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A coupled numerical approach for nonlinear dynamicfluid-structure
interaction analysis of a near-bed submarine pipetie

Abstract

The near-bed submarine pipeline is a widely usadtsire in the marine engineering. Due to
the presence of the seabed resulting in an asynmenfiei, a large negative lift (attraction) can
be induced on a pipeline in a horizontal currenhiclw has significant influence on the
behaviours of the pipeline. A coupled numericadrapch is proposed in this paper to assess the
nonlinear dynamic responses of this pipeline by l@iomg the meshless technique and the
boundary element method (BEM). BEM is firstly used get the nonlinear dynamic fluid
loading induced by the asymmetric flow. The meghleschnique is used to discretize the
structure of the pipeline, and the local weightezhkvform using the spline weight function is
employed to get the discrete system of equatiomstHs nonlinear dynamic analysis. A
numerical example for the static and dynamic amaslysf a structure is firstly presented to
verify the effectivity of the present method. Théme coupled technique is used to simulate the
nonlinear dynamic fluid-structure interaction prail of a near-bed pipeline. A Newton-
Raphson iteration procedure is used herein to gbkwenonlinear system of equations, and the
Newmark method is adopted for the time integratiOur studies reveal that there exists a
critical current velocity, above which the pipelingll become instable sharply. The detailed
relationship between the critical velocity and the® is given, and it has been found that the
critical velocity is significantly affected by theitial gap from the pipeline to seabed. It has
demonstrated that present approach is very effediv obtain numerical solutions for the

nonlinear dynamic fluid-structure interaction arsédyof a near-bed submarine pipeline.

Keywords: Fluid-structure interaction, Submarine pipelinéumerical modelling, Coupled

technique, Meshless method, Nonlinear dynamic arsly
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1. Introduction

The near-bed submarine pipeline is a widely usedctsire in the marine engineering, for
example the submarine gas and oil pip&gveral environmental forces have significant
influences on the behaviors of these near-bed subengipelines. The common loadings for the
pipeline are usually induced by waves and curréiftsdrag, scour), seafloor soils movements
(mudslides, earthquake, sand wave migration), aotad loading (impact, underwater
explosion), etc, As a complicated fluid-structuneteraction problem, the behaviors of
submarine pipelines subjected to various loadingsehbeen extensively studied both
theoretically and experimentally (Fredsge and Hand®87; Neill and Hinwood, 1998;
Kershenbaum et al., 2000; Zong and Lam, 2000hdrabsence of seabed, a submarine pipeline
in a horizontally steady current experiences a petdorce in the vertical direction due to flow
symmetry. However, the presence of seabed chahgesytnmetric flow scenario by assigning
higher velocity to the flow between the pipelinedaseabed, and lower velocity to the flow
above the pipeline. When the gap between the pipelnd seabed is very narrow, a very high
flow velocity is expected from continuity equatiof fluid. From the well-known Bernoulli’s
equation, the pressure in the gap between theipgahd seabed is very low, and the pressure
of the flow above the pipeline is high, resultimga downward (negative life) force (Kalghatgi
& Sayer, 1997; Lam et al., 2002), which tends td fhe submarine pipeline down to seabed,
exerting high bending stresses in the pipeline.

Lam et al. (2002) developed a semi-analytical netttiostudy the static properties of the
near-bed pipe by simplifying the pipe as a fixec#l Bernulli-Euler beam (neglecting the shear
deformation) subjected to a static nonlinear fltodce. For many practical applications, the
current changes with time, hence the nonlineadfloading becomes time-dependent and this
fluid-structure interaction problem will change aononlinear dynamic problem, which will be
studied in this paper. In addition, the semi-anedyttechnique will be not suitable for many
practical pipes, especially for problems with coexpboundary conditions and with significant
transverse shear deformation. An effective numkemoadelling and simulation technique is
necessary for this nonlinear dynamic fluid-struetumteraction analysis. To the best of our
knowledge, there are very rare such studies, if anyhis paper, following the technique used
by Lam et al. (2002), for a given time step, thenlmzar loading is firstly obtained by the
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boundary element method (BEM). The advanced loeghtess method is used to discretize the
pipe structure (the thick beam). We focus on thalyais of the global response of the pipe,
therefore, it is reasonable that the pipe is sitplias a thick beam, in which the transverse
shear deformation is considered.

In recent years, more and more researchers ardinigtbemselves to the research of the
meshless methods, due to the fact that there dremstny spaces in the development of
meshless methods. Detailed reviews of meshlessoaettan be found in the monograph (Liu
and Gu, 2005). There are many categories of meshiethods, and group of meshless methods
have been developed including the strong meshlesthats(Mai-Duy, 2006), the smooth
particle hydrodynamics (SPH) (Gingold and Monagha877), the element-free Galerkin
(EFG) method (Belytschko et al., 1994; Kanok-Nukalcet al., 2001; Noguchi et al., 2000), the
reproducing kernel particle method (RKPM) (Liu &t 4995; Liew et al. 2002), and the point
interpolation method (PIM) (Liu and Gu, 2001a; Liewd Chen, 2004). In order to alleviate the
global integration background cells, the meshlesthods based on the local weak-forms have
also been developed, for example, the meshless Rateov-Galerkin (MLPG) method (Atluri
and Shen, 2002; Gu and Liu, 2001a), the local famtiat interpolation method (LRPIM) (Gu
and Liu, 2001b; Liu and Gu, 2001b; Gu et al., 20@nd weak-strong form method (Gu and
Liu, 2005; Liu and Gu, 2003) .

Because the local meshless methods do not reqgibal background mesh for numerical
integration of the global weak form, they are tralgshless and have been widely used. Hence,
the local meshless technique will be used in tlapep. The nonlinear dynamic system of
equations is obtained based on the meshless shiag@h and the weighted local weak form of
the governing equation of a near seabed pipelingoman current (by equating nonlinear fluid
force to bending force). The well-developed Newmawdthod (Zienkiewicz and Taylor, 2000)
and the Newton-Raphso iteration technique are tseatirectly solve the nonlinear dynamic
system of equations.

Our investigations reveal that the negative liftses large that it is likely for submarine
pipelines to fail even in normal operational enmireents. There exists a critical current
velocity, above which a near-seabed pipeline wadtdme instable and finally fully rest on
seabed. Below the critical velocity, a near-seghipdline, even in stable state, may also have

high bending stress. The relationship betweencatitvelocity and gap between pipeline and
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seabed is given. It has been found that the presetitod is very easy to implement, and very
efficient to obtain numerical solutions for the finear dynamic fluid-structure interaction

analysis of a near-bed submarine pipeline.

2. Nonlinear dynamic fluid force for a near-bed pipelne

Fluid—structure interaction is a common phenomemmomature and can be found in many
engineering applications. In the simulation of distructure interaction, we need calculate the
fluid forces which act on the structure. Many methdave been developed to solve the fluid—
structure interaction problems. Bathe et al. (2GN4) have developed a FEM model of fluid
flows fully coupled with structural interactionsld@inski et al. (1991) proposed a fictitious
domain method for the numerical solutions of 30p&l problems with Dirichlet boundary
conditions for modelling incompressible viscousaldrai and Liew et al. (2007) developed an
immersed object method for 3D unsteady flow simafatvith fluid—structure interaction. In
this paper, we will use BEM coupled with the ratibmapproximation (Lam et al., 2002) to
obtain the dynamic fluid force for a near-bed pipel

Consider a circular steel pipe covered with a layfereinforced concrete. The coordinate

system is shown in Figure 1. The current velocgyJit) , wheret is time, and the gap

(distance) between the central line of the undeéampipeline and seabed Dy. The fluid is

assumed irrotational and incompressible, so tleeedotentialg(x, y,z) due to the presence of

the pipeline, satisfying (Lam et al., 2002):

2 2 2 1
9 420+ 9 420+ g Z): 0, Throughout the fluid domain (4
ox~ ody° 0z

y
9¢ =0, On the pipe suéfac (3)

on
wheren=(n,,n, ,n,) denotes the three-dimensional unit vector norméhe pipe surface.

A lot of computation efforts are needed to solve #dguations above due to the nature of
three-dimensional flow. However, the computatiom cae greatly simplified by using
slenderness assumption (Newman 1978) defined biplloging relations,

=R /L<<1 n,=0(¢), n,=0@Q, n, =0(Q) (4)
On this basis, near the surface of the pipe, we hav
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2 2 2 5
o9 __(99 09| O°9__(9% 0% (%)
ox dy 9z) ox* ay> 0z
Thus Laplace's equation reduces to a two-dimenkimnaat (Lam et al. 2002) using to
replace the three-dimensional potential
’e '@
dy> 0z
Here the dependence onis included to emphasize that this potential wély slowly along

=0, ®=¢(y,z,X) (6)

the structure length, as a result of the changehe lateral deformation. The boundary

conditions (2) and (3) can then be replaced by

a—¢=U(t), Iyz +722 L o (7)

oy

0P _

N
Here N =(N,, N, )denotes the two-dimensional unit vector normalh® pipe surface in the

0, On the pipe suea (8)

y —z plane. The potentia® corresponds to the solution of a two-dimensiotwal/ fproblem at
each section along the pipe length, and thus is/daand.

Based on 2-D assumption, the boundary-value problgimed by Equations (5)~(8) can be
effectively solved using the traditional boundalgneent method (BEM) (Brebbia, 1978). The
semi-infinite fluid domain is approximated by atetgular domaif (i.e., 2Rx20R;), and it
is discretized byn constant BE elements. BEM solution to Equations(( is

%w+g¢q%%dr=é%§1¢wr 9)

where @' is the potential for a poiriton the boundary, and’ :Ziln—l, is the fundamental
Tor

solution. Equation (9) can be written in matrixrfo(Brebbia, 1978),

H® =Q (10)
where
11
= [Smar 3 .
7 oON 2
m ¢j
=N [ @*dr (12)
Q=25
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Solving Equation (10) with boundary conditions, tfistributed potentiafb can be obtained.
Tangential and normal velocities on the pipe s@rfa® given, respectively
v, :ai, vV, = 0 (13)
ot
wheren andt are the unit outward normal and tangent, respelgtivo the pipe surface. From

Bernoulli’s equation, the flow pressuypen the pipe surface can be obtained

p==2 P +V,)’ (14)
where pis water density.

Integrating p along the section, we obtain the downward fluictéd on the pipe, as shown

in Figure 2:
= (15)
f §C p n,dl

where n, is the unit vertical vector. Substituting Equati¢i¥) into Equation (15), we can
compute the fluid force and BEM results have bdettgul in Figure 3.

Although there exists an analytical solution fasttiuid force (Muller, 1929), the complex
formulation converges very slowly. Therefore, foe tcomputational efficiency, Lam et al.
(2002) used a rational approximation (the leastasgfitting) to fit the fluid force obtained by
BEM. The following result was obtained from Fig@gLam et al., 2002) and will be used in
this paper

o(d) = 223d% +1254d + 002 (16)
0.77d® +0.44d*? + 0.02d
where the dimensionless coefficients are defined

2f
C=ume 17)
PAU (t)
_ Dy —w(x,t) - R
d= 2R (18)

whereA is the cross section area.
The BEM result, the least-square (LS) fitting résarid the analytical result are shown in
Figure 3. We can find from this figure that thessults are in very good agreement. It has

validated that the approach used in this papembtaim the fluid force is very accurate. Using
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this fitting curve, the nonlinear fluid forces fewery iteration step can be easily obtained.

Hence, the fluid force induced by the current carekplicitly written as
_1 2
f(t)—EpAU (t)"c(d) (19)

The forcef is a nonlinear function of the deflection.
It should be mentioned here that the two-dimengionascid simplification is used, the

fluid force is infinite when the gap, — 0. If a three-dimensional model is used for thedlui

domain, the force will be finite wheB, — 0 (Zong and Lam, 2000).

3. Local meshless formulation for the nonlinear dynang analysis

In this paper, we focus on the global dynamic raspoof a near-bed pipeline. It has been
justified by Lam et al. (2002) that using the besimplification can obtain satisfactory results
for this problem. For many practical applicatiotiee shear deformation cannot be neglected, so
the pipe can be simplified as a thick beam fixedeath ends. The non-damping governing

motion equation of a this pipeline can be writter(Reddy,1993)

pr% -2 1eak G+ 6] - 1 =0 (20)
pl% i(El—) GAk(—+9) 0

wherew is the deflection of the bear,is the rotationp is the mass densit¥ is the modulus
of elasticity,| is the moment of inertiaA is the cross section area,is the shear modulus, and

ks is the shear correction coefficient. From Figurevé can obtain

A=7R; - (R, —t,)’] (21)

1 22

= 2AR (R, ~1,)"] ¢2

The auxiliary boundary and initial conditions areem as

W(X,) =W, only, (23)
O(x,) =8, onl,

M (x,) = El 99 . M, only; (24)
OX oy,



Engineering Computations Vol. 25 No. 6, 2008, pp. 569-588

V(X,) =GAkS(6?+g—VXV) =V, only

X=X
W(Xt,) =Wy (X), InQ,; A(x,t,) = 6,(x ), inQ (25)
OW(Xt ) . . OH(X,'[O) _ . 26
p Vo(X) InQ; " Y, (x), inQ (26)

whererl y, g, My, andly are the boundaries of, 6, M, andV satisfying, respectivelyt.is the
time, and they is the initial time. It should be mentioned herattfor the fixed-fixed beam
w=6=0.

The local weak form of the partial differential edion (20), over a local support domé&lg

bounded by s, can be obtained using the local weighted resich&ihod

J'vv{ A —[GAkS(—+6)] ft d2=0 @7)

29 o, _ 06 ow _
jm{ | — ax( |&)+GAKS(&+H)]d_Q—O

wherew is the weight function.

It can be found that the bounddryfor the local support domain is usually composgd b
five parts (Gu and Liu, 2001b): the internal bounyda;, the boundarieBsy , [sg, v, andl gy,
over which the essential boundary conditions@ and natural boundary conditiohd, V are
specified. The boundarieSs, with ', and 'sg with gy are mutually disjoint. Integrating
Equation (18) by parts and imposing the naturahiawny condition, we obtain

0°w

jpra do+ j[—GAkS(—+6') wfldQ

(28)

[nwv]|

=0

Fs= Ty

0% ow
| Wpl = dQ+ j[—(El—) WGAK,(+6)]d 2

0,

s

=0

Fs=lam

~[MWM]|  ~[PW(El g—g)]
LY X
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Considering the deflectiony, and the rotationg, as independent variables, and only the

space domain to be discretized, we can have

w(xt) =@, (X)W, (t), (29)

a(x,t) =@, (x)8,(t)
where ®,(X) and P4x) are meshless shape functions of the deflectioth e rotation,
respectively. They can be constructed using polyabpoint interpolation (Liu and Gu, 2005).
we(t) andBg(t) are nodal values of deflections and rotation® discretized system equatican
be obtained as

MU (t) +Ku (t) =f (@ ,1) (30)
whereM andK are the mass matrix and the stiffness matrix,eesgely. u(t) is the vector of
nodal deflections and rotationi(t) is the second order derivative u(t) related to time, andf
is the vector of the external force. Hence,

ut) ={w,,8,,---,w,,6,}" (31)

Elements oM, K andf can be written as

nﬁl - J‘ pA\T\/i(p}lvd-Q, mllz = m]ﬂ =0, mjzz = J‘ pl\f\/ifpjé)d.Q (32)
2, 2
oo AP 4y )
i = ;2[ GAks&WdQ-'-[nGAks\Nl dx ] T+ et o+ g’

Fg+ley+M+ gy’

2= [ GAK, ddﬂ)icbf’dQ +[NGAKW, @7
'(25

do’

ki'= | GAkWw —+-dQ,

. J -

k22 = j (El dﬂﬂmAk W @%)d Q2 +[NEIW OI(pig]

booa dx dx . odx e et

£ = [wfunde+[muv] 7 =[nw M]| (34)
Qg & *

The dynamic Equation (30) can be solved by sew#ratt analysis methods. Among them, the

Newmark method is an unconditionally stable metiwben its coefficients satisfy> 05 and

10
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,82%(5+ 05)? (Zienkiewicz and Taylor, 2000). It will be used tine following numerical

studies for the time integration. In each time stige nonlinear equation has to be solved
because of the nonlinear loading. A Newton-Raphsemation method is used to solve the
nonlinear dynamic system of equations. The itenatdll stop when the following criteria is

satisfied.

(35)

n . .
\/Z (W™ -w)?<e
=1

i+1

wheren is the number of nodes usedj, and w," are the deflection results of tlign and

(i+)th iteration steps, respectivelgis a specified accuracy tolerance.

It should be mentioned here that in the numericauktion for beam problems, there is
shear-locking phenomenon using the thick beam meteh the length and thickness ratio of a
beam becomes much larger. Some researches hawtedegbiu 2002) that the meshfree
technigue based on the meshless shape functiormveartome the shear-locking problem if the
order of the interpolation is sufficient high. metfollowing numerical studies, more than 5 field
nodes are used in meshfree interpolation (the shagion with high order), hence, the shear-
locking issue will be overcome automatically. Otucse, the numerical integration should be

also accurate enough(in this paper, 4 Gaussiangpaia used for each background cell).

4. Numerical results

4.1. Verification of a cantilever beam

To verify the present method, a cantilever thickrhgas shown in Figure 4, is analyzed. The
parameters of this beam arB=3.0x10" N/n?, V =0.3, L=48m, D=12m, f =1.0m, and the
concentrated forcEL)=1000g(t)N, whereg(t) is the function of time. In this exampleD=4,
hence it should be considered as a thick beam.aRadytical solution for static analysis is

available in the text book (Timoshenko and Goodiéi,0)

11
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f(L _. D?x (36)
w(X) = —%{(4+ 5v)T + (3L - x)xz}
Deflections obtained by the present method ardqudnh Figure 5. The negative values show
the deflections are downward. It can be found thatresults obtained by the present method
agree with the analytical solution, with the digamecy less than 0.6%.

In the numerical convergence study, several grofipsgularly and evenly distributed field
nodes are used. The convergence curve obtainedricaityeis shown in Figure 6, wheteis

equivalent to the nodal space Xidirection). The error is defined as (Liu 2002)

error = \/L? (W = exact)zd-Q (37)
Lz We’wzd'o

where Wh,m and Wexact are deflections of the beam obtained by numenicathods and the
analytical method, respectively. The integratiopésformed over the entire span of the beam.
From Figure 6, we can find that the present metheigood convergent. The convergence rate
that is computed via linear regression can alsoldteined from Figure 6, and the convergence
rate of the present method is about 1.5. Hendwstproven that the present technique has very
good convergence.

For dynamic analysis, we considg(t) =sin(w;t) , where as is the frequency of the

dynamic load, andy=27 is used in this example. Many time steps aleutsded to check the
stability of the presented method. The Newmark wethith At =5x107 is used for the time
integration, and the damping coefficient0.4, is considered. Results until to 20s (abouwt 10
natural vibration periods) are plotted in Figurenhich shows a very stable result obtained by
the present method. After a long period time, thieedd vibration under a simple harmonic
dynamic loading becomes a stable vibration withftreed frequencys. Compared with the
results obtained by Gu and Liu (2001a), the preseihod leads to a very agreement result.

From the vibration theory (Meirovitch, 1980), aarance will occur wheww; = w , where

a is thei-th natural frequency. From Figure 7, one can ofesdrat the amplitude of vibration

is very big (i.e. more than ten times of staticptiisement) becausg, is very close tay. In

addition, a beat vibration with the peridgloccurs wherw; =@, andT, = 2—77. The first

@ -

12
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natural frequency of the system has been obtainedrEM (Gu and Liu, 2001a), which
isef™ =28.2, and, hence],”™ =5.2. T, can be also obtained from Figure 7, and it is mdou

4.5. It has also proven that the present methodirdd very good results for this dynamic

analysis of this thick beam problem.

4.2. Nonlinear dynamic analysis of a near-bed pipeline

Consider the following pipeline, as shown in Figdré = 20 m, E; =2.11x 10" N/n?, Rs
=0.4m, t= 0.012m (steel pipe thicknesslE.=2.5x 10 N/n?, R.=0.5m, 0=7800kg/m’ (steel
density) p:=2400 kg/m® (concrete density)Do=2R.. The pipe is discretized by 40 regularly
distributed meshless nodes.

Firstly, the nonlinear static response for a camtstairrent is analyzed. Figure 8 gives the
relation between current velocity and mid-span deflectiolVi .. The values of mid-span
deflection change with the current velocities.He simulation of the near-bed pipeline, we find
a sharp instability in the behavior of the pipeliks the current velocity increases, the
deflection of the pipeline increases, and the gefvéen the pipe and the seabed decreases. It
can be found that when the current velocity ina@eda® one certain value, the pipe becomes
instable and the centre of the pipe (because tws are fixed) will touch the bed (i.e., the gap
is 0). This process is defined as ttrétical pull-in behavior and the “certain value” of the
current velocity is defined as tledtical pull-in velocity, U . From Figure 8, we can obtain that
the critical pull-in velocity for this pipeline i “ =9.10m/s. Compared with the value obtained
through the semi-analytical method (Lam et al.,Z20@vhich is 9.29m/s, the present coupled
method obtains good result, and it has validatenédve developed model in this paper.

It is clear from the above discussion that theaaitvelocityU® is dependent on the initial
gap between the pipeline and seabed. Such relstiobtained by repeatedly using Equation
(30) for differentDo, and is plotted in Figure 9. Physically, a smalp detween pipeline and
seabed will induce a high force on the pipelinesasn from Equation (19) or Figure 3. The
required current velocity to push pipeline to sehlsethen low. The relationship is shown in
Figure 9, in whicHJ¢ is a monotonically increasing function Bf. The results obtained by the
model (Lam et al., 2002) without considering thengverse shear deformation are also plotted

in Figure 9. It can be found that critical pullselocity U will be smaller with considering the

13
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transverse shear deformation than that withoutidensg. It is because that considering the
transverse shear deformation will increase the ajldeflection. It should be mentioned here

that the difference o) “ for these two models will enlarge whérl 2R, decreases.
In the nonlinear dynamic analysis, we considerctimeent velocityU (t) =U, Ik(t )is time-

dependent. Two cases are consideredk(ras shown in Figure 10. To reveal the influente o
the shear deformation, a shorter pipeline vi#f10m is analyzed (for this pipeline the semi-
analytical method is inapplicable because it catweasimplified as a Bernulli-Euler beam). The
deflections at the central poingHL/2) of the pipe are obtained and plotted in Figlite$6.

Uo=5m/s andky(t) is firstly studied. Figure 11 shows the beginnstgge of the nonlinear
dynamic response. The vibration frequency can kmlyeabtained from this figure. The
dynamic responses &f (t)=5Ck;(t) m/s and 10k;(t) m/s for a longer computational time are
plotted in Figures 12 and 13, respectively. It dan found that the response below the
undeformed position is a stable vibration becauséh® unchanged current velocity during
0~0.5s. As the current velocity declines during~0.3s, the deflection of the pipe becomes
smaller. After 0.7s, the current velocity becomesoz and the dynamic response of the pipe
becomes stable vibration again, in which the elgilm position isx-axis (the undeformed
pipe). This stable vibration is obtained under tieglect of the damping. If the damping is
considered, the response will be declined with tunél the vibration vanishes. The similar
tendency can be found for the caséul), as shown in Figures 14 and 15. From Figures5,2-1
it can be observed that the present method cantteagry stable results for this nonlinear
dynamic analysis.

There is also critical pull-in behavior for thisppiine under the time-depend current. For
the case ofky(t), the dynamic critical pull-in velocity ™ is around 16 m/s, which is smaller

than that of the same pipeline under the staticeotirwhich is lager than 18 m/s.

Figure 16 demonstrates the relationship betweemtaeimum deflection of the central
point x=L/2) of the pipe antly The time functiork(t) is used here to investigate the change of
the deflections for givero From this figure, we can find that the maximum eetilon
monotonously increases &t increases. For the santk, the maximum deflections during

0~0.5s are greater than those after 0.7s. Thiedause the current velocity becomes zero after

14
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0.7s, there will be no fluid force on the pipe.eWidence, the pipe will be risk if the velocltly

is large.

5. Conclusion and discussion

In this paper, the nonlinear dynamic fluid-strueturteraction of a near-bed pipeline is analyzed
by a coupled numerical approach based on the nssskdéehnique and BEM. BEM is firstly
used to get the nonlinear dynamic fluid loadingucetl by the asymmetric flow. The local
meshless technique is then used to discretize ttinetwre of the pipeline. The Newmark
method and Newton-Raphson iteration technique doptad to solve the nonlinear dynamic
system of equations. Numerical examples are predeand the results have been compared
with the results obtained by the analytical andisamalytical methods. From the above studies,
we can obtain the following conclusions:

1) Our investigations reveal that the presence of exkatill lead to a large negative lift
loading on the pipeline. It will be a complex nodar fluid-structure interaction
problem, for which the traditional numerical teajure becomes very difficult to be used.

2) There exists a critical current velocity, above etha near-seabed pipeline will become
instable and finally fully rest on seabed. Theicaitvelocity changes with the initial gap
between the pipeline and the seabed.

3) It is found that the present method is very easyniplement, and very effective to
obtain numerical solutions for the nonlinear dynaftuid-structure interaction analysis
of a near-bed submarine pipeline.

It should be mentioned here that the major object¥ this paper is to develop a new
numerical approach for a special fluid-structurteriaction analysis of a near-bed submarine
pipeline. The fluid is assumed irrotational andoimpressible, therefore, it is the ideal fluid. In
the practical situation, the effects of viscous ameftia forces cannot be ignored. In addition,

the 3D problems should be also considered. Thesbewstudied in our future research work.
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Figure 6 The convergent curve
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Figure 13 Dynamic responses of the central powit/Q) of the pipe (J(t)=10k,(t))
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Figure 14 Dynamic responses of the central powit/R) of the pipe (J(t)=5kx(t))
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Figure 15 Dynamic responses of the central powit/2) of the pipe (J(t)=10kx(t))
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