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ABSTRACT: Huntington disease (HD) is a degenerative brain disease caused by the expansion of CAG (cytosine-adenine-guanine) repeats,
which is inherited as a dominant trait and progressively worsens over time possessing threat. Although HD is monogenetic, the specific patho-
physiology and biomarkers are yet unknown specifically, also, complex to diagnose at an early stage, and identification is restricted in accu-
racy and precision. This study combined bioinformatics analysis and network-based system biology approaches to discover the biomarker,
pathways, and drug targets related to molecular mechanism of HD etiology. The gene expression profile data sets GSE64810 and GSE95343
were analyzed to predict the molecular markers in HD where 162 mutual differentially expressed genes (DEGs) were detected. Ten hub genes
among them (DUSP1, NKX2-5, GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, S100A4, and MSX1) were identified from protein-protein interaction
(PPI) network which were mostly expressed as down-regulated. Following that, transcription factors (TFs)-DEGs interactions (FOXC1, GATA2,
etc), TF-microRNA (miRNA) interactions (hsa-miR-340, hsa-miR-34a, etc), protein-drug interactions, and disorders associated with DEGs were
predicted. Furthermore, we used gene set enrichment analysis (GSEA) to emphasize relevant gene ontology terms (eg, TF activity, sequence-
specific DNA binding) linked to DEGs in HD. Disease interactions revealed the diseases that are linked to HD, and the prospective small drug
molecules like cytarabine and arsenite was predicted against HD. This study reveals molecular biomarkers at the RNA and protein levels that
may be beneficial to improve the understanding of molecular mechanisms, early diagnosis, as well as prospective pharmacologic targets for
designing beneficial HD treatment.
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Introduction
Huntington disease (HD) can be defined as a completely pen-
etrant degenerative brain disease resulting from CAG (cyto-
sine-adenine-guanine) repeat expansion that is inherited as a
dominant trait in IT15 (“interesting transcript 15”) gene also
defined as huntingtin (;/7T) gene.? Huntingtin is translated
into such an excessively massive polyglutamine domain around
the N-terminus of the Huntington protein.> Mutant hunting-
tin (mHTT) becomes particularly unstable due to the enlarge-
ment of the CAG region and allows to a combination of
proteins of the same type and/or other types resulting in clumps
that may lead to discontinued neurotransmission.*?
Huntington disease is caused by a complicated interaction of
environmental and genetic factors, resulting in succeeding genera-
tions to live in increasingly deplorable social conditions. Autosomal
recessive inheritance is often seen in mid-life diagnosis and
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continuous progressive motor including intellectual and mental
symptoms across 15 to 20years.®” It commonly starts in middle
age, between the 21 and 50years, including an average starting age
of 41 years.>8 Fine motor function deterioration, cerebellar abnor-
malities, gait abnormalities, dysarthria, cognitive difficulties, and
stiffness are all prevalent symptoms and indicators.” It produces
substantial physical and cognitive deficiencies such as memory
loss, depression, mood fluctuations clumsiness as well as some
other psychological problems and disorders.#1? Clinical diagnosis
to identify HD is conducted when there are strong sets of evi-
dence of a motor disorder, particularly chorea involving iatrogenic
conditions and general internal disorders.” Degenerative muta-
tions and cellular damage can be found throughout the cortex and
external areas of the central nervous system, specifically across the
striatum; there are various symptomatic therapies and medication
available, but there is no permanent remedy for this devastating
brain disorder presently.!%!! There are currently no medications
available to delay symptoms and disease development; however,
there are numerous effective post management (ie, medication and
nonpharmacologic approaches available).!?
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As the disease was first diagnosed, especially after Davenport
and Munceyat 1916 pointed out a large collection of information
on households in the New England area of America, individual
tamily surveys on HD have been conducted.’® Most European
nations, including Northern and Southern, have a quite high
prevalence, ie, 4 to 8 in every 100000 individuals, and the disease
may also be common in India side by side in some areas of Central
Asia, according to the findings.™ The prevalence of HD world-
wide appears to vary by region.’® In South Africa and Zimbabwe,
prevalence rates were determined to be extremely low.1 Since
1995, the prevalence rate (average) in Asian countries (South
Korea, Hong Kong, Taiwan, and Japan) has been low (0.42 per
100000 individuals) compared with the rate among white popu-
lations (North America, Australia, the United Kingdom and
Western Europe) where the rate was 9.71 per 100000 individu-
als.’® Following the emergence of genetic testing, the frequency
of HD has increased in several populations.'”

Although several studies have already identified histone
modifications, protein hubs identification, transcription factor
(TF) impairments, and abnormal microRNA (miRNA) expres-
sion, HD is difficult to diagnose at an early stage and identifica-
tion is restricted in accuracy and precision, as well as expensive.!®19
Also, contradictions between researchers were found about the
conclusion of differential expressed genes. As a result, using
brain cell analysis to predict HD could enhance disease’s early
detection and treatment. In 1993, the faulty gene that triggers
HD was first discovered and a genetic test for diagnosis is avail-
able now.?® The test can identify the malfunctioning gene for
HTT protein as well as discover the genetic defect in individuals
who already haven't shown any symptoms but has the possibility
to obtain the disease but this is a slow process and can only be
diagnosed after mid-age.?>?! This condition is caused by a CAG
triplet repeat amplification in the H77T" gene.?>?? Due to pro-
longed CAG repeat, HT'T protein with an enlarged polyglu-
tamine tract is produced, resulting in pathogenic HT'T protein
residues that are immune to the protein cycle, leading to cellular
toxicity.?%?* Most HD patients have motor-involved problems, a
small percentage (15%) establish clinically relevant psychological
disease first and hence have a mental diagnosis before the start of
movement disorder.?%?> Huntington disease is associated with
extremely selective deterioration of the corpus striatum which is
a brain region with no noticeable abnormalities in peripheral tis-
sues. Huntington and mHT'T are prevalently distributed across
the brain also including peripheral tissues.®

Histone modifications, protein hubs identification, TF
impairments, and abnormal miRNA expression are among the
processes linked to this imbalance and identification of disease
specification biomarkers is crucial for HD drug testing.26 Several
studies have been conducted from different perspectives to iden-
tify molecular biomarkers with various brain and blood data. As
HD is a completely penetrant degenerative brain disease, in this
study brain-based data sets were obtained to progress further
analyses. Generally, genetic factors in HD have primarily been
examined in diseased brains comparing controlled individuals, as
well as in cell and animal models.2>?” Hundreds of research

teams have spent the past 3 decades trying to figure out what
causes HD based on cellular and molecular compounds.'$1927
The goal of this research is to find molecular biomarkers that
represent the brain expression alignments of associative factors
connected to HD development. The main objective of this study
is to identify the differentially expressed genes (DEGs) and
common genes using genomic information for HD. Second, we
aimed to identify molecular biomarkers to diagnose early detec-
tion of HD and progression by identifying transcriptional and
post-transcriptional level; side by side another objective was to
identify potential interacting components that are prominent in
the gene list which can be used to find valuable medicines or
drug targets. The rest of this article is organized as materials and
methodology, results, discussion, and conclusions section. The
materials and methodology section contains data acquisition,
determination of DEGs and common genes, gene set enrich-
ment analysis (GSEA), construction of protein-protein interac-
tion (PPI) network for hub protein identification, transcriptomic
marker identification, prediction of small drug molecules, and
finally, validation of the predicted molecular markers.

Materials and Methodology

Data acquisition

In this study, data sets were obtained from National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO).?8 We searched for Homo sapiens data of HD
and detected 747 data sets, the majority of which were initially
disqualified as they were noncoding data sets, had a very small
sample size, were redundant data sets, had an inadequate for-
mat, or inappropriate experimental set-up, contained stem-
cells, did not contain control subjects, or was from organisms
other than humans. Finally, after considering all perspectives,
we have selected 2 data sets for the analysis which are
GSE64810 and GSE95343, where GSE64810 contained
mRNA sequence expression of brain tissue and GSE95343

contained mRNA sequence of neural cells.

Determination of differentially expressed genes and
common genes

Gene set enrichment analysis identifies DEGs from a large set
of genes linked to disease symptoms using a number of statisti-
cal approaches.?39 Figure 1 visualizes the steps involved in
data acquisition and identifying DEGs also shows the analyti-
cal approaches in a nutshell. GSE64810 and GSE95343 shared
a total of 162 common genes, whereas 106 genes were up-reg-
ulated and 56 genes were down-regulated. Gene expressions of
the data sets were analyzed in accordance with P value <.05

and log?2 absolute values for Fold Control (FC); (-1 > FC > 1).
Linear models identified the DEGs where (limmapackage
obtained from Bioconductor using R) R or the online tool
GEO2R for microarray data sets and GREIN3' for RNA
sequence data sets were used. The limma is known as a
Bioconductor software package for analyzing data using R
from gene expression studies and experiments.3? P value was
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Figure 1. Systematical implementation approach in the study: significant
differentially expressed genes were identified as well as associated gene
ontology terminologies and pathways were enriched using mRNA
expression data sets of Huntington disease from neural cells and brain
tissue. Multiple network approaches were also implemented to identify
PPI, regulatory signature molecules, and potential therapeutic drug
targets. DEGs indicate differentially expressed genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, protein-protein interaction;
TF, transcription factor.

adjusted using the Benjamini-Hochberg (BH) technique
where the FDR (false discovery rate), Q, is defined as the
expectation of Q3 and it implies that

Q. =EQ) 1)

The random variable indicates the fraction of errors made
by the null hypotheses that are falsely rejected and

7

S )
V+3)
R=V+S§ (3)
where
V = number of significant true null hypotheses
S = number of significant nontrue null hypotheses , and
R = number of hypotheses that are rejected .
Finally, it can be seen that
EQ=E(%) @

Common genes were obtained from the DEGs using the
Venn diagram comparing the common DEGs.

Gene set enrichment analysis

Gene set enrichment analysis was conducted to depart analytical
obstructions and examine data if individuals from a set of genes
tend to appear near the highest points (or bottom) of the list and
also checks where the gene set is linked to behavioral class distinc-
tion.3% To obtain GSEA, gene ontologies (molecular function,
biological process as well as cellular components), molecular path-
ways (Kyoto Encyclopedia of Genes and Genomes [KEGG]
pathway) and was obtained using Enricher, GREIN, David
Bioinformatics Resources 6.8 and R programing, respectively.3637
A considerable analytical effort is required to identify common
biological findings using GSEA. An adjusted P<.05 was used as
the cut-off parameter to conduct gene enrichment. The KEGG
pathways were performed by David Bioinformatics Resources 6.8
and the significant KEGG pathway was obtained underlying the
P <.05. A bubble plot was also generated using the R tool
ggplot2 to visualize KEGG pathways where P value (P <.05)
and the FDR value (FDR < .05 ) was demarked. It is commonly

used to comprehend metabolic pathways to annotate genes.

Determination af protein-protein interaction

Protein-protein interaction (PPI) is the protein interactions
with other proteins, ions, and nonprotein elements like lipids,
carbohydrates, and nucleic acids generate the distinctive fea-
tures of each protein.’® Protein-protein interaction plays an
important role in several biological functions and includes a
variety of applications in biology regarding structure, affinities,
and whether or not the interaction is persistent.3’ Interaction
of protein hubs through PPI networks was retrieved using
Network Analyst*’ from the STRING database depending on
the physical connection of common gene proteins selecting
confidence score 900 (adjusted P <.05). We used Cytoscape
software*! including cytoHubba and MCODE applications*
to identify hub genes.

Analysis of transcription factor gene and
transcription factor-microRINA coregulatory
interconnections

Transcription factors interact directly with DNA to bind the
regulatory regions known as regulators and enhancers, which
increase (or occasionally prevent) gene transcription and con-
sequently messenger RNA synthesis.*>* Network Analyst was
used to determine regulatory TFs-DEGs interaction network
and also to identify TFs and miRNAs that control common
genes at the transcriptional and post-transcriptional stages.
The TF-genes and TF-miRNA were obtained from the
JASPAR TF binding site profile database and TarBase v8.0,
respectively. Here, JASPAR is a popular manually organized,
nonredundant open-accessed TF binding profiling database
recorded as matrices and models of TF.# TarBase is a compre-
hensive database of miRNA-gene interactions that had been
confirmed empirically.*
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Table 1. Statistical overview for gene expression in data sets used in analysis.

SERIAL GEO GEO SOURCE NUMBER OF DEGS COMMON
NUMBER ACCESSION PLATFORM GENES
UP DOWN TOTAL
1 GSE64810 GPL11154 Prefrontal cortex (post- 715 521 1236 162
mortem BA9 brain tissue)
2 GSE95343 GPL11154 Neural cells 1297 1799 3096
Total 2012 2320 4332

Abbreviations: DEGs, differentially expressed genes; GEO, Gene Expression Omnibus.

Gene disease association

Genetic and/or environmental factors are thought to play a role
in complex disorders.* Recognizing the genes linked to an ill-
ness can help with disease treatment, prevention, and health
care.*’ It is also crucial for knowing how genes work biologi-
cally. It emphasizes the evolution of human genetic illnesses
which are used to uncover linkages between hereditary and
genetic disease while using Network Analyst to investigate
related diseases and common DEGs. The DisGeNET data-
base, which is exclusively suitable for human data sets, was used
to gather the gene-disease association information. DisGeNET
is a research platform that includes one of the most compre-
hensive publicly available libraries of genes and variations
linked to human disorders.*8

Prediction of candidate drugs or small compounds

Enrichment of drug-target was executed using Enrichr to
obtain candidate drugs or small compounds. This method
was used to find small chemical that influenced HD function.
The gene sets (DSigDB) database from the Enrichr was
employed to identify prospective drugs or small molecules.
The Drug Signatures Database (DSigDB) is a gene set data-
base that connects drugs/compounds with respective target
genes.* Chemical structures of the candidate drugs were
extracted from PubChem.%°

Validation of relevant biomarkers

To check the validation of relevant biomarkers revealed in this
research, we conducted an overall review from literatures with
respect to the findings of our study.>1,>2

Results

Determination of differentially expressed genes and
overlapping genes

High-throughput sequencing data (GSE64810, GSE95343)
of prefrontal cortex and neural cells of HD were analyzed
using GEO2R and GREIN. GSE64810 data were obtained
by expression analysis of human post-mortem brain tissue

(BA9) for HD patients and neurologically normal people

using mRNA-Seq. GSE95343 data set consists of neural cells
for HD and control patient using mRNA-Seq. The transcrip-
tomic HD data sets exhibited 162 common DEGs including
up-regulated and down-regulated genes from overlapped
DEGs (Table 1 and Figure 2). Figure 2A and B depicts inter-
active heatmaps for control and case samples from the selected
data sets.

Gene set enrichment analysis

Significant Gene Ontology (GO) was enriched through
molecular function, biological process as well as cellular com-
ponents (Table 2). Significant GO terms were displayed in
Table 2 and Figure 3C to E, which was obtained using David
Bioinformatics Resources 6.8. In Biological process, 13 genes
were involved in proteolysis and 8 genes were found to be
engaged in transcription from skeletal system development.
The cellular component visualized 46 genes that came from
extracellular region, whereas extracellular space (40 genes) and
extracellular exosome (32 genes) also involved majority num-
bers of genes. Molecular function of the GO expressed 18
genes (EOMES, OSR2, PRRX2, etc) which were involved in
sequence-specific double-stranded DNA binding. Figure 3A
illustrates the DEG-enriched molecular pathways that have
been found in KEGG Pathway with help of Enrichr and
Figure 3B represents the bubble plot following KEGG Pathway
produced by R programing. In the KEGG pathway, antigen
processing and presentation pathway was seen to be enriched
with 6 genes significantly, according to significant P value. Top
significantly enriched pathways were represented by bubble
plots in this study.

Protein—proz‘ein interaction

Figure 4 visualizes the PPI obtained by network analysis
highlighting the protein hubs with the list of top 10 hub
genes produced by Cytoscape, and it shows the interactions
between the hub genes generated by Network Analyst and
Cytoscape. Protein-protein interaction network of the pro-
teins was analyzed to identify the protein hubs of respective
DEGs including 162 common genes. Network analysis deter-
mined the hub proteins, and they were DUSP1, NKX2-5,
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Figure 2. (A) Overlapping 106 up-regulated common genes among data sets GSE64810 and GSE95343; (B) Overlapping 56 down-regulated common
genes among data set GSE64810 and GSE95343; (C and D) heatmap of selected data sets, GSE64810 and GSE95343 displaying differential expression
level; the color scale reflects the expression value, and each row and column represents a gene. DEGs indicates differentially expressed genes.

GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, §10044, and
MSX1. These hub genes could be the indicators that play a
key role in the progression of HD.

Transcription factor gene and transcription factor-
microRINA coregulatory interconnections

To get insights into substantial changes happening at the
transcriptional and post-transcriptional level, the DEGs
were screened to pick out the transcriptional (T'Fs) and post-
transcriptional (miRNAs) regulatory biomolecules which
were identified based on degree value. We predicted regula-
tory biomolecules that may influence DEGs at the transcrip-
tion regulatory and post-transcriptional stages by identifying
TFs and miRNAs targeting DEGs. Figure 5A and B exhibits
the analysis of TF-gene and TF-miRNA coregulatory inter-
connections with network. The analysis disclosed top signifi-
cant transcriptomic factors (TFs), ie, FOXC1, GATA2,YY1,
TFAP2A, FOXL1, PPARG, HINFP, STAT3, MEF2A and
top significant miRNAs, ie, hsa-miR-340, hsa-miR-34a,
hsa-miR-495, hsa-miR-1, hsa-miR-124, hsa-miR-29a, hsa-
miR-29b, hsa-miR-30e, hsa-miR-16, hsa-miR-206, hsa-
miR-30a, hsa-miR-30c, and hsa-miR-944 as regulatory
biomarkers for HD.

Gene disease association

Figure 6 indicates the main diseases linked to common DEGs
are highlighted in the gene-disease association network.
Degenerative polyarthritis, schizophrenia, short stature, auto-
somalrecessive predisposition,andliver cirrhosis (Experimental)
were identified as the correlated diseases to the DEGs from
gene-disease association study using Network Analyst.

Development of candidate drugs or small
compounds

Table 3 lists the top associated small molecules, along with
respective molecular formula and structural composition,
and Figure 7 shows a bar graph of the small drug molecules
produced by Enrichr. Cytarabine exhibited the strongest
negative association and the best chance of reversing HD
among these compounds. Arsenite has also shown effective-
ness against HD.

Validation of relevant biomarkers

The hub genes we identified were DUSPI, NKX2-5, GLII,
KI.F4, SCNN1B, NPHS1, SGK2, PITX2, S10044, and MSX1
reflecting as the potential biomarkers for HD. To determine
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Figure 4. Visualization of PPI network of common DEG: (A) PPI network developed by Network Analyst showing the top 10 hub genes that interconnect
other DEGs marked by blue nodes and other nodes symbolize DEGs connected by edges which reflect DEG interaction. (B) List of top 10 hub genes
produced by Cytoscape through MCC method. Here, color shades represent the rank of hub proteins. The darker shades of color express the higher rank
of hub genes and vice versa. (C) According to the selected layout, the top 10 hub proteins in a network are visualized using the MCC technique in
Cytoscape v3.8.2 using the cytoHubba plugin. Pink-colored nodes represent the proteins associated via edges with the top 10 hub proteins in blue shade.
DEG indicates differentially expressed gene; MCC, maximum clique centrality; PPI, protein-protein interaction.

the validity of these putative biomarkers, we looked through
the related studies for prospective HD biomarkers (Figure 8).
It was identified that low DUSP1 also known as MKP-1
expression may contribute to hyperactivation of MAPK in
HD, whereas increased MKP activity may be neuroprotec-
tive.>3->> NKX2-5 was found to be correlated with the protein
synthesis in HD?¢ and also as one of the significantly up-regu-
lated genes.”” GLI1 was also found as contributing gene of
HD, and we found that it was one of the hub proteins that
contribute to HD.>%63 Previous studies suggested KLF4 as a

potential biomarker for HD which is consistent with our
study.6+68 SCNN1B’s utility as a molecular biomarker in HD
was demonstrated in 2 earlier studies.®>70 Increased expression
of NPHS1 has consistently been identified to HD, which sup-
ports our research results.”! In our research, it was revealed that
SGK2 is a possible protein hub in HD, and it has been seen to
be widely expressed in a study published in 2011.72 Over-
expressed PITX2 have effects on the initial formation of stri-
atal neurons composing the pathways directly and indirectly,
according to few studies. In our study, PITX2 was recognized
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Figure 5. TF-gene and TF-miRNA coregulatory interconnections. (A) Identification of transcriptomic regulatory signatures by network analysis of DEGs
using the Network Analyst server: the network highlights the top 9 TFs that are linked to DEGs. Blue nodes represent the TFs, other nodes represent the
DEGs, and edges represent the interaction levels. (B) Network-based analysis of transcriptomic regulatory signatures by network analysis of DEGs using
the Network Analyst server: the network displays the top 12 miRNAs interconnected with DEGs, with blue nodes representing miRNAs and other nodes
representing DEGs linked through edges. DEGs indicates differentially expressed genes; TF, transcription factor.
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Figure 6. The main diseases linked to common differentially expressed genes are highlighted in the gene-disease association network (green: seeds and
blue: diseases).

Table 3. List of probable Huntington disease medications, along with respective chemical formula and structural composition.

CHEMICAL STRUCTURAL
FORMULA COMPOSITION
Cytarabine CTD 3.64E-07 CoHiN3O5 BNC2; CPZ; DCN; SLC7A2; BMP5, etc
00005743
Arsenite CTD 5.76E-07 CFH; SIX1; HTR2C; SOGA3; BARX1, etc o .
00000779 AsOS L
.
Methotrexate CTD 2.91E-06 CaoH2sNgOs SLC26A2; CSTA; DUSP1; TNFRSF11B;
00006299 CTSS, etc
Retinoic acid CTD 3.05E-06 CaoH2s0, PTPRS; BNC2; SIX1; HTR2C; SOGA3, etc
00006918

(Continued)
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Table 3. (Continued)

TERM CHEMICAL

FORMULA

Progesterone CTD 3.44E-06 C,H300,

00006624 etc
Cyclophosphamide 1.84E-05 C,H;5CI,N,0,P

CTD 00005734

Sertraline CTD 3.00E-05 C,;H,;CI,N

00007358

Phenytoin CTD 3.00E-05 Cy5H15N,0,

00006527

Menadione PC3 UP 3.78E-05 C41HgO,

as a hub protein.”>7* S100A4 has been shown in 2 previous
studies to be a useful biomarker and to be abundantly expressed

in HD.776 We found MSX1 to be a potential hub protein
which is relevant to some studies.””’8

Discussion

Huntington disease is a hereditary neurodegenerative condi-
tion which impacts in early forties and fifties.?#”” Dysregulation
of possible biomarkers has recently been found to be linked
with neurological and neurodegenerative diseases,3*8! and sev-
eral studies have looked into the implications of biomolecular
activities in patients with HD.?7:82-85 Omics-based approaches
are currently being used more often in biomedicine and sys-
temic biology studies, and they have proven to be a helpful
resource for deciphering disease pathogenesis, discovering
molecular pathways, and determining biomarkers for various
diseases.3! Gene expression is perhaps modulated at multiple
stages of RNA processing, post-translational modification
(PTM) of proteins, translation, or other genomic changes,
according to previous researches.®%8” Determining the

GENES

PTGFR; SLC26A2; CSTA; CRABP2; CFH,

NKAIN1; TMEFF1; CSTA; CRABP2;
CYP2D6, etc

FABP1; SLC5A7; CYP2D6; DUSP1;
CASP4; HSPA1B; HSPA1A

EOMES; COL1A1; COL1A2; CYP2D6;
COL6A2; COL6AS3; S100A4

OSR2; DUSP1; CYP1B1; MSX1; KLF4;
HSPA1B; HSPA1A

STRUCTURAL
COMPOSITION

biochemical pathway of an exact disease and identifying the
impact of fundamental mechanisms involved in a certain phe-
notype require defining the activity target proteins in bioactive
molecules.?18 The functional characteristics of hub proteins
are of special intrigue, and PPI can be characterized as persis-
tent or transient, depending on how long they last and what
they do.%? The networks based on PPI are considered scale-free
where the connectivity between components follows generally
a Poisson distribution.”® Adapting a network-based technique
to genomic data aids in the discovery of connections between
diverse biological activities and processes, resulting in new
pathways, interaction networks, as well as other disease-related
signals that result in identifying biomarkers and treatment tar-
gets.”1 Although several studies identified miRNA expression
of cellular and mouse structure,2 common gene expression
of HD patient,®? and DNA methylation in HD,?” a bioinfor-
matics study regarding the identification of molecular signa-
tures and pathways of healthy controls and HD patients has yet
not been conducted comprehensively in a framework compar-
ing all these methods at same time. We used a comprehensive
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Figure 7. Bar graph including top 10 related small molecules with high significant correlations according to P values.

bioinformatics strategy to identify molecular signatures and
key pathways for HD in this study and emphasized an overall
overview.

The key word ‘Huntington’s Disease’ was used to explore
the GEO database, and data sets featuring Homo sapiens
mRNA and array expression profiles were sorted containing
control and diseased groups after reviewing some literatures.?8
A bioinformatics approach was used to assess DEGs between
the control and diseased groups where the HD patients revealed
significant variations in gene expression compared with neuro-
logically healthy controls. The selected databases (GSE64810
and GSE95343) showed total 162 common genes among them
106 genes were found up-regulated and 56 genes were found
down-regulated by systematic and statistical approaches. The
data set GSE95343 has not been studied yet in the view of
comprehensive bioinformatics, and it was found that
GSE64810 was studied separately in a study where 1612
DEGs had been determined.33

The GO analysis was used to evaluate the biological rele-
vance of HD regarding 162 common DEGs found. These
important genes are identified to generate proteins with vari-
ous molecular functions linked with important biological pro-
cesses such as skeletal system development, collagen fibril
organization, embryonic forelimb morphogenesis, proteolysis,
and positive regulation of tumor necrosis factor-mediated
signaling pathway matrix as well. However, GO term signal
transduction in Biological Process®3# and plasma membrane
in Cellular Component” were found in some other related
researches. In our study, TF activity and sequence-specific
DNA binding was found in molecular function enriched by
gene ontologies, whereas TF activity in molecular function’
was found to be relevant to HD in a study. Combining earlier
study findings, the current analysis may give new treatment
targets or probable pathogenesis to be investigated further.

In our study, the hub genes we identified were DUSP]J,
NKX2-5, GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2,
§100A44, and MSX1 reflecting as the potential biomarkers for
HD. These hub proteins are thought to be important particle
in the disease-causing pathways.** As a result, we recreated the
protein interaction network with a focus on DEGs to find rel-
evant hub proteins. These proteins could play a role in the
development and progression of HD. In HD, sodium butyrate
has previously been shown to be neuroprotective, and this is
correlated with an increased affirmation of mitogen-activated
protein kinase phosphatase 1 (DUSP1/MKP1).>3 In some dis-
eases, such as HD, low DUSP1 (also known as MKP-1)
expression may contribute to MAPK hyperactivation, whereas
increased MKP activity may be neuroprotective.’>>> GLI1 has
also been identified as a contributing hub protein gene in HD,
which has been linked to a number of other studies.>-63

In a study, NKX2-5 was discovered to be associated with
protein synthesis in HD along with AGG and GATA-4.5¢
NKX2-5 was also found as one of the significantly (P <.05)
up-regulated genes.”” Previous research has suggested KLF4 as
a possible biomarker for HD, which is supported by our find-
ings.6+6¢ Histones and nephrin (NPHS1) levels in the neu-
ronal cytoplasmic pool were found to be higher in HD and
Alzheimer disease brains in a previous study. Increased NPHS1
expression has been linked to HD in a study, which backs up
our findings.”? SCNN1Bs were identified as a molecular bio-
marker in HD which was also demonstrated in 2 earlier
studies.0%70

Decreased AKT signaling has been linked to the patho-
physiology of HD in a previous study, and the SGK family has
gained a lot of interest because of its high similarity to AKT.”
A study identified that in mammalian genomes, 3 genes encode
the SGK family (SGK1, SGK2, and SGK3).7 In our research,
we discovered that SGK2 is a possible protein hub in HD
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Figure 8. Graphical representation of the validation of relevant biomarkers.

which is relevant to this previous study. Loss of PITX2 in HD
does not affect the initial formation of striatal neurons com-
posing the pathways directly and indirectly, according to recent
studies although over-expressed PITX2 affects neurons.”>7# In
mice models of HD, §70044 genes were found to be consider-
ably up-regulated within early-symptomatic R6/2 as well as
pre-symptomatic HdhQ150 hearts, according to a study,’® and
it was also identified as up-regulated in another research.”
Directory biomolecules are being explored more and more
as potential biomarkers for serious illnesses like neurodegen-
erative disorders.?6195% Keeping this in consideration, we
investigated the involvement of TFs and miRNAs in DEG
regulation via TF-miRNA coregulatory networks. MicroRNAs
have a crucial role in the regulation of gene expression, and
there is growing evidence that they could be used as biomarkers
for HD and other disorders.®3>*2 Many miRNAs are expected
to have a role in the pathogenic problem that introduces
HD.?% Our study disclosed top significant transcriptomic fac-
tors (TFs), ie, FOXC1, GATA2, PRRX2, YY1, TFAP2A,
FOXL1, PPARG, HINFP, STAT3, MEF2A, and NFKB1 and

top significant miRNAs, ie, hsa-miR-340, hsa-miR-34a, hsa-
miR-495, hsa-miR-1, hsa-miR-124, hsa-miR-29a, hsa-miR-
29b, hsa-miR-30e, hsa-miR-16, hsa-miR-206, hsa-miR-30a,
hsa-miR-30c, and hsa-miR-944 as regulatory biomarkers for
HD. FOXC1, GATA2, YY1, FOXL1, and PPARG, which
were revealed to be engaged as regulatory TFs in another neu-
rodegenerative disease (Alzheimer disease, Parkinson disease,
and some other neurodegenerative diseases also), were among
the TFs we detected.®-95% In a study, researchers discovered an
increase in the concentration of TFAP2A nucleoid signals
from various micropattern colonies in HD.%” Some relevant
studies showed similar result as our findings resulting the TFs
PPARG, STAT3, MEF2A, and NFKB1 be found in HD side
by side other TFs.22.98-100

It has been found that hsa-miR-340, hsa-miR-34a,
hsa-miR-495, hsa-miR-30e, hsa-miR-206, and hsa-miR-
30a have contribution to as a down-regulated miRNA;%6,101-
104 on the contrary, hsa-miR-1 was found to have
potentiality in Schizophrenia.’® Huntington disease,

Alzheimer disease, Hypoxic Ischemic Encephalopathy,
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Parkinson disease, and ischemic stroke have all been iden-
tified to have aberrant miR-124 expression.1%%197 Qur
findings revealed that decreased expression of miR-29a
and hsa-miR-29b is a prevalent occurrence in many neu-
rodegenerative disorders, including HD® and Alzheimer
disease!®® and hsa-miR-16 is also a potential miRNA for
HD.1% Differentially expressed genes were then investi-
gated further to understand more about the prospective
interactions using minor candidate drugs that could cure
HD.

Finally, we predicted drugs/compounds to produce drug
repositioning hypothesis in HD based on the probability that
revealed biomarkers (ie, hub proteins and TFs) could be
potential therapeutic targets.!0-112 As a result, connections
between identified HD biomarkers and medicines have been
established, suggesting that they may impact critical pathways
in disease development!!3; nevertheless, more research is
needed to assess the ramifications of proposed biomarker
blocking.

Conclusions

The successful implementation of disease-modifying therapies
in HD progression will require the detection of potential bio-
markers and their pathways. This research provided a summary
of network-based approaches for identifying biochemical
mechanisms underlying HD progression. From 2 transcrip-
tomic data sets of HD, 162 DEGs were identified using a com-
prehensive bioinformatics analysis to build a PPI network, and
the top most significant hub genes from the PPI network were
identified as potential novel biomarkers in HD diagnosis.
Following that, several TFs, ie, FOXC1, GATA2, PRRX2, etc
and miRNAs such as, hsa-miR-340, hsa-miR-34a, hsa-
miR-495, hsa-miR-1, etc were identified from the common
genes linked to HD. However, more research is needed to con-
firm the anticipated drugs. We anticipate that all these bio-
markers will allow quicker and more affordable detection of
brain samples for the identification of HD. This method of
identifying biomarkers can be used in obtainable tissue from
brain to assess their presence and activity in inaccessible tissue,
and it could be used to solve other therapeutic difficulties. We
therefore suggest a more thorough validation of this framework
and the possible biomarker transcripts we detected through
clinical studies.
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