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(is article considers how to allocate additional physical resources within airport terminals. An optimization model was de-
veloped to determine where additional resources should be placed to minimise passenger waiting times. (e objective function is
stochastic and can only be evaluated using discrete event simulation. As this model is stochastic and nonlinear, a Simulated
Annealing (SA) metaheuristic was implemented and tested. (e SA algorithm repeatedly perturbs a resource allocation solution
using one of two methods. (e first method is creating new solution randomly in each iteration, and the second method is local
search that is mimicked by anymove of the current solution of x solution chosen randomly in its neighborhood. Numerical testing
shows that the random approach is best, and solutions that are 12.11% better can be obtained.

1. Introduction

(e high growth in passenger numbers in recent years has
created considerable strains on airports. Airport terminals
are expected to process the increasing passenger numbers
efficiently and with minimum delay. At the same time, the
required expansion of the airport capacity might be limited
by the available resources (e.g., limited available land),
environmental impacts, and lengthy approval processes [1].
In addition, extension of the major airport infrastructure is
typically time-consuming and costly, which raises the need
for the development of smart systems and methods to
improve airport performance within the available
infrastructure.

Airport terminals are complex systems and are inher-
ently stochastic in nature. Passenger numbers continually
change throughout the day, depending on the status of
incoming or outgoing flights. It is an integrated system, and
operational problems within any of its internal processes can

jeopardise the performance of other elements, creating
significant bottlenecks, long passenger queues, congestion,
and overall delays [2–4]. For example, disruption, conges-
tion, and uneven passenger inflow into the terminal pro-
cessing points, caused by the operation of the landside
element (including the infrastructure and facilities associ-
ated with the arrival of passengers to the airport), could have
a significant impact on the performance of the terminal
(such as passenger boarding and take-off procedures). It
involves multiple stakeholders, and each is responsible for
performing particular terminal process such as check-in,
security, and immigration [5].

It is conventional to subdivide airport operations into
those relevant to the arrival procedures of incoming pas-
sengers and departure procedures for outgoing passengers.
(e arrival processes and facilities include disembarking,
immigration, baggage claim, and quarantine procedures [6].
(e departure processes and facilities include check-in,
security screening, immigration and customs, boarding, and
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take-off procedures. It is these departure flow processes that
have the greatest impact on the entire operation of passenger
terminals and other elements of the airport. According to
Neufville and Odoni [7], the departure process requires
significantly more time than the arrival process because it
sometimes involves services provided to transit passengers.
Due to the complex structure of airport terminals, the de-
velopment of an analytical optimization framework for
studying passengers flow in airports under uncertainty of
future demand is a difficult task. (ese difficulties and
challenges have led to studies of overall terminal capacity
planning problems. Previous studies have generally focused
on one element of the terminal or have not accounted for
expandability [8]. (e general aim of this paper is to propose
a mathematical approach for capacity expansion planning.
(is model will determine where additional resources
should be placed within airport terminal processes. Hence,
the objective function of the proposed model is to minimise
the cost of used resources and the total waiting time. A
number of technical constraints exist.

(e main contribution of this work is to provide a
Capacity Expansion Planning Model (CEPM) for airports.
(erefore, this paper has contributed to the body of
knowledge by enabling two levels of planning, operational
and strategic. In comparison with existing approaches, the
new approach is more accurate because real waiting time can
be identified and effects of uncertainty can be included. For
example, Sun and Schonfeld [9] used mathematical func-
tions, which are more approximate.

2. Related Work

(is section analyses existing research conducted to address
the issues of passenger flows within airports. (e irregular
flows occurring in airport terminal areas represent a sig-
nificant management challenge, for instance, determining
the number of service counters to open, and personnel al-
location and reallocation issues [5–8, 10, 11]. A significant
problem when studying passenger flow is capturing sto-
chastic elements. (is is because, as Guizzi et al. [12] argued,
passengers behave differently inside airports according to
their previous experiences. (us, in order to assist decision-
makers at the airport terminal to address sudden and un-
foreseen congestion conditions, extensive research has been
conducted on uncertainty. Yamada et al. [13] examined links
between passenger behavior and facilities and identified
several sources of congestion.

Additionally, Alodhaibi et al. [14] conducted their re-
search using a simulation framework developed in [15] to
investigate how the arrival pattern of passengers affects
international terminal operations. (e simulation outcomes
provided a better understanding of the behavior of passenger
airport access, which could lead to reduced waiting time and
possible congestion by increasing the number of working
stations (i.e., number of check-in counters) at peak times.

Safety concerns in recent times have caused many
changes to security screening procedures and this impacts
passenger throughput times. Previous research can be cat-
egorized according to related topic areas, including the

significance of the security screening system in airport
operations, the capacity of security screening areas, and
dynamic system management [16–21]. For instance, Dorton
and Liu [21] proposed the application of a DES for the
security screening system coupled with a queuing.(e aim is
to analyze external factors influencing security screening
operation efficiency and to identify the effect on throughput
and cycle time.

In airport apron areas, a common optimization problem
is gate assignment, which considers the minimization of
passenger walking distance, from check-in to baggage claim
area. Genç et al. [22] applied a heuristic to solve stochastic
approaches to minimise the total duration of ungated flight.
Similarly, Ding et al. [23] applied a Tabu Search meta-
heuristic to identify the problem when the number of air-
craft exceeds the number of available gates. (e two
objective functions optimized were number of ungated
aircraft and total walking distance. Finally, the research by
Mota [24] is noteworthy as a mix of two models was applied
to satisfy the different mandatory restricted policies related
to airport terminal processing units, such as opening or
closing check-in counters for each flight, check-in starting
time, and load balance.

Capacity planning problems feature prominently in
airport terminal research. For instance, Solak et al. [8]
considered terminal operations to be a network system and
used a multistage stochastic-integer linear programing
model to determine the optimal capacity, taking into ac-
count optimal future expansion and desired LOS. (e main
objective was to minimise the maximum delay of each
passageway and processing station by considering the var-
iation in demand as a significant constraint. Also, Sun and
Schonfeld [9] investigated uncertainties within the terminal.
(ey found that facility performances are nonlinear func-
tions. (ese functions are represented by delay level as a
function of utilisation rates of capacity and demand fluc-
tuations as indicated by uncertainties in traffic predictions. It
is known that passenger departure flow is an important
process for any airport facility because of the fixed departure
time of flights. (e same researchers [25, 26] go further by
considering strategic airport facility planning under demand
uncertainty and proposed a mixed-integer nonlinear pro-
gram to determine when and where to adjust process ca-
pacity over a number of planning periods. Airport
congestion and delay cost are approximated using some
appropriate mathematical functions.

(e novelty of our work lies in integrating a discrete
event simulation to an optimization model for airport
terminal capacity planning. Hence, undertaking such re-
search is significant to identify a real waiting time and to
know the effect of decision. Other models like Sun and
Schonfeld’s [9, 27], for instance, use mathematical func-
tions, which are exact. Furthermore, in [26], the same
authors used a discrete approximation technique when the
model is solved where the mathematical relations in the
formulation are accurate. Hence, a simulated annealing
metaheuristic was applied to perform airport terminal
capacity expansion and this may be the first application of
such an approach to this domain.
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3. Problem Description and Formulation

(is section defines the variables and parameters used in our
capacity expansion model. (e purpose of the model is to
determine where additional resources should be placed in order
to reduce the waiting costs. Each resource type has different
costs, and a budget for total spending has been provided.

3.1. Model Notation

(i) Indices

p, r, k, t, f: process, resource, passenger types,
period, and shift.

(ii) Sets

P, R, K, T, F: processes, resources, passenger types,
periods, and shifts.

(iii) Parameters

Nr,p, Nr: maximum number of resources of type r

in process p and across all processes
Cr,p: cost of providing a resource of type r in
process p

Vk,p: cost incurred per unit of waiting time for
passengers of type k in process p

B: total budget available for capacity expansion
nr,p: current number of resources of type r in
process p
τk,p: expected time taken to serve passenger k in
process p.

(iv) Decision variables

Nr,p: number of resources to open of type r in
process p

Wk,p: total waiting time incurred in process p for
passengers of type k.

(e model is as follows:

minimize 􏽘
p

􏽘
r

Cr,pNr,p + 􏽘
k

􏽘
p

Vk,p Wk,p

[resource cost + cost of waiting],

(1)

subject to
Nr,p ≤ Nr,p, ∀p ∈ P;∀r ∈ R [upperbound],

(2)

􏽘
p

Nr,p ≤ Nr, ∀r ∈ R [upperbound], (3)

􏽘
r

Cr,pNr,p ≤ B, ∀p ∈ P [budget constraints], (4)

fr,p ≤ Fr,p, ∀p ∈ P;∀r ∈ R [shift constraints], (5)

Nr,p ≥ 0, ∀p ∈ P; ∀r ∈ R [positivity], (6)

Wk,p � SIMULATE Nr,p,τk,p􏼐 􏼑

[calculationof waiting timevia simulation].
(7)

(e objective function (1) has two components: (i) the
cost of purchasing/acquiring additional resources of type r in
process p and (ii) the total passenger waiting time converted
to a dollar value. Constraints (2) and (3) ensure that the
additional resources of type r do not exceed the maximum
number of resources. Constraint (4) restricts spending to a
particular budget. Constraint (5) restricts the decision
variable Nr,p to be positive.(e waiting time of passengers at
different processes is a stochastic auxiliary variable and
depends on the number of resources assigned and the
processing time, which is a random variable. It is computed
using simulation in equation (7) using the simulation model
from [11, 15].

3.2. Simulated Annealing. To solve the proposed model, a
metaheuristic approach is advocated as constraint (7) cannot
be handled using mixed-integer programing, without the
application of a simulation model. Of the different meta-
heuristics, simulated annealing was chosen. It is an effective
and computationally fast search algorithm for solving hard
optimization problems by Burdett and Kozan [27–29] and is
well suited to probabilistic and nonlinear optimization
problems. (e algorithm is iterative and comprises two
nested “for” loops. (e outer loop controls and alters the
“temperature” parameter T. In the inner loop, a specified
number of solution refinements (a.k.a. perturbations) are
entertained and evaluated. Refinements are accepted when
they are explicitly better; otherwise, they are accepted/
rejected probabilistically according to the following
function:

P(Δf) � e
− 1∗(Δf/T)

, (8)

where Δf � f′ − f is the difference between the new so-
lution f′ and the current solution f. At every temperature, a
selected number of perturbations are evaluated. SA requires
several parameters (i.e., primary temperature, the cooling
rate, the number of function evaluations at every temper-
ature, and the final temperature). At early stages of the
search, the temperature is high and many nonimproving
moves are accepted. As the search progresses, the temper-
ature is reduced and solutions are only accepted if a strict
improvement occurs. With the slow reduction in temper-
ature, worse solutions are accepted with less probability. (e
SA metaheuristic was implemented in C++ and the simu-
lation model was integrated to evaluate the waiting times.
Preliminary numerical testing was performed to identify an
appropriate starting temperature (see Figure 1). It is evident
from the graph below that the best parameter values of this
problem are as follows: temperature (T)� 15000, cooling
rate (α)� 0.015, and total number of iterations� 600.

3.2.1. Simulated Annealing Algorithm Description

(1) Phase 1: Create Initial Solution. SAmay be initialized with
a randomly created solution or via some heuristic/con-
structive algorithm. However, because of the resource
limitation constraints, some of the generated solutions will
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not be feasible. (e solution chromosome should simulta-
neously reflect two main characteristics:

(i) Number of resources for each process, such as check-
in resources (i.e., economy and business counters),
security screening resources, and immigration re-
sources (i.e., common counters and SmartGates).

(ii) (e number of assignment resources for each shift.

(ese solutions should be corrected via a corrective
algorithm. Algorithm 1 is used to initialize a set of solutions.

(2) Phase 2: Perturbing a Solution. To create a new solution, it
is necessary to perturb the current solution. (ere are many
perturbation techniques that can be applied. In this article, a
new solution is created by randomly changing the number of
resources assigned to a randomly selected airport process.
(e creation of a new solution is performed by Algorithm 2.

(3) Phase 3: Assess New Solution. In this step, the goodness of
the new solution is evaluated. Algorithm 3 demonstrates the
assessment procedures. (e generated solution will be
simulated to measure a performance matrix, such as the
average waiting time at each processing point. Also, the best
cost will be selected by comparing it with the current cost.

(4) Phase 4: Stop Criteria. Finally, the condition of stopping
the SA algorithm is based on the given maximum number of
iterations. Algorithm 4 is an illustration of the main loop of
the stopping criteria algorithm.

4. Numerical Testing and Analysis

In this section, the SA metaheuristic approach coupled with
discrete event simulation is analyzed. In this numerical
investigation, there are three types of process and five types
of resources that were considered. Process type 1, the check-
in process, has five separate lines, each with eight counters,
two for business and six for economy. Process type 2 is
security screening with five lanes. Process type 3 is immi-
gration, which has eight common counters and 10 Smart-
Gates. It is assumed that there are three periods during the
day to which these processes are assigned to be operated.
Figure 2 is a snapshot of the simulation outputs, for instance,
the appropriate number of resources that need to be opened,
the average waiting time that passengers spent at each
process, and the cost of resources ending with the total cost.

(e cost of waiting time is considered based on the given
policy of acceptable queue time in a particular process. (is
is named the cost of inconvenience, as it exceeds given
acceptable average waiting time. For example, passengers at
the check-in process can be classified as business and
economy, each with different queue time limits. Kazda and
Caves [30] argued that the average waiting time should not
be higher than 12 minutes for economy class and 3 minutes
for business. (e summary of input data used in this study is
listed in Table 1.

Two different methods of creating new solutions were
used to generate a starting solution. (e first is creating a
new solution randomly and the second is local search. (e
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Figure 1: Selecting the best initial parameters.
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random search method initializes SA with a randomly
created solution, while the local search initializes SA via
constructive algorithm by changing one solution chromo-
some and then refinement by SA. For each method, 10 runs
were repeated with the same parameters. (e results of the
runs are presented in Tables 2 and 3. (e general parameters
used for both methods are as follows: temperature (T)�

15000, cooling rate (α)� 0.015, and the maximum number of
runs � 1500.

(e first column refers to the number of better solutions,
where the average number of better solutions obtained by
random search approach is 7.9 and the local search approach

is able to find 7.8 better solutions on average. (e second
column presents the total average waiting time spent in the
airport terminal process. It is evident that local search
provides lower waiting times compared with the random
approach. It also has shorter run-time, with an average of
15.27 minutes compared to 21.05 minutes for the random
approach. However, from the results presented in both ta-
bles, it can be clearly seen that the random search method
reduces the objective function value by 12.11%. (e mean μ
value of the objective function obtained from the random
approach is $1998.3, whereas μ of objective function value of
the local search is $2256.

From the 10 replications of both random search and
local search, solution numbers 4 and 6 from the random
search and local search were selected as the best solutions for
two reasons. (e first reason is that the value of the objective
function is closer to the mean value of all the objective
values. (e second reason is that the chosen simulation runs

(a) For (each Shift);
(2) For (each process p1);
(3) do
(4) Nr1,1 , p1

←U(1, r1,1); //Select resources of type 1 in process p1
(5) Nr1,2 , p1

←U(1, r1,2); //Select resources of type 2 in process p1
(6) X←Nr1,1 , p1

+ Nr1,2 , p1
; economy and business counters;

} while x≤ r1,1 + r1,2 ;

(7) End
(8) Nr2,p2←Uniform (1, ·Nr2 , p2

);

(9) Nrn,pn←Uniform (1, Nrn, pn
);

(10) End

ALGORITHM 1: CreateSolution.

(1) If (change in process p1);
(3) while x≤ number of available r1,1 and r1,2 do
(4) Nr1,1 , p1

←U(1, r1,1); //Select resources of type 1 in process p1
(5) Nr1,2 , p1

←U(1, r1,2); //Select resources of type 2 in process p1
(6) X←Nr1,1 , p1

+ Nr1,2 , p1
;

(7) Else If (change in p2)
(8) Nr2,p2←U(1, Nr2 , p2

);

(9) Else
(10) Nrn,pn←U (1, Nrn, pn

);

ALGORITHM 2: PerturbSolution.

(1) Function Local Search();
(2) cost←Simulate();
(3) If (cost < best);
(4) Update Best solution;
(5) best← cost;
(6) Else
(7) If (cost < current);
(8) Update Current solution;
(9) current← cost;
(10) Else
(12) prob � e− 1∗((cost− current)/T)

(13) If (U(0, 1)> prob)
(14) Reject the new solution;
(15) Else
(16) Accept the new solution

ALGORITHM 3: EvaluateSolution.

(1) Parameter initialisation
(2) CreateSolution();
(3) Simulate();
(4) do
(5) PerturbSolution();
(6) EvaluateSolution();
(7) x←x + 1;

(8) } while (x<max_iter)

ALGORITHM 4: Main loop.
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provide the minimum total average waiting time in the
airport.

Figure 3 demonstrates the best solution given by the
random search for the solution run number 4. (e optimal

solution for this simulation run with regard to opening
additional resources for check-in is summarized in Table 4.
(e average waiting time is 1.91 minutes for business-class
passengers and 34.5 minutes for economy-class passengers.

Figure 2: Snapshot of simulated annealing results.

Table 1: Summary of the input data.

Domain of the airport Values
Check-in
(i) Cost for opening new check-in counter 20$
(ii) (e acceptable average waiting time for economy passengers 12 minutes
(iii) Cost for inconvenience at check-in for economy 15$
(iv) (e acceptable average waiting time for business passengers 3 minutes
(v) Cost for inconvenience at check-in for business 25$
Security screening
(i) Cost for opening new security screening desk 15$
(ii) (e acceptable average time that normal passengers should wait 5 minutes
(iii) Cost for inconvenience at security screening for normal passengers 15$
(iv) (e acceptable average time that diplomatic passengers should wait 2 minutes
(v) Cost for inconvenience at security screening for diplomatic passengers 20$
Immigration
(i) Cost for opening new immigration desk 15$
(ii) Cost for opening new SmartGate 10$
(iii) (e acceptable average waiting time at common counter 7 minutes
(iv) Cost for inconvenience at common counters 20 $
(v) (e acceptable average waiting time at SmartGate 0.5 minute
(vi) Cost for inconvenience at SmartGate 10$

Table 2: Summary of simulated annealing results using random search technique.

Random search
Run # # of better solutions Total average waiting time Objective function value Run-time (min)
Run 1 6 118.73 2031 21.05
Run 2 5 58.44 2001 21.16
Run 3 10 126.39 2060 23.48
Run 4 9 39.57 2038 23.43
Run 5 6 64.74 1973 20.24
Run 6 9 148.18 1874 20.55
Run 7 8 112.714 1913 17.36
Run 8 10 86.67 1997 21.55
Run 9 7 127.8 2052 17.36
Run 10 9 131.25 2044 24.36
μ 7.9 101.4484 1998.3 21.054
σ 1.7 34.725498 58.99160957 2.256671
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Table 3: Summary of simulated annealing results using local search technique.

Local search
Run # # of better solutions Total average waiting time Objective function value Run-time (min)
Run 1 7 38.88 2336 13.7
Run 2 10 92.31 2195 14.02
Run 3 9 80.49 2182 15.4
Run 4 10 94.97 2042 15.48
Run 5 8 22.25 2180 17.22
Run 6 8 28.89 2250 22.22
Run 7 8 72.6 1994 12.53
Run 8 8 85.47 2531 17.27
Run 9 4 86.45 2638 12.21
Run 10 6 45.6 2215 13.27
μ 7.8 64.82 2256.3 15.27
σ 1.72 26.45 186.49 2.88
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Figure 3: SA optimisation results using the random method of creating new solutions.

Complexity 7



For the security screening checkpoints, the opening
resources are 5, 2, and 3 control checkpoints for shift 1, shift
2, and shift 3, respectively, having an average waiting time of
3.04 minutes. (e opening common immigration process is
4, 3, and 5 counters, while for SmartGates there are 8, 9, and
7 kiosks for the three shifts, having average waiting times of
0.11 and 0.02 minutes for the common immigration desks

and SmartGate kiosk, respectively. (e total cost of opening
all resources is $2038 given that the total average time spent
in the queues is 39.57 minutes.

Figure 4 illustrates the optimal solution provided by the
SA algorithm using local search for creating a new solution.
In this simulation run, the solution is characterised from the
total cost of $2250 given that the total average waiting time

Table 4: Check-in additional resource results using the random technique.

Line 1 Line 2 Line 3 Line 4 Line 5
Business Economy Business Economy Business Economy Business Economy Business Economy

Shift 1 1 4 2 3 2 4 1 4 1 4
Shift 2 2 2 1 1 1 1 1 2 2 4
Shift 3 2 4 1 6 1 6 1 2 2 4

Result of simulation run 6 of local search approach

Result of simulation run 6 of local search approach
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Figure 4: Optimisation results using the method of creating new solution using local technique.
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spent in the system is 28.89 minutes. (e optimal solution
for this simulation run is opening a check-in resource based
on the detailed information listed in Table 5. By adding this
resource, the average waiting time at the check-in process
will be 1.56 minutes for business-class passengers and 7.03
minutes for economy-class passengers, reductions of 20.17%
for business-class passengers and 132.29% for economy-
class passengers compared with the random search method.

For the process of security screening checkpoints, the
best solution can be found when opening 4, 4, and 5 security
control checkpoints for shift 1, shift 2, and shift 3, respec-
tively. By opening these numbers of resources at the security
screening process, the average waiting time is 7.92 minutes.
Finally, the immigration process should open 5, 4, and 3
common immigration counters and 10, 10, and 9 Smart-
Gates for the three shifts, in order to get the optimal solution,
having the average waiting of 0.10 minutes and 0.012
minutes for the common counters and SmartGates,
respectively.

5. Conclusion

(is paper has discussed the development of a mathematical
approach to perform capacity planning in airport terminals.
(e objective of the model is determining where additional
resources should be opened to decrease the cost of time
spent in the queues of the airport terminal. Since the pro-
posed problem is probabilistic and nonlinear, a meta-
heuristic approach is advocated. (e waiting times are
computed using discrete event simulation and those times
are used in the objective function. Two different approaches
for creating new solutions were used in this study. (e first
one is creating a new solution using the random technique
and the other is creating a new solution by using the local
search technique. (e random technique decreased the
objective function value by 12.11%. It also has shorter run-
times, with average of 15.27 minutes compared to 21.05
minutes for the random approach.

(e developed model can be more accurate because the
effect of decision can be known and real time can be
identified. It also can provide strategic planning, while the
proposed simulation model can be used for the operational
planning level. (is work has contributed to the body of
knowledge by enabling two levels of planning, operational
and strategic.

On the other hand, the lack of access to the detailed data
related to operational facilities due to the recent strict
regulations with respect to security issues resulted in some
difficulties in developing the modelled passengers’ flows
within international terminal. Because of these difficulties,
this model has been simplified by, firstly, utilizing available

data collected by previous research, and, secondly, making
an assumption where needed.
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