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H I G H L I G H T S  

• Proposes deep learning CLSTM-BiGRU hybrid model to predict significant wave heights. 
• CLSTM-BiGRU model tested at multiple forecast (30 min, 2 h, 3 h and 6 h) horizons. 
• CLSTM-BiGRU analyses wave energy sites in Queensland to show model’s overall efficacy. 
• CLSTM-BiGRU has positive implications in wave and ocean energy generation. 
• CLSTM-BiGRU is useful for ocean monitoring/wave energy resource evaluations.  
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A B S T R A C T   

Waves are emerging as a renewable energy resource, but the harnessing of such energy remains among the least 
developed in terms of renewable energy technologies on a regional or a global basis. To generate usable energy, 
wave heights must be predicted in near-real-time, which is the driving force for wave energy converters. This 
study develops a hybrid Convolutional Neural Network-Long Short-Term Memory-Bidirectional Gated Recurrent 
Unit forecast system (CLSTM-BiGRU) trained to accurately predict significant wave height (Hsig) at multiple 
forecasting horizons (30 min, 0.5H; 2 h, 02H; 3 h, 03H and 6 h, 06H. In this model, convolutional neural net-
works (CNNs), long-short-term memories (LSTMs), and bidirectional gated recurrent units (BiGRUs) are 
employed to predict Hsig. To construct the proposed CLSTM-BiGRU model, historical wave properties, including 
maximum wave height, zero-up crossing wave period, peak energy wave period, sea surface temperature, and 
significant wave heights are analysed. Several wave energy generation sites in Queensland, Australia were tested 
using the hybrid deep learning CLSTM-BiGRU model. Based on statistical score metrics, scatterplots, and error 
evaluations, the hybrid CLSTM-BiGRU model generates more accurate forecasts than the benchmark models. This 
study established the practical utility of the hybrid CLSTM-BiGRU model for modelling Hsig and therefore shows 
the model could have significant implications for wave and ocean energy generation systems, tidal or wave 
height monitoring as well as sustainable wave energy resource evaluation where a prediction of wave heights is 
required.   

1. Introduction 

Global warming has become one of the world’s most critical issues 
today. In the last decade, the global mean surface temperature (GMST) 

was over 1.2 ◦C higher than the pre-industrial baseline [1]. Increasing 
temperatures worldwide have been linked to climate change, and severe 
and frequent extreme weather events, such as droughts and bushfires 
[1–5]. In Australia, the catastrophic wild bushfire in 2019–20 caused 
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due to climate change wiped away 17 million hectares of land, 3000 
houses, 33 people, and over a billion wild animals across New South 
Wales (NSW), Victoria, ACT, Western Australia, and South Australia [6, 
7]. The use of fossil fuels to produce energy contributes to the increase in 
significant gases (GHG) [5,8]. This affects not only available fossil fuel 
resources and the increase in global temperature but also the pop-
ulation’s health due to breathing in poor-quality air [9,10]. Isphording 
and Pestel [11] have also explored the short-term exposure to ambient 
air pollutants on the spread of Covid-19 and discovered a positive effect 
on death numbers. With the increase in urbanization, 40% of the total 
world’s energy consumption is for lighting, cooling, and heating [5]. 
Energy consumption is expected to increase over time, as will the risk of 
extreme weather events. To mitigate this problem, it is essential to carry 
out effective fuel management and find more economical and sustain-
able alternatives to fossil fuels [12]. 

Over the last few decades, scientists and researchers have explored 
renewable energy sources such as solar, hydroelectric, and wind power 
resources. In 2020, Australia generated 24% of its total electricity from 
renewable sources, of which 9% came from solar, 9% from wind, and 
only 6% from hydropower [13]. The ocean surrounding Australia pro-
vides a potential source of wave energy, as waves travel long distances 
without losing energy in deep water [14], and is a cost-effective alter-
native to conventional energy. However, oceanic waves are variable, 
often unpredictable, and are affected by various natural phenomena. 
Therefore, understanding the correlated variables and utilizing them in 
a forecasting model is the key to using this energy. 

One component essential for wave energy is significant wave height 
(Hsig). Hsig, the mean wave height of the highest third of the waves, is 
computed by the difference between the wave crest and the preceding 
wave through [15,16]. Accurate prediction of Hsig is also vital for safe 
operations in marine and offshore environments [17], installation of 
wind turbines, cargo transfer, rescue missions [18], marine and coastal 
engineering [19], and energy generation [20], to name a few. Therefore, 
numerous data-driven forecasting models have been developed to esti-
mate Hsig [20–23]. 

Forecasting and modelling of Hsig are still in their infancy since 
coastal waves are unpredictable, non-stationary, and nonlinear [24]. 
Numerous studies have examined algorithms such as k-nearest neigh-
bours (kNN), linear regressions (LR), model trees (M5), multilayer per-
ceptron neural networks (MLP), robust regressions, and support vector 
regressions (SVR) [25–27]. Özger [28] has concluded wavelet fuzzy 
logic approach (WFL) outperforms when compared with artificial neural 
network (ANN) and autoregressive moving average (ARMA). Cuadra 
et al. [29] compared MLP and other regression models with ANN and 
found out ANN performs better than the regression models. In the pre-
diction of Hsig, Etemad-Shahidi, and Mahjoobi [19] depicted ANN are 
less transparent than semi-empirical regression-based models like M5 
algorithm as neural network (NN) requiring more time to find network 
parameters such as the number of hidden layers and neurons through 
trial and error. Furthermore, these studies have utilized standalone 
models, which are sometimes unsuitable for analysing complex inputs 
and stochastic features within the data. 

To resolve this issue, several studies have used hybrid forecasting 
models [30–34]. James et al. [35] trained a machine learning model to 
act for a physical-based SWAN (Simulating WAves Nearshore) model 
representing the significant wave height field, and an SVM model 
simulated the characteristic period. The hybrid machine learning (ML) 
model, integrated with the extreme gradient boosting model (XGBoost) 
and decision tree (DT), has performed significantly better than other 
standalone ML models [36]. Ali et al. [24] have introduced an extreme 
learning machine (ELM) named improved complete ensemble empirical 
mode decomposition with adaptive noise (ICEEMDAN) by incorporating 
a Gaussian white noise with ensemble-EMD to eliminate the mode 
mixing issue in EMD; again, it was not entirely noise-free for which 
complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) was proposed [37]. The data decomposition is 

time-consuming and, therefore, unsuitable for analysing more extended 
time series. Furthermore, conventional machine learning approaches 
can suffer from data overfitting issues, especially with large datasets 
[38], and do not identify the short- and long-term correlations between 
the predictors and the target [15], which can be overcome by using deep 
learning (DL) approaches. 

DL hybrid models for forecasting have become extremely popular 
[39–44]. Deep learning models can extract deep features and multidi-
mensional dependencies to generate better predictions [45,46]. This 
technology is also easy to use, automated, and capable of analysing large 
amounts of data that would otherwise require computationally expen-
sive methods [47,48]. The study is based on a hybrid model that com-
bines a convolutional neural network (CNN), a long short-term memory 
(LSTM), and a bidirectional gated recurrent unit (BiGRU). Numerous 
studies have demonstrated that CNN outperforms many existing 
machine-learning methods in forecasting applications [49,50]. 

Accordingly, this study employs CNN to extract features to improve 
prediction accuracy [51]. LSTM and BiGRU (an improved version of 
LSTM requiring less training, thus timesaving) are variants of recurrent 
neural networks (RNN) that can avoid short-term memory issues related 
to gradient vanishing and explosion revealing information in time-series 
data. There have been some recent studies hybridizing CNN and GRU in 
week-ahead evapotranspiration forecasting [52], CNN and LSTM in 
solar radiation and air quality forecast [51,53], and CNN-BiGRU in load 
forecasting [54]. In this study, LSTM and BiGRU are employed for pre-
diction purposes, combined with CNN for feature extraction. Notably, 
this hybrid approach has not been used before in any other studies, 
particularly in forecasting significant wave heights, Hsig. 

To build a reliable model, this paper examines the complex, sto-
chastic patterns of oceanic significant wave height (Hsig), as well as the 
maximum wave height (Hmax), zero up crossing wave period (Tz), peak 
energy wave period (Tp), sea surface temperature (SST) to forecast Hsig 
over relatively short time intervals (i.e., half-hourly, two hours, three 
hours, and six hours) in Queensland, Australia. The proposed hybrid 
model CLSTM-BiGRU has been tested against standalone models and 
their respective hybrid models. This study, therefore, examines the ef-
ficacy of the proposed model at four key study sites (i.e., Cairns, Emu 
Park, Mooloolaba, and Gold Coast) in Queensland, Australia, as these 
locations may be used to identify probable spots for future wave energy 
generation, adding more renewable energy to the main transmission 
systems and achieving energy sustainability. 

2. Theoretical Overviews of Predictive Models 

While Convolutional Neural Networks (CNN) are well-known for 
working on spatial or 2D image datasets, they can also extract hidden 
features from time-series data and generate filters capturing those fea-
tures in predictive models [43]. The CNN works more like a regularized 
version of the feed-forward neural network (NN) for solving 
one-dimensional problems (time series classification and prediction). As 
part of the extraction process, three mapping layers are typically 
applied: the convolutional layer, the pooling layer, and the fully con-
nected layer. An LSTM network has been used to interpret wave height 
features based on the extracted feature information from CNN across 
time steps. Consequently, the combination of two sub-models: CNN and 
LSTM, has been employed together as C-LSTM to produce better per-
formance in time series data problems, such as wave height predictions. 
Convolutional filtering is generally used in the convolutional layer to 
extract potential features. In addition to reducing the size of the series, 
the pooling layer preserves the essential characteristics identified by the 
convolutional layer. In this layer, the objective variables are estimated 
based on the features of the predictor variable. Each convolutional layer 
is defined as follows: 

hk
ij = f((Wk ∗ x)ij)+ bk (1) 
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where f in Eq. (1) denotes the activation function, Wk is the weight of the 
kernel connected to kth feature map and the star (*) is an operator of the 
convolutional process. 

The two most popular variants of recurrent neural networks (RNN) 
are the long-short-term memory neural network (LSTM) and the gated 
recurrent unit (GRU). Both variants can capture the temporal 

characteristics of the prediction problem, which avoids short-term 
memory issues related to gradient vanishing and explosion, as well as 
reveal the intrinsic association between time series data [55]. This 
network comprises an underlying component known as the memory cell, 
which can memorize the temporal state using three types of gates: input, 
forget, and output [55]. The input gate activation tracks the input in-
formation stored in the memory cell. In contrast, the output gate can 

Fig. 1. (a) Geographic location of the present sites studied to build the CLSTM-BiGRU-based hybrid deep learning model to forecast significant wave height was 
developed: Cairns, Emu Park, Mooloolaba, and Gold Coast located in Queensland, Australia. (b). The monitoring buoys that are employed in the Queensland waters 
where data were collected. 
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control the dissemination of the latest information to the ultimate state. 
The function of the forget gate is to determine unimportant information 
and forget that information from the training data. Additionally, there is 
another update gate to update the cell. These four gates together help 
regulate the information flow. 

To implement, update the LSTM cell state, and compute the LSTM 
outputs, the Eqs. (2)–(9) are required to follow [55]. 

Ft = σ(WxfXt +WhfHt− 1 +Bf) (2)  

It = σ(WxiXt +WhiHt− 1 +Bi) (3)  

Ct = σ(WxcXt +WhcHt− 1 +Bc) (4)  

Ct = Ft∗Ct− 1 + It ∗ Ct) (5)  

Ot = σ(WxoXt +WhoHt− 1 +B0) (6)  

Ht = Ottanh(Ct) (7)  

Yt = σ(WhyXHt +By) (8)  

σx =
1

1 + e− x (9)  

where Xt,Yt, It,Ft, Ot,Ct,Ct,and σrepresent input vector, output vector, 
input gate outcome, forget gate outcome, output gate outcome, finishing 
state in a memory block, temporary, and sigmoid function. Wxf , Wxi, 
Wxc, and Wxo symbolize input weight matrices and Whf , Whi, Whc, and 
Who are recurrent weight matrices in Eqs. (2)- (5), Why is output weight 
matrix in Eq. (8) and Bf , Bi, Bc, B0, and By are the related bias vectors for 
Eqs. (2)- (5),(6),(8). 

The sigmoid function’s output values range from 0 to 1, allowing the 
neural network to remove unrelated information. The hybrid CNN-LSTM 
(or CLSTM) configuration, incorporates one convolutional layer, one 
max pooling layer, a flattened layer, an LSTM layer, and a fully con-
nected layer with the output to reduce raw data features using con-
ventional filters [56]. The wave height prediction result using CLSTM 
has shown high accuracy and better prediction performance than the 
standalone LSTM or CNN network. Despite the superior performance, 
this hybrid CLSTM configuration is relatively complex compared to 
other individual configurations. 

Gated Recurrent Unit (GRU), a modification of the LSTM concept, 
requires less training and computational time but provides improved 
network performance. Moreover, GRU combines the hidden and cell 
states into one state; therefore, it has fewer parameters. Thus, the total 
number of gates in GRU is half compared to the total number of LSTM 
gates, making GRU popular and a shortened variant of the LSTM cell. To 
define the relationship between predictors and predictands in a GRU 
Network, two input features, i.e., input vector x(t) and output vector 
h(t − 1), need to be considered in each layer [57]. The outcome of each 
gate can be generated employing logical operation (pointwise 

multiplication and addition) and nonlinear transformation of predictors 
using Eqs. (10)-(13), as shown in Fig. 1. The equations are defined as 
follows: 

r(t) = σg (Wrx(t)+Urh(t − 1)+Br) (10)  

z(t) = σg (Wzx(t)+Uzh(t − 1)+Bz) (11)  

h(t) = (1 − z(t))o(t − 1)+ z(t)oh (t) (12)  

h (t) = σh (Whx(t)+Uh(r(t))oh(t − 1)) (13)  

where r(t), z(t), W and U are defined as the reset gate vector, update gate 
vector, parameter metrics and vector respectively. σh, andσg are signi-
fied as a hyperbolic tangent, and a sigmoid function. 

In order to forecast the height of waves with confidence, a fore-
casting model must be able to extract both the implicit features and the 
complex variances within the sequence data. It must be noted, however, 
that the GRU can only extract information from the forward direction. 
Therefore, a model must draw valuable information from backward time 
series data. To extract information from both directions, the Bidirec-
tional GRU, or BiGRU, is implemented effectively to encapsulate 
knowledge between production variance and input variables. The 
BiGRU is a sequence processing model comprising two GRUs. Out of two 
GRUs, one GRU takes the input in a forward direction and the other in a 
backward direction. It is a bidirectional recurrent neural network with 
only the input and forgets gates. According to the proposed Bi-GRU 
model, bi-directional regularities can be depicted between multiple in-
puts and outputs, and it could be used to investigate the mechanism of 
stimulation performance based on relevant production data. 

In both LSTM and BiGRU algorithms, gates control the memory 
process; GRU uses fewer training parameters, requires less memory, and 
is faster than LSTM, while LSTM is more accurate on a large dataset. The 
BiGRU shows efficacy when past and future information is required to be 
incorporated into production sequences. We used a classical machine 
learning model as a baseline, random forest (RF) model, a popular su-
pervised machine-learning algorithm, can accumulate predictors asso-
ciated with different values of random vectors sampled independently 
[58]. This model trains several trees (decision tree 1, 2, …, N), in parallel 
and uses the majority voting/ averaging of the trees as the final pre-
diction or results of the RF model. This model adopts a bagging-type 
ensemble (collection). A randomly selected sample is assigned to each 
split node that obtains a better prediction result with a higher accuracy 
rate and avoids overfitting. The individual decision tree model is easy to 
interpret. Still, the model is nonunique and exhibits high variance. Eq. 
(14) calculates the predicted values for unseen complexes: 

y =
1
B
∑B

b=1
tB(x) (14)  

where B represents the number of data points, tB(x) portrays the result 
of (fb − yb)

2. fb is showing the value returned by the model and yb is 
the actual value for datapoint b. 

The hybrid architecture of RNN and convolutional neural network 
(CNN) has emerged mainly to capture the temporal correlation of data 
along with extracting features from a given dataset, e.g., high-resolution 
images or tensor concurrently in addition to classifying or making pre-
dictions. Exploiting CNN and LSTM collectively, the CLSTM neural 
network is proposed to handle the input data containing many features 
efficiently. It is noteworthy that time-series data usually are lengthy due 
to the high sampling frequency of digital signal devices nowadays, 
which will be facilitated by feature extraction via convolutional layers. 

Therefore, we propose a novel CLSTM-BiGRU-based deep learning 
hybrid model, which takes advantage of the intrinsic features of CLSTM 
neural networks and a bidirectional GRU, or BiGRU, to forecast signif-
icant wave height in this study. In this hybrid approach, statistical 

Table 1 
The model input parameters and their descriptions including units.  

Wave Property Parameters Descriptions Unit 

Time-Lagged Combinations of 
Predictor (Input) Variables (see 
Fig. 2) 

Hmax Maximum Wave 
Height 

m 

Tz Zero Up Crossing 
Wave Period 

Seconds 

Tp Peak Energy Wave 
Period 

Seconds 

SST Sea Surface 
Temperature 

0C 

Hsig Significant Wave 
Height 

m 

Objective Target Variable Hsig Significant Wave 
Height 

m  
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methods are combined with machine learning methods to compensate 
for the limitations of one approach with the strengths of the other, 
especially in forecasting time series data. 

3. Study area and data description 

This study aims to develop a set of forecasting models based on the 
wave time-series recorded at four data collection stations in Queensland. 
The study used a 30-minute interval dataset of recorded wave parame-
ters (see Table 1) from 2015 to 2021. Table 2 and Fig. 1(a) show the 
selected sites and their geographical locations. Since the data-driven 
models depend on predictive features in historical data for future fore-
casting, wave features are used for significant wave height forecasting.. 

Considering, Hsig as the target time series variable for the 30-minute 
interval, the significant lags are then used with other wave features; 
maximum wave height (Hmax), zero up crossing wave period (Tz), peak 
energy wave period (Tp), and sea surface temperature (SST) to predict 
the significant wave height Hsig. It is noted that Hsig is generally 

measured as an average of the third-highest wave in the recording 
period, and this measurement is based on the hypothesis that smaller 
waves are not considered because they are insignificant by the observer. 
As a rule, these smaller waves do not have much influence on the overall 
processes of the waves. The Hmax, another property used to develop the 
proposed model, is defined as the distance between the top of the wave 
(i.e., the wave crest) and the bottom of the wave (wave trough). In a 
wave, the Tz parameter indicates the time between two zero-level up- 
crossings. Basically, SST refers to the temperature close to the surface of 
the ocean, which is called the ’skin’ temperature of the ocean. Surface 
temperature is generally measured from the range of 1 mm to 20 m from 
the top. In a wave recording, Tp represents the wave period of the waves 
giving the most energy. In addition to ocean waves, distant disturbances 
such as storms can also generate these waves. Using various wave 
properties to construct the proposed CLSTM-BiGRU-based deep learning 
hybrid model was a deliberate strategy to maximize the performance of 
the model used to predict significant wave height. 

These wave parameters are monitored continuously by floating 
buoys located at the study sites in Queensland. During the wave heave 
recording and processing, the wave heave is recorded and processed 
electronically. As soon as the data has been collected, it is sent to the 
nearby station (see Fig. 1b). The station devices, which include a com-
puter, radio receiver, and modem, store and analyse the data. Datasets 
are sent to the data server for further processing. The buoys are cali-
brated for twelve months before being deployed in the ocean. The buoy 
is a stainless-steel device that can range from 0.4 m to 0.9 m and is 
designed to follow the movement of the wave. 

Table 2 
The geographical location of the study sites where the proposed 
CLSTM-BiGRU was constructed.  

Study Site Geographical Location 

Gold Coast 27◦ 57’ 53" S, 153◦ 20’ 58" E 
Cairns 16◦ 55’ 34" S, 145◦ 46’ 27" E 
Mooloolaba 26◦ 40’ 53" S, 153◦ 07’ 09" E 
Emu Park 23◦ 15’ 25" S, 150◦ 49’ 35" E  

Fig. 2. Schematic workflow of CLSTM-BiGRU model development and architecture of the convolutional neural network (CNN), long-short term memory (LSTM), and 
bidirectional gated recurrent unit (BiGRU) to forecast significant wave height at multi-step horizons. Note that the model is constructed using oceanic significant 
wave height (Hsig), as well as the maximum wave height (Hmax), zero up crossing wave period (Tz), peak energy wave period (Tp), sea surface temperature (SST) to 
forecast Hsig over relatively short time (i.e., half-hourly, two hourly, three hourly, and six hourly) intervals in Queensland, Australia. 
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4. Model development procedures 

4.1. Data normalization 

To improve the model’s convergence into its optimal state for best 
accuracy, the predictors and predictands are normalized to remove both 
dimensionality and variance of variables. To execute the normalization 
stage, the minimum and maximum values of each variable, xi was 
calculated. For each data sample, xj, the normalization process is 
denoted in Eq. 15. 

ωi =

ωi − min
1≤j≤n

{ωj}

max
1≤j≤n

{ωj} − min
1≤j≤n

{ωj}
(15)  

where ωi ∈ {ω1,ω2,…,ωn}is the original data and ωi ∈ [0, 1] is the 
normalized data. 

4.2. Data partitioning 

This study used data partitioning as a regular method of validating 
the deep hybrid CLSTM-BiGRU model against independent BiGRU and 
RF models. By using the PACF and CCF methods, the predictands (Hsig) 
are correlated to create the input and target data necessary to build a 
predictive model (see Fig. 3). It is necessary to divide the input data into 
training, testing, and validation sets when building predictive models. 
For the model to learn more about the characteristics of the data over 
time, it uses a training set, which consists of a collection of data that is 
repeatedly used during training. The validation process intends to 

Fig. 3. (a) The correlogram shows the covariance between the objective target (Hsig) and the predictor (Hmax, Tz, Tp, SST) variables in terms of cross-correlation 
coefficients (rcross), and (b) a partial autocorrelation function (PACF) plot of the Hsig time series exploring the antecedent behaviour for Mooloolaba and Emu 
Park study sites. 

Table 3 
Mean Absolute Error (MAE) and Index of Agreement (d) between the observed and forecasted Hsig using the proposed CLSTM-BiGRU model compared to the CLSTM, 
BiGRU and RF models.  

Forecast Horizon Cairns Emu Park Gold Coast Mooloolaba 

MAE d MAE d MAE d MAE d 

CLSTM-BiGRU (Proposed Model) 
0.5 H  0.033  0.994  0.024  0.998  0.055  0.994  0.011  0.997 
02 H  0.037  0.986  0.035  0.995  0.055  0.993  0.015  0.995 
03 H  0.041  0.985  0.034  0.994  0.076  0.985  0.047  0.993 
06 H  0.053  0.975  0.062  0.982  0.110  0.967  0.054  0.990 
CLSTM 
0.5 H  0.034  0.988  0.034  0.995  0.056  0.990  0.014  0.993 
02 H  0.040  0.984  0.038  0.992  0.054  0.990  0.021  0.989 
03 H  0.051  0.989  0.045  0.991  0.078  0.984  0.054  0.982 
06 H  0.058  0.972  0.062  0.979  0.129  0.956  0.058  0.973 
BiGRU 
0.5 H  0.045  0.991  0.039  0.990  0.059  0.991  0.019  0.989 
02 H  0.042  0.983  0.036  0.993  0.053  0.984  0.032  0.975 
03 H  0.049  0.988  0.035  0.988  0.088  0.979  0.056  0.979 
06 H  0.058  0.970  0.060  0.981  0.123  0.955  0.057  0.966 
RF 
0.5 H  0.061  0.869  0.089  0.969  0.139  0.934  0.052  0.961 
02 H  0.112  0.798  0.087  0.970  0.129  0.945  0.124  0.968 
03 H  0.113  0.766  0.091  0.968  0.141  0.933  0.132  0.961 
06 H  0.113  0.786  0.102  0.955  0.157  0.919  0.148  0.953  
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provide information that may be used to adjust the model hyper-
parameters. Training sets are different from validation sets, which are 
used to assess and validate the model as it is being trained. The test set is 
used only after a model has been trained (using train and validation sets) 

and primarily to evaluate the model. The datasets between Jan 2015 and 
Aug 2021 at 30 min interval is partitioned as 70% for training, 15% for 
validation, and 15% for testing. 

Fig. 4. Comparison of the predictive skill of the proposed CLSTM-BiGRU model vs. CLSTM, BiGRU and RF (benchmark) models in terms of the Mean Absolute 
Percentage Error (MAPE %) and Relative Index of Agreement (drel) computed in the testing period for 0.5 H forecasting horizon. 

Fig. 5. An evaluation of the proposed CLSTM-BiGRU model in respect to the benchmark models based on absolute forecasted error |FE= for 0.5 H fore-
casting horizon. 
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4.3. The development of CLSTM-BiGRU objective model 

In this study, we developed a novel hybrid predictive model (CLSTM- 
BiGRU) that incorporates CNN, LSTM and BiGRU algorithms. For the 
prediction of Hsig time series at multiple forecast horizons (i.e., 0.5 H, 
02 H, 03 H, and 06 H), the proposed deep learning hybrid CLSTM- 
BiGRU model consists of three convolutional layers, a pooling layer, 
and the final layer, which is flattened and input to the LSTM and then to 
the BiGRU model. 

Three crucial steps comprise the modelling process:  

• To pre-train the CNN, we first input the training data into the CNN 
model and then compute the convolutional and fully connected layer 
parameters. Through the convolution layers, the features of the 
training data are retrieved and filtered.  

• Two LSTM layers and one BiGRU layer use the extracted features as 
input to calculate the significant wave height (Hsig) for four hourly 
horizons. The model’s predictive capability is increased by retrieving 
data from the flatten layer’s output once more using the CLSTM- 
BiGRU model. 

For a deep learning prediction model, hyperparameter optimization 
is essential. The optimally selected hyperparameters of deep learning 
models are tabulated in Table A1 which can be placed at Appendix. This 
should be performed to enhance the performance of the model on in-
dependent (test) datasets. Grid search has also been utilized well 
because they facilitate the training of deep learning models [59,60]. We 
employed the Stochastic gradient descent optimization approach, which 
uses an iterative method for optimizing an objective function with 
appropriate smoothness characteristics [61]. This technique’s benefits 
are simplicity, effectiveness, minimal memory requirements, 

re-scalability of the gradient’s diagonal, and adaptability for massive 
data sets [62,63]. With a constant learning rate of (lr) 0.001, decay rates 
of (1 =0.9 & 2 = 0.99), and an epsilon of 10− 8, we employed the Adam 
optimization algorithm. Additionally, every output layer was followed 
by the Rectified Linear Units (ReLU) activation function except the final 
one. ReLU, a popular activation function in DL models, is parameter-free 
and non-saturating, which can speed up stochastic gradient descent’s 
convergence saturation [64]. ReLU can greatly boost deep learning 
performance in terms of faster convergence and higher accuracy when 
compared to its saturated counterpart activation functions, such as 
sigmoid and tanh [63]. Additionally, the robust deep hybrid 
CLSTM-BiGRU model used in this study to forecast daily Hsig has been 
regularised using the following techniques:  

• During the model training phase: Many epochs during the model 
training phase can result in an overfitted model, while fewer epochs 
might result in an underfitted model. Early stopping (es) was 
implemented [65] to avoid these mistakes. The training phase is 
terminated when the model’s performance does not improve on a 
validation dataset. As a result, training was stopped during model 
construction after 15 (patience) consecutive epochs in which the loss 
had ceased reducing.  

• To avoid the over-fitting: The "ModelCheckpoint" call back is used in 
this study to preserve the version of the model with the greatest 
performance at the conclusion of an epoch after using Keras 
"ReduceLROnPlateau" function to lower the learning rate when a 
validation loss stops increasing [66]. With patience of 10, the 
learning rate (lr) is decreased by a factor of 0.2. 

Fig. 6. Scatter plot of forecasted and observed Hsig in testing phase at the four stations using the proposed CLSTM-BiGRU vs. CLSTM and BiGRU models for 0.5 H 
horizon. Least square regression line and coefficient of determination (R2) with a linear fit is shown in each sub-panel. 
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Fig. 7. Comparison of the predictive skill for proposed CLSTM-BiGRU vs. CLSTM, BiGRU and RF models in terms of the relative error: RRMSE (%) and the NSE value 
within the testing period computed for the multi-step horizons. 
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4.4. Benchmark model development 

The proposed objective model (i.e., the deep hybrid CLSTM-BiGRU) 
and the benchmark deep learning models were created using Tensor-
Flow 2.0.1 [67,68] and Keras 2.2.4 Libraries on a Python programming 
environment. The training process of all the predictive models was 
conducted on a system with a CPU type of Intel® Core ™ i7, 16 GB RAM. 
A classical machine learning model, i.e., Random Forest Regressor (RF), 
was prepared using scikit-learn to further compare the performance of 
proposed model. 

4.5. The performance evaluation metrics 

We use various visual and statistical criteria during our models’ in-
dependent testing phase. The performance requirements largely concern 
with the model’s characteristics and applicability, information about 
available inputs, and model-specific knowledge [69]. The link between 
planned and observed values determines a model’s efficiency; yet these 
criteria are usually identified without considering the model’s purposes 
and projects. Several scoring measures were used, including three effi-
ciency metrics (Pearson’s correlation coefficient (r), Kling-Gupta Effi-
ciency (KGE) [70] and Nash-Sutcliffe Efficiency (NSE) [71] and two 
error metrics [72] and Root Mean Square Error (RMSE; m). According to 
Willmott and Matsuura, MAE is a more accurate predictor of model 
performance than RMSE [73]. Eqs. (16–28) give the corresponding 
mathematical formulas for MAE, RMSE, NSE, MAPE, and RMAE. 

Mean Absolute Error (MAE, m) is defined as: 

MAE =
1
N
∑N

i=1

⃒
⃒
⃒Hsig.for − Hsig.obs

⃒
⃒
⃒, 0 ≤ MAE ≤ ∞ (16) 

Root Mean Square Error (RMSE; m) is given as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Hsig.for − Hsig.obs)

2

√
√
√
√ , 0 ≤ RMSE ≤ ∞ (17) 

Nash – Sutcliffe Efficiency (NSE) is expressed as: 

NSE = 1 −

⎡

⎢
⎢
⎢
⎣

1 −

∑N

i=1
Hsig.for)

2

∑N

i=1

(
Hsig.obs − Hsig.for

)2

⎤

⎥
⎥
⎥
⎦
, − ∞ ≤ NSE ≤ 1 (18) 

Mean Absolute Percentage Error (MAPE, %) is expressed as: 

MAPE =
1
N

(
∑i=1

N

⃒
⃒
⃒
⃒
⃒

(Hsig.for − Hsig.obs)

Hsig.obs

⃒
⃒
⃒
⃒
⃒

)

∗ 100 (19) 

Index of Agreement (d) is stated as: 

d = 1 −

⎡

⎢
⎢
⎢
⎣

∑N

i=1

(
Hsig.for − Hsig.obs

)2

∑N

i=1

(⃒
⃒
⃒Hsig.for − Hsig.obs

⃒
⃒
⃒+

⃒
⃒
⃒Hsig.obs − Hsig.obs

⃒
⃒
⃒

)2

⎤

⎥
⎥
⎥
⎦
, 0 ≤ WI ≤ 1 (20) 

Relative Mean Absolute Error (RMAE, %) 

RMAE =
1
n

∑n

i=1
(
|(Hsig.for − Hsig.obs)| × 100%

Hsig.for
) (21) 

In the commonly used persistence model, the calculations assume 
that atmospheric conditions are stationary between the present and the 
anticipated time. In the case of a positive value, the suggested deep 
hybrid CLSTM-BiGRU predictive model is expected to beat the persis-
tence, baseline model; in the case of a negative value, the persistence 
model is most likely superior. Moreover, this study has evaluated the 
performance of the proposed model using Kling-Gupta Efficiency (KGE) 
[70]. 

Fig. 8. Empirical cumulative distribution function (ECDF) in absolute forecast error |FE= for the proposed CLSTM-BiGRU vs. CLSTM, BiGRU and RF models for 
Mooloolaba station presented for multi-step forecast horizons. 
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We also adopted the Promoting Percentage of Kling-Gupta Efficiency 
(KGE) [70] (∂KGE) and Relative Mean Absolute Error (∂RMAE) to compare 
the various models used in Hsig prediction. 

∂KGE = |(KGE1 − KGE2)/KGE1| (22)  

∂RMAE = |(RMAE1 − RMAE2)/RMAE1| (23) 

where, 
KGE1 and RMAE1 = CLSTM-BiGRU model performance metrics. 
KGE2 and RMAE2 = benchmark model performance. 
Kling – Gupta Efficiency (KGE) is expressed as: 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
SDsig.for

SDsig.obs
− 1
)2

√

+

(
Hsig.for

Hsig.obs
− 1
)2

− ∞ ≤ KGE

≤ 1
(24) 

And r is Correlation Coefficient, which is mathematically expressed 
as below: 

r =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑N

i=1

(
Hsig.obs − Hsig.obs

)(
Hsig.for − Hsig.for)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Hsig.obs − Hsig.obs

)2 ∑N

i=1
(Hsig.for − Hsig.for)

2

√

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

2

(25) 

Finally, we adopted the direction of movement as measured by 
Expanded uncertainty (U95) such that: 

U95 = 1.96 ∗ (SD2 + RMSE2)
2 (26) 

MAE Skill Score (MAESS): 

MAESS =
MAERF − MAEDL

MAERF
(27) 

RMSE Skill Score (RMSESS): 

RMSESS =
RMSERF − RMSEDL

RMSERF
(28)  

Where Hsig.obs and Hsig.for denote the observed and model forecasted value 
from the ith element; Hsig.obs and Hsig.for denote their average, respec-
tively, SD represents the standard deviation of the data and N signifies 

Fig. 9. Comparison of the predictive skill of the proposed CLSTM-BiGRU model using the Expanded Uncertainty (U95) metric against the benchmark CLSTM, BiGRU 
and RF models for the multi-step forecast horizons. 
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the number of observations of the Hsig. DL is referred as three deep 
learning models (i.e., BiGRU, CNN-LSTM and CLSTM-BiGRU). 

5. Experimental results and discussion 

This study demonstrates the effectiveness of a newly designed deep 
learning hybrid CLSTM-BiGRU model over the classic deep learning 
models of CLSTM and BiGRU, and a machine learning model RF, to 
forecast the significant wave height (Hsig) at four areas: Gold Coast, 
Cairns, Mooloolaba, and Emu Park located in the state of Queensland, 
Australia. The models were developed using four-time steps of 0.5 H, 
2 H, 3 H, and 6 H. In this section, two statistical tools of mean absolute 
error (MAE) and Index of Agreement (d) and different schemes have 
been used to determine the prediction accuracy and performance of the 
CLSTM-BiGRU model and the comparison models. According to the 
description and mechanism of the MAE and d metrics, the model with 
the lowest MAE and highest d is elected as the best model. 

Comparing the results that are demonstrated in Table 3 for the ma-
chine learning model (RF) and the deep learning models (hybrid CLSTM- 
BiGRU, CLSTM, and BiGRU), the machine learning RF model had the 
lowest accuracy with all study areas and prediction steps. On the other 
hand, when the comparison was made among the deep learning models, 
superior performance was made by the suggested study model CLSTM- 
BiGRU. In terms of the half hourly prediction (0.5 H) with all study 
sites, the CLSTM-BiGRU model has made the best values for both met-
rices (MAE/d). For Cairns, Emu Park, Gold Coast and Mooloolaba, 
respectively, those values were 0.033/0.994, 0.024/0.998, 0.055/0.994 
and 0.011/0.997 compared to 0.034/0.988, 0.034/0.995, 0.056/0.990 
and 0.014/0.993 for CLSTM and 0.045/0.991, 0.039/0.990, 0.059/ 
0.991 and 0.019/0.989 for BiGRU. Although by relatively small margin, 
the BiGRU model had the lowest MAE values [0.053 for Gold Coast (2 H) 
and 0.060 for Emu Park (6 H)], the CLSTM-BiGRU model yielded the 
best MAE values when the data of 2 H and 6 H from other sites were used 
as well as the highest d values for all study zones with respect to these 
time steps. Using 3 H datasets, excluding the d value for Cairns, the 
CLSTM-BiGRU model achieved the best values for both metrices out-
performing the CLSTM and BiGRU models. 

Various graphics have been presented in this research to discuss the 

experimental results further to show the proposed model’s ability to 
accurately forecast oceanic significant wave height (Hsig). Firstly, the 
study illustrated the Mean Absolute Percentage Error (MAPE %) and 
Relative Index of Agreement (drel) in Fig. 4 to examine the precision of 
the models for Hsig prediction in 0.5 H horizon. Accordingly, the best 
values (lowest MAPE and highest drel) were created by the CLSTM- 
BiGRU model when they were compared to the developed bench-
marked from deep and machine learning models. The recommended 
model performed near unity drel values with significantly low values of 
MAPE using all study sites. Furthermore, the ability of the CLSTM- 
BiGRU model to predict Hsig was confirmed to be the best by present-
ing the boxplots in Fig. 5. Using the forecasted error |FE= for 0.5 H 
forecasting horizon, the boxplots showed the |FE= values with respect 
to different statistical values of minimum, average, maximum, first 
quartile (25%), second (medium) quartile (50%) and the third quartile 
(75%). Based on these statistical tools, hence, the study objective model 
has generated the lowest values due to its advantage in dealing with 
time-series data verifying its considerable ability to yield better esti-
mation of Hsig data than the other models. 

To investigate the relationship between the observed and predicted 
data, scatterplots were employed in Fig. 6 using 0.5 h with all study 
regions. The regression line of y = ax + b, which is corresponding to 
Hsig.for = a ∗ Hsig.obs +b in this study, and the correlation of determination 
(R2) were used to assess the deep learning model’s accuracy. The values 
of R2 were 0.998, 0.997, 0.997 and 0.997 for CLSTM-BiGRU, 0.995, 
0.995, 0.995 and 0.982 for CLSTM and 0.992, 0.990, 0.993 and 0.979 
for BiGRU using the 0.5 H dataset for Cairns, Gold Coast, Emu Park, and 
Mooloolaba, respectively. Based on those values, again, the CLSTM- 
BiGRU model had the highest accuracy in forecasting the oceanic 
wave height data. 

Concurring with the earlier results, Fig. 7 confirms that the hybrid 
CLSTM-BiGRU model had the most extraordinary power compared to 
the CLSTM, BiGRU, and RF models to predict oceanic wave height 
values. In association with Fig. 7, two metrics of the Relative Root Mean 
Square Error (RRMSE%) and the Nash–Sutcliffe Coefficients (NSE) were 
utilized to determine the predictive proficiency of the used models in 
which the model that generates the lowest percentage of RRMSE and 
highest value of NSE is considered the best one. Accordingly, the 

Fig. 10. The prompting percentage change in KGE (∂KGE) and RMAE (∂RMAE) calculated with respect to the proposed CLSTM-BiGRU model for Mooloolaba stations at 
the multi-step forecast horizons. 

A.A.M. Ahmed et al.                                                                                                                                                                                                                           



Applied Soft Computing 150 (2024) 111003

13

CLSTM-BiGRU technique has achieved these criteria, as shown in Fig. 7, 
presenting better forecasting values and outperforming CLSTM, BiGRU, 
and RF models using the multi-step horizons of 0.5 H, 2 H, 3 H, and 6 H 
with all study station’s datasets. 

Another model evaluation graphical approach was implemented in 
Fig. 8 of this study to further check the strength of the suggested CLSTM- 
BiGRU model over the other tested models for forecasting Hsig. This was 
the Empirical cumulative distribution function (ECDF) that was plotted 
for the forecasted error |FE= using the multi-step horizons of the Moo-
loolaba site. Again, the optimal performance was made by the CLSTM- 
BiGRU model due to having most of its forecasted errors |FE= in the 
smallest bracket of 0 to ± 0.5 for 0.5 H, 2 H, 3 H, and 6 H whereas it 
was 0 to ± 0.2 for the 3 H horizon. Fig. 8 presents the more detail of this 
phenomena. 

From the foregoing results and discussion, it can be concluded that 

the study-selected model CLSTM-BiGRU has the considerable ability to 
produce relatively precise prediction values of oceanic wave height. This 
model can highly support the Australian government by instilling an 
automatic high-quality early warning system that can provide different 
benefits, such as (1) estimating the level of the wave before it occurs, (2) 
offering valuable information for diverse real-world applications such 
as, in marine conveyance, environmental supervising, as well as coastal 
protection and engineering [74]. Thus, the CLSTM-BiGRU model is 
needed to address the practical problems that create potential risks for 
industries, governments, and people’s daily lives. 

6. Further discussion 

This study has made significant contributions in respect to devel-
oping and verifying the predictive stability and capability of the 

Fig. 11. The time series plot at Mooloolaba study site of: (a) forecasted and observed Hsig for the proposed CLSTM-BiGRU model compared with the CLSTM and 
BiGRU models at 0.5 h forecast horizons, (b) the forecasted and observed Hsig generated by the proposed CLSTM-BiGRU model at multi-step forecasting horizons. 
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Fig. 12. Skill Score of MAE (MAESS) and RMSE (RMSESS) between deep learning models against classical machine learning (RF) model for five study regions at multi- 
step forecasting horizons. 

Fig. 13. Parameter sensitivity analysis of proposed CLSTM-BiGRU model for RMSE.  
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proposed hybrid CLSTM-BiGRU model. The approach integrated three 
phases comprised of the CNN, LSTM and BiGRU methods to predict the 
oceanic significant wave height (Hsig). The forecasting achievement of 
the preferred model has been selected as the best performing by 
comparing it with a two-phase model of CLSTM and two single-phase 
models of BiGRU and RF. Although different criteria from statistical 
metrices and high quality of graphical analyses have been employed in 
the previous section to determine the best model, this section also pre-
sented three other tools to further assess the model’s performance. 
Having these as further results and discussion can confirm the power of 
the CLSTM-BiGRU model in generating optimum forecasting values. 

To measure the 95% level of confidence, Fig. 9 is shown for all 
models, study sites, and multi-steps based on the uncertainty at 95% 
(U95), in which the closest value to zero is expected to indicate the best 
model. Using this method of evaluation, high forecast accuracy was 
achieved by the CLSTM-BiGRU model that outperformed other devel-
oped models presented in Fig. 9. Additionally, to find the closest model 
to the CLSTM-BiGRU model, the differencing values in Kling-Gupta Ef-
ficiency (KGE) and Root Mean Absolute Error (RMAE) named here ∂KGE 
and ∂RMAE, respectively, between the suggested model and each devel-
oped model have been separately calculated and plotted in Fig. 10. 

Based on the structure of these tools, the model that achieved the 
lowest values of ∂KGE and ∂RMAE signifies the closest model to the CLSTM- 
BiGRU model. Accordingly, the outcomes of Fig. 10, which have been 
analysed using the Mooloolaba station with multi-step datasets, have 
shown that the CLSTM model accomplished these conditions indicating 
to have accurate prediction values that are closest to the best study 
model of CLSTM-BiGRU. Finally, the forecasted and observed values are 
also presented in Fig. 11 for the Mooloolaba station to show the con-
sistency of the presented model over the benchmarked models. Fig. 11 
(a) shows the forecasted and observed values at 0.5 h for the CLSTM- 
BiGRU, CLSTM, and BiGRU models, while Fig. 11 (b) presents these 
values for the study suggested model only with multi-step forecasting 
horizons. According to Fig. 11, the prediction values obtained by the 
CLSTM-BiGRU model are the closest to the observed 0.5 h data when the 
comparison was made with those values generated by the CLSTM and 
BiGRU models. On the other hand, the forecasting values using 0.5 H, 
2 H, 3 H, and 6 H of the proposed model were significantly close to the 
observed data. 

To assess potentiality of our approach against a state-of-the-art 
method, we calculated skill score of MAE (MAESS) and RMSE 
(RMSESS) between hybrid deep learning models, namely BiGRU, CNN- 
LSTM, and CLSTM-BiGRU, against a baseline model represented by RF 
(Random Forest), which serves as a classical benchmark (Fig. 12). For 
the MAE Skill Score, the CLSTM-BiGRU model consistently demonstrates 
its superiority over both BiGRU and CNN-LSTM across all time horizons 
and locations. Specifically, at the 0.5 H time horizon, the CLSTM-BiGRU 
achieves a skill score of 0.57, outperforming BiGRU’s 0.53 and CNN- 
LSTM’s 0.59. This trend continues as the time horizons extend, high-
lighting the robustness of the CLSTM-BiGRU model’s predictions. 
Examining the RMSE Skill Score, again, the CLSTM-BiGRU exhibits 
remarkable proficiency. At the 02 H time horizon, it attains a score of 
0.45, surpassing both BiGRU’s 0.56 and CNN-LSTM’s 0.56. This pattern 
endures for subsequent time horizons and locations, reaffirming the 
consistency of the CLSTM-BiGRU’s performance. This comparative 
analysis thus underscores the potential of the CLSTM-BiGRU model as a 
valuable tool for accurate and reliable wave forecasting in various 
coastal regions, outperforming both BiGRU and CNN-LSTM models. 

Parameter sensitivity analysis is a technique used to assess how 
changes in the values of input parameters affect the output of a model or 
a system. Fig. 13 shows the % change of RMSE on the proposed CLSTM- 
BiGRU model by systematically altering the input features across vary-
ing percentages to comprehend the model’s responsiveness to parameter 
changes. For instance, considering a 1% increase, the Hmax displayed a 
2.0% change, while Tz exhibited a larger 4.0% alteration. Similarly, the 
Tp underwent fluctuations of 5.0%, and the sea surface temperature 

(SST) showcased a distinct 12.0% variation. This comprehensive anal-
ysis provides a nuanced understanding of how different input features 
influence the behaviour of our CLSTM-BiGRU model. The proposed 
model response over different forecasting horizon shows a very positive 
correlation with the input variables. Lastly, the process time is important 
to make the model more adaptable specially when our model consists 
multi-layered hybrid deep learning model. The overall processing time 
of the proposed model was 11 ± 3 min for different region and fore-
casting horizon establishing the approach easily adaptable. 

7. Conclusions and further research outlook 

The purpose of this study was to develop an artificial intelligence 
methodology for forecasting significant wave heights at four stations in 
Queensland, Australia, using deep learning algorithms. The proposed 
deep hybrid CLSTM-BiGRU model was built using an innovative method 
that combines Convolutional Neural Networks (CNN) with Long Short- 
Term Memories (LSTM) and Bidirectional Gated Recurrent Unit 
(BiGRU) to achieve maximum accuracy. The most important features 
were extracted by incorporating the CNN algorithm into the proposed 
deep learning model. After the extraction of the features, the LSTM and 
BiGRU layers were used to forecast the significant wave height based on 
the extracted features. Based on the analyses, the deep hybrid CLSTM- 
BiGRU model outperformed some of the most well-known prediction 
models, including LSTM, BiGRU, and RF. Furthermore, the proposed 
deep hybrid model was thoroughly tested, which confirmed that our 
modelling strategy produced a viable method of predicting Hsig in the 
short term. The study shows that the proposed deep hybrid CLSTM- 
BiGRU model can be used to solve a variety of complicated and chal-
lenging prediction problems, including those involving the forecasting 
of wind speed, crude oil prices, traffic flow, the stock market, exchange 
rates, tidal energy, etc. Accordingly, the CLSTM-BiGRU model was 
highly accurate in predicting Hsig based on the robust evaluation 
methods used in this study. While the method has been successful, there 
may be some limitations that can be addressed in future research. For 
example, we may improve the model’s precision even further by 
considering other predictors, such as weather data. A second challenge is 
that this study did not assess long-term prediction skills, which can 
provide more useful information in making decisions related to tidal and 
wave energy systems, as well as establishing a robust prediction model 
for monitoring marine water during natural disasters. 

The proposed CLSTM-BiGRU hybrid model for predicting the wave 
energy indeed holds promise for broader applications within the realm 
of time series forecasting. This hybrid approach’s effectiveness in 
capturing temporal dependencies and spatial patterns within wave data 
suggests its potential applicability to various other time series tasks. The 
hybrid approaches were adopted in addressing real life problems asso-
ciated with hydrological [43,52,75,76], energy [51,77–80] and medical 
[81] sectors. This model’s ability to learn from historical data and its 
capacity to handle multiple input channels, as validated by its success in 
predicting wind energy series, hints at its potential to be employed 
across diverse domains, making it an exhilarating avenue for future 
exploration. 

In this study, we have developed a multi-step model for significant 
wave height prediction in Australia’s wave energy region. If the model is 
integrated with a wave energy converter (WEC) through an appropriate 
modelling platform, the CLSTM-BiGRU technique can be used to 
monitor and predict wave energy harnessed at the sites [82]. This model 
can also provide early warning of energy shortfalls, through AI-based 
predictive methods proposed on this study. We have added a para-
graph in conclusion section and cites a few references. 
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Appendix  

Table A1 
Optimally selected hyperparameters of deep learning models. ReLU stands for Rectified Linear Units, SGD stands for 
stochastic gradient descent optimiser.  

Model Hyper-parameter Names Optimal Hyper-Parameters 

CLSTM-BiGRU CLSTM BiGRU 

Convolution Layer 1 (C1) 70 70  
C1- Activation function ReLU ReLU 
C1-Pooling Size 1 1 
Convolution Layer 2 (C2) 60 60 
C2- Activation function ReLU ReLU 
C2-Pooling Size 1 1 
Convolution Layer 3 (C3) 80 50 
LSTM Layer 1 (L1) 70 60 
L1- Activation function ReLU Tanh 
LSTM Layer 2 (L2) 70 60 
L2- Activation function ReLU ReLU 
BiGRU Layer 1 (L1) 65  50 
L1- Activation function Tanh Softmax 
Drop-out rate 0.2 0.2 0.2 
Optimiser SGD SGD SGD 
Padding Same Same Same 
Batch Size 5 7 6 
Epochs 1000 1000 500  
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