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Highlights

HIGHLIGHTS

e APSIM accurately simulated the yield of forage crop sequences in the Argentinian
Pampas.

e The seasonal and annual water productivity was accurately represented for APSIM.
e The APSIM predictions decreased when seasonal water productivity was higher.

e The maize crop into the sequences strongly affected DM yield and water
productivity.

o APSIM appears as a key tool for simulating DM yield and water productivity in crop
sequences.
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Abstract

In recent years, the use of forage crop sequences (FCS) has been increased as a main
component into the animal rations of the Argentinian pasture-based livestock systems.
However, it is unclear how year-by-year rainfall variability and interactions with soil
properties affect FCS dry matter (DM) yield in these environments. Biophysical crop
models, such as Agricultural Production Systems Simulator (APSIM), are tools that
enable the evaluation of crop yield variability across a wide of environments. The
objective of this study was to evaluate the APSIM ability to predict forage DM yield and
water productivity (WP) of multiple continuous FCS. Thirteen continuous FCS,
including winter and summer crops, were simulated by APSIM during two/three
growing seasons in five locations across the Argentinian Pampas. Our modelling
approach was based on the simulation of multiple continuous FCS, in which crop DM
yields depend on the performance of the previous crop in the same sequence and the
final soil variables of the previous crop are the initial conditions for the next crop.
Overall, APSIM was able to accurately simulate FCS DM yield (0.93 and 3.2 Mg ha™
for concordance correlation coefficient [CCC] and root mean square error [RMSE]
respectively). On the other hand, the model predictions were better for annual
(CCC=0.94; RMSE=0.4 g m? mm) than for seasonal WP (CCC=0.71; RMSE=1.9g m’
2 mm™), i.e. at the crop level. The model performance to predict WP was associated
with better estimations of the soil water dynamics over the long-term, i.e. at the FCS
level, rather than the short-term, i.e. at the crop level. The ability of APSIM to predict
WP decreased as seasonal WP values increased, i.e. for low water inputs. For
seasonal water inputs, <200 mm, the model tended to under-predict WP, which was
directly associated with crop DM yield under-predictions for frequently harvested crops.
Even though APSIM showed some weaknesses in predicting seasonal DM yield and
WP, je. at the crop level, it appears as a potential tool for further research on
complementary forage crops based on multiple continuous FCS in the Argentinian

livestock systems.
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Abbreviations

APSIM, Agricultural Production Systems Simulator; AR-M, annual ryegrass-maize; B-
M, barley-maize; B-M, barley-maize; B-S, barley-soybean; CCC, concordance
correlation coefficient; DM, dry matter; FCS, forage crop sequences; M-M, maize-
maize; O-M, oats-maize; O-S, oats-soybean; RMSE, root mean square error; W-M,

wheat-maize; WP, water productivity; W-S-M, wheat-soybean-maize.
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1. Introduction

Worldwide food demand is expected to increase by 60-100 % by 2050 (Tilman et al.,
2011; Valin et al.,, 2014), which include the growing demand for meat and milk
(Bouwman et al., 2005; Zhang et al., 2017). This will drive an increase in forage
production to supply animal feed. This increase could be achieved, at least in part,
through forage crop intensification, i.e. the production of more fodder crop per unit of
cultivated land (Mueller et al., 2012; Teixeira et al., 2014). Likewise, to optimize the
increasingly limited land use and to avoid adverse environmental impacts, future yield
increases should focus on increasing the environmental resources use efficiency, in
particular water (Caviglia et al., 2004).

The Argentinian Pampas is an important livestock production region (Solbrig and
Viglizzo, 1999), in which animal feed is predominantly based on forage crops
sequences (FCS, i.e. sequences based on annual forage crops for silage, hay or
grazing) and perennial pastures (Ojeda et al., 2016). In recent years, the sowing area
of forage crops (annual and perennial) has decreased significantly in the face of the
advance of grain and oilseed cropping (annual crops like soybean, wheat, barley, and
sunflower) in this region. However, the decreasing area of perennial pastures has been
off-set by a doubling of the area sown to annual forage crops in the last 24 years
(200000 v. 100000 ha year™, respectively) (INDEC, 1988; FAOSTAT, 2013). Likewise,
the sowing area of annual silage crops has increased ~300 % from 2006 to 2014, with
maize (Zea mays L.) accounting for 67 % of this increase (Opacak, F., personal
communication, CACF).

Annual forage crops are fed during periods of low growth rates of perennial pastures
has been widely used to improve and stabilize the balance between supply and forage
demand (Rawnsley, 2007; 2013), productivity per unit area (Garcia et al., 2008) and,
water and nitrogen (N) use efficiency (Garcia et al., 2008; Neal et al., 2011). Likewise,
there is an increasing interest to integrate perennial pastures with FCS in order to
improve livestock systems productivity and stability under predicted scenarios of
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climate variability (Chapman et al., 2008a; 2011). Although the FCS are important
forage resources, it is unclear how year-by-year rainfall variability and the interaction
with soil type affect dry matter (DM) yield in these environments. This information is
required to guide the adoption of management practices oriented to increase the
livestock systems stability facing up the increasing frequency of extreme climatic
events (Pembleton et al., 2016).

To study the spatio-temporal variability of FCS DM yield, long-term field experiments
are needed which require considerable time and funding resources. An alternative is to
use biophysical crop models to evaluate the FCS DM yield variability across a wide of
environments to identify the most successful systems prior to field evaluation. Several
simulation models have been used to predict crop growth for the evaluation of pasture-
based livestock systems (Chapman et al., 2008a; 2008b; Cullen et al., 2009; Rawnsley
et al.,, 2009). The Agricultural Production Systems Simulator (APSIM) is a crop
simulation model that integrates through sub-modules, agronomic management with
climatic data in a mechanistic way to simulate growth and development of crops, as
well as the dynamics of soil water and N (Keating et al., 2003; Holzworth et al., 2014).
Although APSIM was initially created to predict crop grain yield in Australia, in the past
years it has appeared to be promissory to simulate forage crop DM yield across several
environments (e.g. Canterbury plains, New Zealand [Teixeira et al., 2010; 2015], south-
eastern Australia [Pembleton et al., 2013; 2016; Islam et al., 2015] and the Argentinian
Pampas [Ojeda et al., 2016]).

Crop modelling studies in the Argentinian Pampas also have been mainly focused on
grain production using Decision Support System for Agrotechnology Transfer (DSSAT)
(Monzon et al., 2007; Mercau et al., 2007; Caviglia et al., 2013). However, recent
advances have been reported simulating perennial pastures in the last years. For
example, Berger et al. (2014) examined DairyMod's ability to predict tall fescue
(Festuca arundinacea Schreb.) DM vyield under contrasting seasons, N fertilizations
and soil water availability at Balcarce, Argentina. Also, a recent study reported by
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Laulhe (2015) demonstrated the DSSAT capacity to simulate the fescue DM yield in
two locations in the south-eastern of Buenos Aires. However, there are no reported
modelling studies using annual forage crop sequences for this region.

A useful approach to study the impact of the interaction between climate variability and
soil type on FCS DM yield is the water productivity (WP), estimated as the ratio
between DM vyield and rainfall (or rainfall plus irrigation water, where relevant). This
metric has been widely used in natural grasslands (Noy-Meir, 1973; Le Houerou, 1984;
Sala et al., 1988; Lauenroth and Sala, 1992; Paruelo et al., 1999; Huxman et al., 2004;
Verén et al., 2005), agricultural cropping systems (Pereira et al., 2002; Sadras, 2002;
Molden et al., 2003; Caviglia et al., 2004; Passioura et al., 2006; Van Opstal et al.,
2011) and could be also used in forage systems (Zhang et al., 2017).

Before APSIM could be used as a possible predictor of DM yield in multiple continuous
FCS in different Argentinian Pampas environments, an exhaustive validation process is
required. Particularly, the evaluation of the model ability to accurately simulate possible
effects of previous crops and initial soil conditions on the following crops into the
sequence. Likewise, an analysis of the WP year-by-year variability would allow the
analysis of DM yield variation due to water inputs, i.e. rainfall and irrigation. The
objective of this study was to evaluate the APSIM ability to predict forage DM yield and
water productivity (WP) of multiple continuous FCS in five locations across the

Argentinian Pampas under a range of inputs and crop management system.
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2. Materials and Methods

The model validation was carried-out following the subsequent steps: (i) climate data
and practices management were provided to APSIM, (ii) soil parametrization was
generated for each experiment (Table 1), (iii) graphical comparison and statistical
analyses of observed and modelled crop and FCS DM yields and WP. A complete
description of data used for APSIM validation is provided in the Table 2.

2.1. Experimental locations and forage growth

The FCS DM yields were collected in five locations across Argentinian Pampas:
Rafaela (31°11°S, 61°30°0), Pergamino (33°56°S 60°33°0), General Villegas (35°01°S
63°01°0), Trenque Lauquen (36°04°S 62°45°0) and Balcarce (37°45°S 58°18°0). Data
for APSIM validation were collected from experimental stations of the Argentinian
National Institute of Agriculture (INTA), except at Trenque Lauquen where were
collected from experiments located at the farm level. The dataset included thirteen FCS
DM vyields of annual crops (annual ryegrass [Lolium multiflorum Lam.], oats [Avena
sativa L.], wheat [Triticum aestivum L.], barley [Hordeum vulgare L.], soybean [Glycine
max L.] and maize) from 2009 to 2015 (Fig. 1; Table 2). Each sequence was comprised
of two crops per year except for the wheat-soybean-maize sequence at Rafaela where
it included three crops per year (Fig. 1). All field experiments were carried-out under
dryland conditions, except at Pergamino where some sequences were irrigated (Table
2).

2.2. Climate data

The climate characteristics of each location are provided in Figure 2. Daily
meteorological data (daily minimum and maximum air temperature [at 1.5 m height],
solar radiation and rainfall) for each location were obtained from a meteorological
station, except at Trenque Lauquen where they were provided by the Climate and
Water Institute of INTA (CIRN) and by local researchers. Any missing daily solar
radiation, minimum and maximum temperature data were obtained from the NASA
Prediction of Worldwide Energy Resource (POWER) - Climatology Resource for
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Agroclimatology (NASA, 2013). This database provides information on historical
climatic series of interest locations based on geographical coordinates (latitude and
longitude). Recent assessments of NASA-POWER's predictive capacity showed good
predictions of maximum and minimum air temperature in different US (White et al.,
2008; Ojeda et al., 2017) and Argentinian environments (Aramburu Merlos et al.,
2015).

The maximum mean air temperature range was from 4.0 to 46.3 °C and the minimum
mean air temperature from -11.1 to 28.2 °C (Fig. 2). Average cumulative annual rainfall
ranged from 793 to 1002 mm for Trenque Lauquen and Pergamino, respectively (Fig.
2). Similarly, the maximum soil water storage capacity between locations ranged from
113 mm at Trenque Lauquen (from O to 1.3 m soil depth) to more than the double at
Rafaela (264 mm, from 0 to 1.6 m soil depth) (Table 1).

2.3. Soil data

The configuration of soil N and C modules (SoilN) and water balance (SoilWat) were
carried-out following the next steps. Soil water parameters required to the model such
as drained lower limit (LL), drained upper limit (DUL), bulk density (BD) and organic
carbon were provided by the Soils Institute of INTA (CIRN) (Table 1). Also, for each
soil, air dry (AD), saturated volumetric water (SAT), total porosity (PO), drainage
coefficient (SWCON) and soil pH were estimated according to the reported by Ojeda et
al. (2017) for US environments. In addition, the water extraction coefficient (KL) was
set at 0.08 mm d™' (Robertson et al., 1993a, 1993b; Dardanelli et al., 1997, 2004) for
each soil layer. The root exploration factor (XF) was set as 1 for up to 1 m depth and
then decreased exponentially to 0.6 at the maximum soil depth (Monti and Zatta,
2009). To initialize the soil nitrogen pool, a 10-year simulation of previous management
at the experimental locations (oats-maize sequence), the location-specific climate, and

soil data were used (Ojeda et al., 2017).
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Initial simulations shown that was required the inclusion of soil water from water table
at Rafaela. This additional water was included into the model following Ojeda et al.
(2016).

2.4. APSIM configuration

All simulations were performed using APSIM (version 7.5) (Keating et al., 2003;
Holzworth et al., 2014). Oats, wheat, barley, soybean and maize were simulated with
the respective plant modules (APSIM-Oats, -Wheat, -Barley, Soybean and -Maize,
respectively; Carberry et al., 1989; Keating et al., 2003; Wang et al., 2003; Peake et al.,
2008). Annual ryegrass was simulated with the APSIM-Weed module (Deen et al.,
2003; Pembleton et al., 2013) re-parameterized by Ojeda et al. (2016) using the late
flowering genotype. Simulations were performed at the crop sequence level, i.e. the
initial soil condition for a specific crop was the final soil condition of the previous crop.
The sequences are shown in Figure 2. Since genotypes used in the field experiments
were not available into APSIM, we used the genotypes that best reflected the maturity
type/crop development among the available genotypes in the model. The actual crop
management such as sowing date, plant density, row spacing, nitrogen fertilization and
irrigation were set in the model to mimic the practices applied in the field (Table 2). The
harvest rule was set to remove the aerial biomass at a height of 0.03 m (Ojeda et al.,
2016). Seasonal WP was calculated as the ratio between the DM yield in each crop
harvest and seasonal rainfall in the same period. Likewise, the annual WP was
calculated as the ratio between the annual DM yield for each FCS and the annual
rainfall.

2.5. Evaluation of APSIM performance

First, the model performance was assessed to predict crop and FCS DM vyield. After
that, APSIM's ability to sense spatio-temporal variability in the FCS DM vyield and WP
was evaluated. The assessment was based on the comparison between observed and
modelled values by scatter plots (Pifieiro et al., 2008) for crops and FCS DM yield in all
locations.
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The evaluation of model performance described in Tedeschi (2006) was used to
statistically evaluate APSIM to predict crop and FCS DM yields. The statistical
parameters used were: observed and modelled mean and standard deviation,
coefficient of determination (R?), root mean square error (RMSE) and the concordance
correlation coefficient (CCC). The CCC integrates precision through Pearson’s
correlation coefficient, which represents the proportion of the total variance in the
observed data that can be explained by APSIM, and accuracy by bias which indicates
how far the regression line deviates from the line (1:1).

The crop model performance was categorically judged based on the values of CCC as
proposed by Stockle et al. (1998). Upper and lower statistical limits were set as: “very
good” when CCC>0.90, “satisfactory” when 0.80<CCC<0.90, “acceptable” when

0.70<CCC<0.80 and “poor” with other values.
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3. Results

3.1. Dry matter yield

The observed crop DM yield ranged from 1.4 Mg ha™ (annual ryegrass) to 14.9 Mg ha™
(maize). The difference between observed and modelled crop mean DM yield was 0.2
Mg ha™, being higher in crops with lowest number of observations (wheat and barley,
Table 3). A better model accuracy to predict DM yield was found when maize DM
yields from 2010/11 were deleted. In this year, the maximum temperatures during
summer were extreme (>40 °C; Fig. 2) and the extractable soil water was close to LL
(Fig. 4). After removing these data, the CCC increased from 0.80 to 0.86 and the
RMSE decreased from 4.1 to 3.4 Mg ha™. Likewise, better model predictions were
obtained by simulating crops for silage, i.e. only one harvest for wheat, soybean and
maize, than when crops were harvested successively (annual ryegrass, oats and
barley) (Fig. 3; Table 3).

The crop DM yield at Pergamino dryland and irrigated, Rafaela and Balcarce was
simulated more accurately compared to the crop DM yield modelled at General Villegas
and Trenque Lauquen (Table 3; Fig. 3). Likewise, the model accuracy in simulating DM
yield under irrigated conditions at Pergamino was slightly lower compared to dryland
conditions. However, the observations at Pergamino irrigated (n=26) were less than
half that the observations at Pergamino dryland (n=60).

Overall, the model had a very good ability to simulate DM yields of FCS. The
performance of the model in predicting FCS DM yield is highlighted in Figures 5 and 6
and confirmed by the summary statistics in Table 4 (CCC=0.83-0.95, RMSE=2.3-5.0
Mg ha™). The observed FCS DM yield ranged from 4.3 Mg ha™ (Trenque Lauquen) to
28.7 Mg ha™' (Rafaela) among locations (Table 4) and from 16.2 Mg ha™ (third year of
the sequence) to 19.1 Mg ha™ (first year of the sequence) among years (Table 4). The
difference between observed and modelled mean FCS DM yield was less than 0.2 Mg
ha™, being the lowest under irrigation at Pergamino (0.7 Mg ha™; Table 4) and the
highest at Rafaela (3.7 Mg ha™; Table 4). The sequences annual ryegrass-maize (AR-
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M) and barley-soybean (B-S) at General Villegas and the sequences oats-soybean (O-
S) and barley-maize (B-M) at Trenque Lauquen had the lowest observed and modelled
FCS DM vyield (Fig. 5a) while the highest DM yields were found for maize-maize (M-M)
and wheat-soybean-maize (W-S-M) at Rafaela and oats-maize (O-M) at Balcarce (Fig.
5a). Due to the small number of observations that were available for Trenque Lauquen
and Balcarce, no statistical analyses of DM yield at the level of FCS were performed
(Table 4). The FCS DM vyield under irrigation at Pergamino was simulated more
accurately than in the same site without irrigation, Rafaela and General Villegas (Table
4; Fig. 3). The model over-predicted the FCS DM yield at Rafaela, mainly due to the
over-prediction of maize DM vyield (Fig. 5b; Fig. 6a). There were no discernible
groupings based on years in the data points for all sequences. For all FCS, DM yield
was better simulated as the crops progressed in their development (Fig. 6), except in
some specific cases. For example, maize into the sequence wheat-maize (W-M) at
Rafaela during 2011 (Fig. 6a) and barley into the sequence barley-maize (B-M) at
Trenque Lauquen during 2010 (Fig. 6d).

3.2. Water productivity

Very good agreement between observed and modelled seasonal WP was found at
Balcarce (CCC=0.90, RMSE=0.7 g m? mm™; Table 5). However, the model’s ability to
predict seasonal WP was acceptable at Pergamino under both dryland and irrigated
conditions (CCC=0.73-0.74, RMSE=2.0-2.5 g m? mm™"; Table 5) and poor at Rafaela
(CCC=0.55, RMSE=1.3 g m? mm™), Trenque Lauquen (CCC=0.51, RMSE=1.0 g m™
mm™) and General Villegas (CCC=0.42, RMSE=1.4 g m? mm”) (Table 5). At
Pergamino, dryland and irrigated, the observed seasonal WP shown extreme values
because seasonal rainfall between oats and annual ryegrass harvests was scarce (<20
mm, Fig. 8a). For seasonal water inputs (i.e. rainfall + irrigation) less than 200 mm, the
model under-predicted WP values more than over-predicted (Fig. 7a). However, the

model predictions on an annual basis were very good (Fig. 7b).
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The model predicted annual WP with very good accuracy, as demonstrated by
CCC=0.91-0.96 and RMSE=0.2-0.5 g m? mm™ for the total observations (Table 5),
except for Rafaela where the model under-predicted (0.5 g m? mm™; 12 %) the annual
WP (CCC=0.62, RMSE=0.7 g m? mm™). Likewise, the observed and modelled
seasonal WP were on average 95 and 21 % superior at Rafaela, Pergamino under
both dryland and irrigated conditions and Balcarce than at General Villegas and
Trenque Lauquen, except for the modelled WP at Pergamino (Table 5). However, the
observed and modelled annual WP at Rafaela was higher than Pergamino and, in turn
higher at Pergamino than at General Villegas and Trenque Lauquen (Table 5).

There was a better fit for the observed than for the modelled WP data (Fig. 8a; Table 6)
in the regression of the WP as a function of seasonal water inputs (cumulative rainfall +
irrigation) (P<0.001; Table 6). Likewise, a better fit was found for winter crops (oats,
annual ryegrass, barley and wheat) and soybean than for maize (Fig. 8a; Table 6).
Similarly, there was a curvilinear relationship between annual WP and water inputs (p
<0.001) for both observed and modelled data (Fig. 8b; Table 6). At low annual water
inputs (<800 mm), in General Villegas and Trenque Lauquen the WP, on average, was

only a third than in other locations (Fig. 8b).
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4. Discussion

In this study, 13 FCS including winter (oats, annual ryegrass, barley and wheat) and
summer crops (soybean and maize), were simulated by APSIM across five Argentinian
locations. Our objective was to evaluate the APSIM ability to predict DM yield and
water productivity (WP) of multiple continuous FCS. Overall, the results showed that
APSIM was able to simulate better DM yield and WP on an annual basis, i.e. at the
FCS level, than at a seasonal basis, i.e. at the crop level.

The ability of APSIM to predict crops DM yield in the Argentinian Pampas was similar
to annual forage crop modelling efforts reported in south-eastern Australia (Pembleton
et al., 2013; 2016; Islam et al., 2015) and New Zealand (Teixeira et al., 2010; 2015).
The model accuracy was higher when predicting soybean and maize DM yield than the
other crops. The APSIM-Oats module had an acceptable performance since it is has
received scarce development efforts compared to the other modules used in this study
(Peake et al., 2008; Pembleton et al., 2013). The very good and satisfactory model
accuracy when predicting soybean and maize DM yields, respectively, was not
surprising, since both modules (APSIM-Soybean and APSIM-Maize) have been widely
evaluated across diverse environments for their ability to predict grain and DM yield
(Robertson and Carberry, 1998; Denner et al., 1998; Shamudzarira and Robertson,
2002; Lyon et al., 2003; Teixeira et al., 2010; Mohanty et al., 2012; Liu et al., 2013;
Pembleton et al., 2013; Archontoulis et al., 2014a, 2014b). However, the model under-
predicted maize DM yields at Rafaela mainly during the first year of simulation (Fig. 3a
and Fig. 6). Surprisingly, the N fertilization rate to this crop at Rafaela was relatively low
(0.075 Mg N ha™) for the high recorded mean DM yield (17.5 Mg ha™). Although
previous studies have reported that APSIM-Sugarcane module was scarcely sensitive
to variations in the initial soil N at US environments (Ojeda et al., 2017), our study
demonstrated a high model response for maize in this location of the Argentinian
Pampas (Fig. A.1). The mentioned under-predictions of maize DM yield at Rafaela
could be attributed to the under-estimation of initial soil N at this location because of
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the soil initialization method used in this study based on a 10-year sequence simulation
of oats-maize as previous crops. In fact, Teixeira et al. (2015) reported the importance
to choose representative initialization values for soil water and N in studies that often
consider several soil types. On the other hand, Ojeda et al. (2017) found that APSIM
predictions of Miscanthus DM yield were more sensitive to changes in the initial organic
carbon on a sandy soil than in a silty soil at US. Collectively, this reinforces the
importance of the initial soil conditions on the accuracy of DM yield and WP simulations
of different FCS under several input intensities. Therefore, further research should be
addressed to clarify the extent of under or over-estimation of initial soil parameters on
the predictions of continuous FCS DM yield and WP using APSIM.

Although APSIM had a very good accuracy when predicting barley DM vyield
(CCC=0.90; Table 3), the model over-predicted the barley DM vyield (5 out of 5
observations) as was demonstrated by the difference between observed and modelled
mean DM vyield (1.7 Mg ha™; Table 3). Previous studies in southern Queensland,
Australia, found that the APSIM-Barley module was able to explain 91 and 82 % of the
variation observed in total biomass at maturity and grain yield, respectively (Manschadi
et al., 2006). However, their study was based on the calibration of only one Australian
barley genotype (Grimmet). Probably, the low fit between observed and modelled
mean DM yield at General Villegas and Trenque Lauquen (Fig. 3d and Fig. 3e) would
be due to genotypic differences between the currently available genotypes into the
model and those used in the field experiments as well as the method of soil
initialization as mentioned above.

The model accuracy to predict silage DM yield of individual crops (barley, wheat,
soybean and maize), i.e. a single harvest by season, was better than to predict DM
yield of frequently harvested crops (annual ryegrass, oats and barley), i.e. several
harvest by season (Fig. 3). This model response was not surprising as APSIM was
initially developed to simulate grain crops managed with only one final harvest at
maturity. The main reason for this model's inability would be related to the absence of
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APSIM calibrations using forage crop phenology data and with the model settings
related to the biomass remaining after each harvest which is directly involved in the
following forage regrowth (Ojeda et al., 2016).

The predictions of FCS DM yield across the Argentinian Pampas were very good (Fig.
5; Table 4), which were similar to the APSIM simulations reported by Teixeira et al.
(2010) in New Zealand using double crops (wheat and triticale [X. triticosecale,
Wittmack] as winter crops and maize and kale [Brassica oleracea L.] as summer
crops). In the same way, our results were comparable with modelling efforts reported
by Islam et al. (2015) for FCS DM vyield in dairy systems in south-eastern Australia.
Similarly, these authors found high DM vyield achieved from maize-based FCS
compared with FCS based on other summer crops (soybean and forage sorghum
[Sorghum bicolor (L.) Moench]) due to the high yield potential of maize.

Soil variables required as model inputs to initialization of the simulation (e.g. water, C
and N) are habitually re-initialized (i.e. are set in each simulation using constant values
based on regional knowledge) (Teixeira et al., 2015). Despite the soil variables were
set only once previous to the first crop sowing into the FCS the first year of the
simulation, APSIM demonstrated high robustness to simulate DM yield of several FCS
(Fig. 5) in wide edaphoclimatic and temporal conditions in the Argentinian Pampas.
This modelling approach considers that the crop DM yields in the FCS depend on the
previous crop in the same sequence, carrying the final soil variables of the previous
year as the initial ones for the next year. White et al. (2011) reported that from 166
modelling papers that considered adaptation strategies (i.e. sowing date, fertilization
rate, irrigation, cultivars and crop rotations), only 11 papers compared crop rotations. In
fact, most crop modelling assessments consider simulations of the same crop over
consecutive years (White et al., 2011). However, there are only a few studies that used
the FCS approach, i.e. simulating crop rotations. For example, Teixeira et al. (2015)
evaluated the effects to use different APSIM simulation (at the individual crop and
sequence level) on DM vyield, soil water and N in the Canterbury plains of New
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Zealand. These authors reported greater model sensitivity to the simulation when the
crops grown under restrictive soil water and N levels. Therefore, they proposed that a
more detailed representation of the simulations at the sequences level would be key to
accurately simulating crop growth under limited resources conditions, where the
sequence effect would have greater influence on the subsequent crops growth.

The use of complementary forage systems based on FCS as an option to maximize
WP was reported in south-eastern Australia under non-limiting N and water conditions
by Garcia et al. (2008) and Islam and Garcia (2012) winter crops/maize triple crops
(forage rape, persian clover [T. resupinatum L.], and field peas [Pisum sativum L.] as
winter crops). These authors reported WP values ranging 3.4-6.1 g m? mm™ for
different N rates and sowing dates. The WP range modelled in our study (1.0-4.0 g m®
mm™") was consistent with values reported by Caviglia et al. (2004; 2013) for wheat-
soybean sequences at Balcarce (calculated using DM yield on an annual basis).
However, there is no study in the literature on modelling that analyze the WP variations
of FCS in the Argentinian Pampas, despite that WP has been widely reported for grain
crops sequences in this region.

The results showed that APSIM was able to predict with better accuracy the annual
(very good) than seasonal WP (acceptable) (Table 5) as was demonstrated by the
CCC and RMSE for the annual (0.71; 0.4 g m? mm™) and seasonal WP (0.94; 1.9 g m"
2 mm™), respectively (Table 5). This model response could be due to the annual
estimation which considers the rainfall in a year period (from 1 July to 31 May) while
seasonal estimation only considers rainfall occurred in short-time periods, i.e. from
sowing to harvest and between two consecutive harvests (in some cases <20 d), and
therefore the soil water storage is not accounted. Likewise, the model’s ability to predict
seasonal WP was not acceptable for all locations (Table 5). These results suggest that,
in environments such as Trenque Lauquen characterized by a low cumulative annual
rainfall (793 mm) and low maximum soil water storage capacity (113 mm), soil water
conditions carried by the model from one crop to the next, would play an important role
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to obtain better FCS DM yield predictions, even more under soil water stress
conditions.

The highest seasonal WP, both observed and modelled, were obtained at Rafaela
(Table 5), which can be attributed to the highest proportion of maize in the FCS (Fig.
1), which is a C4 species with a high-water use efficiency (Neal et al., 2011; Zhang et
al., 2017). The use of the double crop maize-maize (M-M) in this location was related
with the climate characteristics, where the optimal solar radiation and temperature
conditions allow to grow two summer crops (Monzon et al., 2014) in the same season
(Fig. 2).

The lowest observed and modelled WP values at General Villegas and Trenque
Lauquen (Fig. 8b) were probably associated with the reduction in DM vyield of maize
due to the high temperatures and low rainfall during the spring-summer period (Fig. 4).
Therefore, the FCS DM yield was highly dependent on maize performance in these
locations. In fact, the WP was lower in these locations than in Rafaela or Balcarce (Fig.
8b), which had more favourable climate conditions during spring-summer period (not
shown). Thus, maize DM yield seems to be critical to maximize WP in FCS.

The model's accuracy decreased when seasonal WP values were higher, i.e. for low
water inputs (Fig. 7a). For seasonal water inputs (rainfall + irrigation) less than 200
mm, the model tended to under-predict WP (Fig. 7a). This model response was directly
associated with crop DM yield under-predictions for crops with frequent harvests.
Similarly, high APSIM under-predictions were reported by Ojeda et al. (2016) for the
first harvest of annual ryegrass in the period during the crop establishment at
Pergamino and General Villegas, Argentina. This model weakness to under-predict DM
yield of frequently harvested crops directly affect the model performance to predict WP
at this environments. A deeper discussion of this model limitation is provided in Ojeda
et al. (2016), who mentioned the predictions of DM yield of annual ryegrass improved
substantially when several key model parameters (e.g. shoot lag, shoot rate,
leaf_no_at emerg and transp_eff c) were well calibrated. Therefore, important
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modelling efforts are still required for simulate a wide range frequently harvested crop
using APSIM, since it model was originally developed for simulate crops with a single
harvest by season.

Our results showed that APSIM predicted WP better on an annual basis (Fig. 7b) than
for a seasonal basis (Fig. 7a). It is likely that the model is better at estimating soil water
dynamics over the long-term rather than the short-term. Likewise, the high seasonal
WP values at low water inputs (Fig. 8a) reflect more a weakness of the WP concept
than of the model performance, i.e. high DM yields (observed or modelled), which are
reached by using soil water storage, results in elevated WP values at low seasonal
water inputs.

We also have presented evidence that when annual water inputs are high, the annual
WP is low (Fig. 8b; Table 6). Likewise, a better fit was found for crops with
photosynthetic metabolism C3 (wheat, annual ryegrass, oats, barley and soybean) than
for C4 (maize; Fig. 8a; Table 6). This response was not surprising because WP
reductions against water inputs increments has been well established in Bangladesh
(Ali and Talukder, 2008) in the South-eastern Pampas (Caviglia et al., 2013), in the
Loess Plateau region of China (Zhang et al., 2017) and in several environments across
the world (Zhang et al., 2001). Also, we found higher WP values for maize than C3
species for the same water input from ~200 to 900 mm (Fig. 8a) directly linked with the
high photosynthetic capacity of maize to convert water into DM yield (Neal et al., 2011).
This highlights the importance of including maize as a part of FCS to increase the WP
in the Argentinian livestock systems, although the impact of their inclusion may vary
among locations according soil water holding capacity, rainfall and the high
temperature stress during summer season.

The APSIM model will be a useful resource for further research on complementary
forage crops based on multiple continuous FCS and perennial crops in the Argentinian
and alike livestock systems. In addition, in this work we found evidence that the maize
inclusion as a part of a FCS was very important to maximize DM yield and WP in some
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locations. However, it may increase the year-by-year variability of both DM yield and

WP, particularly in locations with low soil water holding capacity, high temperatures

stress and low rainfall during the spring-summer period, such as south-western

Pampas.
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488 5. Conclusions

489 In this paper, we evaluated the APSIM ability to predict forage DM yield and WP of
490 multiple continuous FCS. Even though APSIM showed some weaknesses to
491 reasonably predict seasonal DM yield and WP, i.e. at the crop level, it appears as a
492  potential tool for further research on complementary forage crops based on multiple
493  continuous FCS in the Argentinian livestock systems. The impact of initial solil
494  conditions on the accuracy of DM yield and WP simulations seems to be critical to
495 improve APSIM performance, especially under water-limited growth conditions.

496 The model accuracy to predict silage DM vyield of individual crops (barley, wheat,
497 soybean and maize), i.e. a single harvest by season, was better than to predict DM
498 yield of frequently harvested crops (annual ryegrass, oats and barley), i.e. several
499  harvest by season.

500
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Figure 1. Schematic representation of forage crop sequences growing in Rafaela (RAF), Pergamino (PER), General Villegas (GV), Trenque Lauquen (TL)

and Balcarce from 2009 to 2015. Superscript 1 and 2 indicates annual ryegrass with successive harvests and with only one harvest, respectively.
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dryland, (c) Pergamino irrigated, (d) General Villegas, (e) Trenque Lauquen and (f) Balcarce.
The diagonal line represents the line 1:1, i.e. y=x. The vertical bars indicate the standard

deviation of the mean.
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Revised tables

1 Table 1. Soil parameters used to configure Agricultural Production Systems Simulator (APSIM).

Texture class

Depth ~——oxureclass - pn L DUL  SAT PO SWCON OC pH

Location  Soiltype'  Soil series sand _silt clay
yp

m % % % M mm mn” ©-1) day' % 15

RAF  Typic Rafaela 002 2 72 26 126 0066 0132 0295 0328 052 034 147 62

Argiudoll 02035 3 69 28 129 0098 0140 0300 0333 050 033 090 63

035063 2 60 38 137 0144 0180 0310 0342 047 032 051 65

063093 2 58 41 135 0165 0183 0319 0352 048 031 037 67

003115 2 65 33 131 0167 0185 0305 0337 050 033 024 72

1.15-1.4 1 68 31 128 0158 0175 0292 0322 051 034 017 74

1416 5 65 30 128 0135 0150 0284 0313 051 035 011 82

PER  Typic Pergamino  0-0.13 13 65 23 127 0089 0178 0326 0362 051 031 169 509

Argiudoll 013025 12 65 23 132 0125 0178 0327 0363 049 031 148 6.1

025034 13 57 30 133 0155 0193 0356 0393 049 028 087 62

034075 9 48 44 133 0204 0226 0418 0461 049 024 064 63

075095 13 56 30 133 0174 0193 0355 0392 049 028 035 65

00516 18 66 17 133 0145 0160 0293 0323 049 034 024 64

av Typic Blaquier  0-0.2 69 19 12 126 0038 0075 0174 0193 052 057 129 63

Hapludoll 02-028 69 18 13 129 0055 0078 0164 0182 050 061 117 63

028057 66 19 15 137 0061 0076 0163 0180 047 061 060 60

057089 75 14 11 135 0059 0065 0143 0158 048 070 018 65

089125 77 14 10 131 0056 0062 0125 0138 050 080 007 68

12546 77 14 10 128 0056 0062 0125 0438 051 080 007 68

L Entic Piedritas  0-0.28 61 25 15 137 0035 0070 04170 0189 047 059 129 7.

Hapludoll 028047 65 21 15 138 0031 0061 0182 0202 047 055 086 83

047084 64 24 12 122 0023 0045 0133 0147 053 075 035 83

084108 75 13 12 130 0033 0065 0121 0134 050 08 013 88

108413 70 21 9 122 0049 0097 0209 0231 053 048 009 93

BAL Petrocalcic  Balcarce  0-0.23 33 41 26 145 0085 0169 0280 0393 056 036 328 7.0

Paleoudol 023031 35 39 26 115 0105 0150 0276 0387 056 036 226 74

031054 36 29 35 127 0142 0178 0351 0498 051 028 159 7.4

054070 45 31 24 127 0194 0215 0427 0507 051 023 082 78

0.70-1.2 50 31 19 135 0.179 0.199 0.396 0450 048 0.25 064 7.8

RAF, Rafaela; PER, Pergamino; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; BD, Bulk density; LL, lower drainage limit (i.e. permanent wilting
Eoint); DUL, upper drainage limit (i.e. field capacity); SAT, saturated volumetric water.
Soil Survey Staff, 2010.
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Table 2. Summary of the agronomic management of forage crops sequences used for model validation.
Crop management
Location ~ SEQ DI SD HD Fert N Density RS References
(kg N ha™) (plants m'z) (m) Genotype
annual ryegrass

PER S-AR D 1-Mar-10 18-May/10-Jun/8-Jul/10-Ago/13-Sep/12-Oct-10 250 300 0.175 Barturbo EEA Pergamino
PER M-AR D 1-Mar-10  18-May/10-Jun/8-Jul/10-Ago/13-Sep-10 250 300 0.175 Barturbo Ojeda et al., 2016
PER S-AR D  28-Feb-11  10-May/8-Jun/21-Jul/29-Ago/6-Oct-11 250 300 0.175 Caleufu PV

PER M-AR D  28-Feb-11  10-May/8-Jun/21-Jul/29-Aug 250 300 0.175 Caleufu PV

PER S-AR D  28-Feb-12  30-May/10-Jul/23-Aug/21-Sep/12-Oct-12 250 300 0.175 Caleufu PV

PER M-AR D  28-Feb-12  30-May/10-Jul/23-Aug/21-Sep-12 250 300 0.175 Caleufu PV

GV AR'“M D 8-Apr-10  22-Jun/18-Aug/7-Oct-10 150 365 0.175 Bill max EEA G. Villegas
GV AR'-M D 8-Apr-10 19-Sep-10 150 400 0.175 Bill max Ojeda et al., 2016
GV AR®:M D 15-Apr-11  2-Sep/17-Oct-11 150 448 0.175 Bill max

GV ARM D 15-Apr-11_ 28-Oct-11 150 400 0.175 Bill max

oats

PER M-O D/l 1-Mar-10  27-Apr/1-Jun/6-Jul/13-Sep-10 250 252 0.175 Violeta INTA EEA Pergamino
PER M-O D/l 1-Mar-11 26-Apr/30-May/11-Jul/25-Ago-11 250 323 0.175 Violeta INTA unpublished data
PER M-O D/l 1-Mar-12 2-May/5-Jun/14-Aug/21-Sep-12 250 341 0.175 Violeta INTA

PER S-0 D/l 1-Mar-10  27-Apr/1-Jun/6-Jul/13-Sep/12-Oct-10 250 252 0.175 Violeta INTA

PER S-0 D/l 28-Feb-11  26-Apr/30-May/11-Jul/25-Aug/3-Oct-11 250 323 0.175 Violeta INTA

PER S-0 D/l 1-Mar-12  2-May/5-Jun/14-Aug/21-Sep/12-Oct-12 250 341 0.175 Violeta INTA

BAL M-O D 7-Mar-13 16-May/29-Aug-13 150 300 0.200 Bonaerense INTA Ojeda J.J.

BAL M-O D 16-Apr-14  11-Jul/20-Aug/8-Oct-14 150 300 0.200 Bonaerense INTA  unpublished data
TL 0O-S D 19-Apr-10  8-Oct-10 0 125 0.175 Victoria AER T. Lauquen
TL 0O-S D 8-Jul-11 20-Oct-11 0 125 0.175 Cristal unpublished data

wheat

RAF W-M D 21-Apr-10  25-Oct-10 75 200 0.175 - EEA Rafaela INTA
RAF W-S-M D 1-Jul-10 16-Nov-10 75 200 0.175 - unpublished data
RAF W-M D 19-May-11  14-Sep-11 75 200 0.175 -

RAF W-S-M D 2-Jul-11 27-Oct-11 75 200 0.175 -

barley
GV B-S D 8-Apr-10  22-Jun/19-Oct-10 150 350 0.175 Scarlet EEA G. Villegas
GV B-S D 15-Apr-11  10-Aug/4-Nov-11 150 350 0.175 Scarlet unpublished data
TL B-M D 11-Jun-10  15-Nov-10 0 120 0.175 Scarlett AER T. Lauguen
TL B-M D 8-Jul-11 20-Oct-11 0 120 0.175 Scarlett unpublished data
soybean

RAF W-S-M D 20-Nov-10  1-Mar-11 0 30 0.52 - EEA Rafaela INTA
RAF W-S-M D 15-Nov-11  7-Feb-12 0 30 0.52 - unpublished data
PER S-0 D/l 10-Nov-09  25-Feb-10 13 42 0.70  ADM 50048 (5)° EEA Pergamino
PER S-AR D  10-Nov-09 25-Feb-10 13 42 0.70  ADM 50048 (5)° unpublished data
PER S-0 D/ 4-Nov-10  25-Feb-11 45 0.52 GAPP 890 (8)°



PER  S-AR D  4Nov-10 25-Feb-11 0 45 052  GAPP 890 (8)°

PER SO DI 25-Oct-11 7-Feb-12 5 34 052  A5009RG (5

PER  S-AR D  25-Oct-11 7-Feb-12 5 34 052  A5009RG (5

GV BS D 9Nov-10 4-Mar-11 0 35 0.175 DM 4970 EEA G. Villegas

T 08 D 9Dec10  16-Mar-11 0 30 052 DM4970  AERT.Lauquen

L 0s D 9Dec- ; 0 30 052 DM 4970 'd“;r unpublished
maize

RAF MM D  20-0ct09  20-Jan-10 75 75 052 DKFeed2RR2 EEA Rafaela INTA

RAF MM D 25Jan-10  27-May-10 75 75 052 DKFeed2 RR2  unpublished data

RAF WM D 30-Nov-10 29-Mar-11 75 75 052 DK Feed2 RR2

RAF W-SM D  3Mar11  14-Jun-11 75 75 052 DK Feed2 RR2

RAF MM D  19-0ct10 17-Feb-11 75 75 052 DK Feed2 RR2

RAF MM D  25-Feb-11  24-Jun-11 75 75 052 DK Feed2 RR2

RAF WM D 16-Jan-12  16-May-12 75 75 052 DK Feed2 RR2

RAF  W-SM D  10-Feb-12  11-Jun-12 75 75 052 DK Feed2 RR2

RAF MM D  11-Oct11  14-Jan-12 75 75 052 DK Feed2 RR2

RAF MM D 16Jan-12  16-May-12 75 75 052 DK Feed2 RR2

PER M-O DI  16-0ct-09  15-Feb-10 113 8.5 070  DUOS548HX  EEA Pergamino

PER  MAR D  16-Oct09 15-Feb-10 113 8.5 070  DUO548HX  unpublished data

PER M-O DI 27-Sep-10 18-Feb-11 207 115 052  PAN5E 202

PER  MAR D 27-Sep-10 18-Feb-11 207 115 052  PAN 5E 202

PER M-O DI 19-Sep-11  26-Jan-12 207 8.5 070  DK747 VT3P

PER  MAR D 19-Sep-11 26-Jan-12 207 115 052  DKT747 VT3P

GV  AR-M D 10-Nov-10 9-Mar-11 150 7.7 052 DK780S  EEAG. Villegas

GV  AR“M D 10-Nov-10 9-Mar-11 150 7.7 052 DK780S  unpublished data

GV  AR:M D  9Nov-11  24-Apr-12 150 4 052  DUO 548 HX

GV  AR:XM D  9Nov-11  24-Apr-12 150 7.7 052  DUO 548 HX

L BM D 9Dec10 11-Mar-11 0 8 052 DK780S  AERT.Lauguen

T BM D 25-Oct-11 29-Feb-12 0 8 052 DMDuo548 RR unpublished data

BAL MO D 26-Oct12 26-Feb-13 220 9 052 DK747VT3P  OjedaJ.J.

BAL MO D  7-Oct13  7-Mar-14 220 8.5 052 DK747VT3P  unpublished data

BAL MO D 17-Nov-14 12-Mar-15 200 8.5 052  DK747 VT3P

Abbreviations: SEQ, sequence; SD, sowing date; HD, harvesting date; D / I, dry (S) or irrigated (l); ISW, initial soil water before sowing related to plant available water capacity;
Fert N, nitrogen fertilization; RS, row spacing; PER, Pergamino; RAF, Rafaela; BAL, Balcarce; TL, Trenque Lauquen; GV, General Villegas; S-AR, soybean-annual ryegrass;
M-AR, maize-annual ryegrass; AR-M, annual ryegrass-maize; M-O, maize-oats; S-O, soybean-oats; O-S, oats-soybean; W-M, wheat-maize; W-S-M, wheat-soybean-maize; B-
S, barley-soybean; B-M, barley-maize; S-AR, soybean-annual ryegrass; M-M, maize-maize.

' Annual ryegrass with several harvests (grazing simulation).

2 Annual ryegrass with only one harvest (silage simulation).

3 Maturity group.



14  Table 3. Statistical summary indicating the performance of the Agricultural Production Systems Simulator in predicting the crop DM vyield.
15

Crop Location
annual oo barley wheat soybean maize RAF PER PERI GV TL BAL Total
ryegrass
No. Obs. 34 47 5 4 13 24 16 60 26 11 6 8 127
Observed mean (Mg ha'1) 1.4 15 2.7 4.8 5.9 14.9 12.6 2.8 4.2 1.9 2.4 8.7 4.6
Modelled mean (Mg ha'1) 1.2 1.2 4.4 5.9 6.5 13.7 11.0 2.7 3.9 25 3.6 8.9 4.4
Observed SD (Mg ha'1) 0.7 0.8 1.5 1.6 25 6.1 6.2 3.9 5.6 1.5 1.1 9.4 5.9
Modelled SD (Mg ha'1) 0.8 0.8 1.3 2.2 3.2 6.2 4.0 4.1 6.4 1.9 1.2 10.0 5.7
RMSE (Mg ha'1) 0.7 0.6 1.7 1.6 1.4 3.4 3.3 0.9 1.7 1.1 1.5 2.0 1.7
CCC 0.46 0.77 0.90 0.79 0.90 0.86 0.84 0.98 0.96 0.84 0.53 0.98 0.96
16 "For this analysis was used the re-parametrized APSIM Weed module by Ojeda et al. (2016).
17 Abbreviations: No. Obs., Number of observations; SD, standard deviation; RMSE, root mean square error; CCC, concordance correlation coefficient; RAF, Rafaela; PER

18 Pergamino dryland; PERI, Pergamino irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce.



19 Table 4. Statistical summary indicating the performance of Agricultural Production

20 Systems Simulator in predicting the dry matter yield of forage crop sequences.

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total
No. Obs. 7 11 6 4 3 2 14 13 6 33
Observed mean (Mgha') 287 158 197 52 43 279 191 169 16.2 17.7
Modelled mean (Mgha') 250 16.0 204 76 6.7 265 182 18.0 1438 175

Observed SD (Mg ha™") 76 43 54 13 04 63 14 91 74 9.7
Modelled SD (Mg ha™") 49 49 69 15 21 102 93 78 65 8.1
RMSE (Mg ha™") 50 24 23 25 31 - 34 32 27 3.2
cce 083 086 093 086 - - 0.95 0.93 0.93 0.93

21 Abbreviations: No. Obs., Number of observations; SD, standard deviation; RMSE, root mean square error;
22 CCC, concordance correlation coefficient; RAF, Rafaela; PER Pergamino dryland; PERI, Pergamino
23 irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; Y1, year 1; Y2, year 2; Y3, year 3.



24

25

26
27
28

Table 5. Statistical summary indicating the performance of Agricultural Production

Systems Simulator in predicting seasonal and annual Water Productivity (WP).

Seasonal WP

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total
No. Obs. 16 60 26 11 6 8 51 45 31 127
Observed mean (g m mm'1) 4.3 34 3.3 2.3 1.2 3.5 3.6 3.7 23 3.3
Modelled mean (g m? mm'1) 3.8 2.6 2.0 3.1 1.8 3.7 2.7 3.1 2.0 2.7
Observed SD (gm?mm”) 15 31 38 08 04 15 31 29 25 2.9
Modelled SD (gm?mm™) 10 20 18 16 11 18 18 18 20 1.9
RMSE (g m2 mm™) 13 20 25 14 10 07 20 22 1.1 1.9
cccC 055 074 073 042 051 0.90 0.72 058 0.89 0.71

Annual WP

RAF PER PERI GV TL BAL Y1 Y2 Y3 Total
No. Obs. 7 11 6 4 3 2 14 13 6 33
Observed mean (gm?mm™) 41 18 19 08 07 43 23 24 20 2.3
Modelled mean (@ m?mm™) 36 18 18 12 11 4.0 21 25 17 2.2
Observed SD (gm?mm™) 07 05 09 03 02 0.1 15 14 13 14
Modelled SD (g m?mm™) 03 06 11 04 04 06 12 12 11 1.2
RMSE (g m? mm™) 07 02 04 04 05 - 04 04 04 0.4
ccC 062 09 093 091 - - 095 094 098 0.94

Abbreviations: No. Obs., Number of observations; SD, standard deviation; RMSE, root mean square error;
CCC, concordance correlation coefficient; RAF, Rafaela; PER Pergamino dryland; PERI, Pergamino
irrigated; GV, General Villegas; TL, Trenque Lauquen; BAL, Balcarce; Y1, year 1; Y2, year 2; Y3, year 3.



Table 6. Statistical summary of the linear regression between the observed and modelled
Water Productivity (WP) of winter crops (oats, wheat, annual ryegrass and barley) and
soybean, and maize v. cumulative seasonal annual rainfall plus irrigation and between the
observed and modelled Water Productivity (WP) of forage crop sequences v. cumulative

seasonal annual rainfall plus irrigation.

Seasonal WP v. cumulative seasonal rainfall + irrigation

winter crops + soybean maize

No. Obs. 107 20
Observed data
Adjusted logarithmic regression y=385.56x’°'668 y=10414x’°'916
R? 0.605 0.808
P value <0.001 <0.001
Modelled data
Adjusted logarithmic regression y=151 Bx0488 y=3379x’°'754
R? 0.424 0.696
P value <0.001 <0.001

Annual WP v. cumulative annual rainfall + irrigation

forage crop sequences

No. Obs. 26"
Observed data
Adjusted logarithmic regression y=8.65e'0'°°2X
R 0.448
P value <0.001
Modelled data
Adjusted logarithmic regression y=9.12e'°'°°2x
R? 0.531
P value <0.001

Abbreviations: No. Obs., Number of observations.
" The regression functions were calculated excluding data from General Villegas and Trenque Lauquen
(see Fig. 8).
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