrounding the shape and body measurements of sows throughout pregnancy. 
 
The metric body measurements of two Large White × Landrace sows were recovered 
by the vision system before and after giving birth. The shoulder and ham widths and 
the sows’ body lengths were consistent with those found in literature.   
 
In Chapter 7 RFID was integrated into the piGUI system to record the identity of 
individual animals when they were present beneath the system’s camera to detect for 
bias. The system was tested under commercial conditions in a pen housing slow 
growing pigs. Bias was discovered as a result of the systems installation location 
above the feeder. At this installation location, certain pigs were found to feed more 
frequently and for longer durations than others. Bias was also occurring as a result of 
the piGUI system having difficulty identifying certain pigs. Consequently, it was 
recommended to build additional shape filters and estimation equations to cater for 
slow growing pigs. However, the behaviour of the pigs around the feeder may have 
also contributed to the difficulties experienced while sampling certain pigs.  
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The minimum amount of time a pig spent in close proximity to the feeder was used 
to give an indication of its feeding behaviour (attendance). A similar trend was found 
between the amount of time the pigs spent at the feeder and the amount of weight 
they gained. The pigs that spent the most time around the feeder gained the most 
weight. Certain pigs appeared to dominate the feed space, potentially overfeeding, 
while others were potentially underfeeding.  
 
According to the RFID data, the peak demand for the feeder was found to be 
between 15:00pm and 16:00pm and at 8:00am. It would be recommended that during 
these times the feed supply should be monitored and adjusted to ensure that the 
demand is fulfilled.  
 
Interactions between pigs were determined around the feeder under the assumption 
that a pig was passive if it resided at the feeder, while a pig was aggressive if it was 
trying to gain access to the feeder. The type and number of these interactions were 
determined from the RFID data. The pig with the heaviest starting weight and ending 
weight had the most number of interactions. The lighter pigs were more inclined to 
be pushed out of the feeder, while the most aggressive interactions were caused by 
pigs in the lower half of the middle of the group. The data indicated that overall the 
heaviest pigs were also more inclined to be passive. These findings were consistent 
with similar studies. Interestingly, the most aggressive of the heavier pigs spent 1.8 
times longer at the feeder and gained more weight than any other pig.  

 
A comparative study was undertaken between a commercial system ‘System-A’ and 
the piGUI system in Chapter 8 . System-A failed to estimate the group average 
weight of the finisher pigs correctly in the trials. The three potential causes of this 
error were: (i) the error was indirectly caused during installation and calibration, (ii) 
the camera and installation settings did not match the hardware provided and 
consequently the weight-estimation equations coefficients distorted estimates, or (iii) 
the error was caused during weight assessment by the system. It was most likely that 
the errors in System-A’s growth output was caused by the second reason, as the 
zoom level distorted weight estimates. Thus, necessary conversions were not taking 
place to normalise the extracted body measurements to suit weight-estimation 
equation coefficients within the software (as was done automatically in the piGUI 
software see Section 3.5.3). This would explain why System-A’s growth data would 
require a multiplication by a scalar factor to adjust the growth data to valid weight 
ranges. The piGUI system estimated the group average weight to within 2.1% on 
each of the 7 days when the actual weight of the pigs were determined using the 
electronic scale. On the same days, System-A reported group average weight 
estimates in excess of 16 kg error of the actual group average weight. 
 
To simplify System-A’s installation and initialisation process, its two additional 
software calibration procedures (other than installation height) could be removed. 
Entering the actual group average weight into System-A’s software seemingly had no 
effect on the system reporting the correct weight information. The bone shaped 
template used to correct image distorting was unpleasant to handle in the dirty 
environment. Using a camera with inbuilt distortion correction would be desirable to 
avoid this calibration procedure. Not one of System-A’s calibration procedures 
worked independently or in unison to achieve correct weight output. 
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Both systems suffered from similar problems related to image processing. The body 
outlines of some pigs were not identified correctly and on several occasions false 
positives occurred where the background was incorrectly identified as a pig. The 
number of body outlines incorrectly identified by system-A pigs made it very hard 
for system-A to estimate the weight deviation and the weight range of the group 
correctly. The distribution of weight data recorded daily by the piGUI system was far 
more concentrated around a mean value than System-A. 
 
Both systems suffered from hardware and software related errors and limitations in 
relation to the piggery environment. The cameras of both systems required cleaning 
due to the build-up of dust and insect waste. The corrosive environment and insect 
waste also caused rust to develop on some of the cable connections. From an 
installation and transport point-of-view the piGUI system was by far easier to use as 
it was comparatively smaller than the commercial system. The piGUI system, 
therefore, overcame much of the issues posed by rodents, insects, dust and 
transportation within the piggery environment. 
 
The comparative data obtained indicated that both systems were capable of 
estimating growth, however, only the piGUI system was capable of determining 
growth without scalar adjustment of output.  
 
9.1 FUTURE WORK 
 
To enhance environmental control an optical filter, could be designed in future to 
suppress background artefacts and assist in segmentation. In addition, other imaging 
sensors may be adopted such as NIR or thermal IR to enhance results. 
 
Determining a method to find the pig height may also be considered as either a 
height estimate, or height measurement is required to determine the actual metric 
body measurements of the pigs.   
 
The image-based characteristics of the pigs that were recorded during the data 
extraction process, can be used to enhance the tracking and segmentation functions. 
 
There is potential to improve the accuracy of the system in estimating the weight of 
individual pigs. Potentially, weight estimation errors may be reduced by adapting 
different equations to suit to the shape or body measurements of particular pigs using 
the equation-shape building methodology. With modification, the same methodology 
could also possibly be used for data acquired from alternate camera configurations 
(such as 3D) by using the animal’s surface rather than its contour.  
 
Future work related to sows include creating software to identify important 
behavioural actions such the transition between a sow standing and sitting, or 
fighting, or savaging actions. Shape and or optical flow information could be used in 
this instance. The morphological changes recorded may also be used as an alternative 
means to manually check pregnancy or to recognise problems in a pregnancy. It is 
also possible that a sow’s likely litter size may also be determined from body 
morphology. The variability in the appearance of sows may also be sufficient enough 
to provide grounds for individual identification.  It is believed that weight estimation 
results of sows could be enhanced further, with additional data collection and 
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modelling surrounding the shape and body measurements of sows throughout 
pregnancy.  
 
Further trials to model and determine the strength of the relationship between a pig’s 
attendance at a feeder and its weight gain are recommended. Future trials in this area 
should also ensure that an ID read will occur every time a pig’s head is inside the 
feeder. This may require shielding and a secondary antenna. Although it was not 
investigated in this study, the vision system’s tracking component is capable of 
logging when a pig is in attendance at the feeder or any location around the pen when 
it is standing (in a similar manner to the RFID system). Investigating the similarities 
between the attendance recorded using the RFID system against the vision system’s 
would be an interesting exercise. Creating software code to attempt to automatically 
identify individual pigs from their appearance and geometry is also a task worthwhile 
pursuing using the large database of information already gathered. 
 
The accumulative attendance data obtained in the trial in Chapter 7 indicated that the 
attendance at the feeder decreases when there is no feed available. If this is the case, 
a system with the ability to determine the presence of animals at the feeder (such as 
an RFID system or the piGUI system) has great potential to identify out of feed 
events so that they can be better managed. As attendance appears to be related to 
weight gain, the cumulative attendance has potential to be used to standardise or 
regulate the stocking density within a pen in relation to the number of feeders. High 
levels of attendance may indicate under supply and increased competition, while low 
levels may indicate space wastage. Attendance may also be used to identify when 
animals have been removed from the pen (traceability), to identify when workers 
undertake jobs within the pen and to quantify feeding behaviour in respect to 
temperature fluctuations. 
 
In future studies, the duration between the interactions at the feeder can be assessed 
over an extended interval of several seconds rather than those that occurred within a 
single second, to determine whether any regular swapping between animals occurred 
and whether certain pigs had a tendency to feed at particular times. 
 
Integrating both weight information from the piGUI system and the identification 
information from the RFID component can be used to determine the growth and 
weight gain of individual pigs, and provide more robust estimates of group averages. 
Potential also exists to identify pigs that are more likely to have good or poor feed 
conversion, and pigs that are likely to require medical treatment. The pigs that 
dominate or are competitive around the feeder may also be identified so that 
corrective measures can be implemented. The software written to analyse the RFID 
data could also be up-scaled in future to cater for much larger groups of animals and 
additional RFID stations at extra feeding points. 
 
9.2 CONCLUDING REMARK 
 
In order to extract the correct body measurements automatically, the morphology 
caused by movement and the morphology caused by growth must be separated. As it 
provides a base reference to determine the growth automatically, the ability to 
recognise body posture is very important. The effect that the morphology caused by 
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movement has on body measurements is suppressed by the filtering processes 
documented in this study, weight estimation is enhanced as a result. 
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APPENDIX A 
  
Modelling Time Dependant Behaviour 
 
The identification of behaviours is a random or stochastic process; we often observe 
behaviour in our day to day activities that we would not expect. In this case we are 
instinctively determining the probability of an event occurring and have a 
preconceived perspective of what we are about to witness. However, this perspective 
is not guaranteed to be correct, it may not result with the same outcome if the event 
is repeated - like in a deterministic process where the outcome(s) is the same given 
the same input(s). Thus the path to an outcome in a stochastic process is defined 
through probability distributions; what is the most likely outcome given the past and 
current state of the system. There are three ways in which we can determine the 
occurrence of a future event; using the current value(s), past value(s) or a 
combination of both. Here we only concentrate on the most relevant process where 
the conditional probability is based only on the current state (feature values) of the 
system which is commonly called a Markov process. In addition to these processes, a 
model can be either based on inputs from a predetermined range of information 
(discrete) or continuous and constantly changing information. The application of 
behaviour modelling largely involves the design of systems which continually stream 
data from as sensory source, therefore specific attention is centred on models which 
have the ability to deal with continuous inputs and adaptation. Static data methods 
result in a model that will have fixed (continuous) hidden states once it is defined. 
Observations for static data are assumed to have been collected instantaneously and 
they neglect any temporal conditions. In contrast dynamic data are considered 
temporal and therefore models that utilise dynamic data have hidden states which 
may vary. Models for dynamic data are progressive meaning that they are bounded 
by their state which typically changes in respect to a continuous linear variable such 
a time. Static models can be thought of as a generic representation of a dynamic data 
model. 
A few temporal methods can be used to translate and transcribe a behaviour over 
time such as ‘dynamic time warping’ (DTW), ‘hidden Markov models’ (HMM), 
Kalman filters and artificial neural networks (ANN). These methods all function in a 
similar manner. Also note that some of the techniques presented here in the 
behavioural recognition process can also be used interchangeably in the spatial and 
temporal feature identification process. 
 
Dynamic Time Warping 
 
Dynamic time warping (DWT) refers to the development of algorithms which 
compress or expand data which is dependent on a variable time scale. This type of 
algorithm normalises the data based on the following constraints; path endpoint, 
global path, continuity of localised path sections, orientation, and distance measures 
(Myers et al., 1980). DWT techniques have successfully been applied to sign 
language recognition and body pose recognition (Vajda, 2010) with the help of 
artificial neural network classification. Statistical DWT (SWDT) (an extension of the 
DWT) has proved to perform better in some cases than Hidden Markov models such 
as in handwriting recognition (Bahlmann and Burkhardt, 2004) and sign language 
recognition (Lichtenauer et al., 2008).  
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Hidden Markov Models 
 
A Markov process simply put is a process where the present interpretation of the 
system is used to estimate the future interpretation of the system; but it does not 
depend on the past interpretation of the system. Assuming the possibly dependant 
variables in vector  𝒑 = (𝑝1,𝑝2, … 𝑝𝑛) which has a new variable periodically 
appended to it based on a parameter (such as time 𝑡) in a Markov process the 
prediction of 𝑝𝑡+1(future value) is based only on 𝑝𝑡 (current value). Hidden Markov 
models have a random input state which in this case is defined by the image features 
at time 𝑡 and they generate an output state (estimated pose or behaviour) based on 
probability constraints on the input. The probability constraints are held in a 
transition matrix which describes the relationship between the current state and all 
other predefined states. The model values within transition matrix are generally 
determined in a supervised training process prior to on-line execution; in this case 
using a dataset of a priori features, cues or poses extracted from video sequences of 
transitions between the given behaviour(s). During training the behaviour is 
normalised such that checkpoint states are defined which provide a generic 
representation the variance of the behaviour over time (describes the behaviour most 
efficiently). Each individual behaviour defined within the HMM can be visualised as 
a predefined path ‘through’ a behaviour which compensates for a varying degree of 
behavioural resolution (time/space scale). During execution a HMM will follow a 
behavioural path using conditional probability between the current state and the 
projected output or future state (a function of the current or the current state) to the 
checkpoints defined in its HMM model. A correct or incorrect match is then 
confirmed based on this probabilistic association. Hidden Markov models have been 
applied in vision applications such as sign language recognition (Starner and 
Pentland, 1997) and body movement actions (Yamato et al., 1992). More details on 
HMM can be found in (Rabiner, 1989). 
 
Kalman Filter 
 
The hidden Markov model (HMM) and a Kalman filter model have many 
similarities. A Kalman filter model also known as a linear dynamic model is a 
recursive mathematical process used to determine a best estimation of a systems 
state. The estimation of the current systems state based is on temporal measurements 
of a systems variable(s) which may contain random variation or error. The collected 
information is used to minimise the error between the current measurement and the 
underlying true measurement of the variable. The filter works by first predicting a 
value that is assumed to be close to the true measurement. The probability that the 
predicted value is the true value is also calculated as the uncertainty. Finally a 
weighted average between the predicted value and the measured value are 
determined from the covariance between variable(s) in the system. The value with 
the highest weighting has the least uncertainty. The weighted averages are 
incorporated into the system parameters after a time step which points the system in 
the most likely direction in the following time step. The filter system alternates 
between updating and predicting and can perform these steps in any combination 
depending on the availability of the incident data into the process or the integrity of 
the current predictive precision. For example due to a delay in the response from a 
sensor the process may predict future values for three time steps ahead for every one 
update from the sensor or alternatively two sensor updates could be applied for every 
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prediction if the system began to diverge. The new state of the system is calculated 
based on the previous ‘best’ estimate of the system. Technical details of the filter can 
be found in (Kalman, 1960).  
 
Artificial Neural Networks 
 
Artificial neural networks (ANN) have a layered structure and function as a linear 
auto encoder. An ANN architecture is displayed in Figure 7. This particular network 
is constructed with one hidden layer containing 20 neurons and 1 output layer that 
provides the estimate(s) as output. The figure is based on abbreviated notation found 
in (Demuth and Beale). In this example a tan-sigmoid transfer function was used in 
the hidden layer and a linear transfer function was used in the output layer. Input 
measurement vectors are generally normalised before training so that they have zero 
mean and a standard deviation of one in order to scale the network inputs 
appropriately.  
 

 
𝐚𝐚2 = 𝐟𝐟𝟐�𝐋𝐋𝐈𝐈2,1𝐟𝐟𝟏�𝐈𝐈𝐈𝐈1,1𝐩 + 𝐛𝐛1� + 𝐛𝐛2� = 𝐲𝐲 

𝑅𝑅 = 6 
𝑆𝑆1 = 20 
𝑆𝑆2 = 1 
𝐟𝐟1 = 𝑡𝑎𝑛𝑠𝑖𝑔 
𝐟𝐟2 = 𝑝𝑢𝑟𝑙𝑖𝑛 
LW = layer weight 
IW = input weight 
b = bias 
f = transfer function 
a = output 
n = net input vector 
p = feature vector 

Figure 148: An Example of an Artificial Neural Network Structure 
 
Here the input is either the output of another artificial neuron or a vector of the 
original data. The input(s) are passed through a transfer function that contributes a 
given weight value ‘wi’ to the input(s). These weights are then combined in a way to 
represent the input in terms of the output (they collectively determine the underling 
systems model). A learning function aims to provide reasoning between the input and 
the output and establish sound link between the two. The ANN obtains this reasoning 
by analysing and ‘taking notes’ (weights) on an incident data flow. A cost function is 
used to control the learning it does this by recording and assessing the systems 
projected output based on an input and an actual known observation.  
Neural networks can be trained in one of two ways mentioned previously; through 
supervised learning where the output targets are known or unsupervised learning 
where the output targets are not known to begin with. Although different methods, 
both unsupervised and supervised training methods have the same end goal to 
generalise incident input data into its correct output class or classes via a learning 
rule. In addition to these learning methods there are two general ways to structure the 
flow data into the training process, concurrently and sequentially. Networks that 
adopt a concurrent method push all inputs into the network simultaneously. A 
sequentially orientated network pushes the inputs into the system in a predetermined 
sequence. Furthermore networks can be either static with no delays or dynamic that 
the delay weight updates through a time step. Networks are trained either 
incrementally or in batches and adopt variations of the different types of information 
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flow mentioned previously. Neural networks have been used to determine human 
emotion recognition (Rosenblum et al., 1994; Kharat and Dudul, 2008) and pose 
detection (Liang and Thorpe, 1999; Guo et al., 1994). 
 
Static Data 
 
Methods to generalise a model using static data include factor analysis, principal 
component analysis, linear discriminate analysis (LDA) and support vector machine 
(SVM) (Burges, 1998). A number of variations of PCA also exist such as sensible 
principal component analysis (SPCA) (Roweis, 1998) and generalised principal 
component analysis (GPCA) (Vidal et al., 2003). A comparison between PCA and 
LDA can be found in (Martinez and Kak, 2001). 
 
Principal Component Analysis 
 
Principle component analysis (PCA) is an effective way of simplifying the feature 
data when the data is considered static. Features that are poorly or uncorrelated 
(dissimilar) to one another are found during the analysis. By performing a PCA the 
features can be observed which best represent the variance in the data and provide 
grounds for separation, as the resulting principle components are the features which 
best represent the data. The principal components are generally found using an Eigen 
value decomposition of a covariance matrix based on the feature data (Pearson, 
1901). 
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APPENDIX B 
 
Clustering and Classification Methods 
 
A Conceptual Description of Model Training Through Clustering and Classification 
 
Classification and clustering methods are data dependant structures which make a 
decision based on filtering observation data through a predefined system of 
conditions. A ball maze can be used to exemplify the clustering and classification 
process, where it is the objective of a ball to move from the top layer of the maze 
through to a lower layer by dropping through different size holes located on each 
level in the maze. The level in which the ball stops (the decision) will depend on the 
size of the ball (input) and the size of the holes (conditions or system constraints). 
Here the condition would be if the ball is less than or equal to the size of the hole 
then it can progress to the next level. The decision at each level can be based on logic 
if the ball goes through the hole or not (True or False). Or alternatively the 
probability, where one could assume that the ball is small in comparison to several 
holes varying in size and the ball has the highest chance of going through the hole 
which is greatest in size.  
 
Figure 149 illustrates this concept with the layers of the maze from input level 1 to 
output level 6. In a trial the red ball would eventually get stuck on level 5 the blue on 
level 6 and the green would make it beyond level 6. 
 

  

  

  

Figure 149: Layers of the Ball Maze Concept 
 
Now consider the same system only this time the size of the holes in each level and 
the number of levels are hidden. A question one may ask is how are the conditions 
defined? How do we know what level a particular size ball will stop? The answer is 
that training is required. By putting many different sized balls into the system and 
measuring how long it takes to get the ball through the maze we can start to 
understand the conditions behind the system (its model). Intuitively we can use 
different states of the ball to help with understanding the underlying system model. 
For example the ball can be described as rolling, landing or silent based on the noise 
coming from the system; here silence would be an indication that the ball is 
stationary from being partially stuck in a hole. By starting with the smallest ball 
during training and gradually increasing them in size we would quickly find the 
threshold for the range of ball sizes that make it through level 6. This repetitious 
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training results in the definition of clusters where patterns or behaviours of similar 
sized balls are grouped together. This follows with a classification stage where the 
conditional probability between the resulting output state (noise from the input) is 
compared with the information in the predefined clusters. In this example the size of 
the ball does not need to be known in the classification stage and can be estimated 
based on what cluster the state suggests it belongs to. This basic conceptual model is 
synonymous with model building techniques such as artificial neural networks 
(ANN) where the underlying conditions are learned in an iterative learning process 
using known inputs and sometimes but not always known outputs.  
 
Clustering and Classification 
 
This section presents machine learning techniques which enable one to derive a 
computer readable model off-line or alternatively adapt or begin the execution of 
their models on-line. Machine learning algorithms automatically cluster and classify 
pattern occurrences. There are two types of learning mechanisms used in machine 
learning these are supervised learning and unsupervised learning. Supervised 
learning refers to learning where the underlying pattern structure is found off-line 
using training data. The model derived from training data is then used for 
comparison or validation purposes when the system becomes on-line. Unsupervised 
learning refers to a system that determines the groupings or arrangement of incident 
data (learns) on-line after the system has been activated. That is in order for an 
unsupervised vision system to adapt or operate model free it must self-record 
features with time and then self-classify them based on previously identified clusters 
of patterns which were defined by the system while on-line. 
 
Clustering is a data driven unsupervised learning process which attempts to 
determine relationships between data based on (i) goodness-of-fit to a proposed 
model, or (ii) natural groupings (Jain et al., 1999). Clustering techniques are used to 
investigative a hypothesis or help confirm a decision. 
 
Unlike clustering, classification (also known as discriminant analysis) is a supervised 
learning process which categorises groups based on quantitative information of the 
observed feature data. A classification process involves training a set of previously 
labelled data to describe a pattern(s) before using the pattern(s) to sort (classify) 
incident feature data into their respective groups (Jain et al., 1999). 
 
Clustering 
 
Jain and Dubes (1988) define a system of processes for a clustering task involving 
pattern representation, definition of a pattern, clustering or grouping, data abstraction 
and assessment of output or validation. 
 

 
Figure 150: The Sequence of Pattern Representation, Pattern Definition and Clustering 

(Grouping) (Jain and Dubes, 1988) 
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The pattern representation stage identifies the number of available patterns and 
classes (groups) as well as the type and scale of the systems parameters. The feature 
selection process involves an analysis of the features to determine which ones best 
describe a pattern; identification of the most explanatory features of a set of inputs. 
The feature extraction process involves the combination of features to develop hybrid 
patterns which have good correlation. The clustering or grouping process involves 
the division of the feature derived data points up into their relative classes. Jain et al. 
(1999) defines a class as “a source of patterns whose distribution in feature space is 
governed by a probability density specific to the class” (Jain et al., 1999, p 270). 
There are many different ways which one can cluster data, however, one common 
underlying trait of a clustering algorithm is that they use a proximity or distance 
measure to associate the different points or patterns in the solution space. The 
association between data points and their classes can be either ‘hard’ where the 
decision of cluster algorithm forces the analysed point into a group or ‘fuzzy’ where 
a point can take on a number(s) which shows its partial membership to surrounding 
classes. Once a cluster is found it is often beneficial to represent it as a simplified 
representation of its population. Simplifying a cluster into a more basic form 
generally increases the computational efficiency of the system through the 
compression of the data as the time taken to identify the correct group(s) for the 
values incident into the system is reduced. An example is using a centroid to 
represent a cluster of associated points (Jain et al., 1999). There are many different 
types of clustering algorithms used to group data into efficient and meaningful 
groups. The clustering technique forms the constraints on of the data layout of the 
system. A classification technique is then the process of labelling which cluster input 
feature data belongs to. Once the data are separated into efficient and isolated groups 
a classification method is required to deal with new input data and assign it to its 
appropriate group. Some examples of clustering techniques are presented in the 
following paragraphs. 
 
Hierarchical algorithms cluster the data one of two ways. Top down (divisive) where 
the data are partitioned into clusters starting from the whole dataset or ‘bottom up’ 
(agglomerative) where there is a progressive merger of clusters to form groups of 
larger clusters. The hierarchical process is usually represented by a dendrogram 
which outlines the sequence in which the clusters were grouped. These are time 
based in that they require a certain number of iterations before they converge to a 
solution. Clustering techniques that determine the clusters simultaneously are known 
as partitional clustering algorithms. An example of a Graph Theoretic algorithm is 
the minimal spanning tree or MST which divides data based on links between data 
points the edges created between them. If edges between points can be more 
intuitively described other than by distance, various weightings can be applied to 
edge(s) to provide appropriate bias. The minimal spanning tree can be identified as 
the shortest path between all points. The edges which contribute the largest 
percentage of the shortest path can then be removed to form the desired number of 
clusters.  
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Shown below in Figure 151 is the trivial example of a MST process based on 
Euclidian metric. Removing the two longest lines (dashed) of the MST isolates the 
three clusters (ABC)(DEF)(GH).  
 

 
 

 
An example of a basic hierarchical agglomerative process illustrating how distances 
are used to group the data can be seen below in Figure 152. 
 

0 (A)(B)(C)(D)(E)(F)(G)(H) |1  (AB)(C)(DE)(F)(G)(H) | 2 
(ABC)(DE)(F)(GH) |3  (ABC)(DEF)(GH) 

 
Figure 152: Hierarchical Clustering using the Distance from the Clusters Centroids 

 
The circled numbers ( ) in Figure 152 represent the change of centre (centroid) of 
the cluster. These points are adaptively learnt; as a cluster increases in size its new 
centroid is calculated which then acts as the ground point for calculating distance 
between a cluster and a potentially associated point.  
Fuzzy logic can also be used to allocate a fractal weighting to each point which 
indicates the points association to each cluster. The fractal weighting of each point 
can be visually represented as a pie chart in which each slice segment of the pie 
represents a cluster and the size of the slice is the probability of the point belonging 
to a cluster as shown in Figure 153 below.  
 

 
Figure 153: Fractal Weighting (Membership) between Surrounding Clusters 

 
Density Estimators  
 
Density estimators attempt to describe an unknown probability density function 
using observed sample data to represent the larger population (extrapolate). Many 
different density estimation methods can be used, a commonly used one is described 
below. 

Figure 151: Example of Minimal Spanning Tree (MST) Clustering 
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Kernel Density  
Kernel density estimators (also known as Parzen window method) operate by placing 
a density function at each data point within the dataset before calculating the sum of 
the density function across the range of the data.  
 
This is a similar process to the convolution kernels mentioned previously in a section 
on image enhancement. The sample of the variable (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … 𝑥𝑥𝑛) must be (or 
assumed to be) independently and identically distributed (iid).  
 

𝑓ℎ(𝑥𝑥) =
1
𝑛ℎ

�𝐾�
𝑥𝑥 − 𝑥𝑥𝑖
ℎ

�
𝑛

𝑖=1

 

𝐾 = 𝑘𝑒𝑟𝑛𝑎𝑙 
ℎ = 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝑠𝑚𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑚𝑒𝑡𝑒𝑟) 

 
An example of a kernels density estimator is the Gaussian kernel with mean zero and 
variance one. 

𝐾 �
𝑥𝑥 − 𝑥𝑥𝑖
ℎ

� =
1

√2𝜋
𝑒−

(𝑥−𝑥𝑝𝑝)2
2ℎ2  

Distance measures 
 
As mentioned previously a distance measure is generally used to group data points 
into clusters which are in close proximity or alternatively separate points which are 
dissimilar. Here you will find details on some of these distances. 
 
Minkowski Distance 
 
The Minkowski Distance generalises to either Euclidian metric, Manhattan metric or 
the Chebysev metric depending on the input value of 𝑃 where 𝒑 = (𝑝1,𝑝2, … 𝑝𝑛),𝒒 =
(𝑞1,𝑞2, … 𝑞𝑛) ∈ ℝ  
Manhattan distance when (𝑃 = 1) or Euclidian distance when (𝑃 = 2) in the 
following equation 

��|𝑝𝑖 − 𝑞𝑖|𝑃
𝑛

𝑖=1

�
1/𝑃

 

 
Or the Chebysev Distance when (𝑃 = ∞) in the following equation 
 

lim
𝑃→∞

��|𝑝𝑖 − 𝑞𝑖|𝑃
𝑃

𝑖=1

�

1/𝑃

= max
n

𝑖
|𝑝𝑖 − 𝑞𝑖| 

 
These three types of metric distances are shown below in Table 62 along with their 
contrasting values for a and b given three identically positioned points in space. 
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Euclidian Manhattan Chebysev 
𝑎 = 1, 𝑏 = √2 𝑎 = 1, 𝑏 = 2 𝑎 = 1, 𝑏 = 1 

Table 62: Metric Distances and their Values for Three Identically Positioned Points in Space 
 
Non metric, string or tree structures can also be used to separate data in what is 
known as syntactic clustering. An example of this type of string is the hamming 
distance. 
 
Hamming Distance 
 
Refers to the minimum number of changes required converting one representation 
into another or the number of errors that occurred during the conversion, some binary 
examples are; 
 
1110110101 and 1111111111  hamming distance is 3 
000 and 111  hamming distance is 3 
These binary strings can be represented by a Hypercube as illustrated in 
Figure 154. 
An alternate way of describing the hamming distance is A XOR B where A and B 
must be equal in length.  
 

 

 
 

Other distance measures include the bhattacharyya distance which can be used to 
measure the correspondence between two different population distributions 
(Bhattacharyya, 1943). The Hausdorff distance which is used to determine the 
minimum distance between two sets of points. The Hausdorff distance has been used 
in image processing to match templates of objects to objects in images such as the 
human face (Vivek and Sudha, 2006). The Mahalanobis distance which can be used 
to classify an unscaled covariance matrix of a feature vector (Roweis and 
Ghahramani, 1999).   
 
Learning methods 
 
Cost function 
 
To learn a system there has to first be a set of original observations (data sample) and 
an input observation. A cost function is used to determine the difference between the 
current perception of the systems output based on the input observation and the 
actual optimum system output based on a known value from our original set of 

 
Figure 154: Hyper cube 
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a 
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observations. When a system is learning it has the aim to find the function which has 
the minimal cost; the function that has the results which are closest to the optimum 
solution. An example of a cost function is the square error cost function. 
 
Expectation Maximisation 
 
Expectation Maximisation (EM) is an extension of the maximum likelihood 
algorithm (Jain et al., 1999). This learning method acts like a Chinese finger trap 
where the learned model is only allowed to progress in one direction towards 
maximum likelihood using two steps. First an expectation step (E-step) determines 
covariance matrix of the state vector with the parameters of the feature set then a 
maximisation step (M-step) uses the covariance matrix of the state vector to 
determine the parameters. The algorithm alternates between the E and M step in a 
manner that it is guaranteed not to decrease the likelihood (Roweis and Ghahramani, 
1999).  
 
Boosting 
 
Boosting is a supervised learning process which combines several poorly correlated 
feature values into a single value that has enhanced correlation to the target output. 
During the boosting process relationships between the poorly correlated feature 
values are iteratively learnt and manipulated to convert the many poor classifiers into 
a more powerful one (Freund and Schapire, 1995).  
 
Data collection methods 
 
An animal like a human is a non-rigid deformable object, however, they do not have 
an infinite range of movement; there are limitations to the kinematics and shape of 
their model. The a priori data used to derive describe a behaviour feature can be 
collected using commercially available marker-based motion capture systems. A 
marker is a feature based object(s) (usually a high intensity colour) placed on the 
subject. The marker-based vision system is programmed to identify and track the 
marker object(s) and records the kinematic motion and position of the body to which 
the marker is attached.  
 
Šustr (2001) uses a similar approach to determine the identity and behaviour of pigs. 
The two other methods used to determine the feature reference data are active and 
passive learning. Active learning uses physical sensors such as accelerometers 
attached to the body to determine the kinematics of the model and no vision system 
is required. Positional sensors can be used to detect the dimensions and distance 
between sensor nodes throughout the range of movement. However, having to place 
a marker or sensor on the subject is not always practical so as an alternative passive 
systems must be used. Passive learning systems build their own feature references 
such as the body’s kinematic constraints and dimensions using a vision system 
without physically interfering with the subject; a look and learn approach (Kakadiaris 
and Metaxas, 1998; Kakadiaris and Metaxas, 1996). 
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APPENDIX C 
 
Contour Extraction Procedure from Images Sample Records 
 
So that further off-line shape analysis could be undertaken a greyscale sample image 
was recorded when a pig was in an adequate posture for a weight estimate to take 
place. The body contour recovered during the process was imbedded into the sample 
image as a green line (See Figure 155 (a)). As the grey values have identical values 
across all three colour channels of the image samples an image processing routine 
was created to recover the body contour by first identifying the pixels which were 
not the same across all the three colour channels. As the jpeg images were 
compressed some manipulation was necessary to extract the single pixel width 
boundary contour from the images as shown in Figure 155 (bf). 
 

  
(a) Original Image (b) Subtracting  

  
(c) Shrinking (d) Thinning 

  
(e) Removing Spurs (f) Removing Isolated Pixels (cleaning) 

Figure 155: Process to Extract the Body Contour Out of the Recorded Sample Images 
(a) Example of an Image Sample with the Recovered Body Contour Shape in Green; (b) After 
Subtracting the  Blue and Red Channel from the Green Channel and Adding the Result; 
(ImageG-ImageB) + (ImageG-ImageR). (c) Shrinking the Image in b; (d) Thinning the Image in 
c; (e) Removing Spurs from the Image in (e) and then (f) Removing any Single Pixel Values 
using a Cleaning Operation on (e). 
 
After this contour extraction process the X and Y coordinates of the contour was 
recovered. The mean X and Y coordinates were taken as the contour shapes 
geometric centre. The resulting contour and geometric centre or centroid can be seen 
in Figure 156 below. 
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Figure 156: The Recovered Body Contour and Geometric Centre of the Pig in Red 

 
From the centroid of the contour the X and Y points which made up the contour were 
then converted into polar coordinates representing angle (vector THETAs) and 
magnitude (vector RHOs).  
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APPENDIX D 
 

Table 63: Weight-Estimation Equations Built from a Stepwise Selection of Parameters  
Model 1 Model 2 Model 3 Model 4 Model 5 

Term Self Selected Self Selected  
Ave Term Stepwise Stepwise  

Ave Term Stepwise  
Angles Ave 

Stepwise  
Angles Term Stepwise 

(120) 

Stepwise 
(120)  
Ave 

Term Stepwise (378)  
Angles 

Stepwise (378)  
Angles Ave 

c 13.02300784 19.54728506 c 17.02231831 21.89984025 c -3.681234002 2.510853847 c -124.7189315 -4.13305975 c -114.3830095 5.527334731 
'AT2' 0.000314618 0.000359672 'MWFa' -0.011664187 0 'MWFa' 0 0 'MWFa' 0.195851247 0 'MWFa' 0.110429482 0 
'MR'* -0.470447623 -1.161151277 'MWMida' -0.049677938 0 'MWMida' -0.014212979 -0.04552995 'MWMida' 0.472291094 0 'MWMida' 0.216748878 0 
' ML' 0.171989464 0.498728982 'MWRa' 0 0 'MWRa' -0.02671342 0 'MWRa' 0.065516021 0 'MWRa' 0.227245095 0 
'ARc' -0.000115385 -0.000178912 'AFc' 0.000318881 0 'AFc' 0.000388051 0 'AFc' 0 0 'AFc' -0.000203596 0 
'WRc' -0.025439999 -0.039668816 'AMidc' 0.00035283 0 'AMidc' 8.78E-05 0 'AMidc' -0.002263435 0 'AMidc' -0.001991822 0 
'RL' 0.069684159 0.097546169 'ARc' 0.000162723 0 'ARc' 9.50E-05 -0.000267164 'ARc' 0.00122338 0 'ARc' 0.001188772 0 

   'AT2' 0 0.000314962 'AT2' 0 0.00027436 'AT2' 0 0 'AT2' 0 0 

   'WFc' 0.008609517 -0.054224123 'WFc' 0 -0.054253502 'WFc' -0.411769343 0 'WFc' 0 0 

   'WRc' 0 0 'WRc' -0.028288635 0 'WRc' 0 0 'WRc' 0 0 

   ' ML' 0.16957172 -0.05241333 ' ML' 0.116944075 0.511090752 ' ML' 0 0 ' ML' 0 0 

   'FL' 0 0 'FL' 0 0 'FL' 0.127335058 0 'FL' 0.091173515 0 

   'MidL' 0 0 'MidL' 0 0 'MidL' 0.529623662 0 'MidL' 0.512202926 0 

   'RL' 0.10711414 0 'RL' 0.055273659 0.158669239 'RL' 0 0 'RL' 0 0 

   'mWFa' 0.012874492 0 'mWFa' 0.010957196 0.067379717 'mWFa' 0.130060025 0 'mWFa' 0 0 

   'mWRa' 0 0 'mWRa' 0 0 'mWRa' 0.137923658 0 'mWRa' 0 0 

   'MR' -0.486680048 0 'AMWFa' -0.231675364 -1.11705016 'MR' 0 0 'AMWFa' 0 0 

      'AMWMida' 0 0 'MWFa_MWMida' 0 0.000175774 'AMWMida' 0.031944098 0 

      'AMWRa' 6.09E-05 0 'MWFa_MWRa' 0 0 'AMWRa' 0 0 

      'AWFc' 0 0 'MWFa_AFc' 7.99E-07 0 'AWFc' 0 0 

      'AWRc' 2.92E-07 3.43E-07 'MWFa_AMidc' 1.60E-06 0.00E+00 'AWRc' 0 0 

      'A ML' 0 0 'MWFa_ARc' 0 0.00E+00 'A ML' 0 0 

      'AFL' 0 0 'MWFa_AT2' -2.21E-07 0 'AFL' 0 0 

      'AMidL' 0 0 'MWFa_WFc' -0.000538829 0.00E+00 'AMidL' 0 0 

      'ARL' 0.000119322 0 'MWFa_WRc' 0 0 'ARL' 0 0 

      'AmWFa' 0 0 'MWFa_ ML' 0 -0.000103753 'AmWFa' 0 0 

      'AmWRa' -0.000235076 0 'MWFa_FL' -0.000174998 0 'AmWRa' 0 0 

      'MR' -5.86E-05 -0.000126492 'MWFa_MidL' -0.000496233 0 'MR' 0 -0.052023202 

         'MWFa_RL' 0 0.000234574 'MWFa_MWMida' 0 0 

         'MWFa_mWFa' 0 0 'MWFa_MWRa' 0 0 

         'MWFa_mWRa' 0 0 'MWFa_AFc' 0 0 

         'MWFa_AMWFa' 0 0 'MWFa_AMidc' 1.02E-06 0 

         'MWMida_MWRa' -0.001132435 0 'MWFa_ARc' 0 0 

         'MWMida_AFc' 0 0 'MWFa_AT2' 0 0 

         'MWMida_AMidc' 0 0 'MWFa_WFc' -0.00035295 0 

         'MWMida_ARc' -5.65E-06 0 'MWFa_WRc' 0 0 

         'MWMida_AT2' 2.57E-06 0.00E+00 'MWFa_ ML' 0 0 

         'MWMida_WFc' 0 0.00E+00 'MWFa_FL' 0 0 

         'MWMida_WRc' 0 0 'MWFa_MidL' -0.000368456 0 

         'MWMida_ ML' -0.000784813 0 'MWFa_RL' 0 8.04E-05 

         'MWMida_FL' 0 0 'MWFa_mWFa' 0 0 

         'MWMida_MidL' 0 0 'MWFa_mWRa' 0 0 

         'MWMida_RL' 0.001473441 0 'MWFa_AMWFa' 0 0 

         'MWMida_mWFa' 0 0 'MWFa_AMWMida' 0 0 

         'MWMida_mWRa' 0 0 'MWFa_AMWRa' -5.75E-05 0 

         'MWMida_AMWFa' 0 0 'MWFa_AWFc' 9.48E-05 -0.000361706 

         'MWRa_AFc' 0 0 'MWFa_AWRc' 0 0 

         'MWRa_AMidc' 9.00E-07 0 'MWFa_A ML' 0 0 

         'MWRa_ARc' 0 0.00E+00 'MWFa_AFL' 0 0 

         'MWRa_AT2' 0 0 'MWFa_AMidL' 0 0 

         'MWRa_WFc' 0 0 'MWFa_ARL' 0 0 

         'MWRa_WRc' -0.000588855 0 'MWFa_AmWFa' 0 0 

         'MWRa_ ML' 0 0 'MWFa_AmWRa' 0 0 

         'MWRa_FL' -0.000263473 0 'MWFa_MR' 0 0 

         'MWRa_MidL' -0.000360402 0 'MWMida_MWRa' -0.001298116 0 

         'MWRa_RL' 0 0 'MWMida_AFc' 0 0 

         'MWRa_mWFa' 0.001202679 0 'MWMida_AMidc' 7.14E-07 0 

         'MWRa_mWRa' 0.00073192 0 'MWMida_ARc' 0 0 

         'MWRa_AMWFa' 0 0 'MWMida_AT2' 0 0 

         'AFc_AMidc' 9.38E-10 0 'MWMida_WFc' 0.001200307 0 

         'AFc_ARc' 0 0.00E+00 'MWMida_WRc' 0 0 

         'AFc_AT2' 0 0 'MWMida_ ML' 0 0 

         'AFc_WFc' -4.61E-07 0 'MWMida_FL' 0 0 

         'AFc_WRc' 0 0.00E+00 'MWMida_MidL' 0 0 

         'AFc_ ML' 0 0 'MWMida_RL' -0.000603253 0 

         'AFc_FL' 1.72E-06 0 'MWMida_mWFa' 0 0 

         'AFc_MidL' 0 0.00E+00 'MWMida_mWRa' 0 0 

         'AFc_RL' 0 0 'MWMida_AMWFa' 0 0 

         'AFc_mWFa' 0 0 'MWMida_AMWMida' -0.000193881 0 

         'AFc_mWRa' -3.09E-06 0 'MWMida_AMWRa' 0 0 

         'AFc_AMWFa' 0 0.00E+00 'MWMida_AWFc' -9.50E-05 0 

         'AMidc_ARc' 0 0 'MWMida_AWRc' 0 0 

         'AMidc_AT2' -2.57E-09 0 'MWMida_A ML' 0 0 

         'AMidc_WFc' -2.87E-06 0.00E+00 'MWMida_AFL' 0 0 

         'AMidc_WRc' 0 0.00E+00 'MWMida_AMidL' 0 0 

         'AMidc_ ML' 2.01E-06 0 'MWMida_ARL' 0 0 

         'AMidc_FL' 0 -8.63E-07 'MWMida_AmWFa' 0 0 

         'AMidc_MidL' 0 0 'MWMida_AmWRa' 5.91E-05 0 

         'AMidc_RL' 1.47E-06 0 'MWMida_MR' 0 0 

         'AMidc_mWFa' 0 0.00E+00 'MWRa_AFc' 0 0 

         'AMidc_mWRa' 0 0 'MWRa_AMidc' 1.24E-06 0 

         'AMidc_AMWFa' 0 0 'MWRa_ARc' 3.45E-07 0 

         'ARc_AT2' 6.04E-10 0 'MWRa_AT2' 0 0 

         'ARc_WFc' 0 -3.21E-06 'MWRa_WFc' 0.000772091 0 

         'ARc_WRc' -3.11E-06 1.94E-06 'MWRa_WRc' 0 0 

         'ARc_ ML' 0 0.00E+00 'MWRa_ ML' 0.000666996 0 

         'ARc_FL' 0 0 'MWRa_FL' 0 0 

         'ARc_MidL' -1.39E-06 0 'MWRa_MidL' 0 0 

         'ARc_RL' 0 0.00E+00 'MWRa_RL' 0.000419501 0 

         'ARc_mWFa' 2.51E-06 0 'MWRa_mWFa' 0.000340222 0 

         'ARc_mWRa' 3.41E-06 0.00E+00 'MWRa_mWRa' 0 0 

         'ARc_AMWFa' 0 0.00E+00 'MWRa_AMWFa' 0 0 

         'AT2_WFc' 0 0 'MWRa_AMWMida' 0 0 

         'AT2_WRc' 1.36E-06 0 'MWRa_AMWRa' 0 0 

         'AT2_ ML' 2.96E-07 1.73E-07 'MWRa_AWFc' 0 0 

         'AT2_FL' -1.44E-06 0.00E+00 'MWRa_AWRc' 0 0 

         'AT2_MidL' 0 0.00E+00 'MWRa_A ML' 0 0 

         'AT2_RL' -5.94E-07 0 'MWRa_AFL' 0 0 

         'AT2_mWFa' -4.81E-07 3.44E-07 'MWRa_AMidL' 0 0 

         'AT2_mWRa' 0 0.00E+00 'MWRa_ARL' 0 0 

         'AT2_AMWFa' 0 0 'MWRa_AmWFa' 0 0 

         'WFc_WRc' -0.000572216 0 'MWRa_AmWRa' 0 0 

         'WFc_ ML' 0 0 'MWRa_MR' -0.002234351 0 

         'WFc_FL' 0 0 'AFc_AMidc' 0 0 

         'WFc_MidL' 0.000914369 0 'AFc_ARc' 0 0 

         'WFc_RL' 0 0 'AFc_AT2' 0 0 

         'WFc_mWFa' 0.001294128 0 'AFc_WFc' 0 0 

         'WFc_mWRa' 0.001430156 0 'AFc_WRc' 0 0 

         'WFc_AMWFa' 0 0.000698496 'AFc_ ML' 0 0 

         'WRc_ ML' 0 0.001059569 'AFc_FL' 0 0 

         'WRc_FL' 0 0 'AFc_MidL' 1.59E-06 0 

         'WRc_MidL' 0 0 'AFc_RL' -8.54E-07 0 

         'WRc_RL' 0.000822802 0 'AFc_mWFa' 1.75E-06 0 

         'WRc_mWFa' 0 0 'AFc_mWRa' 0 0 

         'WRc_mWRa' 0 0 'AFc_AMWFa' 0 0 

         'WRc_AMWFa' 0 -0.002427514 'AFc_AMWMida' 2.78E-07 0 

         ' ML_FL' 0 0 'AFc_AMWRa' 0 0 

         ' ML_MidL' 0 0 'AFc_AWFc' 0 0 

         ' ML_RL' 0 0 'AFc_AWRc' 0 0 

         ' ML_mWFa' 0 0 'AFc_A ML' 0 0 

         ' ML_mWRa' 0 0 'AFc_AFL' 0 0 

         ' ML_AMWFa' 0 0 'AFc_AMidL' 0 0 

         'FL_MidL' 0.000382015 0 'AFc_ARL' 0 1.10E-06 

         'FL_RL' 0.000473021 0 'AFc_AmWFa' 0 0 

         'FL_mWFa' 0 0 'AFc_AmWRa' 0 0 

         'FL_mWRa' 0.000865418 0 'AFc_MR' 9.21E-07 0 

         'FL_AMWFa' -0.000359676 0 'AMidc_ARc' 0 0 

         'MidL_RL' 0 0 'AMidc_AT2' -2.24E-09 0 

         'MidL_mWFa' 0 0 'AMidc_WFc' -9.25E-07 0 

         'MidL_mWRa' 0 0 'AMidc_WRc' 1.45E-06 0 

         'MidL_AMWFa' -0.000674005 0 'AMidc_ ML' 0 0 

         'RL_mWFa' -0.001139455 0 'AMidc_FL' -2.66E-06 0 

         'RL_mWRa' -0.001440112 0 'AMidc_MidL' 0 0 

         'RL_AMWFa' 0 0 'AMidc_RL' 0 0 

         'mWFa_mWRa' -0.002174795 0 'AMidc_mWFa' 0 0 

         'mWFa_AMWFa' 0 -0.00021062 'AMidc_mWRa' 0 0 

         'mWRa_AMWFa' 0 0 'AMidc_AMWFa' 0 0 

            'AMidc_AMWMida' 0 0 

            'AMidc_AMWRa' 1.81E-07 0 

            'AMidc_AWFc' -4.65E-08 0 

            'AMidc_AWRc' 0 0 

            'AMidc_A ML' 0 0 

            'AMidc_AFL' 0 0 

            'AMidc_AMidL' 0 -1.69E-05 

            'AMidc_ARL' 0 0 

            'AMidc_AmWFa' 0 0 

            'AMidc_AmWRa' -1.47E-07 0 

            'AMidc_MR' 6.18E-06 0 

            'ARc_AT2' 5.31E-10 0 

            'ARc_WFc' 0 0 

            'ARc_WRc' 0 0 

            'ARc_ ML' 0 0 

            'ARc_FL' -1.23E-06 0 

            'ARc_MidL' 0 0 

            'ARc_RL' 0 -4.05E-07 

            'ARc_mWFa' 0 0 

            'ARc_mWRa' 0 0 

            'ARc_AMWFa' 0 0 

            'ARc_AMWMida' 0 0 

            'ARc_AMWRa' 0 0 

            'ARc_AWFc' 0 0 

            'ARc_AWRc' 0 0 

            'ARc_A ML' 0 0 

            'ARc_AFL' 0 0 

            'ARc_AMidL' -6.78E-06 0 

            'ARc_ARL' 0 0 

            'ARc_AmWFa' 0 0 

            'ARc_AmWRa' 0 0 

            'ARc_MR' 0 0 

            'AT2_WFc' 0 0 

            'AT2_WRc' -1.76E-07 0 

            'AT2_ ML' 0 0 

            'AT2_FL' 0 0 

            'AT2_MidL' -1.07E-06 0 

            'AT2_RL' 0 0 

            'AT2_mWFa' -4.15E-07 1.86E-07 

            'AT2_mWRa' 0 0 

            'AT2_AMWFa' 0 0 

            'AT2_AMWMida' 0 0 

            'AT2_AMWRa' 0 0 

            'AT2_AWFc' 0 0 

            'AT2_AWRc' 0 0 

            'AT2_A ML' 0 0 

            'AT2_AFL' 0 0 

            'AT2_AMidL' 1.99E-06 0 

256 
 



            'AT2_ARL' 0 0 

            'AT2_AmWFa' 0 0 

            'AT2_AmWRa' 0 0 

            'AT2_MR' 0 0 

            'WFc_WRc' -0.001192223 0 

            'WFc_ ML' 0 0 

            'WFc_FL' -0.000187407 0 

            'WFc_MidL' 0 0 

            'WFc_RL' 0 0 

            'WFc_mWFa' 0 0 

            'WFc_mWRa' 0 0 

            'WFc_AMWFa' 0 0 

            'WFc_AMWMida' -0.000116601 0 

            'WFc_AMWRa' 0 0 

            'WFc_AWFc' 0 0.000415924 

            'WFc_AWRc' 0 0 

            'WFc_A ML' 0 0 

            'WFc_AFL' 0 0 

            'WFc_AMidL' 0 0 

            'WFc_ARL' 0 0 

            'WFc_AmWFa' 0 0 

            'WFc_AmWRa' 0 0 

            'WFc_MR' 0 0 

            'WRc_ ML' 0 8.15E-05 

            'WRc_FL' 0.000787534 0 

            'WRc_MidL' 0 0 

            'WRc_RL' 0 0 

            'WRc_mWFa' 0 0 

            'WRc_mWRa' 0 0 

            'WRc_AMWFa' 0 0 

            'WRc_AMWMida' 0.000215512 0 

            'WRc_AMWRa' 0 0 

            'WRc_AWFc' 0 0 

            'WRc_AWRc' 0 0 

            'WRc_A ML' 0 0 

            'WRc_AFL' 0 0 

            'WRc_AMidL' 0 0 

            'WRc_ARL' 0 0 

            'WRc_AmWFa' 0 0 

            'WRc_AmWRa' 0 0 

            'WRc_MR' 0 0 

            ' ML_FL' 0 0 

            ' ML_MidL' 0 0 

            ' ML_RL' 0 0.00010015 

            ' ML_mWFa' 0 0 

            ' ML_mWRa' 0 0 

            ' ML_AMWFa' 0 0 

            ' ML_AMWMida' -5.87E-05 0 

            ' ML_AMWRa' 0 0 

            ' ML_AWFc' 0 0 

            ' ML_AWRc' 0 0 

            ' ML_A ML' 0 0 

            ' ML_AFL' 0 0 

            ' ML_AMidL' 0 0 

            ' ML_ARL' 0 0 

            ' ML_AmWFa' 0 0 

            ' ML_AmWRa' 0 0 

            ' ML_MR' -0.000306809 0 

            'FL_MidL' 0.000358512 0 

            'FL_RL' 0.000741997 0 

            'FL_mWFa' -0.000474848 0 

            'FL_mWRa' 0 0 

            'FL_AMWFa' 0 0 

            'FL_AMWMida' 0 0 

            'FL_AMWRa' 4.51E-05 0 

            'FL_AWFc' 0 0 

            'FL_AWRc' 0 0 

            'FL_A ML' 0 0 

            'FL_AFL' 0 0 

            'FL_AMidL' 0 0 

            'FL_ARL' 0 0 

            'FL_AmWFa' 0 0 

            'FL_AmWRa' 0 0 

            'FL_MR' 0 0 

            'MidL_RL' 0 0 

            'MidL_mWFa' 0 0 

            'MidL_mWRa' 0 0 

            'MidL_AMWFa' 0 -3.53E-05 

            'MidL_AMWMida' 0.000103016 0 

            'MidL_AMWRa' 0 0 

            'MidL_AWFc' 0 0 

            'MidL_AWRc' 0 0 

            'MidL_A ML' 0 0 

            'MidL_AFL' 0 0 

            'MidL_AMidL' 0 0 

            'MidL_ARL' 0 0 

            'MidL_AmWFa' 0 0 

            'MidL_AmWRa' 0 0 

            'MidL_MR' -0.000309587 0 

            'RL_mWFa' 0 0 

            'RL_mWRa' 0 0 

            'RL_AMWFa' 0 0 

            'RL_AMWMida' 0 0 

            'RL_AMWRa' 0 0 

            'RL_AWFc' 0 0 

            'RL_AWRc' 0 0 

            'RL_A ML' 0 0 

            'RL_AFL' 0 0 

            'RL_AMidL' 0 0 

            'RL_ARL' 0 0 

            'RL_AmWFa' 0 0 

            'RL_AmWRa' 0 0 

            'RL_MR' 0 0 

            'mWFa_mWRa' 0 0 

            'mWFa_AMWFa' 0 0 

            'mWFa_AMWMida' 0 0 

            'mWFa_AMWRa' -5.77E-05 0 

            'mWFa_AWFc' 0 0 

            'mWFa_AWRc' 0 0 

            'mWFa_A ML' 0 0 

            'mWFa_AFL' 0 0 

            'mWFa_AMidL' 0 0.006086792 

            'mWFa_ARL' 0 0 

            'mWFa_AmWFa' 0 0 

            'mWFa_AmWRa' 0 0 

            'mWFa_MR' 0 0 

            'mWRa_AMWFa' 0 0 

            'mWRa_AMWMida' 0 0 

            'mWRa_AMWRa' 0 0 

            'mWRa_AWFc' 0 0 

            'mWRa_AWRc' 0 0 

            'mWRa_A ML' 0 0 

            'mWRa_AFL' 0 0 

            'mWRa_AMidL' 0 0 

            'mWRa_ARL' 0 0 

            'mWRa_AmWFa' 0 0 

            'mWRa_AmWRa' 0 0 

            'mWRa_MR' 0 0 

            'AMWFa_AMWMida' 0 0 

            'AMWFa_AMWRa' 0 0 

            'AMWFa_AWFc' 0 0 

            'AMWFa_AWRc' 0 0 

            'AMWFa_A ML' 0 0 

            'AMWFa_AFL' 0 0 

            'AMWFa_AMidL' 0 0 

            'AMWFa_ARL' 0 0 

            'AMWFa_AmWFa' 0 0.000116459 

            'AMWFa_AmWRa' 0 0 

            'AMWFa_MR' 0 0 

            'AMWMida_AMWRa' 0 0 

            'AMWMida_AWFc' 0 0 

            'AMWMida_AWRc' -3.51E-05 -0.000255403 

            'AMWMida_A ML' 0 0 

            'AMWMida_AFL' 0 0 

            'AMWMida_AMidL' -0.000763882 0 

            'AMWMida_ARL' 0 0 

            'AMWMida_AmWFa' 0 0 

            'AMWMida_AmWRa' 0 0 

            'AMWMida_MR' 0 0 

            'AMWRa_AWFc' 0 0 

            'AMWRa_AWRc' 0 0 

            'AMWRa_A ML' 0 0 

            'AMWRa_AFL' 0 0 

            'AMWRa_AMidL' 0.000684201 0 

            'AMWRa_ARL' 0 0 

            'AMWRa_AmWFa' 0 0 

            'AMWRa_AmWRa' 0 0 

            'AMWRa_MR' 0 0 

            'AWFc_AWRc' -2.73E-05 0 

            'AWFc_A ML' 0 0 

            'AWFc_AFL' 0 0 

            'AWFc_AMidL' 0 0 

            'AWFc_ARL' -0.000335758 -0.000977449 

            'AWFc_AmWFa' 0 0 

            'AWFc_AmWRa' 0 0 

            'AWFc_MR' 0 0 

            'AWRc_A ML' 0.00236078 0.007035116 

            'AWRc_AFL' -0.00032855 0 

            'AWRc_AMidL' -0.002276591 -0.008692122 

            'AWRc_ARL' -0.000418847 0 

            'AWRc_AmWFa' 0 0 

            'AWRc_AmWRa' 0 0 

            'AWRc_MR' 0 0 

            'A ML_AFL' 0 0 

            'A ML_AMidL' 0 0 

            'A ML_ARL' 0.014155638 0 

            'A ML_AmWFa' 0 0 

            'A ML_AmWRa' 0 0 

            'A ML_MR' 0 0 

            'AFL_AMidL' 0 0 

            'AFL_ARL' 0 0 

            'AFL_AmWFa' 0 0 

            'AFL_AmWRa' 0 0 

            'AFL_MR' 0 0 

            'AMidL_ARL' -0.023789653 0 

            'AMidL_AmWFa' 0 0 

            'AMidL_AmWRa' 0 0 

            'AMidL_MR' 0 0 

            'ARL_AmWFa' 0 0 

            'ARL_AmWRa' 0 0 

            'ARL_MR' 0 0 

            'AmWFa_AmWRa' 0 0 

            'AmWFa_MR' 0 0 

            'AmWRa_MR' 0 0 

*MR = MLRho 
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APPENDIX E 
 
An important model closely related to this study is the standard growth curve for pigs 
bred for their meat. The growth of pigs relative to their age and weight is shown in 
Table 64 and Figure 157. 
 

Table 64: Standard Growth of Pigs Produced for their Meat Obtained from Carr  (1998) 
 

Age Weight 
Weeks Day (kg) 

4 28 7 
6 42 12.5 
8 56 21.3 
10 70 30.5 
12 84 40.5 
14 98 51.5 
16 112 65 
18 126 80 
20 140 95 
22 154 110 

 
 

 
Figure 157: Standard Growth Curve for Pigs Bred for their Meat According to Carr  (1998) 

 
This curve can be approximated by the following power equation; 
 

𝑾𝒆𝒊𝒈𝒉𝒕 =  𝟎.𝟎𝟐𝟗𝟑𝑨𝒈𝒆𝟏.𝟔𝟑𝟑𝟕    Equation 4: Standard Growth Curve Equation 
 
This standard growth curve can be used as a reference over the grower-finisher 
growth phases, between 30 and 120 kg live weight (LW). A grower pig generally 
weighs between 30 and 60 kg and a finisher pig generally weighs between 60 and 
120 kg. Different diets are usually supplemented in these different stages of growth.  
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APPENDIX F 
 
In order to manipulate the base image to enhance segmentation or improve the visual 
appearance many different convolution filters can be used. A convolution filter can 
be visualised as a mask which when applied to an original image F will transform the 
image into a new image G. Where G is an image that has greater chance of 
identifying any targeted feature compared to the image F. Depending on the 
application these filters can be used to smooth, sharpen, blur or determine the edge 
within the filter area. Although only examples of filters with of dimensions 3x3 are 
shown in Table 65 below a filter structure can take on any shape or size such as a 
circle, diamond, square or any polygon for that matter. Changing the filter structural 
element to one other than a square or rectangle gives rise to the additional challenge 
of keeping the filter within the image dimensions and covering all pixels within the 
image without biasing or excluding some pixels from the manipulation. Some 
common filters with their coefficients are listed below along with their function. The 
coefficients are either applied directly to the intensity values or the intensity values 
within the filter are used in combination to perform the manipulation.  
 

Table 65: Various Convolution Filters 
Filter Type Combination Function Example 

Gradient 

a -b c 

b x -d 

c d -a 
 

Direction specific edge  
detection (𝑥𝑥 =  0) and 
Texture enhancement (𝑥𝑥 =  1) 
The larger the filter size  
the thicker the edges 

0 1 1 

-1 0 1 

-1 -1 0 
 

Laplacian 

a -b c 

b x -d 

c d -a 
 

Omni directional  
edge detection if  
𝑥𝑥 =  2(|𝑎| + |𝑏| + |𝑐| + |𝑑|) 

and 
Texture enhancement if 
𝑥𝑥 >  2(|𝑎| + |𝑏| + |𝑐| + |𝑑|) 

The larger the filter size  
the thicker the edges 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 
 

Smoothing 

a b c 

b x d 

c d a 
𝑎, 𝑏, 𝑐,𝑑 ≥ 0 

Blur  and Remove detail 
The larger the filter size  
the greater the smoothing  
Strong blur  (𝑥𝑥 =  0) 
Weak blur (𝑥𝑥 =  1) 

0 1 0 

1 0 1 

0 1 0 
 

Gaussian 

a b c 

b x d 

c d a 
x > 1 

Values  𝑎, 𝑏, 𝑐,𝑑 are integer 
approximations of the Gaussian  
curve 

1 2 1 

2 4 2 

1 2 1 
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Median 

a b c 

d x e 
f g h 

 

 
Noise removal without blurring edges  
reduces detail 

𝑥𝑥 =  𝑚𝑚𝑒𝑑𝑖𝑎𝑛(𝑎, 𝑏, 𝑐,𝑑, 𝑒,𝑓,𝑔,ℎ) 

Sigma 

a b c 

d x e 
f g h 

 

Highlights edges based on determining  
if the pixel at location x is significant or 
 insignificant 
in respect to its neighbourhood 
𝑦𝑦 =  [𝑎, 𝑏, 𝑐,𝑑, 𝑒,𝑓,𝑔,ℎ] (neighbourhood) 
𝑥𝑥 =  𝑚𝑚𝑒𝑎𝑛(𝑦𝑦) if 
𝑥𝑥 <  𝑚𝑚𝑒𝑎𝑛(𝑦𝑦) − 𝑘 × 𝑠𝑡𝑑(𝑦𝑦) or  

𝑥𝑥 >  𝑚𝑚𝑒𝑎𝑛(𝑦𝑦) + 𝑘 × 𝑠𝑡𝑑(𝑦𝑦) 
Where k is a threshold value for the  
acceptable deviation range from the mean 

Mean 

a b c 

d x e 
f g h 

 

Blurs edges and reduces detail 
𝑥𝑥 =  𝑚𝑚𝑒𝑎𝑛(𝑎, 𝑏, 𝑐,𝑑, 𝑒,𝑓,𝑔,ℎ) 

 
One commonly used spatial technique is to apply a median filter to the image region 
which is effective at minimising image noise. Other local neighbourhood processing 
techniques include edge detection which highlights the large steps between different 
levels of light intensity. An example is in (McFarlane and Schofield, 1995) who 
devise a segmentation algorithm that uses a differencing between a median 
background and an edge detection method using a laplacian filter before identifying 
the object based on shape. 
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