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Abstract
Telomerase preserves genomic integrity by maintaining and protecting the telom-
eres. Seminal findings from 1985 revealed the canonical role of telomerase and 
motivated investigations into potential therapeutic strategies to combat one of the 
hallmarks of ageing—telomere attrition. Since then, the field of telomere biology has 
rapidly expanded, with telomerase serving essential roles in cancer and cell develop-
ment through its canonical function. However, telomerase also exerts critical extra-
telomeric functions through its protein (telomerase reverse transcriptase, TERT) and 
RNA components (telomerase RNA component, TERC). Telomerase re-activation or 
ectopic expression promotes survival and permits unlimited proliferation in tumours 
and healthy non-malignant cells. TERT gene therapies improve health and lifespan in 
ageing mice and mouse models of age-related diseases. The extra-telomeric func-
tions of telomerase are critical to ageing. These include protection against oxidative 
stress, orchestration of chromatin modifications and transcription, and regulation of 
angiogenesis and metabolism (e.g. mitochondrial function and glucose control). Given 
these biological functions are key adaptations to endurance training and the recent 
meta-analytical findings that indicate exercise up-regulates TERT and telomerase, a 
comprehensive discussion on the implications of the canonical and extra-telomeric 
roles of telomerase is warranted. This review highlights the therapeutic benefits of 
telomerase-based treatments for idiopathic and chronic diseases that are linked to 
ageing. Discussion on the canonical and extra-telomeric roles of telomerase are pre-
sented, followed by a detailed summary of the evidence on how exercise influences 
telomerase. Finally, the potential cell signalling underpinning the exercise-induced 
modulation of telomerase are discussed with directions for future research.
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1  |  INTRODUC TION

Ageing is a complex biological process involving a dynamic network 
of cellular and molecular activity incompletely understood. Since the 
early 1960s, it was clear that cells have a finite ability to undergo mito-
sis before entering a senescent state, although the underlying mech-
anisms were unclear (Hayflick, 1965; Hayflick & Moorhead, 1961). 
Cultured mammalian cells enter senescence after a finite number of 
cell divisions—the Hayflick limit (Shay & Wright, 2000). The failure 
of DNA polymerase to replicate the entire lagging (‘C’) strand leads 
to telomere shortening with each round of cell division until senes-
cence ensues, due to the end replication problem (Levy et al., 1992; 
Wynford-Thomas & Kipling, 1997). In 1985, telomerase was discov-
ered, and its canonical function of maintaining genomic stability by 
elongating the telomeres was revealed (Greider & Blackburn, 1985). 
An RNA template complementary to telomeric sequence and its re-
verse transcriptase activity underpins the ability of telomerase to 
extend the terminal DNA, thereby circumventing the end replication 
problem and replicative senescence (Greider & Blackburn,  1989). 
The significance of this discovery was acknowledged with the au-
thors receiving the Nobel Prize in Physiology or Medicine in 2009.

2  |  THE C ANONIC AL ROLE OF 
TELOMER A SE: TELOMERE MAINTENANCE

Telomerase extends the telomeres and attenuates telomere at-
trition, which is one of the hallmarks of ageing (Lopez-Otin 
et al.,  2013). Critically, short telomeres cause telomere dysfunc-
tion, which triggers DNA damage responses and other factors 
that promote cellular senescence or apoptosis (d'Adda di Fagagna 
et al., 2003; Karlseder et al., 1999; Meier et al., 2007). Replicative—
critically short telomere-induced—senescence can occur in rapidly 
dividing cells (e.g. stem cells and lymphocytes), whereas ROS or 
genotoxic stress-induced damage along the telomeres can promote 
telomere dysfunction and senescence, which is more likely to af-
fect post-mitotic tissue (e.g. cardiac and skeletal muscle, neurons 
and fat) (Rossiello et al., 2022). This, in turn, promotes low-grade 
chronic inflammation via the senescence-associated secretory phe-
notype (De Cecco et al., 2019; Lasry & Ben-Neriah,  2015) which, 
in turn, accelerates telomere shortening and biological ageing (Jurk 
et al., 2014). Telomere dysfunction is implicated in most age-related 
diseases (Rossiello et al., 2022), and meta-analytical findings suggest 
short telomeres are often observed in patients with chronic diseases 
compared to healthy controls. These include individuals with obesity 
(Mundstock, Sarria, et al., 2015), type 2 diabetes (Wang et al., 2016), 
Alzheimer's disease (Forero et al., 2016) and coronary heart disease 
(Haycock et al., 2014).

Telomerase is comprised of ribonucleoprotein (RNP) complexes 
capable of telomere elongation through its reverse transcription ac-
tivity (Blackburn et al., 1989; Greider & Blackburn, 1987) (Figure 1). 
Extensive discussion on the recruitment of telomerase and the mech-
anism of telomere synthesis has been provided elsewhere (Roake & 

Artandi, 2020; Wu et al., 2017). Telomeres form specific nucleop-
rotein complexes at the distal ends of chromosomes facilitated by 
interactions with six telomere repeat-binding proteins involved in 
telomerase recruitment—shelterin (Figure 1). Shelterin are critical to 
repressing DNA damage response pathways (e.g. ATM/ATR and p53 
signalling) (d'Adda di Fagagna et al., 2003; Karlseder et al., 1999), as 
they form unique telomere structures (e.g. end-capped telomeres via 
t- and d-loops) (Lim & Cech, 2021) and compact telomeric chroma-
tin (Bandaria et al., 2016). Shelterin also prevents non-homologous 
end joining (Arnoult & Karlseder, 2015; Dimitrova et al., 2008; Sfeir 
& de Lange, 2012), as excessive telomere shortening and shelterin 
protein removal from the telomeres causes telomere dysfunction. 
Comprehensive discussions on shelterin and telomere structures can 
be found here (de Lange, 2018; Lim & Cech, 2021; Smith et al., 2020). 
TPP1 coordinates telomerase recruitment and enhances its activity 
at the telomeres through direct interactions (Liu et al., 2022; Wang 
et al., 2007). Importantly, TERT is the major protein of telomerase 
and the rate-limiting component of the catalytic core ribonucleopro-
tein. It is heavily regulated and is poorly expressed in most somatic 
cells. Further, TERT is under epigenetic control by chromatin struc-
tural changes caused by telomere shortening; it exhibits epigene-
tic marks indicative of transcriptional silencing when telomeres are 
long and transcriptional activation when telomeres are short (Kim 
et al., 2016). The control and actions of telomerase are the subject of 
an excellent review (Roake & Artandi, 2020).

Cell and animal models with genetically modified or no telomerase 
activity have been especially helpful in uncovering the importance of 
telomerase in telomere maintenance. Population doubling in human 
fibroblasts causes telomere shortening in vitro (Harley et al., 1990), 
yet exogenous Tert treatment considerably extends their lifespan by 
maintaining critically short telomeres (Bodnar et al., 1998; Ouellette 
et al., 2000). Further, increased TERT expression preferentially pro-
tects short, dysfunctional telomeres to buffer senescence and avert 
malignant transformation (Sun et al., 2019). Terc-deficient embryonic 
stem cells exhibit progressive telomere shortening and impaired 
growth rates, highlighting the importance of telomerase in mamma-
lian growth and development (Niida et al.,  1998). Experiments in-
volving the decrease or complete removal of telomerase activity in 
several mouse models have uncovered the impact of telomere short-
ening on biological ageing. Mice lacking the telomerase-RNA tem-
plate (Terc−/−) or the major catalytic protein (Tert−/−) are viable despite 
the absence of telomerase activity. Whilst maintaining embryonic 
viability, Tert−/− or Terc−/− mice possess no obvious abnormalities in 
early generations (Blasco et al., 1997; Yuan et al., 1999). Terc−/− mice 
become infertile by the G5–G6 and produce less than 50% of the 
normal progeny by G3 (Herrera et al., 1999). Both Tert−/− and Terc−/− 
mice display reduced body weights by G3 and progressive telomere 
shortening with each generation (~4 kb less) (Herrera et al.,  1999; 
Strong et al.,  2011) until telomeres are undetectable and end to 
end fusions occur in late generations (G4–G6) (Blasco, 2002; Blasco 
et al., 1997; Herrera et al., 1999). That Tert−/− and Terc−/− mice are 
not directly comparable due to differences in phenotypes, and some 
unique extra-telomeric functions of each telomerase component is 
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worth noting. Survival is significantly reduced in G2 and G3 Tert−/− 
mice (Strong et al., 2011), whereas this is not observed in Terc−/− mice 
until the G4s (Herrera et al.,  1999). Terc−/− mice are afflicted with 
immunological defects and other unique phenotypes with ageing 
beginning in G3s (e.g. atrophy to the spleen, testes and small in-
testines, hair greying, skin lesions, alopecia, hypertension, blood 
count abnormalities and other immune deficiencies) (Blasco, 2002; 
Herrera et al., 1999; Pérez-Rivero et al., 2006; Rudolph et al., 1999). 
Similarly, Tert−/− mice suffer intestinal tissue atrophy, immunologi-
cal abnormalities and depleted tissue renewal capabilities (Strong 
et al., 2011). However, others reported normal phenotypes in early 
generation Tert−/− mice (Yuan et al., 1999). Hence, telomere short-
ening via telomerase interference significantly impacts biological 
ageing and lifespan.

Considering the crucial role of telomerase in ageing, Tert-based 
gene therapies were developed and have shown promising results in 
rodents. Telomerase is tightly restricted in vivo, as high levels are es-
sential for tumour development (Shay & Bacchetti, 1997). However, 
Tert gene therapy enhanced epithelial tissue function, reduced the in-
cidence of tumours and enhanced longevity by 40% in mice resistant 

to cancer (Tomás-Loba et al., 2008). This was in contrast to the in-
creased tumour burden in normal mice with long telomeres after Tert 
gene therapy (Artandi et al., 2002), which was exacerbated in mice 
with a tumour suppressor gene (p53) mutation (Gonzalez-Suarez 
et al., 2002). Further, reactivated telomerase activity in mice with 
dysfunctional telomeres led to telomere elongation and counter-
acted the age-associated DNA damage and senescent phenotypes in 
several tissues (Jaskelioff et al., 2011). Similarly, an adeno-associated 
virus (AAV)-based Tert gene therapy improved markers of biological 
ageing and increased lifespan of 1- and 2-year-old mice by 24% and 
13%, respectively, without increasing tumour incidence (Bernardes 
de Jesus et al., 2012). Intranasal delivery of Tert gene therapy via a 
cytomegalovirus has demonstrated comparable results to injectable 
Tert, such that telomere shortening, and other ageing markers were 
attenuated in treated mice (Jaijyan et al., 2022). Similar results were 
observed after AAV-based Trf1 gene therapy in mice (Derevyanko 
et al., 2017), indicating that gene therapy by increasing a component 
of shelterin or telomerase improves health and lifespan. Therefore, 
the canonical role of telomerase is to maintain the telomeres, pre-
vent telomere dysfunction and biological ageing.

F I G U R E  1 Telomeres, shelterin and the canonical function of telomerase. (a) Telomeres are a repetitive sequence of DNA 
(5′-TTAGGGn-3′) that cap the ends of chromosomes and preserve genomic integrity. Average telomere length in humans is typically 4–15 
kilobases (kb) long. Given that telomerase is expressed at very low levels in healthy human cells, telomeres shorten with successive cell 
divisions due to the end replication problem and DNA damage. (b) Shelterin is comprised of six telomere-repeat binding proteins (telomere 
repeat binding factor 1 [TRF1], telomeric repeat binding factor 2 [TRF2], TRF1 interacting nuclear factor 2 [TINF2], TRF2 interacting 
protein [RAP1], ACD shelterin complex subunit and telomerase recruitment factor [TPP1], and protection of telomeres 1 [POT1]) that 
bind telomeric DNA directly (protein homodimers, TRF1/TRF2) or indirectly (TINF2, TPP1 and RAP1) via TRF1/2. POT1 preferentially 
binds to single-stranded telomeric DNA (G-overhang). Note that this is the open telomere state, as shelterin are responsible for directing 
other structures at telomeres (closed states) (e.g. T- and D-loops and other formations) (Lim & Cech, 2021; Zinder et al., 2022). (c) Human 
telomerase is comprised of a catalytic core ribonucleoprotein (RNP) (telomerase reverse transcriptase [TERT] protein and telomerase RNA 
component [TERC]) and an H/ACA RNP complex with H/ACA ribonucleoproteins: dyskerin (blue), NOP10 (green), NHP2 (pink), GAR1 (grey) 
and TCAB1 (brown) (Liu et al., 2022; Nguyen et al., 2018). The template region of telomerase interacts with the g-strand telomeric DNA 
via the complementary TERC sequence (white RNA with purple background) for telomere synthesis. TERT is indicated by the light red oval. 
Supported by Servier Medical Art.
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3  |  TELOMERES AND TELOMER A SE 
IN R ARE AND AGE- REL ATED CHRONIC 
DISE A SES

Telomere syndromes are a spectrum of rare diseases with common de-
fining traits of accelerated biological ageing, reduced lifespan and short, 
dysfunctional telomeres (Armanios & Blackburn, 2012). Accelerated 
telomere attrition in the telomere syndromes is due to rare mutations 
in genes that control telomere integrity, including protein components 
of telomerase. Dyskeratosis congenita was the first rare disease classi-
fied as a telomere syndrome. Mutations in the gene coding for dyskerin 
(dyskeratosis congenita 1 [DKC1]) were revealed and established as a 
vital protein component of telomerase (Mitchell et al., 1999) (Figure 1). 
Consequently, individuals with dyskeratosis congenita, as well those 
with a severe form of the disease, Hoyeraal Hreidarsson syndrome, 
possess short telomeres, exhibit physical signs of accelerated ageing 
and die prematurely (Alter et al., 2012; Bessler et al., 2010; Mitchell 
et al., 1999). Telomere syndromes with mutations in other genes cod-
ing essential telomerase proteins are now established (e.g. NOP10, 
NHP2, GAR1 and TCAB1) (Mangaonkar & Patnaik,  2018; Mitchell 
et al., 1999). Interestingly, mouse models lacking telomerase compo-
nents (Tert/Terc) recapitulate the accelerated ageing phenotypes (e.g. 
premature greying, ineffective haematopoiesis, impaired immunity 
and fibrosis) observed in patients with telomere syndromes (Armanios 
& Blackburn, 2012). Telomere syndromes are serious and debilitating 
rare diseases, yet telomerase and telomere shortening are also impli-
cated in common age-related disease. Telomerase therapy may have 
the potential to treat not only the telomere syndromes, but also com-
mon age-related diseases.

Telomerase-mediated telomere maintenance and protection 
against telomere dysfunction are crucial for the prevention of many 
age-related chronic diseases and symptoms, such as atherosclero-
sis (Chen et al., 2014; Samani et al., 2001; Toupance et al., 2017), 
kidney (Saraswati et al., 2021) and pulmonary (Liu et al.,  2019) fi-
brosis, glucose intolerance (Guo et al.,  2011) and insulin resis-
tance (Minamino et al., 2009), type 2 diabetes (Cheng et al., 2021; 
Sampson et al.,  2006), cardiomyopathy (Leri et al.,  2003), amyo-
trophic lateral sclerosis (Eitan et al., 2012) and Alzheimer's disease 
(Shim et al., 2021; Spilsbury et al., 2015). In mouse models, Tert gene 
therapy seems to be an effective strategy to combat age-related dis-
eases and extend health span. For instance, Tert gene therapy im-
proves healing and the function of tissues that were once thought 
of as irreparable, such as myocardial infarction induced cardiac dam-
age (Bär et al., 2014) and pulmonary fibrosis (Povedano et al., 2018). 
Tert gene therapy also attenuates the impact of neurodegeneration 
(Whittemore et al., 2019) and aplastic anaemia (Bär et al., 2016), both 
of which are linked to telomeres dysfunction. Thus, Tert gene ther-
apy shows promise for combatting age-related diseases and ageing 
in humans. Extensive discussion on telomere-based therapies can be 
found here (Chakravarti et al., 2021; Martinez & Blasco, 2017; Yeh 
et al., 2019).

Most neoplasms have abnormally and critically short telomeres 
that rely on their high telomerase activity to support uncontrolled 

proliferation (Shay & Bacchetti,  1997). Only 10–15% of tumours 
employ telomerase-independent alternative lengthening of telo-
meres (ALT) (Cesare & Reddel, 2010; Heaphy et al., 2011; Pickett & 
Reddel, 2015). That telomere length (replicative senescence), telo-
merase regulation and cancer risk are intricately linked should not 
be understated. However, a comprehensive discussion on telomer-
ase, ageing and cancer risk is outside the scope of this review; the 
reader is referred elsewhere for in-depth reviews (Lansdorp, 2022; 
Martinez & Blasco, 2010; Shay, 2016; Shay & Wright, 2019). A key 
strategy of TERT regulation is achieved via its promoter mutations. 
In 2013, two groups reported TERT promoter mutations upstream 
of the transcription start site, which significantly increased its 
transcription through transcription factor binding (e.g. ETS) (Horn 
et al., 2013; Huang et al., 2013). The TERT promotor mutations are 
now acknowledged as the most common non-coding mutations in 
tumours (Bell et al., 2016; Heidenreich & Kumar, 2017).

Telomerase activity may have co-evolved with body mass, such 
that telomerase activity is lacking or at minimal levels in large mam-
mals (e.g. humans) compared to smaller animals to reduce their 
risk of cancer (Gomes et al., 2011; Gorbunova & Seluanov, 2009). 
Rodents possess longer telomeres that undergo faster telomere 
attrition than human cells, yet replicative senescence is primarily 
limited to proliferating human somatic cells compared to extrinsic 
factors in rodents (Itahana et al., 2004). The reader should be mind-
ful of these considerations when interpreting findings from rodents. 
Despite the considerable attention telomerase has attracted as a 
target for novel anti-cancer therapies, none have survived exten-
sive scientific enquiry in stage I–III human clinical trials. Therapeutic 
treatments that target telomerase in tumours have been challeng-
ing (Gao & Pickett,  2022; Guterres & Villanueva,  2020), as some 
healthy somatic cells express very low levels of telomerase activity 
(e.g. lymphocytes) and key components of telomerase (e.g. TERT/
TERC) are ubiquitously expressed. Nonetheless, CRISPR (Li, Li, 
et al., 2020), immunotherapies and small molecule inhibitors remain 
exciting possibilities for future anti-cancer therapies (Guterres & 
Villanueva, 2020). The precision of TERT-based anti-cancer thera-
pies will be crucial to overcome off-target side-effects, especially 
given the extra-telomeric functions of telomerase.

4  |  E X TR A-TELOMERIC FUNC TIONS OF 
TELOMER A SE

Telomerase components regulate biological processes in addition 
to telomere synthesis. Of note, it is difficult to distinguish telomere 
length dependent compared to telomere independent roles of tel-
omerase. If it is quantified, the average telomere length is typically 
reported. It is, however, possible that TERT could lengthen critically 
short (dysfunctional) telomeres on specific chromosomes to cir-
cumvent replicative senescence, as well as exert its extra-telomeric 
functions. This would seem unlikely when catalytically inert TERT or 
TERC are used in experiments, as they cannot lengthen telomeres. 
It should also be noted that the mechanisms by which TERT exerts 
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its non-canonical functions remain incompletely understood in most 
circumstances. This next section focuses on the non-canonical func-
tions of telomerase with a focus on those relevant to physiological 
adaptations to endurance training (summarised in Figure 2).

4.1  |  Angiogenesis

TERT enhances angiogenesis in endothelial cells, skeletal muscle 
and malignant tissue via vascular endothelial growth factor (VEGF), 
endothelial nitric oxide synthase (eNOS) and ERK1/2 signalling 
pathways (Hoier & Hellsten, 2014; Li, Qian, et al., 2020; McAllister 
et al., 2008; Suvorava & Cortese-Krott, 2018). For example, ectopic 

TERT expression increases tube-like structure formation in cultured 
human umbilical vein endothelial cells (HUVECs), by interacting 
with Sp1 transcription factor, binding to the VEGF promoter and up-
regulating its expression (Liu et al., 2016). The angiogenesis relied 
on TERT, but not its catalytic activity, as an hTERT mutant (lacking 
telomere synthesis capabilities) stimulated angiogenesis, which in-
dicated a telomere length-independent effect (Liu et al., 2016). In 
a clinical study, TERT up-regulation facilitated growth differentia-
tion factor 11 (GDF11)-mediated restoration of VEGFR2+/CD133+ 
cells isolated from older adult patients who had suffered myocardial 
infarctions via eNOS and SMAD 2/3 signalling (Zhao et al., 2019). 
Conversely, vascular function and angiogenesis were impaired in 
TERT-depleted endothelial progenitor cells in vitro (Zhao et al., 2019), 

F I G U R E  2 Summary of the key non-canonical functions of telomerase relevant to endurance training adaptations. (a) TERT binds to 
Sp1 and transcribes its target genes DNMT3B (Yu et al., 2018) and VEGF (Liu et al., 2016) thereby contributing to de novo DNA methylation 
changes and angiogenesis, respectively. This appears to be a telomere length-independent non-canonical function of TERT, as catalytically 
inert TERT exerts identical functions (Liu et al., 2016). (b) TERT interacts with BRG1, which targets genes involved in the β-catenin/Wnt 
signalling pathway to regulate development and stem cell maintenance. (c) TERT and TERC appear to independently regulate gene and 
microRNA (miRNA) expression likely through cooperation with other transcription factors (TFs) to controls genes (e.g. those regulating cell 
senescence). (d) TERT is shuttled to the plasma membrane upon insulin treatment. There, it colocalises with glucose (C6H12O6) transporters 
(1, 4 and 12) and increases glucose uptake in skeletal muscle (Shaheen et al., 2014). (e) Increased TERT expression via its transcriptional 
activator, AGS-499, increases flow-mediated vasodilation in HUVECs from coronary artery disease patients via enhancing endothelial nitric 
oxide synthase (eNOS) signalling (Beyer et al., 2016). (f) TERT is shuttled from the nucleus into the mitochondria in the presence of elevated 
reactive oxygen species (ROS). Inside the mitochondria, TERT improves mitochondrial function and protects mitochondrial DNA (mtDNA) 
from ROS-induced damage. It also acts as a reverse transcriptase with mitochondrial transfer RNAs, increases oxygen flux in the electron 
transport chain and enhances membrane potential (∆Ψ m). Supported by Servier Medical Art.
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consistent with other findings (Liu et al., 2016). Using a mouse model 
of hindlimb ischemia (surgical removal of femoral artery), adenovi-
rus vector treatment with human VEGF165 enhanced skeletal muscle 
TERT protein expression, telomerase activity, capillarisation and sur-
vival in Wistar rats (Zaccagnini et al., 2005). TERT transfer alone pro-
moted capillarisation and survival, although to a lesser extent than 
VEGF165 treatment (Zaccagnini et al.,  2005). Moreover, dominant 
negative TERT impaired the VEGF-induced angiogenesis in skeletal 
muscle and HUVECs, which emphasised that telomerase activity 
was required (Zaccagnini et al., 2005). Notwithstanding conflicting 
reports on whether a functional enzyme is required, together, they 
indicate TERT induces angiogenesis in healthy tissue.

A role for TERT in angiogenesis was first described in tumours. 
Tumours sustain growth by up-regulating angiogenesis, hijacking 
healthy vascular structures and through the recruitment of endo-
thelial cells (Junttila & de Sauvage, 2013). High TERT expression was 
first identified in vascular endothelial cells isolated from astrocytic 
tumours which correlated with the severity, such that glioblastoma 
samples expressed significantly higher TERT compared to low-grade 
astrocytomas (Pallini et al., 2001). Since these initial findings, TERT 
now has a well-established role in tumour growth and development. 
Using Lewis Lung carcinoma xenograft experiments, Tert−/− mice ex-
hibited reduced tumour growth and micro-vessel density compared 
to wild types (Liu et al., 2016), highlighting tumour progression and 
capillarisation relies on TERT. Others have demonstrated that VEGF-
mediated TERT mRNA and telomerase up-regulation in human ovar-
ian cancerous cell (PA-1 and SW626) via ERK1/2 signalling and Sp1 
(Bermudez et al., 2007), suggesting a possible positive feedback loop 
since TERT binds to Sp1 and increases VEGF expression in HUVECs 
(N. Liu et al., 2016). Thus, TERT not only maintains neoplasm survival 
through its canonical function, but it also appears to sustain tumour 
progression by supporting angiogenesis.

4.2  |  Metabolism

Telomerase seems to be linked to metabolism through both 
telomere-length dependent and extra-telomeric effects. The most 
compelling evidence implicating telomerase in metabolic functions 
stems from Tert−/− and Terc−/− mouse experiments. Both Generation 
2 (G2) Terc−/− and G4 Tert−/− mice exhibit marked reductions in 
Pgc1α/β and downstream metabolic genes, and enforced expression 
of Tert or Pgc1α restored the dysregulated transcriptional profile in 
the heart and liver (Sahin et al., 2011). Mitochondrial copy number, 
mitochondrial respiration and ATP content were reduced in G1 and 
G4 Tert−/− as well as G2 Terc−/− mice (Sahin et al., 2011). The metabolic 
dysfunction also impaired cardiac function and altered gluconeo-
genesis in G4 Tert−/− mice (Sahin et al., 2011). Determining whether 
the metabolic compromise in G4 Tert−/− mice is due to telomere dys-
function or the extra-telomeric functions of TERT (or both) is chal-
lenging. That the metabolic compromise is much worse in G4 versus 
G1 Tert−/− mice (Sahin et al., 2011) may imply that the effects are 
partly mediated by telomere dysfunction caused by short telomeres. 

This is supported by evidence from mice genetically engineered to 
possess much longer (hyper-long) telomeres compared to controls, 
as they exhibit less adiposity and LDL cholesterol, superior insu-
lin and glucose sensitivity, increased mitochondrial DNA (mtDNA) 
and function, and live longer than controls with shorter telomeres 
(Munoz-Lorente et al., 2019). Importantly, both studies emphasised 
links between telomere dynamics, mitochondria and metabolic 
function, and lifespan. C2C12 cells transfected with a TERT plasmid 
also exhibited improved glucose uptake and small interfering RNA 
(siRNA)-induced knockdown of TERT reduces 2-deoxyglucose up-
take in vitro (Shaheen et al., 2014). That TERT was associated with 
glucose transporters (GLUT1, 4 and 12) and colocalised near the 
plasma membrane upon insulin treatment in C2C12 cells suggested 
glucose uptake was mediated by the glucose transporters, yet inde-
pendent of insulin signalling regulators (PI3K and mTOR) (Shaheen 
et al., 2014). Regardless of the potential off-target effects of siRNAs, 
these data support a role of TERT in glucose control in human skel-
etal muscle in the absence of telomere dysfunction (normal telomere 
lengths).

Mice already vulnerable to oxidative stress undergo rapid vas-
cular ageing after Pgc1α knockout. Significant vascular cellular se-
nescence occurs with ageing in Pgc1α−/−ApoE−/− mice, such that 
they exhibited reduced TERT protein and telomerase activity, as 
well as increased oxidative DNA damage and short telomeres in 
the aorta compared to their Pgc1α+/+ApoE−/− counterparts (Xiong 
et al.,  2015). Furthermore, TERT expression was significantly in-
creased whilst p53 was decreased in rat aortic smooth muscle cells 
after enforced expression of PGC1α in a dose-dependent manner 
(Xiong et al., 2015). Thus, their appears to be a positive feedback 
loop between PGC1α and TERT. Although it is difficult to determine 
telomere length-independent effects of TERT, the positive feedback 
loop with PGC1α is of interest because telomerase activity is low 
in healthy human somatic cells, yet TERT and TERC are ubiquitously 
expressed. These findings also highlight the complex relationship 
between telomere length (or telomere dysfunction), telomerase and 
metabolism, which is undoubtedly supported by the extra-telomeric 
effects of TERT in the mitochondria.

4.3  |  Mitochondrial protection and function

TERT not only performs its canonical functions in the nucleus, rather 
it is also detectable in the mitochondria (including telomerase activ-
ity) where it protects against oxidative stress and mtDNA damage. 
Given that telomeres are absent from the circular mitochondrial ge-
nome, the localisation of TERT and telomerase activity in the mito-
chondria was an exciting finding. Elevated reactive oxygen species 
(ROS) triggers the nuclear export of TERT from the nucleus into the 
cytosol (Haendeler et al.,  2004; Haendeler, Hoffmann, Brandes, 
et al., 2003), later identified as the mitochondria (Ahmed et al., 2008; 
Santos et al., 2004). In fact, approximately 10–20% of TERT seems 
to reside within the mitochondria under normal physiological con-
ditions (Haendeler et al.,  2009; Sharma et al.,  2012), whereas it 
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increases to ~80% in the presence of high ROS. Mitochondrial TERT, 
under high oxidative stress (i.e. hyperoxia or H2O2), protects mtDNA 
from lesions and superoxide generation, and boosts mitochondrial 
membrane potential in cultured fibroblasts (Ahmed et al.,  2008). 
However, different cellular stressors have unique effects in par-
ticular somatic cells. Whilst irradiation increases mitochondrial 
TERT in Purkinje neurons (Eitan et al., 2016), it was suppressed in 
human breast cancer (MCF-7) cells (Miao et al., 2016). It is postu-
lated that mitochondrial located TERT protects against ROS-induced 
damage to the nucleus in cancer cells, thereby enhancing apopto-
sis resistance (Singhapol et al., 2013). This presents a challenge for 
telomerase-based anti-cancer therapies, as unwelcome off-target 
effects of healthy tissues are possible.

In the mitochondria, TERT acts as a TERC-independent reverse 
transcriptase, as it utilises tRNAs as templates and may facilitate 
mtDNA replication or repair (Sharma et al., 2012). Since mitochon-
drial biogenesis and function are impaired in many age-related 
diseases, this was a particularly interesting finding. In the absence 
of TERT, the mitochondria exhibit marked mtDNA damage, ele-
vated ROS generation and perturbed ultrastructure indicative of 
mitochondrial dysfunction (Sharma et al.,  2012). Therefore, TERT 
protects the mitochondria from elevated ROS and subsequent ROS-
induced damage. This function appears to be one of the many ways 
tumours promote cell survival via TERT (Indran et al., 2011; Pestana 
et al., 2017), aside from its canonical role of maintaining critically 
short telomeres.

TERT protected mtDNA from UV damage and H2O2-induced 
apoptosis and enhanced mitochondrial respiration in lung fibro-
blasts of second-generation Tert−/− mice and HUVECs, respectively 
(Haendeler et al., 2009). Furthermore, cardiac mitochondrial respi-
ration was impaired in Tert−/− mice compared to wild types, whereas 
liver mitochondrial respiration was preserved possibly because more 
quiescent cells or those that possess higher mitochondrial respiration 
may rely on TERT for protection (Haendeler et al., 2009). Regarding 
functional effects ex vivo, telomerase transcriptional activation 
via AGS 499 restored flow-mediated vasodilation through nitric 
oxide and ATP generation in vasculature from patients with coro-
nary artery disease, possibly due to the suppression of ROS (Beyer 
et al., 2016). Notably, the samples from patients exhibited low TERT 
protein levels yet possessed normal cardiac (mean) telomere lengths 
(Beyer et al., 2016). These findings suggest an extra-telomeric and 
possibly a telomere length-independent role of telomerase in vascu-
lar function. Together, these findings support a non-canonical role of 
TERT in the protection and function of mitochondria.

4.4  |  Gene expression regulation

TERT expression is linked to transcriptional regulation, chroma-
tin structural alterations and post-transcriptional control via small 
non-coding RNAs. Using knock-in experiments and fluorescence-
activated cell sorting, mouse hepatocytes that expressed either 
relatively low or high Tert expression and telomerase activity were 

isolated and underwent RNA sequencing (Lin et al., 2018). Notably, 
3172 genes were differentially expressed between high and low Tert 
expressing hepatocytes, with key differences in cell cycle and meta-
bolic pathways (Lin et al., 2018). For example, hepatocytes with high 
Tert expression demonstrated up-regulated gene pathways involving 
Ras protein signal transduction, MAPK pathway and mitotic spindle, 
whereas mitochondrion, electron carrier activity and glycolysis/glu-
coneogenesis signalling were downregulated relative to the low Tert 
hepatocytes (Lin et al., 2018). Similarly, acute withdrawal of TERT 
in transgenic mice caused dynamic changes in 418 and 255 down 
and up-regulated genes, respectively, in epithelial cells, especially 
in genes enriched for signal transduction, development and cell to 
cell signalling (Choi et al.,  2008). These findings are supported by 
human in vitro experiments on mammary epithelial cells, whereby 
ectopic expression of TERT also elicited genome-wide transcrip-
tional changes, which immortalised them in the absence of telomere 
dysfunction (Smith et al., 2003). Even in cells lacking telomere dys-
function, it appears that TERT modulates genome-wide transcrip-
tion in numerous tissues in genes controlling growth, development 
and metabolism.

Conversely, telomere dysfunction caused by Tert−/− or Terc−/− 
significantly deregulates transcriptional landscapes. G4 Tert−/− mice 
exhibit differentially expressed probes in hematopoietic stem cells 
(n = 280), heart (1544) and the liver (1357) compared to wild-type 
controls in genes related to oxidative phosphorylation, oxidative 
stress and gluconeogenesis (Sahin et al.,  2011); possibly a down-
stream effect of the mitochondrial compromise associated with 
dysfunction telomeres. Interestingly, most probes appeared to 
be downregulated in tissue from Tert−/− mice (Sahin et al.,  2011), 
whereas increased Tert expression is associated with predominantly 
up-regulated transcripts in mouse liver (Lin et al., 2018). Genome-
wide transcriptional changes were also observed in G2 Terc−/− mouse 
liver (n = 1832) and heart (n = 1754) (Sahin et al., 2011) with normal 
telomeres. These data indicate that the deletion of either the cat-
alytic protein or the RNA template of telomerase modulates the 
transcriptome. Similarly, modest and complete Tert deficiency dif-
ferentially regulates the expression of numerous genes involved in 
amyloid precursor proteinmetabolic processes in the brain of Tert−/− 
and Tert+/− mice, respectively (Shim et al., 2021). Moreover, neuronal 
TERT induction significantly modulates the transcriptome of human 
and mouse Alzheimer's disease neurons (Shim et al., 2021). Others, 
however, failed to find significant transcriptional changes in liver 
from G1 Tert−/− nor G1 Terc−/− mice with long telomeres compared 
to wild types (Vidal-Cardenas & Greider, 2010), indicating that gene 
expression changes may not be independent of telomere length or 
tissue-specific regulation.

Although less studied than TERT, TERC also appears to regulate 
genome-wide gene expression. Its capacity to influence gene activity 
seems to be telomere length independent, as TERT is the major rate-
limiting component of telomerase activity. TERC may act in concert 
with  transcription factors. For instance, short hairpin RNA (shRNA) 
knockdown of TERC downregulated genes involved in myelopoiesis 
(CSF2, CSF3, SPI1) in human HL60 and U937 cells (neutrophil and 
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monocyte progenitors) that relied on the recruitment of RNA poly-
merase II (García-Castillo et al., 2021). Additionally, TERC is imported 
into the mitochondria, truncated to a shorter version (TERC-53) and 
shuttled back into the cytosol where it regulates gene expression and 
cellular senescence independent of telomerase activity and telomere 
length (Zheng et al., 2019). Over expression of TERC-53 in HEK293 
cells led to 87 differentially expressed genes, including increased SIRT1 
expression, and others enriched for response to calcium ions, DNA 
replication proofreading and cell adhesion (Zheng et al., 2019). TERC 
may serve other functions, given that it is ubiquitously expressed, as 
well as the regulatory power and multiple targets of other long non-
coding RNAs. Since TERC interacts with the argonaute 2 protein and 
enhances telomerase activity (Laudadio et al., 2019), it could also in-
hibit target mRNA translation. The argonaute protein's primary re-
sponsibility is to guide small RNAs to complementary mRNA (target) 
sequences (e.g. siRNAs and microRNAs). Other regulatory functions of 
TERC have been recently discussed (Gala & Khattar, 2021).

TERT can influence protein abundance through post-transcriptional 
regulation, another mechanism controlling gene expression. It was dis-
covered that TERT interacts with RNA other than TERC (e.g. RNA com-
ponent of mitochondrial RNA processing endoribonuclease [RMRP]) 
and subsequently serves as an RNA polymerase to produce double-
stranded RNAs in cancer cell lines (HeLa, 293T and MCF7) (Maida 
et al., 2009). The double-stranded RNAs are processed by DICER1 into 
siRNAs (Maida et al., 2009) that suppress protein translation by degrad-
ing their target mRNAs in a sequence-specific manner (Hu et al., 2020; 
McManus & Sharp, 2002). As for the genome-wide gene expression 
changes in tissue with altered Tert (Lin et al., 2018; Sahin et al., 2011), 
primary and mature miRNAs are also differentially regulated by Tert 
expression (Lassmann et al.,  2015). For example, 12 miRNAs were 
downregulated after siRNA-Tert suppression in human leukemia (THP-
1) cells (Lassmann et al.,  2015). Furthermore, two different siRNAs 
targeting Tert downregulated 77 miRNAs, whereas only nine were 
up-regulated in HeLa cells (Lassmann et al., 2015). Cancers have wide-
spread transcriptional changes compared to non-transformed healthy 
tissue, yet the influence of TERT on miRNA expression is not limited to 
neoplasms. SiRNA knockdown of Tert significantly reduced the miR-
21, -29a and -208a (2.7–3.6-fold) in neonatal cardiac ventricles from 
Wistar rats (Drevytska et al., 2014). Given that mature miRNAs were 
modulated and no changes were observed in the primary miRNAs nor 
miRNA processing proteins at the mRNA level (Drevytska et al., 2014), 
Tert knockdown may regulate miRNA expression indirectly rather 
than at the transcriptional level or by influencing  miRNA matura-
tion. Despite the potential off-site effects of siRNAs (Hu et al., 2020; 
Jackson & Linsley, 2010; McManus & Sharp, 2002), the available evi-
dence suggests modulating TERT controls transcriptional reprogram-
ming and may influence mature miRNA abundance.

4.5  |  Epigenetic control

Chromatin conformational changes occur via numerous epigenetic 
modifications, such as DNA methylation and histone modifications. 

The latter appears to involve TERT, as its suppression by a shRNA in 
human fibroblasts impaired DNA damage response to ionising ra-
diation and decreased histone (H) 3 lysine (K) 9 di-methylation and 
H4K12 acetylation, and increased H3 K9 acetylation (Masutomi 
et al.,  2005). Three DNA methyltransferases are responsible for 
DNA methylation maintenance (DNMT1) and de novo modifications 
to the DNA methylome (DNMT3A/B). TERT promotes the transcrip-
tion of DNMT3B through interactions with Sp1 (Yu et al.,  2018). 
Inhibiting TERT with an siRNA decreases tumour suppressor gene 
(PTEN) promoter and genome-wide DNA methylation in hepatocel-
lular carcinoma cell lines (Yu et al., 2018). TERT also cooperates with 
the chromatin remodeller, BRG1. BRG1 is an ATP-dependent chro-
matin remodeller that utilises energy from ATP hydrolysis to modify 
histone-DNA contacts (e.g. histone deacetylase [HDAC] regula-
tion), alter chromatin confirmation and regulate gene expression (de 
la Serna et al., 2006; Trotter & Archer, 2008). TERT interacts with 
BRG1 and modulates Wnt/β-catenin signalling (Park et al.,  2009). 
Considering that β-catenin regulates Tert expression, there seems to 
be positive feedback loop between TERT and β-catenin (Hoffmeyer 
et al.,  2012). Therefore, TERT is involved in the regulation of the 
epigenome by influencing key proteins involved in histone modifica-
tions and DNA methylation changes.

5  |  E XERCISE AND TELOMER A SE IN 
HE ALTHY AGEING: KE Y POINTS AND 
OPPORTUNITIES

The extra-telomeric and canonical functions of telomerase offer 
plausible explanations on how regular exercise training promotes 
healthy biological ageing. A recent meta-analysis involving exer-
cise studies in humanleukocytes and rodent tissues indicated both 
a single bout and chronic exercise training increases TERT gene 
expression, protein content and telomerase activity (Denham & 
Sellami,  2021). Furthermore, endurance athletes exhibited higher 
TERT expression and telomerase activity (Denham & Sellami, 2021), 
which could account for reports that athletes generally possess 
longer leukocyte telomeres relative to physically inactive individu-
als (Denham et al.,  2013; Denham, O'Brien, Prestes, et al.,  2016; 
LaRocca et al., 2010; Werner et al., 2009). The meta-analytical find-
ings could account for observations from epidemiological studies 
that indicated a positive or inverted ‘U' relationship between physi-
cal activity and telomere length, mainly in leukocytes (Denham, 
O'Brien, & Charchar, 2016; Ludlow et al., 2008; Mundstock, Zatti, 
et al., 2015; Valente et al., 2021). Leukocyte telomere length is the 
most widely studied somatic cell not only due to the ease of collec-
tion, relatively painless procedure and high DNA yields, but because 
it reflects telomere length in haematopoietic stem cells and corre-
lates with other tissues (e.g. skeletal muscle, skin, leukocyte subsets 
and fat) (Daniali et al., 2013; Kimura et al., 2010).

Whilst leukocyte (whole blood, subsets or peripheral blood 
mononuclear cell [PBMCs]) TERT gene expression tends to in-
crease 1–1.5 h after a single bout of endurance exercise training in 
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humans (Chilton et al., 2014; Cluckey et al., 2017), telomerase ac-
tivity is up-regulated immediately after an exercise session (Werner 
et al.,  2019; Zietzer et al.,  2017) and remains elevated 24 h after 
(Werner et al.,  2019). However, whole blood leukocyte TERT ex-
pression was not increased 24 h after high-intensity training in 
Thoroughbred racehorses (Mandal et al., 2022), suggesting that the 
acute exercise-induced TERT expression is transient and reduces to 
basal levels within 24 h of training. The temporal exercise-induced 
changes to TERT protein after exercise are currently unknown. The 
time course of TERT/telomerase changes after endurance exercise 
are summarised in Figure 3. One could reasonably conceive that the 
increased TERT mRNA could lead to increased TERT protein in the 
hour/s after a single bout of endurance exercise, which could elicit 
extra-telomeric functions outside of its canonical role at the telo-
meres (Figure 4).

The regulating factor/s responsible for increasing telomerase 
activity immediately after training are currently poorly defined. 
Numerous transcription factors are predicted to target the TERT 
gene and may underpin the exercise-induced TERT expression 
after exercise (e.g. those involved in AMPK/PGC1α/MAPK path-
ways (Xiong et al.,  2015)). AMPK is rapidly up-regulated imme-
diately after exercise in human skeletal muscle, which precedes 
the delayed increase in PGC1α expression (1–2.5 h after exercise 
cessation) (Diman et al., 2016; Hawley et al., 2014). Acute exercise 
controls mitogen-activated protein kinase (MAPK) signalling, as it 
modulates MAPK p38 and subsequently activates PGC1α (Kramer 
& Goodyear, 2007). Skeletal muscle PGC1α gene expression is up-
regulated in the hours following (1–4 h) a single bout of endurance 
and high-intensity interval training, while PGC1α protein content 
is increased with long-term training (Hawley et al., 2014). Notably, 
up-regulated MAPK p38 phosphorylation was observed in plan-
taris and cardiac muscle of mice following a single bout of treadmill 
running (Ludlow et al., 2012, 2017), with concurrent changes in key 
shelterin genes (Trf1/2 and Pot1) that regulate telomerase (Ludlow 
et al., 2017). Although human endurance athletes lacked detectable 

levels of telomerase activity and TERT mRNA expression in skeletal 
muscle (Laye et al., 2012), others have demonstrated telomerase 
activity and TERT protein levels are present, albeit at low levels, 
in healthy individuals and patients with inflammatory myopathies 
(Ponsot et al., 2012). Interestingly, patients with the shortest telo-
meres with inflammatory myopathies tended to have the highest 
telomerase activity and TERT expression indicating a link with 
inflammation (Ponsot et al.,  2012). In human PBMCs, inflamma-
tion provokes TERT expression and telomerase activity, such that 
TNFα, increases the translocation of TERT protein from the cyto-
sol into the nucleus and increases telomerase activity over 1–6 h 
via PI3K/Akt/NF-κB signalling (Akiyama et al., 2004). Additionally, 
heat shock proteins (HSP) are controlled by exercise training 
(Henstridge et al.,  2016) and physically interact with TERT (e.g. 
HSP70 and HSP90) (Haendeler, Hoffmann, Rahman, et al., 2003; 
Perera et al.,  2019). Furthermore, a unique TERT/Apollo/HSP70 
complex appears to  protect the telomeres in neoplasms (Perera 
et al., 2019), which should be investigated in healthy tissues.

In spite of absent or low levels of telomerase, contractile tis-
sue may control TERT and telomerase activity in other tissues via 
circulating factors (e.g. myokines or extracellular vesicle/exosome-
mediated paracrine signalling). For example, a single bout of cycling 
at 50% or 75% of VO2peak increased acetylene co-enzyme A carboxy-
lase—a maker of AMPK activity—along with PGC1α and TERRA tran-
scripts, which controls telomerase activity (Diman et al., 2016). The 
exercise-induced TERRA expression facilitated by NRF1/AMPK/
PGC1α signalling was speculated to regulate telomerase activity 
perhaps in other tissues expressing higher levels of TERT (Diman 
et al., 2016). This could be achieved through intercellular signalling 
via extracellular micro-vesicle-mediated transport of transcription 
factors, TERRA or TERT, given the exercise-induced release of extra-
cellular micro-vesicles and myokines previously described (Denham 
& Spencer, 2020; Murphy et al., 2020). Considering exercise mod-
ulates these proteins and transcription factors, and that most are 
already linked to TERT in other models, future work is encouraged 

F I G U R E  3 Time course of endurance exercise-induced changes in TERT expression and telomerase activity. A single bout of endurance 
exercise increases TERT gene expression 60–90 min after the cessation of the exercise session. Telomerase activity is, however, up-regulated 
immediately after training and remains elevated—slightly higher than post-session values—24 h after.
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10 of 18  |     DENHAM

to examine them in context with exercise, telomere dynamics and 
telomerase.

Whereas a single bout of exercise causes considerable phys-
iological challenges to meet energy and oxygen demands crucial 
to adaptive responses, chronic training confers systemic health 
and fitness benefits. Chronic exercise training increases resting 
levels of telomerase activity in human PBMCs and rodent tissues 
(Denham & Sellami, 2021) indicating a physiological adaptation to 
training. These findings are supported by cross-sectional findings in 
young and middle-aged endurance athletes, such that they exhibit 
1.8–4.2-fold higher leukocyte TERT expression (Werner et al., 2009) 
and PBMC telomerase activity (Hagman et al.,  2020; Werner 
et al., 2009) compared to their inactive peers. Considering exercise 
training significantly preserves physical function and extends health 
span during chronological ageing, it is reasonable to suspect both 
canonical and extra-telomeric functions of TERT may be part of the 
molecular mechanisms.

TERT may serve essential extra-telomeric functions that under-
pin some the physiological responses to exercise training. Twenty-
one days of voluntary wheel running increased cardiac, aorta and 
mononuclear cell telomerase activity and reduced cell cycle and 

survival proteins (Chk2, p16 and p53), which were absent in second 
generation (G2) Tert−/− mice (Werner et al., 2008, 2009)—mice with 
intact telomeres. Endurance—running—capacity is also impaired in 
G4 Tert−/− mice who have considerably short and dysfunctional telo-
meres (Sahin et al., 2011) and physical activity abruptly decreased 
in 6–8 month old G5 Terc−/− mice within 12 h of their death (Leri 
et al., 2003). Both G1 and G4 Tert−/− mice exhibited reduced mito-
chondrial density in the heart and liver, yet mitochondria function—
expression of oxidative phosphorylation genes and respiratory chain 
complex I/IV activity—was only impaired in G4 Tert−/− mice (Sahin 
et al., 2011). That mitochondrial function is only impaired in G4 com-
pared to G1 Tert−/− mice could account for their poor running perfor-
mance and inactivity (Sahin et al., 2011). Regular exercise training 
improves maximal oxygen uptake and endurance performance by 
eliciting cardiac adaptations (Ellison et al., 2012; Gielen et al., 2010), 
increasing mitochondrial content and function (Granata et al., 2018; 
Memme et al., 2021) and promoting skeletal muscle capillarisation 
(angiogenesis) (Cocks et al., 2013; Hendrickse et al., 2021; Wariyar 
et al., 2022). Thus, the clear telomere-TERT-mitochondria axis is ex-
citing, as endurance exercise is the dominant therapy for improving 
mitochondrial biogenesis, structure and respiration (Gioscia-Ryan 

F I G U R E  4 Canonical and extra-telomeric functions of telomerase and the exercise-mediated regulation in healthy ageing. A single bout 
and long-term exercise training increases the expression of TERT and telomerase activity presumably to attenuate telomere attrition through 
its canonical function. Although long-term resistance training appears to increase TERT expression in leukocytes, neither a single bout 
nor long-term training modulates telomerase activity in human PBMCs. As part of its extra-telomeric functions, TERT acts as a chromatin 
remodeller (through interactions with BRG1, as well as increasing DNMT3B expression) and influences transcriptional profiles. TERT protects 
against DNA damage, cell death, and safeguards the telomeres through the formation of a complex comprised of heat shock protein 70 and 
Apollo (Perera et al., 2019). In the presence of high reactive oxygen species (ROS), TERT is shuttled from the nucleus into the mitochondria 
where it prevents oxidative stress and mitochondrial DNA damage (mtDNA), enhances oxidative function, membrane potential, and 
transcribes RNA from the mitochondrial genome, suggesting it may promote mitochondrial biogenesis. Positive feedback loops exist 
between TERT and PGC1α, as well as TERT and β-catenin/Wnt signalling. The former links TERT to metabolism and mitochondrial function, 
whereas the latter suggests involvement in stem cell homeostasis. Supported by Servier Medical Art. Solid lines = evidence for exercise 
regulation; dotted lines = evidence indicating a positive effect of TERT in other models; ? = denotes a potential role in the healthy biological 
ageing conferred by exercise training; red line = acute exercise effect; blue line = chronic exercise effect.
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et al.,  2016; Granata et al.,  2018; Memme et al.,  2021). This is 
achieved, in part, by modulation of the dynamic regulation of the 
master regulator of mitochondrial biogenesis and function, PGC1α 
(Hawley et al.,  2018; Perry & Hawley,  2018). Given the positive 
feedback loop between TERT and PGC1α and the essential role of 
PGC1α as the master regulator of metabolism, these proteins should 
be analysed in context with endurance training. Moreover, a single 
bout of endurance exercise up-regulates skeletal muscle ERK1/2 
phosphorylation in an intensity-dependent manner via MAPK sig-
nalling (Kramer & Goodyear,  2007; Widegren et al.,  1998, 2000). 
Exercise training also increases VEGF expression and angiogenesis 
in numerous tissues (Hoier & Hellsten,  2014; Leung et al.,  2008; 
Morland et al.,  2017). Examining TERT in context with exercise-
induced angiogenesis via eNOS/VEGF/ERK1/2 signalling pathways 
is also encouraged.

Although endurance training enhances skeletal muscle oxidative 
capacity and improves cardiorespiratory fitness, resistance train-
ing invokes conflicting signalling cascades through mTOR (Coffey 
& Hawley,  2017; Hawley et al.,  2014; Ogasawara et al.,  2019). It 
appears mTOR signalling directly inhibits TERT shuttling into the 
mitochondria reducing protection against ROS (Miwa et al., 2016), 
which could account for the link with telomere maintenance and 
improved health span after endurance exercise, rather than re-
sistance training (Denham, O'Brien, & Charchar,  2016). However, 
other evidence indicates mTOR signalling can up-regulate telomer-
ase activity (Sundin & Hentosh, 2012), which underscores the need 
for future work to examine the influence of resistance training on 
TERT and telomerase. Currently, data on the influence of acute and 
long-term resistance training on TERT/telomerase and telomere dy-
namics are scarce. Leukocyte TERT expression was increased after 
12 weeks of resistance training with an emphasis on high repeti-
tions and low load performed twice a week (Nickels et al., 2020). 
Conversely, telomerase activity was unaltered immediately after a 
bout of resistance—circuit—training and long-term resistance train-
ing, unlike the responses observed after endurance or high-intensity 
interval training (Werner et al., 2019) (Figure 3). Studying telomerase 
in context with resistance training regimes not placing large demand 
on the aerobic energy system (i.e. strength or hypertrophy) as well 
as concurrent training (aerobic plus resistance exercise) should be 
examined.

6  |  CONCLUSION

Regular exercise training is the only lifestyle factor that extends 
health span and preserves physical performance during ageing. 
Endurance training appears to attenuate telomere attrition most 
likely by up-regulating TERT and telomerase activity. This, however, 
remains to be demonstrated in humans and will require large longitu-
dinal studies over an extended timeframe (e.g. several years). Since 
its discovery in 1985, several extra-telomeric functions of TERT 
have been uncovered outside its canonical role of protecting and 
maintaining the telomeres. These include metabolism, angiogenesis 

and cell survival (DNA integrity, mitochondrial function and protec-
tion from ROS). Based on the overlapping signalling pathways regu-
lated by exercise and TERT, it is possible that the healthy biological 
ageing elicited by regular—lifelong—exercise may not be limited to 
the canonical roles of TERT at the telomeres. On the contrary, nu-
merous extra-telomeric functions are likely responsible and link tel-
omere biology to other hallmarks of ageing (Lopez-Otin et al., 2013).

Therefore, future work should seek to elucidate whether the 
extra-telomeric functions presented in this review are involved 
in physiological adaptations to endurance training. The signalling 
molecules controlling TERT transcription and up-regulating telo-
merase activity after a single bout of endurance training, as well as 
the time-course of exercise-induced changes should be confirmed. 
Considering the recent discovery that exercise may control alter-
native splicing in transgenic mice (Slusher et al., 2022), the role of 
Tert splice variants should be verified. These findings may ultimately 
lead to the development of novel therapeutic strategies to promote 
healthy biological ageing, particularly for those individuals unable to 
engage in or who are averse to endurance exercise. Telomere based 
therapies (e.g. TERT gene therapy) could be crucial to prolonging 
human health span (and lifespan) and may help address the seamless 
progressive burden of chronic disease and our ageing population. 
Given that such therapies are currently not on the horizon and are 
possibly decades from forming standard clinical practice, one should 
be encouraged to regularly engage in endurance exercise training to 
promote healthy biological ageing.
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