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Abstract 

Anthropogenic activities such as industrial discharge and agricultural run-off 

can negatively impact surface water quality. Agricultural run-off contaminants, 

other than soil particles and suspended solids are mainly nitrogen-based, 

phosphorus, sourced primarily from fertilisers and pesticides. Currently 

available treatment methods include biological treatments, aeration and 

filtration, however, these methods are restricted by their removal capacity, land 

requirement and cost. Very little research has been done on the application of 

capacitive deionisation (CDI) coupled with biochar in agricultural settings. 

This project is dedicated to investigate the capacity of this combination for 

removal of nitrate as a commonly existing contaminants in agriculture runoff. 

The application of CDI to multi-media filter layers of biochar (BC) is a 

promising technology to improve the nutrient adsorption capability of the BC 

and thus remove nutrients from the water media. The ability to easily 

rejuvenate the CDI-BC layers, allows for incorporation into simple backflush 

cycles in line with current industrial practice, whilst the increased capacity 

allows for a reduced number of such cycles.  

 

This study tested the natural abilities of in-house prepared BCs sourced from 

agricultural waste biomass source i.e. Macadamia or as it is more traditionally 

known Bauple nutshells, in batch and column experiments targeting nitrate 

removal. The macadamia biochar (MBC) samples were pyrolysed at 900°C 

and 1000°C respectively, then characterised using standard techniques such as 

functional group identification using Fourier Transform Infrared Spectroscopy 

(FTIR) and physical structures analysis with a Scanning Electron Microscopy 

(SEM). Batch experiments found that 1000°C pyrolysed MBC achieved better 

nitrate removal around double than those of MBC pyrolyzed at 900°C.  

Column test with upward flow removed more nitrate compared to downward 

flow, largely due to their longer contact time. Three concentrations of 5, 10 and 

15 mg/L and 3 flow rates of 2, 4 and 10 ml/min were tested applying factorial 

design. The lowest flow rate of 2 ml/min with the highest concentration at 15 

mg/L were found to be the most effective settings for nitrate removal. A 

laboratory scale in-house designed CDI-MBC unit was used to assess the 
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relative improvement to contaminant removal capacity of natural MBC. The 

results of these laboratory scale tests can be used to aid the future design of a 

pilot-scale unit, suitable for handling typical agricultural nutrient and pesticide 

contamination on farm. The CDI assisted MBC tests found that with the 

addition of CDI, the filter can remove around three times the natural MBC 

capability. Incorporating CDI also prolonged effective useability of the filter. 

CDI-MBC reached filter saturation after 72 hours usage, compared to 5.5 hrs 

usage of natural MBC.  

Nitrate desorption was carried out after the column was saturated by being back 

flushed with deionised and/or tap water, using the so called ‘degaussing 

method’.  The name is derived from the approach used to remove magnetism 

from test equipment by applying a strong alternating voltage. In the case of 

CDI we applied a square waveform of frequency 100 Hz, amplitude 0.5 V and 

current 0.06 A during backflush to desorb nitrate. These experiments found 

that the ‘degaussing’ technique recovered around 80% of nitrate in 30 minutes, 

while 48% and 35% of nitrate was recovered after one hour for the backflush 

with deionised water and tap water respectively. The CDI- MBC regenerated 

filter was tested for three cycles. It was found that the fresh column was 

exhausted after 72 hours and the regenerated filters for cycle one and two were 

exhausted after 60 and 48 hours, respectively. 
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              CHAPTER 1 

 Introduction and Aims  

1.1 Overview 

In spite of the fact that 71% of the earth’s surface consists of water, only 

approximately 2.5% of this water considered as fit for human consumption. 

This includes water found in rivers, but also ice at some lakes (USGS 2016). 

Overall accessible fresh water in the world is just 0.26% of the total available 

water. A substantial proportion of this water is at risk of contamination due to 

untreated runoff from factories and agricultural irrigation processes and other 

anthropogenic activities entering into river systems (Shiklomanov, 1998).   

 

In most farming systems around the world, untreated agricultural runoff returns 

nutrients, such as ammonium NH+
4 and nitrate NO-

3, as well as salts such as 

NaCl, directly into rivers through drainage systems (Silberbush and Lips, 

1988). For example, sugar cane production in Australia requires around 200 kg 

per ha of urea-based fertilizer. Typically, more than 50% of this is lost during 

the irrigation process.  These nutrients eventually find their way into rivers and 

other surface water sources (Carpenter et al., 1998).  In Iraq, which is largely 

Figure 1-1: Total withdrawals water and consumption. Shiklomanov (1998) 
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considered to be an agricultural country, the majority of the irrigation systems 

rely on a gravity or pumped supply of surface water from the Tigris or the 

Euphrates for irrigation. This approach causes high water losses and allows the 

additional water to slowly infiltrate the soil layers and leach nutrients into 

nearby river systems. The salt and nitrogen groups (NG) associated with this 

leachate then become a complicated problem downstream, e.g. in the southern 

reaches of the Euphrates in Iraq the quality of drinking and irrigation water is 

compromised (Al-Shujairi, 2013). Several studies have attributed the 

deterioration in the water quality of the Euphrates River to farming water (Rahi 

& Halihan 2010).   

In 2011, in the town of Al-Qaim, where the Euphrates river crosses the Iraq-

Syria border, TDS measurements of around 760 mg/L were observed, while in 

Al-Simawa, a city about 280 km south of Baghdad and 770 km along the river 

from its entry to Iraq, TDS was measured as 3620 mg/L by AL-Thamiry et al. 

2013).  See Figures 1-1 and 1-2 for an Iraqi map with the two big rivers and 

the salinity in the Euphrates River changing from it is an entry point to 950 km 

along the river to the south of Iraq, respectively.
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Figure 1-2: Iraq map with Tigris and Euphrates rivers (S.Seal, 2014) 
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Water with Total Dissolved Salts (TDS) of the water that can be used for 

agricultural purposes is around 1500 mg/L before crop productivity is affected 

(Specification of Iraq No. 417 for maintenance of river pollution, 1967). In the 

Food and Agriculture Organization (FAO) guidelines, this TDS level in 

irrigation water is considered to be severe and will negatively affect crop 

productivity (FAO 1974). AL-Thamiry et al. (2013) proposed a solution to 

solve this problem by changing the path of the high TDS drainage water to 

another river and to some artificial lakes in order to reduce TDS influence on 

the water quality of the Euphrates. This treatment does not really solve the 

problem, but simply shifts it from one place to another with resulting in the 

continued increase of TDS in other river systems.  

1.2 Techniques to reduce the effects of agricultural runoff 

Contamination is the main problem for water systems these days. The major 

part of this problem is agricultural runoff because of uncontrolled irrigation, 

chemical fertilisers, pesticides, crop residue and poultry litter. Although 

fertilisers such as urea, nitrate or ammonia can improve crop productivity, 

more than 80% of applied fertiliser is lost to the soil, atmosphere or to the water 

system, with only 17% adsorbed by plants roots (Leach et al., 2012). After the 

irrigation process or heavy rainfall, water can carry the pesticide and fertiliser 

residue to the water system through surface runoff or seepage. This can lead to 

water quality degradation and requires effective treatment techniques.  

There are many methods for treating agricultural runoff (with various 

contaminants) before it re-enters the water system: biological, chemical, 

filtration and bio-treatment (microorganisms primarily bacteria).   

 Constructed wetlands (CWs) 

CW is one of the approaches used for water treatment. CW is a biological 

method that can be used to reduce pesticide and fertilizer residue as well as the 

salinity effects from agricultural runoff. Recently, Asia and Europe have 

started to use this method, especially for flat land mitigation of surface runoff 

(Haberl et al., 1995).  It is an efficient method, for both surface and subsurface 

flow (vertical and horizontal), for removing pesticides such as organochlorines. 
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It is not able to remove urea group chemicals (NH+
4 & NO-

3) (Vymazal and 

Březinová, 2015), does not eliminate nitrogen (Vymazal, 2007) or remove TDS 

(Calheiros et al., 2012).  

 Filtration  

Ballantine and Tanner (2010) suggested a filtration method to treat agriculture 

runoff, by adding natural tree bark which has the potential to act as a filter 

material in CWs, and enhance their ability to remove NG contaminants before 

returning water to the rivers (Ballantine and Tanner, 2010). Even though tree 

bark has an adsorption capability for many nutrients, e.g. total phosphorus, it 

has low capture efficiency for cations such as NH+
4 (Bolan et al., 2004).  

 Aeration  

Aeration can also be used for reducing contaminants in farming water. Bolan 

et al. (2004) showed that during an intermittent aeration technique, 

denitrification may occur while aeration is suspended, eventually transferring 

nutrients from agricultural runoff to gaseous nitric oxide (NO) and nitrous 

oxide (N2O) which in turn emits volatiles to the atmosphere, thus changing the 

problem from water to air pollution (Greenhouse effects).  

 Biochar 

This research project proposes the use of biochar (BC) to treat agricultural 

runoff. Natural BC, which is considered an environmentally friendliness and 

low-cost material, has the capability to capture contaminants from agricultural 

runoff to prevent downstream river pollution, reduce greenhouse gases, hold 

nutrients in the soil and keep carbon in a stable form for a long time. The project 

also will investigate suitable methods for the potential reuse of captured 

nutrients, e.g. by using granular BC as a fertilizer. Although the use of BC as 

an agricultural runoff amendment is reviewed by Macdonald et al. (2015) and 

others, there are limited studies using BC with capacitive deionisation (CDI) 

which may enable the BC filter to capture more nutrients, at the same time 

allowing regeneration of filters by reversing the supply voltage or degauss 

techniques. 
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1.3 Research questions 

The essential question in this research is: Can a BC filter product made from 

simple materials effectively absorb nutrients by using the CDI technique?  

This question begs more questions which are: 

 How do the surface area and porosity size affect the adsorption efficiency 

when using different feedstock and processes to produce BC?  

 How do different feedstock impact on the adsorption/ absorption ability by 

changing chemical and physical properties such as porosity? 

 What is the impact of the applying DC voltage as a driving force in CDI 

using BC? 

 

1.4 Aim and objectives 

The overall aim of this study is to investigate the ability of macadamia biochar 

(MBC) as a low-cost sorbent to minimize and capture nitrate before and after 

applying the CDI method. The main objectives are: 

 To study the capability of MBC’s adsorption as filter material in batch and 

column experiments focusing on nitrate ions 

 To evaluate the efficiency of nitrate recovery methods to reuse as a soil 

amendment 

 To investigate the performances of using an electrical technique CDI to 

enhance the electronegativity to attract the ions to the BC’s surface 

  To investigate the capability of filter regeneration with different methods 

such as degaussing with CDI electrodes and back flushing the system or 

using the deionised and tap water. 

1.5 The scope of the study   

This thesis focuses on investigating the characteristics and efficiency of BC to 

remove contaminants from agricultural run-off before allowing nutrients to 

enter the river system. The scope of the study includes the following: 

 Macadamia nut shells will be used as a biomass source to prepare BC 
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 Synthetic water with the known contaminant and respective 

concentrations will be used to identify the absorption capability 

 CDI method will be applied to enhance the absorption capability of the 

MBC by attracting anions and cations including NG 

 Regeneration the filters and nitrate recovery by using the degauss 

technique and backflushing with a small amount of deionised water 

(DI.W)  

1.6 Outline of the thesis 

This thesis is laid out in five chapters:  

Chapter1 gives the background of this study along with the objectives, and 

the scope of this study.  

Chapter 2 gives an overview of the nitrate removal technologies and the 

reported removal controlling techniques in the literature. Extensive details 

about the mechanisms of the available techniques for removing nitrate 

including the advantages and disadvantages of each technique. 

Chapter 3 introduces and discusses the material characterisation and 

preliminary experiment for nitrate removal using waste biomass to produce 

biochar and then use it in batch and column experiments to find an optimum 

removal condition. 

Chapter 4 demonstrates the use of an old technique, capacitive deionisation 

(CDI), side by side with biochar to promote removal efficiency and 

simultaneously regenerate the filter and recover the nitrate. 

Chapter 6 presents the conclusions and recommendations for future work.



Literature Review  Chapter 2 

5 

         CHAPTER 2  

 Literature review 

2.1 The aim of this chapter  

Demand for fresh water is increasing due to population growth, but the amount of fresh 

water is limited and aggravated by contamination from different sources such as 

factories discharge and agricultural run-off. The aim of this chapter is to critically 

review the available techniques for treating agriculture run-off focusing on nutrients 

removal. The mechanisms, nutrients removal levels, advantages and disadvantages, 

energy requirements and cost demands of these techniques are critically reviewed. 

Further, this chapter will explore different techniques to remove contaminants from 

the agricultural runoff such as constructed wetlands, filtration, aeration, algae and 

woodchips. Biochar (BC) is one of the low-cost sorbents can absorb nutrient due to 

multi-function capability.  Agricultural runoff’s contaminants either dissolved or 

suspended solids are the basis of nitrogen, i.e. ammonia and ammonium compounds 

that are obtained primarily from fertilisers such as urea. Hence, this study will focus 

on nitrate contaminant.  

This literature will compare the natural abilities of BCs sourced from a range of natural 

biomass sources such as Macadamia nut shells with other techniques regarding 

agricultural runoff focussing on nitrate removal. 

2.2 Introduction  

Water is essential for living creatures because it dissolves nutrients and facilitates their 

mobility in their bodies. Overall accessible fresh-water (rivers and lakes) around the 

world is just about 0.26% of the total water body which is about 71% of the total earth’s 

surface (USGS, 2016). Half of this water is at risk of becoming saline partially because 

of untreated runoff from factories and agricultural irrigation processes entering into 

river systems (Navarro-Ortega et al., 2015).  

Irrigation processes for agriculture purpose are increasingly recognized as a serious 

worldwide public health concern (Mateo-Sagasta et al., 2017). An agriculture runoff 

is responsible for a large-scale water quality degradation, because of the seepage 
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occurring after the irrigation process carrying some fertilisers and pesticides residue. 

A salt such as NaCl and NG such as NH+
4 and NO-

3 contaminating water resources is 

the primary cause of these resources becoming unsuitable for human consumption and 

agricultural purposes (Bouraoui and Grizzetti, 2014). In addition, the high levels of 

some nutrients in agricultural runoff such as phosphorus (P) along with nitrogen can 

cause eutrophication which may increase growing algae bloom and cyanobacteria due 

to the increase in nutrients concentration (Water_Online, 2017). For example, 

sugarcane production in Australia requires around 200 kg per ha of urea-based 

fertiliser. Typically, more than 50% of this is lost during the irrigation process. 

Bouraoui, (2014) argued that these nutrients eventually find their way into rivers and 

other surface water sources. Another example is Iraq, which is considered an 

agricultural country, most of the irrigation systems rely on gravity or pumping of 

surface water from the Tigris or the Euphrates for irrigation. This approach causes high 

water losses and allows the additional water to infiltrate slowly through the soil layers 

and leach nutrients into nearby river systems. To enhance the productivity of any land, 

farmers invariable use fertilisers containing nitrogen, phosphorus and potassium and 

pesticide that can wash into river system due to ineffective irrigation process, which 

can exceed plants need or during heavy rain. This overridden water can cause growing 

algae blooms, bad odour and may have a negative impact on aquatic life due to reduce 

oxygen from the water (U.S_EPA, 2005). Also, the U.S. Environmental Protection 

Agency (2005) reported that the high nitrate concentration might be a reason for many 

infant deaths by methemoglobinemia which is considered a danger disease (blue baby 

syndrome). 

Nitrate was chosen to be investigated in this project due to it is available in the soil as 

a sort of fertiliser to enhance productivity. However, it can cause a problem if the 

concentration exceeds the acceptable limits in the water system after a runoff. Also, 

can lose some of this fertiliser (cost money) carrying by the agricultural runoff. Nitrate 

is considered as the main source of contaminant present in the agricultural runoff (Poe 

et al., 2003). 

There are many applicable methods for treating agricultural runoff water. One 

approach is a biological method known as Constructed Wetlands (CWs).  CWs can be 

used to reduce pesticide and fertiliser residues as well as the salinity effects from 

agricultural runoff. Some researchers add a filtration system to the CWs by adding 



Literature Review  Chapter 2 

7 

porous materials to promote NG removal from agricultural runoff (Ballantine and 

Tanner, 2010). Aeration can also be used for improving the treatment of farming water. 

Aeration pond is the common form of aeration treatment for agriculture runoff. 

Standard multi-media filter system (sand, anthracite and gravel or sand) is another 

method for removing pollutants from agriculture runoff (Samuel et al., 2014). Previous 

approaches can remove sediments materials, salinity, phosphorus and some other 

nutrients, while found to be inadequate for NG removal. From the above, finding an 

alternative technique with cost-effect materials are very important at this stage. 

Biochar (BC) can be a suitable solution for agricultural runoff remediation as a low-

cost sorbent with several functionalities.  

This study aims to critically review the existing techniques for agriculture runoff 

treatment with a  focus on removal of nitrogen (N) compounds especially nitrate (NO-

3) due to its abundance in agriculture runoff owning to its frequent use as a nutrient in 

agricultural activities (Oakes et al., 2000). The study will analyse the feasibility of 

these techniques taking into consideration contaminants removal level, cost, 

maintenance and other factors.  

  



Literature Review  Chapter 2 

8 

2.3 Common techniques for nutrients removal 

 Constructed Wetlands (CWs) 

CWs are artificial wetlands designed to simulate a natural wetland and facilitate 

pesticide removal. They are also referred to as human-made, engineered or artificial 

wetlands. CWs are considered to be a biological method that can be used to reduce 

pesticide and fertiliser residue as well as salts and NG from agricultural runoff. 

Recently, some studies have investigated the capability of CWs to remove some 

nutrient and pollutant species carried by agricultural runoff before returning it to water 

systems such as rivers and lakes (Haverstock et al., 2017). Natural wetlands have been 

used as wastewater treatment since the beginning of sewage collection. After finding 

their ability to treat water in the early 1950s, the idea of designing a constructed 

wetland was born. Kadlec and Wallace started applying engineering analysis to 

wetland processes in the early 1970s to manage wetlands for water quality 

improvement (Kadlec and Wallace, 2008). Since wetlands have a high capability to 

retain some materials (Vymazal, 2010), constructed wetlands are expected to reduce 

the concentration of pesticides in agricultural runoff by acting as buffer strips between 

agrarian areas and the receiving surface waters.  

Many developed and developing countries such as the United States of America, 

Australia, United Kingdom, Egypt and Zambia have started to use this method, 

especially for flat land mitigation of surface runoff (Vymazal, 2013a). It is an efficient 

method for removing pesticides such as organochlorines but, it cannot be applied to 

eliminate the urea group  (e.g. NH+
4), CO-

3 (Vymazal and Březinová, 2015), total 

nitrogen (TN) (Vymazal, 2007) or TDS (Calheiros et al., 2012). 

CWs are highly efficient in removing pesticides from agricultural runoff. Vymazal 

(2015) found different mechanisms to remove pesticides by using CWs. Examples of 

these are physical treatment (sedimentation, absorption and precipitation), chemical 

treatment (oxidation and cation exchange), biological (plant absorption) and 

biochemical processes (microbial degradation). Vymazal (2015) stated that there is no 

clear study that can prove, which mechanism is the best for removing pesticide as 

mechanisms rely on the local conditions. A previous study examined how the 

availability of vegetation and medium type can affect CWs’ removal capability 



Literature Review  Chapter 2 

9 

through the use of gravel-beds and sand-beds with and without vegetation. It was found 

that the CW technique, using high porosity for gravel-beds encouraged nitrification 

and denitrification processes which improved NH+
4 and NO-

3 respectively. At the same 

time, plant uptake increased NO-
3 removal more than unplanted beds managed to do 

(Yang et al., 2001). Although root zone may affect both beds’ (gravel and sand) 

capability, vegetation may facilitate nitrification and denitrification in gravel-beds 

only. Also, contact time between plants and agricultural runoff during drainage inflows 

to the wetland, may effect on the removal efficiency of N and P in CWs (Tanner et al., 

2005).  

CWs were used for more than six decades to remove different kinds of contaminants 

from wastewater and agricultural runoff, and how they were used dependedon the 

macrophytes grown and the direction of the flow (Vymazal, 2010). Vymazal (2007) 

reported that there are four types of CWs: free-floating plants, floating plants’ leaves, 

submerged plants and emergent plants which are also divided into two types: the free 

water surface and sub-surface flow. The sub-surface flow separated into a vertical and 

horizontal flow. The hybrid CW system is a combination of two sorts of CWs; vertical 

flow (VF) followed by horizontal flow to obtain better total nitrogen removal or to 

remove the more complex contaminants in the agricultural runoff and industrial 

wastewater. Hybrid CWs are mostly used in Europe and Asia (Vymazal, 2013b). 

Vymazal (2013) reported that in the early 1960s hybrid systems started with multi-

stages of VF followed by multi-stages of HF, while in late 1990s, the hybrid systems 

consisting of HF-VF or HF-VF emerged. Simulating an aerobic as a vertical flow stage 

and an anaerobic as a horizontal flow stage may affect nutrient removal efficiency in 

different seasons due to microbial nitrification (a temperature sensitive-denitrification 

process) (Zhai et al., 2016, Wang and Li, 2015).  

Figure 2-1 shows the most common CW configurations. Free-floating plant (FFP) 

CWs depend on the plant uptake mechanism to remove nutrients. The mechanism for 

removing TN and P for CWs with free water surface and with emergent vegetation 

(FWS) is volatilization and denitrification, while in CWs with horizontal sub-surface 

flows (HSSF) it is denitrification. CWs with vertical sub-surface flows (VSSF) is 

another mechanism for removing nutrients and has a capability for oxidating ammonia 

nitrogen to nitrate than HSSF.
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The use of CWs for nutrient removal has it is advantages and disadvantages. CWs are 

designed to simulate natural wetlands (Kröpfelová, 2008), and are considered to be 

green treatment for nutrient removal from agricultural runoff (Saeed and Sun, 2012). 

CWs have a high capability to remove pesticides from non-point pollution (agricultural 

runoff). Vymazal and březinová (2015) reported that pesticide removal varies 

depending on the type of pesticide itself, and the process to mitigate.  However, CWs 

FFP 

FWS 

HSSF 

VSSF 

Figure 2-1: Constructed wetland basic types based on (Vymazal, 2007), 1. distribution 

zone filled with large stones; 2.impermeable liner; 3. filtration medium (gravel, crushed 

rock); 4. vegetation; 5. water level in the bed; 6. collection zone filled with large stones; 7. 

collection drainage pipe; 8. outlet structure for maintaining of water level in the bed. The 

arrows indicate only a general flow pattern (Vymazal, 2001). 
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cannot entirely remove NG from agricultural runoff, but convert them into various N 

forms. Farmers would not prefer to use CWs to treat agriculture run-off because of the 

high maintenance, large land requirements and high installation cost (Reichenberger 

et al., 2007). Each type of CW has its benefits and drawbacks. For example, vertical 

flow (VF) CWs occupy a small area and have high nitrification, simple hydraulics and 

can quickly remove ammonia-N. However, VF has some drawbacks such as short flow 

distance, no denitrification, sophisticated technology requirements and ineffective P 

removal. In comparison, HF CWs have a long flow distance, high denitrification and 

nitrification, can remove N and P, but have some disadvantages such as large area 

requirements, low P removal, limited ammonium oxidation, and complicated for 

regular flow supply (clogging problems) (Luederitz et al., 2001).  

Vymazal (2007) stated that some factors might have an impact on the capability of 

CWs to remove some nutrients such ammonia. Nutrients removal increasing with 

increased the initial concentration. Temperature is another factor that may affect 

nutrient removal by CWs. For example, 20-30°C is the most effective temperature 

range for the removal of biological nitrogen, due to the higher microbial activity and 

oxygen diffusion rates in this range compared to lower temperatures. Hydraulic 

residence time (HRT) has an effect on the removal of nutrients in CWs (Huang et al., 

2000). Increasing HRT impacts on ammonium and total Kjeldahl nitrogen (TKN) 

removal positively, while there is no difference for NO-
3 removal. Ballantine and 

Tanner (2010) found that the increase in phosphate removal results from a decrease in 

pH and an increase in ionic strength (Liu et al., 2008). 

Overall, CWs have a high ability to remove pesticides, biological oxygen demand 

(BOD) and chemical oxygen demand (COD), but are inefficient in removing N and P 

nutrients. The contaminant removal efficiency of CWs relies on influent rate, contact 

time and pasture intensity. Tanner (2005) identified that the removal rate for TN varied 

between 250-840 g.m-2 per year, and the total phosphorus (TP) removal rate was in the 

range of 45-75 g.m-2. y-1. Furthermore, the results of a two months study on hybrid 

CWs, showed removal rates of 2 g.m-2.day-1 and 1 g.m-2.day-1 for TN and TP 

respectively (Zhai et al., 2016). 

 Few researchers have addressed the cost-effectiveness of CWs. Luederitz (2001) 

investigated the effect of construction materials and maintenance costs on the 
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feasibility of implementing CWs for sewage treatment. The technique for water 

treatment requires a large number of materials for wetland construction which will 

increases the implementation’s total cost. High additional costs are subsequently 

incurred through vegetation management. However, CWs are regarded as energy-

efficient compared to other treatment methods, such as conventional treatment systems 

(wastewater treatment plant (WWTP)), so the ongoing economics can overcome the 

construction cost within a short period after operation begins.  

Land cost is another factor that can affect the implementation of CWs (Zadeh et al., 

2013). Haverstock et al (2017) stated that CWs are considered to be ecologically and 

economically viable for rural areas seeking to reduce NO-3 from agricultural runoff 

and convert it to various N forms, especially with long residence time which reduces 

the capital and operating cost compared to a multitude of small wetlands (Tanner and 

Kadlec, 2013). However, the major drawback of CWs is the higher area demand which 

may, for large CWs (more than 100ha), cost about $12,174.0 AUD/ha and for a smaller 

size will cost around $60,870.0 AUD/ha (O'Geen et al., 2010, Tanner and Kadlec, 

2013). Maintenance such as dredging, due to sediment accumulation, will be required 

after start-up. This is likely to be necessary once or twice a year and may cost around 

$102.26 AUD/ha/year. Dredging is also energy insensitive; around 18,734 ×103 J (Ko 

et al., 2004). The expected lifetime of the traditional CW is around 25 years with 

refurbishment every 8-15 years due to the clogging of the media (Butterworth et al., 

2013). As a pre-emptive, regeneration of CWs by changing the fouled gravel and 

cleaning the media before the system clogs is also necessary. In 2009, renewing a CW 

system of 300 m2 cost around $92,00000 AUD (Knowles, 2012).
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 Filtration  

Filtration is a process for removing solid objects or contaminants from fluids through 

either mechanical, chemical or biological effects by preventing the objects from 

passing through the filter’s structure, such as sand or screens (United States 

Environmental Protection Agency, 2010). The first water filtration treatment attempt 

dates back to 4000 BC in Ancient Greek. This method focused on turbidity removal 

and used water taste as a measure for water quality. The technique went through many 

improvements over time until the mid-1800s when scientists introduced sand filtration 

that was used in Europe to remove invisible contaminants (United States 

Environmental Protection Agency, 2000). In the early 1900s, sand filters were found 

to be effective for reducing turbidity, but had little effects on microbes, so chlorine 

was used in the United States of America and ozone in Europe, to minimise the 

waterborne disease outbreaks. Agricultural runoff experiences similar developments 

in treatment, and these began around 500 BC. Hippocrates invented the first bag filter 

to prevent sediments from moving through water and causing bad smells and tastes. 

The United States’ EPA (2000) showed that treatment gradually improved in the early 

1800s and scientists started to use sand as a filter to reduce the salt (which negatively 

affects crop productivity) in irrigation water.  

In the early 1900s, the ion-exchange technique came into existence improving the 

efficiency of filtration methods in removing salinity and other contaminants. It is the 

process of replacing the anion from agriculture runoff such as replacing P- with any 

anion such as Cl- (Le, 2017, WARD and Monday, 2007). 

There is a debate about the capability of CWs to remove nutrient from agricultural 

runoff. Some scientists have add porous materials as a filter to CWs. These materials 

include tree bark (Pinus radiate) and zeolite to promote  adsorption (Bolan et al., 2004). 

Zeolite (alumina-silicate) can capture nutrients in its pore structure or by attracting 

cations (NH+
4, K+) which happens to these elements naturally. Bolan (2004) also 

reported that bark treatment achieved the removal of P, N, K and totally suspended 

solids through their porosity, and NO-
3−N through denitrification. The advantages of 

bark filters are its after-use as a soil amendment and the practicality of building up 

such filters for pollutants’ removal from industries and wastewater effluent. Figure 2-

2 shows the cross-section in CWs with a filtration bed made from tree bark and the 
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steps taken by the water, from the inflow through each towards the outflow as treated 

water. 

 

 

Some filtration techniques have the benefit of being an inexpensive due to the 

availability of the raw materials such as sand, tree bark and limestone, is their lack of 

toxicity and their high P removal. However, as Ballantine and Tanner (2010) stated, 

these filtration techniques have some serious drawbacks: they also lack the ability to 

remove dissolved fluids, experience quick saturation have a high replacement cost, 

require maintenance and are inefficient in removing NG.  

pH can have an extreme effect on the ecosystem (High or low pH solution releasing to 

the drainage into water system) filter material during treatment process (Allred, 2017). 

This will affect the product or by-product filter material will be chosen for any water 

treatment plant. A recent study by Allerd (2017) involved 50ppm nitrate-nitrogen (NO-

3-N) and 0.25 ppm phosphate-phosphorus (PO3-
4-P) with different filter material. The 

average removal at pH 7.38 was found to be around 50% and 75% respectively, And 

the reduction in the temperature reduced the biological processing of nitrogen through 

(Hatt et al., 2009).  

Figure 2-2: Constructed wetland with filtration bed (Browning et al., 2014) 
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Column lifetime relies on parameters such as filter materials, flow rate and type of 

contaminants in the solution (Färm, 2002b). For example, natural Opoka as a filter 

material (to remove heavy metal from runoff) clogs after receiving 461 litres of 

solution (Cd, Cr and Cu), while burned Opoka, as a filtration material, clogs after 260 

litres of solution. Cleaning approaches renew the filter by reversing the filtered water 

flow from the bottom to the top of the filter to refresh and reuse it for the second time 

(Clark et al., 2012, Astrom, 1999). 

Using different filtration materials can remove different nutrients. For example, tree 

bark can effectively remove P, but it has low performance for nitrate removal. The 

capability to transfer nutrients can change with change to the filtration materials used.  

A sand filter bed combined with CW can remove around 37.70% of NO-
3 –N, 55.14% 

of Ns O-
2 –N, 49.37% of NH+

4–N and 54.74% of TN from effluent through the 

nitrification and denitrification processes (Xiong et al., 2011). Table 2-1 shows the 

common types of filtration materials used to remove various solids and organic and 

inorganic contaminants from agriculture runoff. Based on the table, pine bark seems 

to be the best for P removal 98%, while limestone is the best for nitrate removal at 

70%.  
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Table 2-1: Filter materials and percentage of mineral removal 

Author 
Filtration 

type 

Percentage of the removal % 

TN Heavy Metal P NH+
4 NO-

3 TSS 

(Shilton et al., 2005, Ugurlu 

and Ozturkcu, 2018) 

Limestone - - 64 - 74 - 

(Davis et al., 2001) Sandy loam  65-75 92 80 60-80 <10 - 

Bolan, (2004) Pine bark 35 - 98 64 - 72 

(Fletcher and Deletic, 2007) Bio-filters  70 96 80 - - - 

(Strategy, 2014), 

(Healy et al., 2007) 

Sand  61 - - - - 80 

(Nick, 2018) Compost  - 74 59-65 <20 <20 99 
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Bolan et al. (2004) used a survey to assess the various costs of filtration methods and 

found that the greatest proportion of the cost comes from the replacement of filtration 

materials (tree bark) in the farm scale after saturation. This means that installation of 

the filtration material and maintenance of the filters are the most costly portions of this 

method, while the feedstock is comparatively inexpensive. At the same time, a 

saturated porous material with nutrients can be separated and reused on the farm as a 

soil amendment for slow releasing of nutrients. 

Le (2017) stated that using activated carbon (AC) as a filtration material to adsorb 

contaminants increases the cost of the filter system. Sand filtration requires 8 

cents/kWh to operate an entire filtration facility with electricity using Environmental 

Protection Agency (EPA) calculations as a guide (Ko et al., 2004). For a sand filtration 

facility with a capacity of 3785 m3/day, the total capital cost is $2.3 Million AUD. This 

cost consists of land, equipment, tank installation and construction, but not the periodic 

annual maintenance cost ($146,230.0 AUD). In terms of energy consumption, Ko et 

al. (2004) indicated that 2.1 TJ was required to operate and maintain the sand filtration 

facility for one year. While the embodied energy consumption of one year’s operation 

of a biological filter plant with a treatment capacity of 200 m3/day, is around 159.4 GJ 

(Shao et al., 2013). Membrane bioreactor (MBR) is another sort of filtration 

technology and has two types of submerged and side-stream MBR (Howell et al., 

2004). Submerged MBRs are more popular than side-stream, because they require a 

low energy consumption rate of 0.2-0.4 kWh/m3. Furthermore, the operating cost of 

the MBR technique with AC is $2.15 AUD per 1000 gallons treated solution 

(Conservation, 2007).  
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 Aeration 

Another method for treating agriculture runoff is aeration which was applied in 

conjunction with CW to enhance the ability of the latter to remove contaminants from 

runoff (Uggetti et al., 2016). Aeration is a process in which air is fed into the water in 

the form of bubbles to remove dissolved gasses or oxidise dissolved metals and organic 

matter (Boyle, 2002). Aeration was first used in 1882 in England with perforated tubes 

and pipes, and was then developed gradually by Arden and Lockett during 1914 to 

cover critical factors such as bubble size, placement of air flow, gas flow rate and 

surface contact between air and water that could influence aeration efficiency (Martin, 

1927). It has been implemented in most countries around the world such as the United 

States of America, New Zealand, Spain, United Kingdom, Canada, Australia and 

China.  

Aeration can be used to remove some nutrients from water through nitrification. For 

example, applying aeration to a hydroponic bed with a diffusor at the bottom of the 

bed can minimize N2O emissions by around 50%, while reducing TN by 24.1% and 

having no change to NO-
3−N concentration (Zou et al., 2017). The oxidation efficiency 

of NH+
4 in aerated CWs relies on the concentration of dissolved oxygen applied to the 

bottom of the soil surface in CW. Figure 2-3 shows the two commonly used types of 

aeration configurations i) continuous and ii) intermittent. Uggetti et al. (2016) 

identified that, in the intermittent configuration, flow is typically set at a minimum 

limit of oxygen concentration so it can be controlled when the oxygen level drops 

below the required level, while the continuous relies on providing oxygen 24h through 

a specific compressor. The intermittent configuration reduces the cost of the aeration 

process, while with continuous configuration, the oxygen level may exceed the limit 

needed (Labella et al., 2015). 
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Although aeration system can efficiently remove suspended solids and carbon from 

farm effluents (Bolan et al., 2004), it is inefficient for nutrient (N, P and K) removal. 

The reduction of nitrate achieved through the intermittent aeration process may lead 

to the volatilization of ammonia to the atmosphere due to physical agitation and the 

nitrification activity (Jamieson et al., 2003, Chance and White, 2018). Denitrification 

can occur during an intermittent aeration technique. While aeration is suspended, it 

eventually transfers nutrients from agricultural runoff to gaseous nitric oxide (NO) and 

nitrous oxide (N2O) which, in turn, volatiles to the atmosphere. Therefore, the 

technology merely changes the problem from water pollution to air pollution 

(Greenhouse effects) (Haustein, 2014, Tallec et al., 2008). Other contaminants such as 

carbon are oxidised to carbon dioxide, then released into the atmosphere causing 

greenhouse gases (GHG). This technique is also high cost due to installation, pumping, 

and maintenance. It may also cause the loss of soil nutrients (Ouellet-Plamondon et 

al., 2006, Wu et al., 2014). 

Aeration can remove some ions, such as iron and manganese, through oxidation 

(aeration) or by adding some chemical oxidants (e.g. chlorine) which are then filtered 

Figure 2-3: Aeration types based on Uggetti et al. (2016) 
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through adsorptive media (Blanchfield, 2011). Ouellet-Plamondon et al. (2006) stated 

that this method has a capability to remove 95% of Total Suspended Solids (TSS) 

during any season in planted and unplanted units, while COD removal in Winter for 

non-aerated mesocosms are less than Summer for both plant and unplanted units. In 

terms of Total Kjeldahl Nitrogen (TKN), which is the sum of NH3 and Organic 

Nitrogen, artificial aeration can improve the removal for unplanted more than planted 

units in Summer and Winter. Even though removal by aeration for the unplanted unit 

is higher than the planted unit, additional aeration did not replace the absence of the 

plants. Intermittent aeration improves the removal efficiency of ammonium-nitrogen 

(NH+
4−N) and organic pollutants and, at the same time increases TN removal through 

aerobic and anaerobic actions (Wu et al., 2015). Furthermore, this technique has a high 

percentage removal such as 96% of organic pollutants, 98% of NH+
4−N and 85% of 

TN at any influent rate. 

Uggetti et al. (2016) measured both components of the aeration methods (full and 

intermittent) and found that the intermittent type is more reliable and cost-effective 

than the continuous type. Comparing energy consumption between full and 

intermittent, intermittent was found to reduce power usage by seventy-fold for the 

same compressor power. Intermittent consumes less energy, has lower operating costs, 

use less time and maintenance, and produces higher efficiency in ammonium, TN and 

organic matter (chemical oxygen demand (COD)) reduction due to its ability to create 

suitable conditions for nitrification and denitrification (Zhou et al., 2018). Uggetti et 

al. (2016) calculated that the energy consumption for 24h continuous aeration with a 

1.5 kWh compressor is 13.6 kWh/m2.d, while the intermittent aeration required 8 

pulses per day, which means 20 minutes of aeration per day, and the power usage is 

0.18 kWh/m2.d. Removal efficiency increases with increasing temperature because it 

may enhance the dissolved organic matter removal measured by COD and DOC from 

2 to 13% (Labella et al., 2015). Nitrogen and phosphorous removal is affected by a 

positive relationship with increasing temperature due to microbial reactions such as 

nitrification, denitrification and organic matter decomposition which respond 

positively to higher temperatures, while TKN removal is slightly increased at a low 

temperature and NH+
4 removal is practically constant  (Stefanakis and Tsihrintzis, 

2012). The pH values slightly change in the artificial aeration bed regardless of the 
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existence of plants and the season, while they may change dramatically in non-

artificial beds (Zhang et al., 2010). 

An aerobic bio-filter’s expected working lifetime is five years before renewal for 

phosphorus removal (Heistad et al., 2006). Daily inspection and maintenance is 

required to prevent any clogging of the aerated pond’s the diffused air system (blower 

and pipeline) which provides air to the bottom of the pond (U.S.EPAgency, 2011). 

 

 Other techniques (Algae and Woodchips) 

Algae can be used to treat agricultural runoff, agro-industrial waste and human 

wastewater. Algae are a diverse and complex group of photosynthetic organisms, like 

Chlorella and (Lee, 2008). Abdel-Raouf et al. (2012) stated that using algae as a water 

treatment method started 75 years ago, especially in developed countries such as 

Australia and the USA. Algae grows rapidly, with the availability of sunlight and 

water, can convert CO2 lipids through photosynthesis. Through the same process, algae 

convert nutrients such as N and P (available in farm water) to a complex organic 

structure (Lannan, 2011). Abdel-Raouf et al. (2012) consider algae an efficient means 

of removing N and P within one hour because they have the capability to use N and P 

to grow and remove toxic organic components as well as heavy metals so these cannot 

create secondary pollution. Figure 2-4 demonstrates the dense algal bloom growth 

along the shallow shoreline under the correct conditions of sunlight, excess runoff 

caused by rainfall, runoff in which industrial and urban waste can wash some nutrients 

from fertilizers (N, P, K) into water system  (Roberts, 2008). In January 2019, the mass 

mortality of cultured fish in the Lower Darling River in NSW in Australia was caused 

by natural events. High temperatures can reduce dissolved oxygen levels, especially 

in summer, along with some algae and acidic runoff leading to fish death events 

(MDBA 2019). 
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Hence, some studies propose the use of a paddle wheel (raceway ponds) in the closed 

loop raceway channel to help keep the water moving all the time and prevent 

sedimentation, as illustrated in Figure 2-5 A and B (Chisti 2007; MOANA 2016).

Figure 2-4: Algal blooms pond (Roberts, 2008) 
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(A) (B) 

 

The benefits of using algae to treat water contamination is their rapid growth and high 

nutrient removal within a short period. Some researchers at the Rochester Institute of 

Technology named the algae treatment process as double green because it removes 

NO3, PO4, and some toxic substances from water and, at the same time, the grown 

algae can be used to produce biofuel (Gawlowicz, 2011). However, Abdel-Raouf et al. 

(2012) highlighted some drawbacks of using algae for treating agricultural runoff such 

as the dependence of the treatment on the type of nutrients, operating cost and bacterial 

decomposition of dead algae. The bacteria use oxygen for decomposing dead algae 

and release toxic and odorous compounds (Srivastava et al., 2013).    

Algae can treat agricultural runoff from toxic minerals such as lead, arsenic, cadmium, 

and it is also capable of removing BOD and COD,  some nutrients (e.g. N, P) and 

heavy metals (Kumar and Gaur, 2011). Lannan (2011) reported the removal of nitrate 

by 71.4%, ammonia by 81.3% and phosphate by 82.6% within three days of algae 

growth. 

Figure 2-5: (A) Raceway of algae pond grown area based on (Chisti 2007). (B) Paddlewheel within 

the flow-way (MOANA 2016) 
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The availability and quick growth of algae make this method attractive for treating 

agricultural runoff. However, the high cost associated with removing algae using 

screening/filtration and pumping are serious concerns to be considered (Rickert and 

McShane, 2015). The capital cost of a station including earthworks for pond 

construction, paddlewheel mixing and pH controlled CO2 addition, is $ 17.03 AUD 

/m2 (Craggs et al., 2012). 

Some factors affect nutrient removal, such as a higher initial algae density expected 

for a better removal rate. Abdel-Raouf et al. (2012) conducted a study that may lead 

to self-shading and minimising photosynthetic efficiency. The US EPAgency (2011) 

reported that the most effective and active algae for water treatment grows in water 

between 30-35oC. Craggs et al. (2012) showed that reducing pH to the level of less 

than 8.5 by adding CO2 to wastewater treatment, may boost nutrient removal through 

increased algal production. Algae may affected by light and dark photoperiods which 

are required for maintenance because some of them might die with a long light period 

(Andersen, 2005). Unsuitable light: the dark system may impact negatively on the 

algae’s growth. For example, most algae required 12:12 to 16:8 hours light: dark per 

day to stay active. Harvesting is the most important part of maintenance; recovering 

the small cell sized algae (0.2-30 µm), may cost consume 20-30% of the total biomass 

production costs (Christenson and Sims, 2011).  

Another technique for treating agriculture runoff is solid materials such as woodchip 

(Christianson, 2016). Woodchip is considered a relatively new method for removing 

NO-
3 -N from agricultural runoff as it was implemented not more than 20 years ago. 

The technique is still under testing, so there is no proof that the method has the 

capability of working under different circumstances for a long time with the same 

efficiency as other methods (Hoover et al., 2016, von Ahnen et al., 2016). This process 

is applied by filling a large groove between the farm and the drainage tail with 

woodchip and running the water through the gutter. This method has been 

implemented in some European countries, the USA and New Zealand. 
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Figure 2-6 A shows a conventional and controlled drainage with wood chips structure 

to control the farm flow before the disposal of the water back to the river system in a 

schematic. Figure 2-6 B illustrates a real farm field and how to prepare the woodchips 

layer to treat farm water before discharging to the river system.  

 

  

(A) (B) 

 

This method has some benefits such as low-cost of active materials due to the 

abundance of woodchip, high carbon-nitrogen ratio, high sturdiness, and simplicity of 

operation and maintenance (Lopez-Ponnada et al., 2017, Meffe et al., 2016). The 

position of woodchip bioreactors  at the edge of the farm is another advantage of this 

method as it takes less area from the farm and doesn’t affect the yield (Christianson 

and Helmers, 2011). However, Christianson and Helmers (2011) highlighted some 

drawbacks to using woodchip reactors to treat agricultural runoff such as colouring the 

treated water due to the leach of organic materials from the wood (Rambags et al., 

2016). There is also the risk of producing toxic organic-heavy metal complexes such 

as methylmercury or odorous gases such as hydrogen sulphide gas. Another 

disadvantage of the woodchip method is the production of GHG such as nitrous oxide 

from the denitrification process. These negative effects might be alleviated through 

flow monitoring and on-line measurements of C and N concentration in the water, but 

this may make the method a costly option for treating agricultural runoff. 

Figure 2-6: (A) Schematic of wood chips bioreactor (Van Driel et al., 2006). (B) Wood chips bioreactor 

in field scale based on Christianson (2016) 
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The woodchip method could also remove nitrate and phosphorous and some microbes 

and viruses from farm flow runoff (Rambags et al., 2016). Nitrate is removed by the 

woodchip bioreactor through denitrification (Moorman et al., 2010, Robertson, 2010). 

The average nitrate removal rate using woodchip was reported to be around 18.9 

g/m3/d1 and it decreases with increasing effluent, while P removal is much less at about 

0.89 g/m3/d (Hua et al., 2016).  

It is considered an economical way to remove nitrate and other contaminants from 

agricultural runoff, due to the availability of active materials. However, this relies on 

the type of active elements. For example, Wildwood media has a long working life of 

around seven years with around 40% effects (Robertson, 2010), while wheat straw has 

only a half-year working life (Saliling et al., 2007). A study done for six bioreactors at 

Iowa University (in the USA) reported that the total installation cost for each 

bioreactor is between $5,345.0 AUD and $14,390.0 AUD, including the structure, 

contractor, woodchips and supplies (Christianson, 2011). The cost range for each 

hectare is $240.0 AUD/ha to $715.00 AUD/ha and, in terms of the efficiency of N 

removal, the range is between $1.1 AUD/kg N to $5.75 AUD/kg N removal. Lopez-

Ponnada et al. (2017) stated that nitrification can be affected by low temperatures and 

low alkaline levels that will impact TN removal and NH+
4. Christianson (2011) 

reported that there is annual maintenance for the bioreactor and the control structures 

which must be replaced every eight years. For example, a bioreactor with 13m L × 

1.2m W × 1.1m D is able to remove 11.3 kg N yearly from agricultural run-off. This 

denitrification bioreactor system can continue for 15 years, but there is no clear study 

regarding the long life of NO-
3 removal (Schipper et al., 2010).  
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 Biochar (BC) filtration  

BC is defined as an organic material carbonised under thermochemical conversion 

with no or little oxygen to produce a porous carbonaceous solid material which is 

suitable for the storage of carbon for a long time and use as a soil amendment 

(Shackley et al., 2010). BC use dates back 2500 years to civilisations in the Amazon 

Basin of South America, especially in regions called terra-preta, which in Portuguese 

means black land, because they have high fertility and high concentrations of organic 

matter (charcoal) (Glaser et al., 2001). Plant and animal residue were burned and 

buried in pits so very little oxygen can enters the process. It can also be found in 

smaller quantities in other soils around the world due natural vegetation fires (USBI, 

2016). From these ancient methods, scientists have developed the technology of 

producing BC from plant waste and animal bone under similar low oxygen conditions 

(pyrolysis) to obtain a better quality of BC. Carbonized biomass that possesses low 

oxygen and high carbon content can be an ideal starting biomass for BC production 

(Macdonald et al., 2015). BC is considered to be a multifunctional material. It can 

mitigate GHG (Bolan et al., 2012), improve soil fertiliser uptake (Awad et al., 2012), 

sequester carbon  (Joseph et al., 2009), and filter and remove contaminants from water 

(Ahmad et al., 2012). BC can also be used to immobilize bacteria as a high sorbent to 

remediate polluted soil with organic contaminants which is called the immobilized 

microorganism technique (Zhang et al., 2013).  

Figure 2-7 demonstrates the different absorption mechanisms of BC such as a potential 

to absorb, oxidise and retain nutrients due to its porous nature (Bornemann et al., 

2007). BC can be used as a sorbent char or soil amendment capturing nutrients such 

as Nitrogen (N), Phosphorus (P) and Potassium (K). The potential of BC for such uses 

is attributed to its cation exchange capacity (CEC), porosity, specific surface area, pH, 

redox reactivity, functional groups and acid neutral capacity. The increased charge 

density per unit area typically causes an increase in CEC on the BC surface and this 

leads to an increase in the oxidation of the surface and an accompanying increase in 

the adsorption of cations (Atkinson et al., 2010).  

There is an abundance of functional groups, on the BC surface, that can provide 

electrostatic attraction, ion-exchange and surface complexation effects with heavy 

metals and other organic materials (Tan et al., 2015). For example, the mechanism of 
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Cr (VI) adsorption using BC takes place through three pathways: (i) positive charge of 

BC surface attracts negative species and vice versa (Qiu et al., 2008), (ii)  hydrogen 

ions bonds with electron donors from BC and (iii) converted species such as 

Chromium (Cr) from Cr (VI) to Cr (Dong et al., 2011). The third is divided into two 

parts: one released into the medium and the other complexed with the functional 

groups on the surface of the BC. The micropore structure of BC surfaces can facilitate 

adsorption through pore-filling effects without the formation of chemical bonds (Han 

et al., 2013, Inyang et al., 2014) allowing the adsorption of organic pollutants, such as 

phenol and methylene blue, from agriculture runoff. 

Precipitation is another BC mechanism that removes heavy metal which may occur 

under a high pH. The minerals react with the BC surface through metallic ions and 

form insoluble metallic precipitation (Inyang et al., 2016).  

BC characterisation relies on many factors such as feedstock source (Corn Stover, 

animal litters, Woodchips, poultry manure, Bagasse and hardwood), processing 

temperature, pyrolysis type, heat transfer and residence time in the kiln. BC can be 

produced through different pyrolysis processes such as conventional pyrolysis, fast 

pyrolysis, gasification, hydrothermal carbonization, torrefaction and rectification 

processes (Mohan et al., 2014). Traditional pyrolysis (slow pyrolysis) was used 

thousands of years ago and is still performed using a similar method which starts with 

the heating of biomass in moderate temperature rising to around 500°C with a lack of 

air for a long residence time of hours to days. Fast pyrolysis relies on the quick heat 

transfer of dry feedstock with rapid increases in temperature of up to 1000°C for 1-5s 

of vapour residence (Lima et al., 2010). An alternative technique to traditional 

carbonization is hydrothermal carbonization (HTC) which can convert the biomass to 

char and this occurs underwater at moderate temperature (130-250°C) and pressure 

(10-30 bar) (Titirici et al., 2012). Torrefaction and rectification processes are used to 

produce BC between 230-280°C to create non-sorbent BCs. In general, the presence 

of many types of functional groups on the surface of any BC depends on the particular 

pyrolysis process, temperature and pH of the solution which can be specified through 

CEC assessment (Harvey et al., 2011). Gasification is another BC production method. 

In the gasification method, there is a relatively small amount of BC produced with 

85% of gas yield and only a small amount of biomass combustion in an oxidising 

atmosphere (Higman and Burgt, 2008). For instance, high temperature (>550°C) and 
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slow pyrolysis for macadamia shells can produce highly effective BC and high 

Brunauer– Emmett– Teller surface areas (>400 m2/g) (Tilman et al., 2006, Keiluweit 

et al., 2010). Gasification is probably the most attractive of the other BC producing 

methods as it has triple green effects: waste recycling, BC production and generation 

of useful gases. 

 

 

Figure 2-7: Different absorption mechanisms on biochar 

BC has many notable benefits such as cost-effectiveness being from cheap feedstock 

(waste), environmentally friendliness as it is produced with minimal oxygen and it 

does not release GHG.  Pyrolysis and gasification processes produce useful materials 

such as bio-oils and gases with high calorific values such as methane. As mentioned 

previously, BC has many important applications such as improving the retention of 

nutrients and water holding capacity (moister content) of the soil and carbon 

sequestration in the form of carbon dioxide (Macdonald et al., 2015). Talberg (2009) 

stated that BC could be produced using small or large units and this is another 

significant benefit. The carbon in BC stays stable longer than the raw material itself, 
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because of the steady aryl structures formed during the pyrolysis process. They 

increase the lifetime of macadamia biochar (MBC) for 1000s of years and this 

highlights its potential for reuse several times (Burns, 2014). BC can be used as a 

perfect adsorbent due to its high surface area and C content that is rich with functional 

groups and CEC (Zhao et al., 2018). BC has a few drawbacks mainly related to its use 

as soil amendments as it may negatively impact the denitrification process due to its 

high C: N ratio (Strock et al., 2017). Also if applied BC to the soil with lack of N 

supplied that will immobilize N and affect negatively on the crop productivity(Shareef 

and Zhao, 2016). 

MBC can effectively remove N-nutrients in the form of NO-
3, NO2, N2O and NH+

4 

(Major et al., 2010) and P-nutrients, minimize Aluminium (Al) (Steiner et al., 2008), 

sequesters C (Lehmann, 2007) and absorb CO2 (Sohi et al., 2010, Spokas et al., 2012), 

and decrease Copper (Cu) (Ippolito et al., 2012). MBC can also absorb some ions due 

to ion exchange such as Potassium (K), Calcium (Ca), Magnesium (Mg) and Sodium 

(Na) (Wrobel-Tobiszewska et al., 2017). Kumar (2017) suggested that MBC (as a 

carbon source) can minimise iron oxides (FeO) to metallic iron (Fe), which is 

considered a sustainable and cleaner output of iron. The reaction equations are: 

 

3Fe2O3(s) + C(s) ↔ 2Fe3O4(s) + CO (g)                                         (1) 

Fe3O4(s) + CO (g) ↔ 3FeO(s) + CO2 (g)      (2)  

C(s) + CO2 (g) ↔ 2CO (g)       (3)   

FeO(s) + CO (g) ↔ Fe(s) + CO2 (g)                       (4) 

 

It can also remediate organic and inorganic contaminants organic pollutants can be dye 

pollutants from the dye industry, Phenols, solvents, miscellaneous and pesticides. 

Inorganic pollution can be divided to (Abdel-Raouf et al.) cations, anions such as 

Chromium (Cr), Copper (Cu), Lead (Craggs et al.), Cadmium (Cd), Mercury (Hg), 

Iron (Fe), fluoride (F), Zinc (Zn), and Arsenic (As) ions. 
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BC seems to be the most cost-effect technique for treating agricultural runoff, or any 

contaminated water for that matter. BC is produced from waste materials and this saves 

the cost of handling waste. In addition, the processes through which BC is made, 

produce other useful products such as methane gas and oils. Kumar (2017) reported 

that MBC could be used as a carbon resource to reduce the use of fossil-fuel in iron-

making factories which are a renewable, environmental and sustainable resource. BC 

also has a long working life that allowing reuse for many applications such as filtration. 

Figure 2-8 shows how around 50% of the pyrolysis biomass can be returned to the soil 

as an amendment in the form of biochar, while the remainder can produce energy 

through gas capture.  

 

 

 

Nowadays, an activated BC is considered to be an effective alternative material to AC 

because of its capability to adsorb different sorts of contaminants and its lower cost 

(Ahmad et al., 2014). The total cost of one tonne of BC production is around $346 

AUD, while commercial AC available at $2,110 AUD per tonne which means that it 

is six times the BC cost (Maroušek et al., 2017).  The main factors that may affect BC 

production cost are the raw feedstock prices (switch-grass $91 AUD/t, water oak wood 

$63 AUD/t and bio-solid 84 AUD/t (Alhashimi and Aktas, 2017)), power energy for 

the kiln (electricity $0.17 AUD/kWh), pyrolysis temperature and time, and the 

Figure 2-8: Pyrolysis biomass to produce biochar (Lehmann 2007) 
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percentage of BC production (Li and Chen, 2018). Also, Alhashimi & Aktas (2017) 

compared the rate of energy demand and potential global warming impact between the 

BC and the AC, and calculated per 1 kg production as 6.1MJ/kg and 97 MJ/kg 

respectively, while the average greenhouse emissions (calculated by converting their 

emission to the equivalent amount of CO2) were calculated to be 0.9 kg CO2eq/kg for 

BC and 6.6 kg CO2eq/kg for AC. 
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 Overall evaluation of available treatment technologies   

In this section, overall evaluation is developed for treatment technologies taking into 

consideration important factors such as cost/energy of operation, removal capability, 

maintenance capability, regeneration and working lifetime. In recent years, scientists 

have focused on some factors that may impact the feasibility of agricultural runoff 

treatment techniques. The most important factors are cost, environmental effect, 

efficiency and sustainability respectively (Chong et al., 2010, Gómez-Pastora et al., 

2017). 

In terms of the cost/energy factors for the CW method, O'Geen et al. (2010) and Tanner 

& Kadlec (2013) stated that land and constructions is the major portion of total cost at 

around $60,870.0 AUD/ha for small scale, and the maintenance twice a year at about 

$102.26 per ha per year. Energy consumption studies are small in number but different 

systems have been shown to have low energy consumption (Zhang et al., 2009). In 

addition, it has a high capability to remove pesticides from agriculture runoff but a low 

capability for NG removal as Ballantine and Tanner (2010) stated. Knowles (2012) 

calculated that CW also has a long lifetime (about 25 years) but it requires regeneration 

every eight years which may cost around $90,000.00 AUD for 300 m2. 

For the filtration method, the EPA reported that a sand filtration facility with activated 

carbon adsorbent with a capacity of 3785 m3/day may cost around $2 M AUD for land, 

construction and materials. Ko et al. (2004) stated that the facilities required 8 cents 

for each kW/h energy to operate the system and it consumed around 2.1 TJ to operate 

and maintain the facility over one year. 

However, aeration can increase CWs oxygenation capacity and improve its 

performance. Wu et al. (2014) reported that this will increase operation and 

maintenance costs. Craggs et al. (2012) stated that the capital cost of the station 

including earthworks for ponds construction, the paddlewheel mixing and pH 

controlled CO2 addition is $ 17.03 AUD /m2. While, Christianson (2011) found that 

the cost range for each hectare is $240.0 AUD to $715.00 AUD including the structure, 

contractor, woodchips and supplies. 

In BC’s case, Maroušek et al. (2017) analysis found that the production of one tonne 

is around $346 AUD, while commercial AC is available at $2,110 AUD, which is six 
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times the BC cost. In addition, around $50 AUD per tonne as direct revenue can be 

obtained from selling the heat produced through the pyrolysis process due to synthesis 

gas (Meyer et al., 2011). 

For the maintenance of CWs, dredging and cleaning the media due to the 

sedimentation and harvesting every six months can be fairly costly. For the filtration 

method, maintenance entails cleaning the tank and the whole media used as a filter 

after saturation due to clogging, and may also include digging up sediments settled in 

the basins (Myers, 2015). For the aeration method, maintenance includes daily 

inspection of the aerated ponds to prevent any clogging of the diffused air system 

(blower and pipeline) which provides air to the bottom of the pond (US EPA 2011). 

This maintenance is high cost and requires continuous monitoring of the entire system 

and may cause loss of soil nutrients. Harvesting is the most important part of 

maintenance to recover the small cell size of algae (0.2-30 µm), which may cost 20-

30% of the total biomass production costs (Christenson & Sims 2011). For wood chips, 

the low maintenance requires once a year nutrient removal which results in low cost 

(Choudhury, 2017). However, using BC as a filter to reduce nutrients, requires 

minimum maintenance and low cost for a long period of treatment due to BC behaviour 

and material (from waste) replacement cost if required and backflushing for reuse.  

CWs have a high ability to remove pesticides, biological oxygen demand (BOD) and 

chemical oxygen demand (COD), but are inefficient at removing N and P nutrients. 

Xiong et al. (2011) found that CW can help to remove about 35% nitrate, 50% 

ammonium and 55% TN through nitrification and denitrification. An aeration system 

can efficiently remove suspended solids and carbon from farm effluents (Bolan et al., 

2004) but it is inefficient for nutrient (N, P and K) removal. Algae can treat agricultural 

runoff from toxic minerals such as lead, arsenic, cadmium, and it is also capable of 

removing BOD and COD,  some nutrients (e.g. N, P) and heavy metals (Kumar and 

Gaur, 2011). Lannan (2011) reported the removal of nitrate by 71.4%, ammonia by 

81.3% and phosphate by 82.6% within three days of algae growth. The woodchip 

method can remove nitrate and phosphorous and some microbes and viruses from farm 

flow runoff (Rambags et al., 2016). However, MBC can effectively remove N-

nutrients in the form of NO-
3, NO2, N2O and NH+

4 (Major et al., 2010) P-nutrients, 

minimize Aluminium (Al) (Steiner et al., 2008), sequester C (Lehmann, 2007) and 

absorb CO2 (Sohi et al., 2010, Spokas et al., 2012), and decrease Copper (Cu) (Ippolito 
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et al., 2012). MBC can absorb some ions due to ion exchange such as Potassium (K), 

Calcium (Ca), Magnesium (Mg) and Sodium (Na) (Wrobel-Tobiszewska et al., 2017). 

Kumar (2017) suggested that MBC (as a carbon source) can minimise iron oxides 

(FeO) to metallic iron (Fe), which is considered a more sustainable and cleaner output 

of iron. BC, after saturation can be used as a soil amendment with useful nutrients. 

Based on the evaluation of the common techniques for nutrients removal provided 

above, it is fair to state the biochar treatment technology is identified as the most 

feasible option for treating agricultural runoff in terms of the considered factors 

compared to the other techniques. Gómez-Pastora et al. (2017) determined that the 

important factors for treatment techniques should include environmentally 

friendliness, low cost (originally from waste), high efficiency and sustainability. 

 

Table 2: Advantage and disadvantages of different treatment methods 

No. Treatment 

Type 

Advantage Disadvantage 

1 
Constructed 

wetland 

High capability to remove 

pesticides from non-point 

pollution agricultural runoff. 

Cannot entirely remove NG 

from agricultural runoff. 

Convert nitrogen group into 

various N forms. 

Odor & mosquito production. 

High ability to remove biological 

oxygen demand (BOD) and 

chemical oxygen demand (COD). 

High maintenance, large land 

requirements and high 

installation cost. 

2 Filtration 

High reduction of BOD, 

suspended solids and pathogens. 

Requires expert design and 

construction, particularly and 

require maintenance. 

Ability to nitrify due to good 

oxygen transfer. 

Lack of ability to remove 

dissolved fluids. 

Low operating costs. Inefficient in removing 

nitrogen group. 

3 Aeration 

Aeration can minimize N2O 

emissions and reducing total 

nitrogen. 

Lack of ability to remove NO-

3−N concentration. 
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Efficiently remove suspended 

solids and carbon. 

Inefficient for nutrient (N, P 

and K) removal. 

Has a capability to remove 95% 

of Total Suspended Solids (TSS). 

High cost due to installation, 

pumping, and maintenance. 

4 Algae 

Convert nutrients such as N and 

P to a complex organic structure. 

Harvesting of dilute cultures. 

Remove heavy metals Control problem in open pond. 

CO2 emissions reduction. Light availability is a major 

factor affecting microalgal 

performance. 

5 Woodchip 

Low-cost of materials due to the 

abundance of woodchip. 

Colouring the treated water due 

to the leach of organic 

materials. 

High carbon-nitrogen ratio. Risk of producing toxic 

organic-heavy metal complexes 

such as methylmercury. 

Simplicity of operation and 

maintenance. 

Produce of GHG such as 

nitrous oxide from the 

denitrification process. 

 

6 BC 

Cheap feedstock from 

macadamia nutshell waste  

Applied BC to the soil with 

lack of N supplied that will 

immobilize N and affect 

negatively on the crop 

productivity 

Environmentally friendliness as it 

is produced with minimal oxygen  

Sorption of pesticides and 

herbicides by the biochar can 

reduce their efficacy 

Improving the retention of 

nutrients, moister content and 

carbon sequestration in the form 

of carbon dioxide. 

The fine ash associated with 

biochar is the perfect source for 

dust, posing a risk for 

respiratory diseases. 
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2.4 Agricultural runoff 

Agricultural runoff and its contaminants, such as salts and nitrates, are one of the main 

problems that affect freshwater quality (United States Environmental Protection 

Agency, 1994). Agricultural runoff is the surplus water from farms after the irrigation 

or other activities. This water comes from different sources such as rain, melting snow 

and irrigation, and some of this water finds its way into surface water and eventually 

into groundwater. It can carry some pesticide and fertilizer residue while it is moving 

along the soil surface and can pollute the water that it comes into contact with by 

adding contaminant loads in the form of soil particles (suspended particles), dissolved 

organic,  nutrients or salts (e.g. NO-
3 and NH+

4) (Town, 2017). Many methods can be 

used to treat water from these contaminants, for instance CWs, filtration and aeration. 

CWs is an artificial engineering design with specific elements such as soil and 

vegetation that sequester pesticides from the runoff. The design of CW depends on 

pesticides to be treated (Vymazal, 2007). The plants growing in CWs have a major 

role in removing contaminants and oxidizing ammonium to nitrate as shown in the 

equation below: 

NH+
4 + 2O-

2 ⇒ NO-
3 + 2H+   + H2O                 (5)  

 

According to Vymazal and Březinová (2015), once a year nutrient removal CW has 

been considered to be an effective method to remove pesticides from agricultural 

runoff and drainage but, it is high cost and inefficient for removal of the urea group 

(NO-
3 & NH+

4) and NaCl. Another method for treating water is aeration which has 

been applied in conjunction with CW to enhance the ability of the latter to remove 

contaminants from agricultural runoff (Uggetti et al., 2016). There are two types of 

aeration i.) continuous and ii.) intermittent. The oxidation efficiency of NH+
4 in aerated 

CW relies on the concentration of dissolved oxygen applied to the bottom of the soil 

surface in CW. The intermittent strategy is set at a minimum limit for oxygen 

concentration so it can be controlled when the oxygen level drops below the required 

level and this, in turn, reduces the cost of the aeration process. With the continues 

strategy, the oxygen level can exceed the required limit (Labella et al., 2015). 
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Filtration is another method that can be used to treat agricultural runoff. The 

application of filtration dates back to 4000BC in ancient Greek and India. These 

civilisations were more concerned about the turbidity of water, contaminants and 

microorganism in the water (Engineers, 1985). They used a basic method of filtering 

the water through sand and gravel and boiling it. This method is still in use, but with 

new materials that have a higher capacity for removing contaminants. One common 

example of these filters is the multilayer filter. Each layer is responsible for removing 

specific contaminants (suspended or dissolved) (Färm, 2002a). 

 

2.5 CDI techniques 

CDI is an electrochemical technique for removing contaminants from water. This 

technology started in the 1960s and the scientists have continued to work on it up to 

the 1990s when they began to use carbon with it to enhance the ability of carbon (high 

surface area and high porosity) to adsorb contaminant ions (Suss et al., 2015).  This 

method requires two electrodes with different charges (positive and negative) on 

opposite sides while the water flows between the two electrodes. DC voltage applied 

across the two electrodes (work like capacitor plates) in a CDI cell. The anions 

(negatively charged ions) are attracted to the cathode (positive electrode), whereas the 

cations (positively charged ions) are attracted to the anode (negative electrode) 

(Anderson et al., 2010). CDI technology can also solve the salinity problem in water 

in the range of 800–10,000 mg/L. Many technologies can be used to remove 

contaminants however, most of them are relatively expensive in comparison to CDI. 

For instance,  reverse osmosis and electrodialysis need about 2.25 Wh/L (8.5 Wh/gal) 

and 2.03 Wh/L (7.7 Wh/gal), respectively, while CDI requires only 0.13–0.59 Wh/L 

(0.5–2.25 Wh/gal) (Welgemoed and Schutte, 2005). CDI was found to improve the 

capability of BC adsorption for NG in agricultural runoff (Shi et al., 2016).  It also can 

be used to regenerate filters after the electrodes are saturated with contaminants by a 

reverse charge. Then the filters are flushed with clean water. Figure 2-9 describes how 

the CDI technique works. 
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Figure 2-9: Schematic of CDI technique 

CDI is a novel technology used for different water treatment applications, but mainly 

desalination with different forms of carbon electrodes such as conventional, porous-

carbon and graphene (Ahmed & Tewari 2018). It considered to be a better technique 

than other existing technologies such as reverse osmosis with regard to ion removal 

efficiency, environmentally friendliness and energy consumption. In addition, the 

possibility of energy recovery through the CDI desorption operation is the most 

attraction feature for this researcher.  
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2.6 Regeneration  

Regeneration may help filters remove more nutrients from contaminated water during 

the second cycle. Many techniques can be used to refresh filters such as the well-

known back-flush with clean water. This can remove some of the ions from the filters, 

but it is considered an inefficient method. Reverse polarity back-flush is another 

technique that can be used to remove contaminants from the column after saturation. 

This method can use one layer for CDI, although there are some ions that may reabsorb 

to the opposite electrode (Uzun and Debik, 2019). Scientists have improved this 

method by adding an ion selective membrane after each electrode to prevent the ions 

being adsorbed by the opposite electrode and vice versa. Tab water (TW) will be 

examined and compared with the DI.W as a practical alternative for nutrient recovery 

on farms. 

The conventional method for nutrient recovery, which is reverse polarity, has been 

excluded from this study because it uses multilayer column cells that will allow most 

of the ions to reabsorb at the opposite electrode during back-flush (Uzun & Debik 

2019). Instead of this method, this study will use a novel technique from World War 

ӀӀ (to reduce the magnetic signature of the ships) to recover nutrients (Kephart et al. 

2011). This technique was called degaussing and the name comes from the unit of 

magnetism (Sukow et al., 2010).  

In this study, we used a non-sinusoidal periodic waveform or pulse wave (square 

wave), similar to the degaussing technique because it can effectively dislodge absorbed 

nutrients with a constant frequency and equal duration between maximum and 

minimum. As shown in figure 2-10, a sample of square waves with duty cycles of Ton 

and Toff at frequency of 100Hz and VL at 1.2V is used to degauss nitrate from a 

saturated column. This technique can help to release the ions previously adsorbed in 

the chemical and physical mechanism.  
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vL

Ton Toff

 

Figure 2-10: Square waves with duty cycle of 0.5 (El Hawary, 1986)  
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2.7 Conclusions  

The literature pertaining relevant to treating agriculture runoff was critically analysed. 

The current methods for treating agriculture runoff such as CW, filtration and aeration 

were found to be inadequate for removing nitrate ions and expensive for construction 

and maintenance. This study proposes the use of a BC filter for removing nitrate ion 

as a part of nitrogen (N) compounds from agricultural runoff. N compounds were 

chosen in this study due to their abundance in agricultural runoff and their negative 

impact on surface and groundwater quality. Given the porous and chemically active 

structure of BC originally from waste, adsorption capability, interactions (electrostatic 

mechanism), significantly decrease runoff impacts, recovering nutrients at the same 

time for reuse in a cost-effective and environmentally friendliness manner without 

chemical substances use are the most important advantages for using BC in this study. 
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         CHAPTER 3  

 Biochar Characterisation and contaminant removal 

capability  

3.1 Introduction 

 

Different technologies for treating agricultural runoff, with a focus on nitrate, were 

critically reviewed in the previous chapter.  BC was found to be the most promising 

option for this treatment owing to its cost-effectiveness, being environmentally 

friendliness and its capacity to influence nutrient retention. Therefore, macadamia 

biochar (MBC) as a biochar (BC) module was chosen for investigation into its 

capability to minimise NO-
3 from agricultural run-off.  

In this chapter, the effect of MBC on the nitrates removal capability in synthetic 

samples scrutinized through batch and column experiments. The performance of MBC 

prepared at two different pyrolysis temperatures of 900 and 1000°C were investigated. 

The effect of the flow direction (upward and downward) on the removal efficiency in 

the column experiment was examined. The column experiments were used three NO-

3 concentrations with three levels of flow rate to determine the best removal 

parameters. The long-term performance of MBC was tested for a month.  Experimental 

design and statistical analysis were employed to ensure the repeatability of the 

experimental work.   
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3.2 Materials and Methods 

 Solution preparation  

A stock of synthetic solution was prepared by dissolving 135.4 mg Sodium Nitrate 

(M.W. =84.99, Analytical Reagent) in 1 L of distilled water to produce 100 mg/L of 

nitrate concentration (stock solution). This stock solution was prepared to save time, 

reduce storage space, conserve materials and improve the accuracy of the solution 

preparation and reagents (GHOSAL and AVASTHI, 2018). Three concentrations of 

5, 10 and 15 mg/L of nitrate were applied in this study. The concentration range was 

chosen to cover the minimum and maximum nitrate levels expected in agricultural 

runoff. In most parts of the world, for example China and the USA, the maximum 

nitrate concentration in many sites reaches up to 15 mg/L, while the lower limit is 

about 3-5 mg/L (Beutel et al. 2009; Lang et al. 2013). Another study of 360 stormwater 

sites around the USA reported that the median limit was around 14 mg/L (Ghane et al. 

2016). In addition, a report of the Department of Primary Industries  in Australia 

indicated that the suitable NO-
3 for most plants is less than 10 mg/L (NSWPrimefact, 

2014). This data informed the selection of concentration levels: a minimum level of 5 

mg/L and maximum level of 15 mg/L, and their midpoint of 10 mg/L. These were 

considered to be best levels for obtaining the most accurate results (Beutel et al. 2009).  

 

 Biomass preparation 

The feedstock was prepared from macadamia (Bauple) nutshell as a BC module due 

to its availability, affordability, being environmentally friendliness as it is a recycled 

product of agricultural waste, and having a high surface area compared to other shells 

such as pistachio, pecan, hazelnut and almond (Bae & Su 2013). Macadamia nutshell 

was placed into a stainless steel square container with lid 17.78W×16.51D×10.16H 

cm, then set it in a kiln (Rio Grande PMC Model #703-118). The kiln was programmed 

for the slow pyrolysis process under lack of oxygen conditions to drive the internal 

chamber to two temperatures 900 and 1000°C at a rate 600°C/h and holding time at 

the climax temperature for an hour before cooling down to room temperature. 

Macadamia nutshell normally loses about 65% of mass between 260-400°C due to the 

conversion to BC (Kumar (2017). Using higher temperatures to pyrolyse the biomass 
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has the advantage of reducing volatiles and obtaining more stable carbon with through 

a high surface area (Nick 2018). After pyrolysis was completed, MBC was cooled and 

later was gently crushed using a Weston hand grinder. The crushed MBC was then 

sieved through 1.18-2.30 mm sieve as this size range was found to be effective for 

sorption (Shackley et al. 2010). After that, the MBC, obtained from the above steps, 

was rinsed with distilled water for two hours to remove any impurities such as ash. 

Following this step, the BC was autoclaved at 121°C and pressure of 2.50 bars for 

steam sterilization using a Hirayama Manufacturing Corporation autoclave (Model 

HV-50L). The final product was then stored in plastic containers to be used in 

adsorption experiments. 

 

  Column preparation 

A plastic column with a height of 12.20 cm and an internal diameter of 3.85 cm was 

used for carrying out the column experiments. The column was rinsed with DI.W, 

sterilised with Ethanol (C2H6O). Circular fibreglass mesh was laid at the bottom of the 

column. The column was packed with 60 g of MBC prepared at 1000°C pyrolysis 

temperature based on preliminary experiments which will be explained later in Section 

3.3.1.1. Once the column was packed with the MBC, the top of biochar was covered 

with filter paper of 0.45 µm size to prevent MBC particles from leaving with the flow 

of the solution. The two ends of the column were covered with plastic caps and sealed 

with commercial silicon. The two caps had openings to accommodate the hosing of 

the feed and discharge lines as shown in Figure 3-1. 
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Figure 3-1: Schematic diagram of MBC column 
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 Analytical measurements 

 Morphology and elemental composition 

Scanning Electron Microscopy (Phenom SEM) JEOL (JCM-6000 Benchtop SEM) 

was used for visual comparison between the raw and pyrolysed macadamia nutshell, 

the structures, pore sizes and their distribution on the surface of the materials. SEM 

images were taken at around ×1000 magnification power, secondary electron image 

(SEI) in a chamber pumped to high vacuum mode around 10-2 pa pressure in ten 

minutes and accelerating voltage of 5 kV. 

 

 Functional groups  

Shimadzu 206-97505D/2015 Fourier Transform Infrared Spectroscopy (FTIR) was 

used to examine the BC structure at different conditions (pyrolysis temperatures and 

before and after adsorption). FTIR measurements were utilised to monitor the change 

in functional groups available on the BC surface as it is considered a sensitive tool for 

detecting any change that might happen in the composition of the functional groups on 

the surface of the biomass (Shen et al., 2010). Based on potassium bromide (KBr) and 

optics defined by  the FTIR, the average record spectra was chosen from the upper 

limit bands at 4000 cm-1 to the lower bands at 400 cm-1 (Coates, 2000). Each band 

number was assigned to a specific chemical band and could help in understanding the 

MBC removal mechanisms of nitrate. The applied FTIR measurement conditions were 

as follows:  % transmittance mode, no. of scans = 45, apodization is happ-genzel, and 

resolution of 4 cm-1. 

A 2 mg MBC sample was pulverized using a mortar and pestle and mixed with 200 

mg Potassium bromide (KBR) to 0.1 wt.%. The mixture was pressed into a pellet of 

15 mm inner diameter and 1 mm thick using manual a hydraulic press approximately 

8-9 kPa for 0.5 min (Yang et al., 2017). The pellet was then placed in the FTIR 

instrument for a scanning test. 
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 Ion Chromatography system (ICS-2000)  

An Ion Chromatography System ICS-2000 instrument was used to analyse nitrate 

concentration in the samples before and after treatment. ICS-2000 works on comparing 

the samples to a three points calibration curve applying the standard method 4110B 

(Dionex, 2006). Five millilitres plastic vials with filter cap (20 µm) were used for 

storing the samples. The results obtained from ICS in terms of NO-
3  ̶  N were converted 

to NO-
3 by multiplying by a factor of 4.428. 

 

 Kinetic experiments 

In this study, a batch experiment and a column experiment were used to check the 

adsorption capability of the BC. All experiments were conducted in triplicate and a 

blank sample (before adsorption) analysed as a reference for each test.  

For the batch experiment, 10 mL from the stock solution prepared in Section 3.2.1 was 

utilised with 90 ml of distilled water to obtain a 10 ppm nitrate solution. This 100 ml 

solution was placed in 250 ml Pyrex beaker with 1 g of MBC prepared at 900°C and 

another beaker for 1000°C at an initial pH of 5.5 and a temperature of 20.9°C to 

compare the two. The solution was stirred for 48 hours to obtain the best equilibrium 

contact time between the solution and MBC particles which estimate the maximum 

potential of the MBC for effective removal of nitrate. These experiments were 

conducted in triplicate and samples were collected at 5, 15, 30, 60, 120, 180, 240, 300 

and 360 minutes (Wang et al. 2017). Samples were filtered directly using a 0.45 µm 

paper filter to stop any reaction between the solution and MBC by removing any solid 

particles present in the samples. 

 

 Column experiment 

A plastic column prepared in Section 3.2.3 was used with the same procedure of 

cleaning, sterilising and the amount of the 1000°C MBC. After the column was packed 

with MBC, it was rinsed with DI.W several times until the leachate pH settled 

indicating that the column was clean and ready for the experiments (Inyang et al. 
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2013). This state of cleanliness also ensured that a minimal amount of elements would 

be released from the biochar. In this process, upward and downward flow through the 

column packed with 30 gm of MBC was utilised for preliminary experiments as will 

be explained later in Section 3.3.2.  

All of the experiments discussed below were conducted in triplicate to obtain the 

optimum nitrate removal concentration and flow rate per gram MBC and the results 

are displayed by the mean values. 20 litre sterilised plastic containers were used to 

carry the feed solution with three different NO-
3 concentrations (5, 10 and 15 ppm) and 

filtered solution. The feed was single-pass pumped into the column through silicon 

tubing at three different flow rates (2, 5 and 10 ml/min) using a peristaltic pump model 

MasterFlex model no. 7520-47, USA and ISMATEC ecoline Model ISM1076A, 

Germany. Samples were collected periodically at 5, 15, 30, 60, 120, 180, 240, 300 and 

360 minutes to obtain the optimum removal time. Other studies have measured the 

concentration of effluent at different intervals of set time to find the saturation point 

(Chang et al. 2006). Nitrate was measured using ICS-2000 as explained in the previous 

section. Equations 3-1 and 3-2 were used to calculate the percentage of the nitrate 

removal for each gram of MBC respectively. 

 

Nitrate removal (%) =  
Nitrate conc. in feed water −Nitrate Conc. in column leachate

Nitrate conc. in feed water 
   (6) 

mg of nitrate removal per g BC =

Nitrate conc. in feed water −Nitrate Conc. in column leachate

Nitrate conc. in feed water 
× Volume of the solution       (7)  
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Figure 3-2 shows the schematic of the plastic columns filled with MBC used for the 

nitrate removal experiment applying upward flow in the University’s chemical 

laboratory.  

 

 

Figure 3-2: Schematic of MBC column experiment 
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 Statistical analyses   

Statistical analysis was implemented in two stages: design of experiments and data 

analysis.  Experimental designs and data analyses were carried out using MINITAB 

17 software. The order of the experiments was randomized to obtain a normal 

distribution of the experimental errors. Three nitrate concentration levels and three 

flow rate levels were chosen. Each experiment was conducted in triplicate and, for 

each experiment, samples were taken after six hours to find the maximum adsorption 

condition in this period. Factorial design of 32 was performed for nitrate removal and 

the factors of concentration and flow rates were used in Minitab 17. The optimum 

nitrate removal concentration and flow rate per gram of MBC was found using three 

levels of nitrate concentration (5, 10 and 15 mg/L) and three levels of flow rate (2, 5 

and 10 ml/min) after 6 hours with a one pass solution of upward flow through the 

column of MBC pyrolysed at 1000oC. The experiment’s analysis program will be 

explained in the preliminary experiments in Section 3.3.3.
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3.3 Results and discussions 

 Preliminary results 

 Effect of the pyrolysis temperature 

Figure 3-3 shows the average nitrate removed for the three experiments in the first six 

hours using MBC prepared under two different temperatures (900 and 1000°C). In the 

first hour, NO-
3 removal measured by milligram nitrate removal per gram MBC 

increased for the two kinds of MBC (900 and 1000°C) with time. At around 60 

minutes, they began at equilibrium status around 0.095 and 0.057 mg of nitrate 

removal per gram of MBC for 1000 and 900°C respectively. After 24 hours, the results 

of the 900°C was still around 0.059 mg/g while 0.097 mg/g for 1000°C. Higher nitrate 

removal was obtained with the application of 1000°C of MBC.  

 

 

 

Figure 3-3 above demonstrates that the first few minutes for the 1000°C MBC was a 

higher removal than 900°C at around doubled. After six hours the 1000°C MBC was 

still the highest at 0.096 mg nitrate per g MBC. This proves that the nitrate removal 

 

 

 

 

 

 

Figure 3-3: Nitrate removal with 10 mg/L NO-
3 concentration 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 30 60 90 120 150 180 210 240 270 300 330 360

m
g
 n

it
ra

te
 r

em
o
v
al

 /
g
 M

B
C

Time (min)

900

1000



Biochar Characterisation and Nitrate removal capability tests Chapter 3 

53 

capability of 1000°C MBC is much higher than the 900°C MBC. Mainly after first-

hour MBC of 900°C and 1000°C start to saturate. 

These results concur with the SEM images in Figure 3-4 below.  Figure 3-4A and B 

clearly shows that the raw macadamia nutshell surface structure had closed its pores. 

In comparison, the macadamia nutshell after pyrolysis, Figure 3-4C and D, shows 

obvious the pores for MBCs pyrolysed at both 900°C and 1000°C respectively. The 

latter figures demonstrates that the pore size after applying pyrolysis to the raw 

macadamia nutshell for the 1000°C (Figure 3-4D) gives more, larger and more uniform 

porosity than the 900°C MBC (Figure 3-4C) under the same conditions and 

magnification of ×1000 (resolution of 20 µm).   



Biochar Characterisation and Nitrate removal capability tests Chapter 3 

54 

(A) (B) 

(C) (D) 

 

  

Figure 3-4: A & B SEM for raw macadamia nut shell and pyrolysis MBC C. 900°C and D. 1000°C 
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Figure 3-5 A and B shows the weight and atomic percentage before and after the 

pyrolysis process using Generation 5 SEM instrument, The Phenom ProX Desktop 

scanning electron microscope. Obviously, there is a difference in terms of the weight 

and atomic percentages of the main elements of carbon and oxygen as well as Na, Ca 

and K present for the raw macadamia nutshell and MBC. It is clear that the carbon 

percentages increased while the oxygen, in the form of gas percentage, decreased in 

both weight and aromatic percentage when the mass moved from raw to pyrolyzed 

macadamia nutshell (MBC). This is the result of the strong carbon availability and 

stability in the BC structure. In terms of mass, the weight of the raw macadamia nut 

shell placed in the container of the kiln was around 370 grams and after pyrolysis, the 

weight was reduced to around 32% at 110 g. 

 

 

(A) 

 

(B)  

 

Summarising Figures 3-4 and 3-5, raw macadamia nutshell in Figure 3-4 appears with 

some cracks, but without any porous structure on the surface area. In terms of 

composition, the shells had 52.18 and 47.61 percentage of C and oxygen respectively. 

In the pyrolysis process, the carbon percentage was increased, driving off all the 

volatile materials including the oxygen contained in the raw shells. The carbonisation 

Figure 3-5: Weight & atomic percentage A. raw macadamia nut shell and B. macadamia biochar 
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process can cause the volatilisation of noncarbonated elements and development of 

pore structures as shown in Figure 3-4C and D. A similar process of change in porous 

structure and volatile compounds was reported in another study that used macadamia 

nutshell waste and pyrolysis at 700°C (Junior et al. 2014; Martins et al. 2015). 

Pyrolysis of macadamia nutshells has also been found to increase water and nutrient 

retention as the pyrolysis temperature increases (Shafie et al., 2012). 
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A FTIR test was used to define the mechanism of MBC removal by examining the 

functional groups present on their surfaces. Generally, the functional groups of acidity 

and basicity surface increase with increased pyrolysis temperatures (Kameyama et al., 

2016). In Figure 3-6 below, a comparison between the MBC at 900 and 1000°C is 

made. Both have the same peaks positions which means they have similar functional 

groups that allow them to adsorb similar elements (Mandal et al., 2016). For 1000°C, 

some peaks are not as sharp as 900°C and that indicate the water peak in 3454.51 cm-

1 reduced at the higher temperature. The reduction in the functional group with 

increasing temperature is evident through the composition analyses where the oxygen 

falls due to include the oxygen in a most functional group such as OH and COOH. 

However, as the functional group falls with higher pyrolysis temperatures, the porosity 

of char surface increases and conductivity might also increase which will offset the 

reduction in the functional group. 

 

 

 

 

Figure 3-6: FTIR analysis for 900 and 1000°C MBC 
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 Effect of flow direction on nitrate adsorption  

As explained in Section 3.2.4.5, peristaltic pumps were used to feed the columns (in a 

single-passed configuration) with the nitrate solution used in Section 3.2.4.4, but in 

two directions (upward and downward) at a flow rate of 10 ml/min. This experiment 

utilised the same electro conductivity (EC) of around 20 µS/cm, ambient temperature 

(T) around 16.5°C and pH around 6. 

 

 

 

 

 

 

 

 

Figure 3-7 demonstrates that the trend for the first six hours of upward flow is very 

much higher than the downward flow regarding nitrate removal through the two 

columns and at the same time and in the same conditions. The upward started at around 

80% at five minutes, while the downward started at around 12%. For the upward flow, 

the saturation started around the fourth hour at 20%, while for the downward it started 

earlier at around 5%. These results show that up-flow is a much more efficient method 

than the down-flow in terms of removal percentage. In addition, the upward flow has 

a greater uniform distribution of solution on each particle of the MBC with HRT 6.42 

minutes from the inlet to outlet, which increases the contact time. The down-flow 

Figure 3-7: Upward and downward flow column adsorption experiment for 6 hours 
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creates a channel between the MBC particles for easy flow which reduces contact time 

to 2.05 minutes. 

Figure 3-8 presents the FTIR spectra of particulate matter from MBC before (1000) 

and after (1000_Ads) nitrate adsorption. The intensity of some peaks after nitrate 

adsorption was substantially decreased or shifted in wavenumber (cm-1) compared to 

those before adsorption due to the chemical bonds emerging. This means that there 

may be an involvement of some functional groups on the surface of the MBC in nitrate 

adsorption (Hafshejani et al., 2016). The peak intensity of 3454.51 cm-1 which is 

ascribed to a C-OH group within a group frequency (4000-1450cm-1) is stretching 

vibrations and board (Baitimirova et al., 2013). The intensity decreased after 

adsorption indicating that the surface hydroxyl groups were involved in nitrate 

adsorption and chemically connected to the water. Another peak around, 2368.59 cm-

1, shows the stretching vibration of –C≡C– and –C–H bonds due to an alkynes group 

which can be attributed to the MBC component. The peak at about 1101.35 cm-1 also 

fell after adsorption and this refers to the ring skeletal C–O (a secondary alcohol) 

stretching (Shen et al., 2010). The decline in the peak after nitrate adsorption indicates 

an interaction between the functional group and NO-
3 because of the powerful aromatic 

C–O linkages. The prominent peak at 975.98 cm-1 belongs to the aromatic CH plane 

deformation (Ma, 2017). In addition, the decline from the peak of 480.28 cm-1 after 

nitrate adsorption, indicates an interaction with the MBC functional group due to 

vibrations from carbohydrate and lignin (Schenzel and Fischer, 2001, Ma, 2017). 

Based on the aforementioned results, the falls from all peaks before nitrate adsorption 

can be ascribed to the interaction between the MBC functional groups and NO-
3 ions 

to form new chemical bonds. 
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Figure 3-8: Compare between MBC1000°C before and after nitrate adsorption 
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To sum up the finding of the preliminary experiments in the previous sections, the 

analysis of batch triplicate experiments and SEM images shows that MBC at 1000°C 

pyrolysis temperature was found to cause better nitrate removal than 900°C. In 

addition, the upward flow column was found to be performing better in comparison to 

the downward flow column in terms of NO-
3 removal.  

Therefore, in the next experiments for MBC 1000°C with upward flow different 

concentrations and flow rates were applied to the same column conditions to find the 

optimum condition for nitrate removal using MBC in six hours.   
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 Normality and residual analyses 

Table 3-1 below has the results of the nitrate removal experiments using MBC with 

three different concentration and three different flow rates as a Minitab software 

randomly chosen. Also, shows nitrate removal percentage and removal in mg/L (In-

Out).  

 

Table 3-1: Triplicate nitrate removal experiment using MBC  

 

No. 
Std. 

Order 

Flow rate 

 

(mL/min) 

Nitrate 

Conc. 

 (mg/L) 

Actual 

Feed 

 

(mg/L) 

effluent 

(mg/L) 

Removal 

(In-Out) 

mg/L 

Nitrate  

Removal  

(%) 

Removal NO-
3 

mg/L.gBC 

1 16 10 5 4.90 2.80 2.10 42.73 0.04 

2 19 2 5 4.90 2.74 2.16 43.36 0.04 

3 8 10 10 9.50 6.74 2.76 28.59 0.05 

4 2 2 10 9.50 5.01 4.49 46.84 0.07 

5 11 2 10 10.20 4.60 5.60 59.40 0.09 

6 21 2 15 14.70 8.95 5.75 38.82 0.10 

7 5 4 10 10.20 6.20 4.00 31.26 0.07 

8 23 4 10 10.20 6.76 3.44 35.77 0.06 

9 3 2 15 14.50 7.80 6.70 45.83 0.11 

10 1 2 5 4.70 0.80 3.90 83.95 0.07 

11 20 2 10 9.40 5.10 4.30 46.13 0.07 

12 24 4 15 14.60 11.50 3.10 21.77 0.05 

13 14 4 10 9.90 6.72 3.18 32.16 0.05 

14 17 10 10 9.60 7.01 2.59 26.71 0.04 

15 4 4 5 5.10 3.02 2.08 42.30 0.03 

16 7 10 5 5.10 3.50 1.60 29.81 0.03 

17 6 4 15 14.60 10.30 4.30 29.48 0.07 

18 15 4 15 14.90 10.70 4.20 28.39 0.07 

19 22 4 5 5.01 4.07 0.94 18.69 0.02 

20 10 2 5 5.10 2.54 2.56 52.57 0.04 

21 18 10 15 14.80 12.18 2.62 17.68 0.04 

22 13 4 5 4.80 2.90 1.90 39.85 0.03 

23 27 10 15 14.60 12.00 2.60 21.43 0.04 

24 25 10 5 4.70 3.04 1.66 35.33 0.03 

25 26 10 10 9.80 6.94 2.86 29.20 0.05 

26 12 2 15 15.10 8.53 6.57 43.52 0.11 

27 9 10 15 15.10 12.07 3.03 20.05 0.05 

  



Biochar Characterisation and Nitrate removal capability tests Chapter 3 

63 

A normal distribution is the key assumption of the statically analysis that shown the 

data from experiments are normally distributed (Srinivasan and Viraraghavan, 2010). 

Table 3-2 presents the parameters estimation of the fitted model for the mg of NO-
3 

removal capability per gram of MBC. More details in the appendix A. 

 

Table 3-2: Analysis of Variance (ANOVA) for NO-
3 Removal using Adjusted SS for Tests 

Source DF Adj SS Adj MS F-Value P-Value 

Model 8 0.000060 0.000008 21.79 0.000 

  Linear 4 0.000055 0.000014 39.43 0.000 

    Flow rate (mL/min) 2 0.000028 0.000014 40.12 0.000 

    Nitrate Conc. (mg/L) 2 0.000027 0.000013 38.74 0.000 

  2-Way Interactions 4 0.000006 0.000001 4.16 0.015 

    Flow rate (mL/min)*Nitrate Conc. (mg/L) 4 0.000006 0.000001 4.16 0.015 

Error 18 0.000006 0.000000       

Total 26 0.000067          
 

Model Summary: 

S R-sq R-sq(adj) R-sq(pred) 

0.0005881 90.64% 86.48% 78.94% 
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The normality of data was verified in terms of standardized residual as a part of the 

statically analysis (normal probability plot). Data normality form will be checked by 

drawing a normal probability plot of residuals in this experiment. Figure 3-9 shows 

how data fall fairly close to the fitted regression line. As observed clearly from this 

figure, the normal probability plot of the residuals for the nitrate removal is normality 

distributed population by falling all data experiments closest to the fitted line (Al-

Juboori et al., 2015).  

 

Figure 3-9: Normal distribution plot of residual for nitrate removal experiments  
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Figure 3-10 demonstrates the results of the diversity of the experiments with residuals 

and the irregular pattern for that removing nitrate residuals with fitted value. This 

approved the data was collected in a random distribution throughout the experiments 

which obviously shows randomly distributed around the zero line (Ryan et al., 2012). 

 

 

Figure 3-10: Residual vs. fitted value for nitrate removal experiments  
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The proportional shape in figure 3-11 shown the histogram below of the residuals vs. 

frequency is another figure can show how the residuals of removing nitrate are 

normally distributed. 

 

Figure 3-11: Residual vs. frequency for nitrate removal experiments  
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Further evidence for the randomly distributed of the data obtained from nitrate removal 

experiments shows in figure 3-12. The variation of the residuals with observation order 

has random data around the zero line with no obvious pattern. 

 

 

Figure 3-12: residuals vs. observation order for nitrate removal experiments 
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 Analysis of surface and contour plots 

Many factors may be considered to obtain the optimum case of maximum removal of 

nitrate by using MBC and how it responses to each case and examine how the response 

conduct with each selected levels of each factor (Boubakri et al., 2014). To determine 

the required response values and operation conditions, this study utilised the response 

of the surface plots like surface and contour plots (Montgomery, 2013). The response 

in the contour plots showed in the two-dimensional plane and it is obvious when each 

contour line present a group from the same response values connected to each other. 

However contour plots produced a clear idea about data response, still, the surface 

plots displayed response values in three-dimensional view which can offer a wide 

exemplification. In both plots (contour and surface) can help to find the factors that 

have the main effects for each response through kept the variables constant except two 

of them and check the plots responses.  
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(A) 

 

(B) 

Figure 3-13: Nitrate removal by using MBC A. Surface plot B. Contour plot 

Flow rate (mL/min)

N
it

ra
te

 C
o
n

c.
 (

m
g
/L

)

1098765432

15.0

12.5

10.0

7.5

5.0

>  

–  

–  

–  

–  

–  

–  

<  0.0016

0.0016 0.0024

0.0024 0.0032

0.0032 0.0040

0.0040 0.0048

0.0048 0.0056

0.0056 0.0064

0.0064

MBC)

Removal (mg/g

Nitrate

2
4

6
8

0.002

0.004

2

5
10

10

15

0.006

0.008

(mg/g MBC) lavomeR

oC etartiN n )L/gm( .c

)nim/Lm(low rate F



Biochar Characterisation and Nitrate removal capability tests Chapter 3 

70 

Figure 3-13 shows the combined impact of three different concentrations and flow 

rates on nitrate removal by using MBC. NO-
3 removal increased when influent rate 

become 2 ml/min and the concentration around 14-15 mg/L. It is obvious from the 

contour plot that the maximum adsorption happened under the 15 mg/L nitrate 

concentration and 2 ml/min flow rates after random experiments with various cases 

replicated for three times. This results matched with the experiments results at around 

0.007 mg of NO-
3/ g of MBC for an experiment number 6, 9 and 26 in table 3-1. More 

clear for the surface plot and easy to recognise the minimum nitrate removal around 

the 0.003 mg of NO-
3/g of MBC happened in the case of 5-6 mg/L concentration and 

7-10 ml/min flow rate which is in correlation with experimental results about 0.003 

mg/g for the experiment number 1, 16 and 24 (table 3). The previous study by Boubakri 

et al. (2014) showed that the highest removal efficiency happened at high 

concentration and low flow rate similar to the results obtained from this study 

(Ebrahimi-Gatkash et al., 2017). Therefore, this technique performed better removal 

with increasing nitrate concentration. 
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 Maximum adsorption time  

The aim of the column experiment is to find the parameters required to design the 

adsorption column suitable for industrial purposes. Recent studies found that the 

capability of BC to reduce some nutrients relies on the character of the BC feedstock 

(Dempster et al., 2012). This removal capacity decline with time due to increasing C: 

N ratio of the BC from different raw material. Figure 3-14 presents the breakthrough 

curve for column prepared in section 3.2.3 and solution as found in section 3.3.3.1 for 

single-passed.  

The area above the breakthrough curve represents the bed capacity (BC) and is given 

by the equation below (Karunarathne and Amarasinghe, 2013). 

BC = G ∫ (Co − C) × dt
𝑇

0
      (8)  

Where G is the solution rate in L/min, C0 and C are the inlets and outlet nitrate 

concentration in mg/L at time t, respectively and T in minutes is the actual time 

required for full bed exhaustion. 

 

Figure 3-14: Breakthrough curve for nitrate adsorption using MBC.  Ideal breakthrough curve 

(IBC) at flow rate of 2 mL/min 
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Table 3-3: Nitrate adsorption in fixed bed column 2 mL/min flow rate and 15 mg/L initial 

concentration 

Adsorbent 

weight (g) 

Ts 

(min) 

Tb (min) at 

C/C0=0.20 

LUB 

(cm) 

Amount adsorbed 

at Tb 

Amount adsorbed at 

full 

bed exhaustion 

 Total 

(mg) 

mg/g Total (mg) mg/g 

60 330 25 11.27 0.63 0.01 3.59 0.06 

 

Ideal breakthrough curve (IBC) has been drawn in figure 3-14. In industrial practice, 

the operation of the column adsorption continues until reach low concentration of 

removal was chosen before that called breakpoint concentration at the maximum 

concentration of the effluent can reach. In this case, it happened around 12.50 mg/L. 

At this point the column is not fully saturated and can calculate the length of the unused 

bed (LUB) by using the equation below:  

𝐿𝑈𝐵 =
𝑍

𝑇𝑠
 (𝑇𝑠 − 𝑇𝑏)      (9) 

Where Z is the height of the column, Ts the time required for full bed exhaustion at 

infinite rapid adsorption and Tb is the breakthrough time. BC calculation is then 

given by: 

BC = G (Co − C∗)Ts      (10) 

Where C* is the equilibrium concentration of the effluent 60% of the lowest 

concentration (5 mg/L) may found in the agricultural runoff which is in this case 3 

mg/L and table 3-3 tabulated the calculation of all parameters in the equations above. 

These results found that the effective length of the column used was 11.27 cm and the 

maximum nitrate removal before the bed exhausted was 3.59 mg after 330 min. 
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3.4 Chapter summary  

The use of the MBC as environmentally friendly and cheapest sorbent investigated in 

this chapter. Two types of the MBC (1000, 900oC) utilised to remove NO-
3 ions from 

agricultural runoff. Batch and column experiments done with triplicate each 

experiment to obtain the optimum adsorption condition through changing the flowrate, 

concentration and flow direction. Characterisation of the MBC was done by some 

devices to check the differences between the two sorts of the BC used in this study. 

The outcomes of the experimental in this chapter are summarised below: 

1. 1000°C MBC used in this experiment has more porosity and functional groups 

as clearly shown by SEM and FTIR sections and has more nitrate adsorption 

capability than the 900°C. 

2. The upward flow through the MBC column experiment has more efficient 

direction than the downward regarding nitrate adsorption. 

3. Investigated further in-depth within industries concentrations and suitable flow 

rates using Minitab software to manage and analyse the result of the randomly 

chosen samples was the effect on finding the maximum adsorption condition. 

4. Triplicate the sample tests and analysed the results found that the low flow rate 

and high concentration performed the best around 0.007 mg NO-
3 per g MBC. 

However, the intermediate removal at 0.029 mg/g with 10 mg/L and 10 ml/min 

for concentration and flow rate respectively. In general, for the MBC 

adsorption case the higher the flow the lower performance and higher 

concentration the better removal. 

5. Working lifetime examined with time and found that the maximum nitrate 

adsorption was 3.59 mg after 330 min before the column exhausted and the 

LUB was 11.27 cm.  

To fairly better assist the usability of MBC for the application of nutrients removal, 

further improvement for nitrate removal by MBC using the new technique. 

Regeneration and nutrients recovery from saturated MBC will be investigated in the 

next chapter. 
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         CHAPTER 4 

 Application of the CDI technique to promote contaminant 

removal efficiency of MBC 

4.1 Introduction 

In this chapter, the optimum nitrate removal conditions will be investigated with the 

aid of capacitive deionisation (CDI) for further improvement. Biochar regeneration 

and nutrient recovery with back-flush deionised water (DI.W) and tap water (TW) and 

degaussing technique with DI.W will also be explored in this chapter. 

 

4.2 Materials and Methods 

 Solution preparation  

The same stock solution prepared in section 3.2.1 was used in the experimental 

investigation presented in this chapter to prepare the diluted solution with an optimum 

concentration of 15 mg/L obtained from section 3.3.3.1. 

 

 Preparation of carbon electrode 

Carbon was widely used for the CDI application electrode because it has a low contact 

resistance, low cost, high electrical conductivity and good process capability (Porada 

et al. 2013).  

Carbon electrodes were extracted from new Eveready heavy duty battery 6V in this 

experiment. The electrodes were cleaned then sterilised with Ethanol (C2H6O) and 

covered with copper caps. The electrodes were connected to two power supplies 

GwInstek model GPC-3030D and Farnell Stabilised model L30-2.   
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 Experimental procedure for further adsorption 

improvement using CDI  

The plastic column prepared in section 3.2.3 was utilised in this experiment. Six holes 

were made on two sides of the column for embedding the electrodes into the biochar. 

The CDI column setup is presented in Figure 4-1.  The three right holes were made at 

a distance of 1, 5 and 9 cm from the bottom of the column, while the three left holes 

distance from the bottom were 3, 7 and 11 cm, respectively. The column was packed 

with 46.3 g of MBC in stages where each electrode was inserted into the column at the 

set depth and covered with biochar.  A fibreglass screen was laid on top of each layer 

to separate them and prevent the transport of nitrate across the layers as shown in 

Figure 4-1. Each electrode was glued to the column with commercial silicon to prevent 

leakages. The same process was repeated for the rest of the biochar layers and 

electrodes. Once the column is packed with MBC and the six carbon electrodes, the 

top of the column was covered with doubled fibreglass screen to prevent the MBC 

particles to leave with the flow of the solution. The column was closed with two plastic 

caps from the bottom and the top. The caps have openings for accommodating the 

hosing of the feed and discharge lines as demonstrated in Figure 4-1. The electrodes 

were connected to power supply (Farnell, Stabilised power supply L30-2) to provide 

each electrode with a voltage of 1.2 V and current of 0.2 A. The applied CDI 

parameters were chosen at these levels to avoid the occurrence of some problems such 

as the increase of pH and scale deposition on the electrodes (Lee et al., 2010), water 

electrolysis near the electrode and  reduction energy consumption (Park et al., 2007). 



Applying CDI technique to promote BC removal efficiency Chapter 4 

76 

Inlet Solution 

Outlet Solution 

Biochar

Screen 

Carbon 

Electrode

1.
00

cm

5.
00

9.
00

11
.0

0

12
.0

0

NO-3 

Solution

peristaltic pump

Filtered Solution

Power 

Supply

+ -

 

 

 

  

Figure 4-1: MBC column with CDI technique (3cells) for nitrate removal test  
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The prepared columns were rinsed with DI.W several times until the leachate pH 

settles indicating that the column is clean and ready for the experiments (Inyang et al. 

2013) and there is a minimal amount of elements released from the biochar. The 

supplied feed solution (prepared in section 4.2.1) was pumped through the column 

applying the optimum parameters found in the previous chapter. At the same time, the 

power supplies were turned on to start the electro-sorption process. The solution was 

single-passed upward through the column for 6 hours and samples were taken at 5, 15, 

30, 60, 120, 180, 240, 300 and 360 min to find the best removal timeframe as this 

would help the industry in setting the effective operating conditions. Some studies 

measured the concentration of effluent at different intervals of a set time to find the 

saturation point (Chang et al. 2006). Nitrate removal increase with increasing the 

current which may speed up the oxidation-reduction reaction rate at the electrode and 

converted to N2 or NH3 gas (Vanlangendonck et al., 2005, Emamjomeh and 

Sivakumar, 2005). The equations below show the possible reactions at the cathode 

(Paidar et al., 1999).  

 

𝑁𝑂3
− + 3𝐻2 𝑂 +  5𝑒−  →  

1

2
 𝑁2 + 6𝑂𝐻−      (11) 

𝑁𝑂3
− + 6𝐻2 𝑂 +  8𝑒−  →  𝑁𝐻3 + 9𝑂𝐻−     (12) 

𝑁𝑂3
− + 𝐻2 𝑂 +  2𝑒−  →  𝑁𝑂2

− + 2𝑂𝐻−     (13) 
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  Experimental procedure for regeneration and nitrate 

recovery using back flush with DI.W and TW  

The most common method for regenerating filters is back flush with water through the 

filter after the bed is exhausted with contaminants. It is noteworthy that two types for 

flushing water were applied in the regeneration step; DI.W for simulating lab 

environment and TW for simulating practical real-life application.  Flush water was 

fed into the column from the bottom in an upward direction as this ensures uniform 

contact with MBC as explained in section 3.3.2 with the optimum flow rate of 2 ml/min 

was applied in this experiment. Samples were collected after 5, 15, 30, 60, 120, 180, 

240, 300 and 360 minutes to check the efficiency of this method for nitrate recovery 

with treatment time. 

 

 Experimental procedure for regeneration and nitrate 

recovery using a degaussing technique with backflush  

Another regeneration technique, similar to the degaussing idea used in WWӀӀ, will be 

applied for CDI column after saturated with nitrate to remove the ions from the 

electrodes and MBC particles. By using Thurlby Thandar Instruments TG215 and set 

at frequency100 Hz, volt 7.5 Vp-p and current 0.2 A then connected the negative side 

to the first negative electrode and the positive side with the last positive electrode on 

the cells in the column as recommended as shown in figure 4-2. 
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Figure 4-2: MBC column with degaussing technique (3cells) for nitrate recovery 
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 Nitrate removal with the regenerated MBC column  

After degaussed the column and recovered nitrate ions in the previous section, 

regeneration efficiency will be investigated test in this reabsorptions test. The same 

adsorption process explained in 4.2.3 was repeated for the regenerated MBC column 

after nitrate was recovered from saturated MBC particles. CDI technique was applied 

to the column with three cells to investigate the capability of reabsorption nitrate.  

 

 Analytical methods 

As explained in section 3.3.4, Ion chromatography ICS-2000 was applied for nitrate 

measurements. It worth mentioning that all experiments were conducted in triplicate.  
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4.3 Results and discussions 

All the results presented in the following sections are expressed in mean values and 

the errors are depicted in the form of error bars. 

 

  Effect of CDI technique on the MBC adsorption 

capability 

The difference between the performance of MBC with and without CDI was 

investigated in this study and the results for three days are shown in Figures 4-3. Figure 

4-3A for the first few minutes showed the removal of MBC presented in mg/L of outlet 

concentration around 1.50 mg/L then at 30 minutes became around 3.50 mg/L, while 

after added the CDI technique to MBC was at 1.10 after 30 minutes. Which means 

adding CDI technique can improve the nitrate removal by three times more than using 

MBC alone. Ce/Co was around 0.11 and it became 0.22 after 30 minutes, while with 

MBC-CDI nitrate removal was around 0.06 - 0.076 for the same period of time (around 

93% of the initial influent concentration 15 mg/L). Similar to the results obtain from 

the previous study at 5 mg of nitrate per litre and 150 g of activated carbon then obtain 

at equilibrium time after 10 hours around 0.12 mg NO-
3/g BC (Erickson et al., 2016). 

This study found at 330 min MBC achieved the equilibrium removal rate around 0.03 

mg NO-
3 per g MBC (section 3.3.4), around 12.50 mg/L effluent concentration, and 

with CDI was improved the removal rate and the equilibrium time became at 72 hours 

and the effluent concentration was around 12 mg/L (80% of the influent concentration) 

as shown in figure 4-3B. In addition, applying CDI increased the removal by 3 times 

in comparison to MBC alone after six hours at Ce/Co 0.3 and 0.9 respectively. Studies 

investigated the use of electro-assisted biochar technique for nitrate removal by using 

column tests seems to be very limited (Nur et al., 2015). The available studies such as 

the one conducted by Mahatheva Kalaruban agree with the present study finding as 

both witnessed an improvement in nitrate removal (Kalaruban, 2017). However, the 

improvement reported by Mahatheva Kalaruban was only about 10%, in this study 

around 300% and this could be attributed to the different configurations of the systems 

applied.  
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The common NO-
3 removal mechanisms using BC are functional groups and ion 

exchange mechanisms and to the lesser extent the physical adsorption which is highly 

influenced by micro-pore volumes and surface area (Chintala et al., 2013, Kameyama 

et al., 2012). It is likely that the electrostatic interactions mechanisms are also involved 

in the removal in this study as electro-sorption capacity increases with increasing 

thermal pyrolysis temperature of biomass material. High temperature leads to higher 

graphitisation levels and minimises the electric resistance of the MBC surface and rise 

specific surface area (micro-porosity development, see Figure 3-4). As MBC given in 

this study was prepared at a high temperature of 1000⁰C (Lado et al., 2016).  

In terms of removal mechanisms, the case with CDI can be slightly different as the 

electrostatic interaction is the prominent mechanisms. The capacitance of the CDI 

electrode was limited, however large surface area of the used BC may have enhanced 

the removal efficiency when combined with CDI. High surface area and good mass 

transfer were found to be the key points for better adsorption and electro-catalysis 

applications and this can explain a higher removal for CDI with MBC compared with 

the latter alone as studied by (Dehkhoda et al., 2016, Ahmed and Tewari, 2018). 

  

 
 

(A)  (B) 

Figure 4-3: Nitrate removal by natural MBC vs MBC-CDI for A. six hours and B. three days 
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 Desorption and nitrates recovery by flushing deionised 

water 

In this experiment, the capability of backflushing with DI.W on nitrate recovery from 

a saturated column was investigated. The flow rate applied was 2 ml/min as 

recommended by (Oyarzun et al., 2018). Figure 4-4 shows the results for two cycles 

(BF_DI.W_1 and BF_DI.W_2) along the first six hours of the flushing with DI.W 

Around 50% of the NO-
3 was recovered in the first hour then reduced gradually to the 

3 mg/L outlet concentration after six hours. After 24 hours more than 90% 

accumulative recovery was achieved at 0.80 mg/L effluent concentration. The results 

obtained are in agreement with the reported results by Chintalaet al. (2013) who used 

1:50ml saturated materials (corn stover and switchgrass biochar) solid to DI.W ratio 

to desorb the nitrate ions then placed the solution into a beaker and shook up for 24 

hours then samples filtered, placed in centrifuge tube and tested. This study was found 

that desorption increased with increasing the initial concentration of nitrate and after 

around one hour more than 90% recovered. Although this method was faster than 

desorption in the column with up-flow DI.W, it requires some technology such as 

centrifuge device which is not accessible for the general public. 
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The results of adsorption and desorption experiments suggest that the adsorption of 

nitrate onto MBC is a faster process than desorption. This might be an attractive trait 

for MBC in soil amendment application, but it may be regarded as a disadvantage for 

MBC in filtration applications. Hence, exploring ways of speeding up the regeneration 

and nitrate recovery form MBC is important. This study proposes the use of degaussing 

coupled with the backflush for regeneration and nitrate recover which will be 

addressed in the following sections.  

Figure 4-4: Nitrate recovery by using deionised water  
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 Desorption and nitrates recovery using Degaussing with 

DI.W 

Figure 4-5 presents the comparison between nitrate recoveries with average replicate 

degaussing coupled with DI.W backflush and flushed up-ward the DI.W alone. The 

experiment of degaussed nitrate from saturated column include MBC particles and 

carbon electrodes have resulted in a very similar unsymmetrical shape, with a rapid 

nitrate concentration increase for the first 30 minutes, followed by a flatter diminution. 

The maximum effluent of nitrate concentration peak was achieved in about 30 min for 

all the cycles. For the first cycle, more than 70% recovery at 11 mg/L, while around 6 

mg/L for the DI.W in the previous section. For the second and third cycle became 

lower at the same time (30 min) at 9 and 7 mg/L. Then for the three cycles start to 

decline and the residue nitrate concentration approaches to 2.52, 1.77 and 1.34 mg/L 

after six hours for the first, second and third cycles respectively. After 24 hours the 

percentage of the nitrate recaptured was very close around 95 and 94% for degaussing 

with DI.W and DI.W alone cumulative respectively, but the improvement was notable 

within the first hour and that makes the degaussing quicker method and can recover 

more nitrate in the same time comparing with DI.W method in section 4.3.2.  
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Figure 4-5: Nitrate recovery by using degaussing technique 
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Table 4-1: Percentage of desorption using degaussing technique 

Time 

(min) 

Cycle_1 Cycle_2 Cycle_3  

Ce(mg/L) 

% of 

desorption 

Ce(mg/L) 

% of 

desorption 

Ce(mg/L) 

% of 

desorption 

 

0 0 0 0 0 0 0  

5 9.03 60 7.27 48 6.32 42  

15 10.26 68 8.63 58 7.24 48  

30 11.02 73 9.12 61 7.99 53  

60 7.54 50 6.99 47 5.39 36  

120 4.86 32 4.68 31 3.65 24  

180 4.01 27 4.03 27 3.14 21  

240 3.35 22 3.27 22 2.02 13  

300 2.79 19 2.24 15 1.60 11  

360 2.52 17 1.77 12 1.34 9  

 

Table 4-1 shows that the maximum desorption for the first, second and third cycles at 

73, 61 and 53% respectively in the first 30 minutes. After six hours the three cycles 

become less than 20% at 2.52, 1.77 and 1.34 mg/L for the first, second and third cycles 

respectively.  
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 Tap water used for nitrate recovery 

Figure 4-6 shows that the two cycles (T.W_1 and T.W_2) for nitrate recovery used 

TW for the first six hours treating time. 

 

 

 

 

 

Obliviously, the maximum amount of NO-
3 recovered between the first and the second 

hours by using TW with around 40% for the first cycle, while around 25% for the 

second cycle. Then the first and second cycles decreased to around 3 and 2.8 mg/L 

effluent concentration after six hours at 20% of desorption. However, after 24 hours 

the differences between the two cycles became very close at 2.11 and 2.19 mg/L for 

the first and second respectively. Although the rare study used TW for nutrients 

recovery, a previous study used a column saturated with lead (Pb) and obtained 22% 

recovery with a flow rate 25 ml/min and 20 mg/L concentration (Dimitrova, 2002). 

Despite the previous study was used hi flow rate and concentration compared to the 

new study with a different ion, higher percentage obtained for nitrate recovery using 

the same technique in a similar period.  

  

Figure 4-6: Tap water used for desorption nitrate ions  
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To get a better understanding of the performance of the applied recovery techniques 

used in this study, Nitrate recovery with all three techniques was plotted and presented 

in figure 4-7. First of all, the three techniques were worked well and recovered nitrate 

ions after column saturated. The degaussing technique with DI.W was the most 

powerful method founded due to the ability to recover more nitrate ions in efficient 

time, while TW was the lowest. the maximum nitrate recovery occurred around 30 

minutes, around 70% of nitrate was recovered at 11 mg/L effluent concentration for 

the degaussing method, while DI.W was around 48% after one hour and comparing to 

the TW one was around 35% at 5.3 mg/L outlet concentration. Then the curves started 

to decline after 30 minutes and one hour for the degaussing and the both DI.W and 

TW respectively. After the second hours, nitrate concentration in the outlet flow was 

very close for all recovery techniques around 5 mg/L, then continue to descend to 

about 3 mg/L after the sixth hours at 20%. 

 

A study of desorption nitrate from saturated woodchips with nitrate ions used 400 ml 

of 0.001M KCL solution and placed on the shaker after rinsed the samples with Nano-

pure water three times. Samples taken after six hours showed that around 60% 

desorbed from the woodchips then after three days decreased to zero per cent and will 

be ready to reuse the filter (Hua et al., 2016). Mostly regenerated the filters and 

nutrients recovery were used chemicals in the process, while a present study conducted 

 

 

0

2

4

6

8

10

12

0 30 60 90 120 150 180 210 240 270 300 330 360

E
ff

lu
en

t 
co

n
ce

n
tr

at
io

n
 m

g
/L

Time (min)

Deg_Cycle_1

D.W_Cycle_1

T.W_Cycle_1
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to be chemical free and environmentally friendly with or without a small amount of 

energy (1.2 V). Although some studies used the chemical in the recovery process, the 

results obtained in this study were better at around 75% recovery after six hours.  

 

 Nitrate removal with regenerated filter 

After the completion of desorption tests, the reusability of the filter for nitrate removal 

was examined. Figure 4-8 presents the results of nitrate removal used fresh CDI and 

MBC filter with two regenerated filters after desorption process used the degaussing 

technique with DI.W process. The results presented NO-
3 effluent was increased by 

around doubled for the second regeneration filter comparing with the fresh filter within 

the first 30 min. Outlet concentration of nitrate was increased after six hours at 4.5, 8.2 

and 9.6 mg/L for the fresh, regeneration one and two respectively. After 36 hours, the 

trend of the three methods were close to each other at around 10.5 mg/L of nitrate 

effluent concentration. The effluent nitrate concentration at full bed exhaustion 

(around 80% removal efficiency) was at 72, 60 and 48 hours for the fresh, regenerated 

one and regenerated two filters. That means the capability of reusing the filter for 

removal nitrate after used the degaussing method was successful.    



Applying CDI technique to promote BC removal efficiency Chapter 4 

91 

 (A)  (B) 

 

This proves that the MBC filter can effectively be reused for nitrate removal at least 

three times after the degaussing with DI.W was used to recover nitrate ions which can 

practically be used as fertiliser at the same time regenerate the filter.  

The results obtained in this study are in line with the trends reported in the literature. 

Cui et al. (2019) found that regenerating biochar synthesized with chitosan and FeCl3 

(LC-CF) saturated with nitrate using 0.1 M NaCl resulted in a slight declined in 

adsorption (Cui et al., 2019). This decline continued and reached about 5% as opposed 

to fresh biochar after the fifth cycle. Although the previous study used some chemical 

during sorption and desorption process, a present technique applied in this study has 

zero usage of chemicals during the adsorption and desorption process and this makes 

it more reliable and environmentally friendly.
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4.4 Economic Analysis 

Production of MBC (as a by-product) or other similar feedstock, can be used in a 

gasification process to primarily provide energy, approximately 9MJ/kg, as well as 

making high quality char at negligible cost.  Alternatively, it is possible to purchase 

commercially available, activated carbon (coconut biochar) for around $3000/Tonne. 

In the case of using MBC the calculations will be as below: 

Removal rate analysis: 

Given:  after 48 hours was achieved around 95% nitrate removal, this implies 

14.25 mg/L was adsorbed from the 5.76 L of stock solution at an original 

concentration of 15mg/L. 

This gives a total of 82.1mg of nitrate absorbed by 46.3gr of MBC, giving an 

overall removal rate of 1.77g of nitrate / kg of MBC using CDI. 

Similarly, without CDI being used, MBC showed an overall removal rate 

before the bed exhausted was 0.029g / kg of MBC. 

 

-For MBC-CDI adsorption technique: 

𝑃𝑜𝑤𝑒𝑟 = 0.2𝐴 × 1.2𝑉 = 0.24𝑊 

48ℎ𝑟 × 0.24𝑊 = 11.25𝑊. ℎ𝑟 

𝐸𝑛𝑒𝑟𝑔𝑦 = 11.25𝑊. ℎ𝑟 × 3600𝐽 = 41.47𝐽 

At Queensland energy price = $0.27kW.hr 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 = 11.25𝑊. ℎ𝑟 ×
$0.00027

(𝑊. ℎ𝑟)
= $0.00311 𝐴𝑈𝑆 

   

Or, the cost of using the MBC-CDI technique to adsorb 95% of nitrate in solution is 

around $1.76/kg nitrate removed from solution (assuming linear scalability). 

 

-For degaussing technique calculation: 

𝑃𝑜𝑤𝑒𝑟 = 0.062𝐴 × 0.5𝑉 = 0.03𝑊 

6ℎ𝑟 × 0.03𝑊 = 0.18 𝑊. ℎ𝑟 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 = 0.18𝑊. ℎ𝑟 ×
$0.00027

𝑊. ℎ𝑟
= $0.000486𝐴𝑈𝑆 

 

The cost of using degaussing technique for 6hr to refresh more that 85% of saturated 

column of biochar with nitrate solution of 15mgL.  
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Giving an energy cost of $0.00105/kg char used to refresh 85% of the capacity. 

 

4.5 Chapter summary 

Using CDI technique to enhance MBC column capability to remove nitrate was 

investigated in this chapter. Desorption NO-
3 after saturated the column test by using 

DI.W and TW alone as well as degaussing technique with DI.W was examined above. 

The experimental outcomes for this chapter epitomised below: 

1. CDI with MBC has more efficient in terms of removal nitrate comparing with 

MBC by itself around 12 mg/L outlet of nitrate concentration (full bed 

exhaustion) at 72 hours and 330 minutes respectively. 

2. Regards the desorption process, degaussing with DI.W (three cycles) is the 

most effective method in terms of quantity and rapidity comparing to DI.W 

flush and TW flush (two cycles). The differences in the efficiency of desorption 

NO-
3 between degaussing technique and the two others at the first 30 minutes 

was around 70, 40 and 30%, while after six hours became around 3 mg/L for 

the nitrate effluent concentration for all three techniques.  

3. After desorbing nitrate from the saturated column, the regeneration process 

aimed to reuse the same CDI technique with MBC column filter found that the 

results for the fresh column at the first hour was around 91% removal then 80% 

and 70% for the regenerated one and two respectively. The differences between 

the fresh and the regenerated filter were about 5% for the first hour and after 

24 hours. The full bed exhausted after 72, 60 and 48 hours for the fresh, 

regenerated one and two respectively. 

4. To conclude this chapter, using CDI technique with MBC was improving the 

removal capability in terms of nitrate ions at the same time improving the 

regeneration process after degaussing with DI.W technique was presented 

confidant results for three cycles. Desorption through the degaussing was the 

best in terms of the amount of nitrate recovered in less time. 
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         CHAPTER 5 

 Conclusions and future work 

Many techniques designed to reduce agricultural run-off have been suggested by a 

large number of researchers, including constructed wetlands, filtration, aeration, algae 

and the woodchip bioreactors. As demonstrated in Chapter 2, most of these suggested 

techniques have shortcomings that restrict their practical implementation on-farm. 

Biochar filters offer an effective improvement of water quality, through its potential 

to remove nutrient contaminants from agricultural runoff before they enter the riparian 

zone. However, BC suffers from rapid saturation which, in turn, diminishes its 

performance capability and increases operational costs. In this study, capacitive 

deionisation technologies have been proposed, as a new treatment technique to reduce 

contamination and increase the effectiveness of multi-media based BC filters, whilst 

also allowing filter regeneration and reclamation of the nutrients. 

The experimental results presented in Chapter 3 show that the higher pyrolysis 

temperature (1000°C) increased nitrate removal at 0.1 mg/ g MBC by approximately 

double the 900°C pyrolyzed MBC. Nitrate was used in this study as a sample 

contaminant that exists normally in agriculture runoff. These results are supported by 

the SEM and FTIR analysis which showed that the 1000°C MBC is more effective 

than the 900°C MBC, due to higher levels of activation. In addition, the up-flow 

column approach was five times more effective than the down-flow column after a 30 

minute interval. For the design of the experiment, three concentrations and flow rates 

were analysed. The highest removal was achieved with the highest concentration and 

lowest flow rate, and these conditions were chosen for the subsequent experiment 

which tested for a greater removal capability around 6.75 mg/L. Moreover, working 

lifetime of BC was examined within three days, and maximum nitrate adsorption was 

found to be 3.59 mg after 5.5hrs before the column was exhausted. At this point, the 

LUB was 11.27 cm. 

The experimental results presented in Chapter 4 confirm that the CDI technique further 

enhances macadamia biochar nitrate removal by three times compared to the natural 

ability of the char after six hours. The breakthrough curve was found to be after 5.5hrs 

and 72 hrs for the natural MBC and CDI enhanced MBC filters, respectively.  
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Replication with other char types is required to make general statements, however this 

result alone is certainly promising. 

Desorption experiment evaluated three techniques (degaussing, deionised water and 

tap water backflush). The peak nitrate desorption of 80% was achieved after 30 

minutes with the degaussing method, as opposed to 48%, and 35% after 60 mins 

respectively for the back-flush with deionised water/tap water approaches. 

Regeneration of the filter after saturation with nitrate ions was tested for three cycles 

and filter exhaustion time was subsequently found to be after 72, 60 and 48 hours for 

the fresh filter, 1st regeneration and 2nd regenerations respectively.  

Economic analysis for MBC or other feedstock can be used in a gasification process 

to make the char effectively for free and provide energy approximately 9MJ/kg, 

alternatively you can buy a commercial activated biochar (coconut biochar) for $4/kg 

by tonne.  

 

 

Overall, this study concludes that CDI combined with MBC particles can be used as 

an effective treatment technique to reduce contamination from agricultural runoff in 

terms of nitrate ions by enhancing removal, desorption and filter regeneration. 

However, the following points are recommended for future work: 

1. The effect of the pyrolysis temperatures on nitrate removal using natural MBC  

2. The effect of electrical factors such as voltages and frequency on improving 

removal, desorption and filter regeneration using the MBC with CDI 

technique.  

3. Comparison of the degaussing method with other innovative techniques such 

as ultrasonic. 
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            Appendix A 

General Factorial Regression: Nitrate Removal (mg/g ... e Conc. (mg/L) 

 

Factor Information 

Factor Levels Values 

Flow rate (mL/min) 3 2, 4, 10 

Nitrate Conc. (mg/L) 3 5, 10, 15 

 

Analysis of Variance 

Source 

D

F Adj SS Adj MS 

F-

Value 

P-

Value 

Model 8 0.00006

0 

0.00000

8 

21.79 0.000 

  Linear 4 0.00005

5 

0.00001

4 

39.43 0.000 

    Flow rate (mL/min) 2 0.00002

8 

0.00001

4 

40.12 0.000 

    Nitrate Conc. (mg/L) 2 0.00002

7 

0.00001

3 

38.74 0.000 

  2-Way Interactions 4 0.00000

6 

0.00000

1 

4.16 0.015 

    Flow rate (mL/min)*Nitrate Conc. 

(mg/L) 

4 0.00000

6 

0.00000

1 

4.16 0.015 

Error 18 0.00000

6 

0.00000

0 

      

Total 26 0.00006

7 

         

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.0005881 90.64% 86.48% 78.94% 
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Coefficients 

Term Coef 

SE 

Coef 

T-

Value 

P-

Value 

VI

F 

Constant 0.00359

5 

0.00011

3 

31.76 0.000    

Flow rate (mL/min)                

  2 0.00138

7 

0.00016

0 

8.66 0.000 1.3

3 

  4 -

0.00037

8 

0.00016

0 

-2.36 0.030 1.3

3 

Nitrate Conc. (mg/L)                

  5 -

0.00135

5 

0.00016

0 

-8.46 0.000 1.3

3 

  10 0.00034

3 

0.00016

0 

2.14 0.046 1.3

3 

Flow rate (mL/min)*Nitrate Conc. 

(mg/L) 

               

  2 5 -

0.00056

2 

0.00022

6 

-2.48 0.023 1.7

8 

  2 10 -

0.00020

7 

0.00022

6 

-0.92 0.372 1.7

8 

  4 5 -

0.00011

3 

0.00022

6 

-0.50 0.625 1.7

8 

  4 10 0.00021

7 

0.00022

6 

0.96 0.351 1.7

8 
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Regression Equation 

Nitrate Removal (mg/g 

MBC) 

= 0.003595 + 0.001387 Flow rate (mL/min)_2 

- 0.000378 Flow rate (mL/min)_4 

- 0.001009 Flow rate (mL/min)_10 

- 0.001355 Nitrate Conc. (mg/L)_5 

+ 0.000343 Nitrate Conc. (mg/L)_10 

+ 0.001012 Nitrate Conc. (mg/L)_15 

- 0.000562 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_2 5 

- 0.000207 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_2 10 

+ 0.000769 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_2 15 

- 0.000113 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_4 5 

+ 0.000217 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_4 10 

- 0.000104 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_4 15 

+ 0.000674 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_10 5 

- 0.000009 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_10 10 

- 0.000665 Flow rate (mL/min)*Nitrate Conc. (mg/L)

_10 15 

 

Fits and Diagnostics for Unusual Observations 

Obs 

Nitrate 

Removal 

(mg/g MBC) Fit Resid 

Std 

Resid  

10 0.004160 0.003065 0.001095 2.28 R 

R  Large residual 

 

Means 

Term Fitted Mean SE Mean 

Flow rate (mL/min)       

  2 0.004981 0.000196 

  4 0.003217 0.000196 

  10 0.002586 0.000196 

Nitrate Conc. (mg/L)       

  5 0.002240 0.000196 

  10 0.003937 0.000196 

  15 0.004607 0.000196 
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Flow rate (mL/min)*Nitrate Conc. (mg/L)       

  2 5 0.003065 0.000340 

  2 10 0.005116 0.000340 

  2 15 0.006763 0.000340 

  4 5 0.001749 0.000340 

  4 10 0.003776 0.000340 

  4 15 0.004124 0.000340 

  10 5 0.001906 0.000340 

  10 10 0.002919 0.000340 

  10 15 0.002933 0.000340 

 

 

 


