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In response to the growing interest in replenishable, lightweight, stiff and strong materials, a novel sand-
wich panel with a hollow core has been manufactured using commercially produced 3-ply veneer. In this
paper, the out-of-plane shear behaviour of the novel hollow core is analysed and the expressions for the
failure loads are developed. A strength-based optimisation problem is formulated for predicting the opti-
mum values of the panel dimensions that would produce minimum panel weight when subjected to
bending. It has been found that the minimum weight, as predicted by the full four-parameter optimisa-
tion, is slightly lower than that obtained by using the closed form expressions derived on the basis of sim-
plified three-parameter optimisation. Relationships between the active failure modes are explored.
Design maps are shown for a wide range of loading that can be used to calculate the minimum panel
weight and the corresponding values of the geometric parameters. The approach developed is general
and is equally applicable for sandwich panels with similar hollow cores made of other materials.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures, originally developed and used in aero-
space industries, have found applications in marine, automotive
and sports goods industries. Typical sandwich structures are made
of a low density core material bonded with thin, strong skins at top
and bottom. While the skins are solid materials, cellular materials
including balsa wood, manmade metallic, paper, ceramic and ther-
moplastic honeycombs, polymeric and metallic foams are popular
as core materials. Apart from the excellent stiffness and strength to
weight ratios, cellular cores are attractive due to their good ther-
mal and/or acoustic insulation, and energy absorbing capabilities.

In conjunction with the experimental investigation of the devel-
opment of new materials and topologies for cellular materials, the-
oretical/computational research has been concentrated on how to
calculate their effective mechanical properties in terms of the
topology, cell geometry and elastic properties of the cell wall mate-
rial. The problem becomes more complicated for honeycomb cores
as the skin affects the core deformation at the skin–core interface.

Kelsey et al. [1] used strain energy method for predicting the
upper and the lower bounds on the effective transverse shear mod-
uli of honeycombs. Gibson and Ashby [2] applied the mechanics of
materials and the energy method for determining the transverse
shear stiffness of hexagonal core. Penzien and Didriksson [3] used
a displacement field for incorporating warping of the cell walls pro-
duced by the skin. The homogenisation approach for periodic media
ll rights reserved.
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was used by Shi and Tong [4] to evaluate the expressions for out-
of-plane shear moduli of honeycombs. Using a similar approach,
Xu et al. [5] presented formulae of equivalent stiffnesses for com-
mon cellular cores. Hohe and Becker [6,7] used a homogenisation
approach based on the equivalence of strain energy and developed
expressions for the effective elastic constants of several core topol-
ogies. Chen and Davalos [8] incorporated the effect of skin, and pre-
sented an explicit analytical model for calculating the stiffness and
stress distributions in the honeycomb cell walls. Among the numer-
ical approaches, Grediac [9] determined the transverse shear mod-
uli of honeycombs, by analysing a representative unit cell using the
finite element method. Though a number of articles on the estima-
tion of the out-of-plane stiffness parameters of cellular cores are
available, few address the out-of-plane strength properties. Zhang
and Ashby [10] developed expressions for the failure loads of hon-
eycombs under transverse compression and shear loading and
compared with the experimental results for Nomex honeycombs.

Performance optimisation of metallic sandwich panels and
plates with various cores has been widely explored. For example,
optimisation of metallic sandwich plates with truss cores by Wicks
and Hutchinson [11,12], design of metallic sandwich panels with
textile cores [13], pyramidal truss cores [14] by Zok et al. and cor-
rugated cores by Valdevit et al. [15]. Rathbun et al. [16] developed
a general methodology for the weight optimisation of metallic
sandwich panels subjected to bending loads. Wei et al. [17]
showed that the optimised performances of the prismatic cores
are comparable to that of a honeycomb core. Furthermore, Cote
et al. [18] analysed the compressive and shear behaviour of
corrugated and diamond lattice materials. Extensive study of
f sandwich panels made of wood veneer hollow cores. Compos Sci Technol
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Fig. 2. A unit cell, along with the shear stresses acting in the cell walls, is shown.
The triangle is the effective area of the unit cell.
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mechanical behaviour of sandwich structures can be found in the
classic book by Allen [19], monographs of Zenkert [20] and Vinson
[21], review article on various computational models for sandwich
panels and shells by Noor et al. [22] and the references thereof.

With the worldwide interest in replenishable and biodegrad-
able materials, a corrugated profile has been successfully manufac-
tured by roll forming and matched-die forming of commercially
available 3-ply veneer sheets [23]. Wood veneers are obtained
from Radiata Pine trees of New Zealand and are generally consid-
ered to be replenishable, with the advantage of being lightweight
as well. For the present work, these profiles were adhesively
bonded in the out-of-plane mode to produce a novel multiple cor-
rugated core (referred to as ‘hollow core’) which was glued to ve-
neer sheets at the top and bottom, Fig. 1a. The average density of
the core is 118 kg/m3, a 77% reduction from the veneer density of
520 kg/m3. The flexibility of the manufacturing process of the core
allows a wide range of cell geometry to be produced, giving the
possibility of tailoring the cell structure and the panel geometry
to achieve optimal performance for specific materials and end
usages. This study focuses on developing a methodology for pre-
dicting the optimum values of the geometrical parameters of the
panel that would lead to minimum panel weight. The panel sub-
jected to bending load is considered as the loading case. Because
the core is subjected to out-of-plane shear forces due to the bend-
ing of the sandwich panel, the out-of-plane shear behaviour of the
new core material is analysed first. For this purpose, the micro-
structure is modelled at the mesoscale, i.e. at the cell level. Failure
criteria of the whole panel are then developed for optimisation.
Strength-based design is chosen as it is more important from the
design point of view and is suitable for higher loads. Based on
the optimisation results, design maps are generated that can be
used to calculate the optimal geometrical parameters and weight
of the sandwich panel for a wide range of loading.
2. Out-of-plane shear behaviour of the hollow core

The plan view of the hollow profile is shown in Figs. 1b and 2.
Geometry of the core can be characterised in terms of the radius
Rc

θcθc

tc

(a)

(b)

Hc

Fig. 1. (a) A typical sandwich panel made with hollow core and face sheets made of 3-ply
paper.
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Rc, depth of the half cell hc, half angle hc and thickness of the cell
wall tc; subscript ‘c’ denotes core. As Rc(1 � cos hc) = hc/2, the effec-
tive mechanical properties of the core become functions of two
independent geometric parameters, tc/Rc and hc. For a quarter of
a cell, the unit cell (the triangle in Fig. 2) has an area of 2hcRcsin hc.
Therefore, for thin cell walls, 4R2

c ð1� cos hcÞ sin hcq� ¼ 2Rchctcqc ,
where, qc and q� are the densities of the cell wall material and
the hollow core, respectively. Simplification of the above relation-
ship, leads to an approximate expression of the relative density /
of the hollow core as (for /� 1)

/ ¼ q�

qc
¼ 1

2
tc

Rc

hc

ð1� cos hcÞ sin hc
: ð1Þ

The main assumption for the analysis of sandwich structures un-
der bending loads is that the faces carry all the flexural stresses and
the core carries all the out-of-plane shear stresses. When subjected
to out-of-plane shear forces, the deformation and hence, the stress
distribution in a cell wall is affected not only by its interconnecting
neighbours, but also by the strain compatibility condition at the
interface of the face and core. This results in a very complicated
stress distribution in the cell walls. In this work, neglecting skin ef-
fect, the core stresses are determined based on the force equilib-
rium condition, in the middle of the core (away from the faces).
hc

veneer. (b) The geometric parameters characterising the hollow core in the plane of
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The cell wall material is made of 3-ply veneer adhesively
bonded together at 0�/90�/0�, where 0� denotes the longitudinal
grain direction of a single ply. Experimental observations show
that during forming and under loading, relative movement be-
tween the layers is negligible, except at very high strains. There-
fore, the cell wall material could be considered as homogeneous
and linear elastic. The tensile test measurement on 3-ply veneer
specimen shows that the average ratio of the Young’s moduli of
the veneer in the 0� and 90� directions is about 1.34 [23], allowing
the cell wall material to be considered quasi-isotropic. Though the
cell wall material in this study is veneer, the analysis presented is
independent of the material chosen and is equally applicable to
similar hollow cores made of other materials. Complete cells are
shown in Fig. 1a with depth Hc in the z-direction. For the analysis
purpose, a quarter of a cell is chosen as a unit cell as shown in Fig. 2,
taking into account of the periodicity and symmetry of the struc-
ture. The unit cell is made of two cell walls of half length connected
at a node, with each cell wall modelled as a thin shell. Mechanics of
the core is now analysed to (i) develop a relationship between the
external shear force and the shear stress at the cell level, and (ii)
calculate the critical shear force that causes cell wall buckling.
Let the external shear stress acting on the unit cell be V/Hc, where
the shear force V per unit width is applied in the principal direction
x. The shear stress in the x-direction has been analysed here as the
core is stiffer in this direction. However, similar analysis can be
performed for shear force applied in the y-direction as well. Be-
cause of thin cell walls, the shear stress distribution is considered
uniform across the cell wall thickness, and let the shear stress act-
ing in each cell wall be sc. Considering force equilibrium in the x-
direction (refer to Fig. 2),

V
Hc

4R2
c ð1� cos hcÞ sin hc ¼

Z hc

0
2sctcRc cos ada: ð2Þ

Simplifying Eq. (2), the following expression is obtained

sc ¼ 2
V
Hc

Rc

tc
ð1� cos hcÞ: ð3Þ

The cell wall buckling, when subjected to shear loading, can be
explored in the following manner. Each cell wall is made of two
curved shells joined at the point of contra flexure. Hence, for the
half cell wall, the radial displacement and the bending moment
vanish along the line passing through the point of contra flexure;
thus that edge can be considered as simply supported. The bound-
ary condition at the other edge lies in between ‘‘simply supported’’
and ‘‘fixed’’, but for conservative design, this edge has been as-
sumed to be simply supported. Though the top and bottom edges
are rigidly bonded with the faces, they are also assumed as simply
supported. Therefore, the half cell wall has all the four edges sim-
ply supported and the lower bound of the critical buckling load is
calculated (neglecting postbuckling). This would perhaps take into
account of the imperfections due to the manufacturing defects of
the hollow core structure. The critical buckling stress in a cell wall
has been calculated based on the stated assumptions using [24]

scr ¼
f1p2

3

� �
Ec

1� m2
c

t2
c

R2
c

h�2
c ; ð4Þ

where Ec and mc are the Young’s modulus and the Poisson’s ratio of
the cell wall material, respectively. The value of factor f1 depends on

the value of ðhc=pÞðtc=RcÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4�12 1� m2

c

� �q
.

3. Failure criteria for the sandwich panel

Geometry of a sandwich panel can be completely described by
the following independent geometrical parameters: for core tc/Rc,
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hc, Hc, for face sheet–thickness tf, and density qf. The self-weight
(per unit area) of the panel can be expressed as

W ¼ 1
2

tc

Rc

hc

ð1� cos hcÞ sin hc
qcHc þ 2qf tf : ð5Þ

Let the sandwich panel be subjected to a maximum bending
moment M and a maximum shear force V (both per unit width).
As strength-based design is chosen here, the failure criteria are
developed based on the failure modes. When subjected to bending,
the possible failure modes of sandwich panel are as follows:

3.1. Fracture of the face sheet (FF)

The flexural stress carried by the face is given by Zenkert [20],
M

tf Hc
, for tf� Hc. The face will not fracture if

M
tf Hc

6 rf ; ð6Þ

where rf is the fracture stress of the face material.

3.2. Face wrinkling (FW)

To prevent wrinkling failure,

M
tf Hc

6 rwr; ð7Þ

condition must be satisfied. Approximate expression for wrinkling
stress rwr has been used from Niu and Talreja’s work [25], after
neglecting higher order terms,

rwr ¼
3E�c

2ð1þ m�cÞð3� m�cÞ

� �2=3

ðEf Þ1=3;

where Ef is the Young’s modulus of the face sheet, E�c and m�c are the
out-of-plane Young’s modulus and the Poisson’s ratio of the core,
respectively. E�c can be evaluated using the expression of Zhang
and Ashby [10] E�c ¼ /Ec .

3.3. Core shear fracture (CF)

To prevent cell wall fracture, shear stress in the cell wall sc

(using Eq. (3)) must not exceed the maximum allowable shear
stress of the cell wall, smax, i.e.

sc ¼ 2
V
Hc

Rc

tc
ð1� cos hcÞ 6 smax: ð8Þ
3.4. Core buckling (CB)

To prevent cell wall buckling failure, shear stress in the cell wall
must not exceed the critical buckling stress, scr, given by Eq. (4).
Therefore,

sc ¼ 2
V
Hc

Rc

tc
ð1� cos hcÞ 6

f1p2

3

� �
Ec

1� m2
c

t2
c

R2
c

h�2: ð9Þ

Apart from the mentioned four failure criteria, intracellular
buckling is another possible failure mode. Considering the radius
of the inscribed circle in a cell as hc (refer to Fig. 2), this failure cri-
terion is given by [20]

M
tf Hc

6
2Ef

ð1� m2
f Þ

tf

4Rcð1� cos hcÞ

� �2

; ð10Þ

where mf is the Poisson’s ratio of the face sheet material.
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4. The optimisation problem

The aim of the panel optimisation is to predict the lowest
weight of the sandwich panels and the corresponding values of
the geometrical parameters, when the panel is subjected to a pre-
scribed bending load. Therefore, the objective function is the panel
self-weight and the failure criteria developed in Section 3 are the
constraints for the optimisation. Non-dimensional load index for
generalised bending of sandwich panels can be conveniently ex-
pressed by combining the maximum bending moment M and max-
imum shear force V (both per unit width) as

Q
¼ V2

EM (from Ashby
et al.’s work [26]) and l � M

V is the characteristic length scale [11].
For four point bending of the sandwich panel, l = L/2, where, L is
the span length. The normalised geometric parameters are
kf ¼ tf =l; kc ¼ Hc=l, tc/Rc and hc. As tc/Rc ratio is an important param-
eter for the core, analogous to tc/lc ratio for the hexagonal core
(lc = length of the cell wall) [2], it has been kept unchanged. Alter-
natively, ktc=kRc can be used by normalising both the numerator
and the denominator. Because the face and the core are made of
the same material, Ef and Ec, mf and mc, qf and qc are replaced by
E, m and q respectively. The weight index w can be expressed as
w = W/ql from [26]. Therefore, from (5), the weight index w of
the sandwich panel can be expressed as

w ¼ 1
2

tc

Rc

hc

ð1� cos hcÞ sin hc
kc þ 2kf : ð11Þ

The failure criteria Eqs. (6)–(9) may now be expressed in the fol-
lowing forms:
Y

k�1
f k�1

c ðrf =EÞ�1
6 1 ðFFÞ ð12aÞY

k�1
f k�1

c ðtc=RcÞ�2=3ðk1k2Þ�2=3
6 1 ðFWÞ ð12bÞY

2k�1
c ðtc=RcÞ�1ð1� cos hcÞðsmax=EÞ�1

6 1 ðCFÞ ð12cÞY
k�1

c ðtc=RcÞ�3k3 6 1 ðCBÞ ð12dÞ

where k1 ¼
3

2ð1þ m�cÞð3� m�cÞ

� �
, and k2 ¼

hc

2ð1� cos hcÞ sin hc

� �
and

k3 ¼ ð6=f1p2Þð1� cos hcÞh2
c ð1� m2Þ.

Any failure constraint is active when its value is equal to 1.
Note, intracellular buckling mode will be discussed later.

4.1. Solution methodology

The optimum weight is obtained at the confluence of any three
failure mechanisms. Therefore, four such combinations are
possible: (1) FF–CF–CB, (2) FW–CF–CB, (3) FF–FW–CF, and (4)
FF–FW–CB. A generic approach to this problem is to express any
three geometric parameters in terms of the fourth one, say kc , using
the three active constraints. Then the weight w given by Eq. (11)
becomes a function of kc only and the optimum kc is given by
dw=dkc ¼ 0. The solution is admissible, if the remaining constraint
is satisfied; otherwise the solution is inadmissible. The minimum
weight derived from these four combinations is the optimum. In
the present example, analytical expressions become quite compli-
cated and implicit in nature because of the presence of hc. There-
fore, hc is considered as a fixed parameter and its sensitivity on
optimal weight has been studied later. As a result, the four-variable
optimisation problem is reduced to a three-variable optimisation
problem. However, a complete numerical route may be used for
calculating the optimum values of hc and other parameters that
lead to the optimum weight.

Three-parameter optimisation is not very straightforward as the
scaling of the variables kf and kc are the same in (12a) and (12b).
Furthermore, kc has the same scaling in (12c) and (12d). Therefore,
for combinations (1) and (2), tc/Rc values are calculated equating
Please cite this article in press as: Banerjee S, Bhattacharyya D. Optimal design o
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constraints (12c) and (12d). On the other hand, for combinations
of (3) and (4), tc/Rc values are calculated using respective con-
straints (12c) and (12d). Based on the three-parameter optimisa-
tion, closed form expressions of the geometric parameters are
developed that would lead to the minimum panel weight for vari-
ous combinations of constraints, shown in Table 1. For any pre-
scribed loading, the optimum weight value can be calculated
using Eq. (11), with the values of geometrical parameters evaluated
using the expressions given in Table 1. However, instead of only
calculating the optimum values, values of the geometric parame-
ters and panel weight are calculated for a wide range of kc values
because it gives better insight of the failure behaviour.
5. Results and discussion

The optimisation has been performed in the MATLAB [27] envi-
ronment for the sandwich panels with faces and hollow core made
of 3-ply veneer. Each ply thickness is 0.6 mm, with a total thickness
�1.8 mm. Experimental results show that for comparable densi-
ties, the specific shear strength of the hollow core 11.8 kN�m/kg
is a lot better than that of the commercial PP honeycombs
5.45 kN�m/kg, but less than Nomex about 26 kN�m/kg. The cell wall
material (veneer) properties are: E = 4.78 GPa, rf = 59.87 MPa,
smax = 29.45 MPa, m = 0.3 and q = 520 kg/m3. The value of core Pois-
son’s ratio m�c is taken as 0.3. The value of hc is 46�, which is the va-
lue of hc for the manufactured core profile. tc/Rc ratio for the core
can vary widely from 0.005 to 0.25. As a result, the value of f1 in
(4) varies between approximately 4.28 and 1.5 [24]. For a conser-
vative design, the lower bound value of 1.5 is considered here.
For this geometry, each cell wall was modelled as three layers
using SHELL181 element. Finite element analysis using ANSYS
shows that the shear stress variation between the layers is less
than 5%. This justifies our assumption that the shear stress can
be considered as uniform across the cell wall. As an example, opti-
misation results corresponding to load index V2/EM = 1 	 10�4 is
presented first to explain the generic features of the plot.

Fig. 3a is a plot for the weight index w for various values of kc for
the four combinations of active constraints. Fig. 3b zooms on
Fig. 3a to show the nature of the curves in detail. The bottom-most
dotted line in Fig. 3a representing combination, FW–CF–CB, is al-
ways an inadmissible solution, and hence omitted in Fig. 3b. The
plot shows that for FF–CF–CB and FF–FW–CB combinations, the re-
quired weight reduces with an increase in core depth, until it
reaches the lowest (optimum) value and then increases gradually.
On the other hand, the weight indicated by FF–FW–CF combination
progressively reduces and does not indicate any optimum. These
three curves converge at point P and then diverge again. However,
until point P, FF–FW–CF combination produces an admissible solu-
tion, whereas FF–FW–CB produces an inadmissible solution. This
reverses after point P when FF–FW–CB turns out to be an admissi-
ble combination and FF–FW–CF becomes an inadmissible combi-
nation. On the contrary, FF–CF–CB combination always produces
an admissible solution. Though the weight values as predicted by
the two admissible combinations are close until point P, FF–FW–
CF predicts higher values relative to the FF–CF–CB combination.
After point P, FF–FW–CB predicts lower weight than FF–CF–CB
and reaches a minimum value (point R in the figure) and gradually
increases again. Similar trend is observed for FF–CF–CB combina-
tion as it also reaches a minimum (point Q) and then increases
again. Because FF–FW–CF does not lead to any optimum weight,
expressions of the geometric parameters shown in Table 1 would
lead to the weight at point P, the lowest weight possible by this
combination. The weight corresponding to R is the global minimum
panel weight for load index 1 	 10�4. For the current set of param-
eters, the weight and the associated geometric parameters
f sandwich panels made of wood veneer hollow cores. Compos Sci Technol
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Table 1
Closed form expressions for the optimum geometric parameters that produce the minimum panel weight for various combinations of constraints.

Combination No. tc/Rc kc kf

1 hc=p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� v2

c

� �
ðsmax

q
=EÞ

ffiffiffiffiffiffiffiffiffi
2
Qp
ðtc=RcÞ�1=2k�1=2

2 ðsmax=EÞ�1=2 Q
k�1

c ðsmax=EÞ�1

2 hc=p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� v2

c

� �
ðsmax

q
=EÞ

ffiffiffiffiffiffiffiffiffi
2
Qp
ðtc=RcÞ�5=6k�1=6

1 k�2=3
2

Q
k�1

c ðtc=RcÞ�2=3ðk1k2Þ�1=3

3 hc=p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2

c Þðsmax
p

=EÞ 2
Q
ðtc=RcÞ�1ð1� cos hcÞðsmax=EÞ�1 Q

k�1
c ðsmax=EÞ�1

4 ð
Q

k�1
c k3Þ1=3 ð3

Q2=3k�1
2 k�1=3

3 ðsmax=EÞ�1Þ3=5 Q
k�1

c ðsmax=EÞ�1

0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

Core depth λc

Pa
ne

l w
ei

gh
t, 

w

FF−FW−CB
FF−CF−CB

FF−FW−CFFW−CF−CB

0.5 1 1.5 2

0.03

0.04

0.05

0.06

0.07

0.08

Core depth λc

Pa
ne

l w
ei

gh
t, 

w

R

Q
P

FF−CF−CB

FF−FW−CB

FF−FW−CF (inadmissible)

(a)

(b)

Fig. 3. (a) The panel weight values are plotted as a function of core depth kc for load
index V2/EM = 1 	 10�4, and parameter hc = 46�. Weight trajectories as calculated by
four combinations of failure constraints are shown. (b) The circled portion in (a) is
zoomed in to show the optimum (minimum) weight values at points Q and R,
predicted by combinations FF–CF–CB and FF–FW–CB, respectively. Three curves
converge at P and then diverge again.
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corresponding to points P, Q and R are shown in Table 2. Full four-
parameter optimisation calculations were also performed using
MATLAB optimisation toolbox and the results are presented in Ta-
ble 2 for comparison. The table shows that the global minimum
weight as calculated by MATLAB is only 6% lower than that pre-
dicted by simplified three-parameter optimisation (point R). Fur-
thermore, for FF–CF–CB and FF–FW–CF combinations, the weight
values predicted by MATLAB calculations are lower than the
respective optimised (three-parameter) values.

Calculations show that before point P, FF–FW–CF and FF–FW–
CB produce admissible and inadmissible solutions, respectively.
To explore this in detail, core tc/Rc values are plotted as a function
Table 2
The minimum weight values and the associated geometric parameters as predicted by vari
form) and (ii) full four-parameter optimisation using MATLAB. (M) denotes the MATLAB va

Point No. Combinations Minimum panel weight, w

P FF–FW–CF 0.063
P FF–FW–CF (M) 0.051

Q FF–CF–CB 0.056
Q FF–CF–CB (M) 0.051

R FF–FW–CB 0.051 (global minimum)
R FF–FW–CB (M) 0.048 (global minimum)
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of core depth kc , for load index 1 	 10�4, in Fig. 4. For FF–FW–CF,
core tc/Rc values are calculated using constraint (Eq. (12c)) equated
to 1, and the resultant curve (solid line) is the shear fracture (CF)
curve. On the other hand, tc/Rc values determined using Eq. (12d)
as an active constraint are represented by the shear buckling
(CB) curve, the dotted line. Fig. 4 shows that for lower core depth,
the core failure is governed by shear fracture rather than by shear
buckling. However, this reverses beyond the intersection point and
shear buckling becomes the governing failure mode. As a result, CF
and hence, FF–FW–CF combination produces admissible solution
before the intersection point, provided face fracture and wrinkling
criteria (12a) and (12b) are met. In contrast, CB and therefore, FF–
FW–CB becomes an inadmissible combination even if face fracture
and wrinkling criteria are satisfied. Beyond the intersection point,
cell wall buckling becomes the governing failure mode and hence,
FF–FW–CB only provides the admissible solution. Therefore, the
intersection point represents the tc/Rc value associated to P in
Fig. 3b. This value can be calculated using tc=Rc ¼ hc=

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2

c Þðsmax
p

=EÞ as 0.027. This expression is obtained by
equating (12c) and (12d) and eliminating kc , and is shown in Ta-
ble 1. For these two combinations, substituting FF constraint
(12a) in FW (12b) leads to tc/Rc = 0.002. In Fig. 4, the horizontal line
represents tc/Rc = 0.002. Both the face winkling and fracture can be
prevented for any loading if tc/Rc = 0.002. For tc/Rc – 0.002, either
FF or FW would govern the failure. As FF and FW expressions have
the same scaling (�1) for kc and kf , for tc/Rc < 0.002, the face thick-
ness kf is to be evaluated according to FW (12b) as FW is the gov-
erning failure mode. On the other hand, for tc/Rc > 0.002, face
fracture would be critical and therefore, face thickness is to be de-
signed using FF (12a). For most practical cases, tc/Rc value is ex-
pected to be greater than 0.002. Therefore, in Table 1, the
expressions of face thickness calculations are shown based on FF
criterion, rather than FW.

The solutions obtained using combinations (1) and (2), FF–CF–
CB and FW–CF–CB, indicate a balanced core design, as the core fails
simultaneously by cell wall fracture and buckling. The correspond-
ing value of tc/Rc as calculated using the earlier expression
tc=Rc ¼ hc=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2

c Þðsmax
p

=EÞ is 0.027. The expression shows
that the value of tc/Rc is constant for a prescribed set of material
properties and hc, and is independent of loading and other geomet-
ric parameters. For this tc/Rc value, the admissible solution is ob-
tained only for combination FF–CF–CB, and not for FW–CF–CB.
This is due to the fact that for tc/Rc > 0.002, face thickness kf calcu-
lated on the basis of face wrinkling cannot prevent face fracture
ous combinations of active constraints using (i) three-parameter optimisation (closed
lues. The load index, V2/EM = 1 	 10�4.

Core depth, kc Core, tc/Rc Face thickness, kf hc (�)

0.360 0.027 0.022 46
0.565 0.0485 0.014 82

0.560 0.027 0.014 46
0.565 0.0485 0.014 82

0.790 0.021 0.010 46
0.830 0.033 0.001 67
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and hence, FW–CF–CB is not a viable solution for tc/Rc = 0.027. Be-
cause of the same scaling (�1) for kc and kf in FF, higher value of
face thickness is required for lower core depth and that increases
the weight, even though the tc/Rc component remains the same.

Four failure criteria that have been used so far are the most sig-
nificant ones. However, intracellular buckling mode has also been
investigated. For tc/Rc > 0.002, face thickness is governed by FF cri-
terion. Therefore, face fracture and intracellular buckling are con-
sidered here as the dominant failure modes. However, for tc/
Rc < 0.002, face wrinkling and intracellular buckling need to be
considered. Assuming that face fracture and intracellular buckling
occur simultaneously, Eq. (10) can be reduced to the following
form (using (6)),
10−7 10−6 10−5 10−4 10−3 10−2
10−3

10−2

10−1

100

101

R(FF−FW−CB)
Q(FF−CF−CB)

P(FF−FW−CF)

Load V2/EM

 P
an

el
 w

ei
gh

t w

S

FF−FW−CB FF−CF−CB

Fig. 5. Design map showing minimum weight of the panel for a wide range of
loading for various combinations of failure constraints. Three curves converge
together at V2/EM = 5.46 	 10�4. The corresponding panel weight w = 0.14.
kRc

kf

� �2

¼ 1
8
ðrf =EÞ�1ð1� m2Þ�1ð1� cos hcÞ�2 ð13Þ

Note that Eq. (13) is independent of loading and core depth. To
ensure that this failure would not occur before face fracture, the
preceding relationship would pose a limit on the cell size kRc for
a given face thickness kf or vice versa. For the current set of mate-
rial and geometric parameters, Eq. (13) can be reduced to
kRc ¼ 10:85kf , which is the upper bound of the allowable cell sizes
associated to a particular face thickness. The cell size governed by
the radius of curvature Rc, is limited by the manufacturing con-
straint. Therefore, Rc could be the limiting factor, and would, in
turn, dictate the face thickness. For the reported sample,
kRc = 0.27; considering this as the upper bound, kf must be P
24.9 	 10�3. For kf < 24.9 	 10�3, face will buckle before fracture,
and hence, intracellular buckling would be critical. Since, the lower
bound of face thickness is very low, for most practical cases intra-
cellular buckling is not critical, unless the cell is too large, or the
face thickness is too low.

In the case of core-face delamination, the compressive face buck-
ling load will depend on various factors including core stiffness, face
thickness, debonding length and bond quality [28]. Our analysis as-
sumes that there is no delamination between the face and skin
(including the multi-layer face sheet delamination) and attempts
to optimise the panel geometry. For the experimental part also
(not reported here), sufficiently strong glue and improved applica-
tion methods are being used to avoid delamination. Therefore, the
design will be conservative considering the other four failure crite-
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ria. However, it is to be noted that the load carrying capacity of the
panel will be adversely affected in the case of delamination.

The minimum panel weight is predicted for a wide range of
loading and is plotted in Fig. 5. The solid and the dashed line above
it, are the trajectories of points Q and R (refer to Fig. 3b), represent-
ing the lowest weight as predicted by FF–CF–CB and FF–FW–CB
combinations, respectively. It can be seen from Fig. 3 that for any
load, FF–FW–CF combination does not indicate any optimum, but
predicts lowest admissible weight at P. Therefore, the trajectory
of P is also shown, the topmost line in the figure. For lower loads,
R trajectory (FF–FW–CB) determines the global minimum. For any
load, the Q values are now higher yet close to the respective R val-
ues. However, with further increase in loading beyond point S, Q
trajectory (FF–CF–CB) represents the optimum weight and R tra-
jectory becomes inadmissible solution. This happens because at
higher loads, P lies on the right of R and FF–FW–CB is an admissible
combination only before P. The three trajectories converge to-
gether at point S. Thus at S, the panel can fail simultaneously by
all the failure modes. The associated transition load index and
weight values are 5.46 	 10�4 and 0.14, respectively. The corre-
sponding geometric parameters are: kc = 1.985, kf = 0.022, tc/
Rc = 0.027. Note that P trajectory always predicts relatively higher
weight than Q and R, except at point S.

Fig. 6 represents the optimal values of the geometric parame-
ters of the panel: core depth, tc/Rc for the core and face thickness
for a wide range of loading. The first and third plot shows that
the core depth along with the face thickness increases with the
load, because of their inverse scaling (�1). For both of them, the
slope of the curve changes at load index of 5.46 	 10�4 as the com-
bination of active constraints changes from FF–FW–CB to FF–CF–
CB. This is the same load index beyond which the minimum weight
is governed by FF–CF–CB, instead of FF–FW–CB before the loading
(as shown in Fig. 5). For loadings lower than 5.46 	 10�4, tc/Rc val-
ues are lower than 0.027. However, beyond this loading, FF–CF–CB
dictates the optimum solution and therefore, tc/Rc value remains
constant at 0.027 as shown in the second plot.

5.1. Sensitivity of half angle hc

The values of hc were varied for 30�, 60� and 90�, and the corre-
sponding minimum weight values were calculated for a wide range
of loading. hc = 90� is a special case of the geometry made of half
circles with R = hc/2. Fig. 7 shows a plot of minimum weight vs.
load index with hc as a parameter. The general trend of all curves
remains same as was observed for hc = 46� in Fig. 5. Beyond a cer-
tain loading, the slope of each curve changes when the governing
combination of the active constraints changes from FF–FW–CB to
f sandwich panels made of wood veneer hollow cores. Compos Sci Technol
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FF–CF–CB. The plot shows that for any loading, the difference in
weight for various values of hc is not that significant. For instance,
corresponding to load index 1 	 10�4, the minimum weight for
hc = 46�, 60� and 90�, are 0.051, 0.048, 0.050, respectively. MATLAB
calculations were performed for two loading cases: 1 	 10�4 and
1 	 10�3, above and below the transition loading, respectively.
The results show that for 1 	 10�4, hc = 67� gives the minimum
weight for FF–FW–CB; whereas for 1 	 10�3, hc = 46� predicts the
minimum weight for FF–CF–CB. Interestingly, hc = 46� was used
for the optimisation calculation. Lower sensitivity of hc on mini-
mum weight calculation justifies three-parameter optimisation ap-
proaches with a judicious choice of hc value.

There may be practical limitations of manufacturing a fully
optimised panel. For example, it is easier to control core depth
and face thickness to some extent, but it is quite difficult to achieve
the targeted tc/Rc ratio as reducing the cell wall thickness tc may
not always be possible. The allowable value of Rc is guided by
the manufacturing constraints and is also dependent on tc. How-
ever, increasing Rc would reduce the tc/Rc ratio (for same tc), and
produce larger cells, thus making the panel more prone to intracel-
lular buckling type failure.

6. Conclusions

To meet the growing demand of replenishable, lightweight and
strong materials, novel hollow core sandwich panels have been
manufactured using 3-ply veneer. The mechanics of a representa-
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tive unit cell when subjected to out-of-plane shear forces was ana-
lysed and the expressions for the failure loads have been
developed. Based on the failure criteria of a sandwich panel, an
optimisation formulation has been achieved for predicting the
minimum weight of the wood veneer sandwich panel for a pre-
scribed bending load. The four-parameter optimisation problem
was reduced to a three-parameter problem by choosing hc as a
fixed parameter. A sensitivity study has been performed to show
that the value of hc does not influence the panel weight signifi-
cantly. Furthermore, it has been observed that the optimum weight
calculated by the full four-parameter optimisation is slightly lower
than that predicted by the simplified three-parameter optimisa-
tion. Hence, the closed form expressions of the geometric parame-
ters developed in this work can be used to predict their optimum
values to achieve the minimum panel weight. Design maps are
shown to indicate the minimum panel weight and the correspond-
ing geometric parameters for a wide range of loading. Relation-
ships between the various active failure modes have been
explored. Note, the developed analysis is general enough to be
applicable for sandwich panels with similar hollow cores made
of other materials.
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