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Abstract

The thesis reports new multiscale simulation methods to predict rheological prop-

erties of complex fluids. Dilute polymer solutions, polymer melts and fibre sus-

pensions with a Newtonian matrix are the main interests of this study. In the

present multiscale approach, the stress contributed by polymers or suspended

fibres is determined by the Brownian configuration field (BCF) method using

kinetic models whereas integrated radial basis function (IRBF) based numeri-

cal methods are used to approximate field variables and their derivatives and

to discretise governing equations. The macro-micro multiscale system is linked

together by a stress formula by kinetic models.

The IRBF-BCF based multiscale method is first applied to simulate dilute poly-

mer solutions modelled by bead-spring chains (BSCs), incorporating finitely ex-

tensible nonlinear elastic springs, hydrodynamic interaction and excluded vol-

ume effects. Then, the simulation method is further developed for polymer melt

systems, in which the entanglement of polymer molecules is described by Doi-

Edwards, Curtiss-Bird, reptating rope and double reptation models. The numer-

ical stability of the method, which is generally known as a challenging problem

in the simulation of polymer melts, is enhanced owing to the combination of the

IRBF method and the BCF idea. As an illustration of the method, the start-up

Couette flow and the flow over a cylinder in a channel are investigated for both

dilute polymer solutions and polymer melts.

A new multiscale approach is also developed to simulate the rheological charac-

teristics of fibre suspensions in both dilute and non-dilute regimes. The approach

is a combination of the IRBF scheme, the discrete adaptive viscoelastic stress
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splitting (DAVSS) formulation and the BCF idea. The macroscopic conservation

equations described in stream function-vorticity formulation are solved using the

1D-IRBF scheme combined with the DAVSS technique. The evolution equa-

tion for fibre configuration fields governed by the Jeffery equation for dilute fibre

suspensions or the Folgar-Tucker equation for non-dilute fibre suspensions is ex-

plicitly advanced in time using the BCF approach. The fibre stress is determined

based one fibre configuration fields using the Lipscomb and Phan-Thien–Graham

models for dilute and non-dilute fibre suspensions, respectively. The method is

verified with the simulation of flows of fibre suspensions between two parallel

plates, flows through a circular tube, the 4:1 and 4.5:1 axisymmetric contraction

flows, and the 1:4 axisymmetric expansion flows.

Numerical experiments confirm the present method efficiency based on both the

enhanced convergence rate of the solution and the stability of a stochastic process.
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Chapter 1

Introduction

1.1 Motivation, significance and objectives

Simulation of transient non-Newtonian fluid flows, e.g. flows of viscoelastic fluid

or fibre suspensions, plays a very important role in several manufacturing indus-

tries, for example, processing of polymer liquids (dilute or concentrated solutions

and melts) (Barone and Tucker, 1989) and fibre-reinforced composite materials

(Folkes, 1982). The simulation in these fields is practically interesting but compu-

tationally challenging. Although the macroscopic simulation for the evolution of

non-Newtonian flows has achieved significant progresses over the last five decades,

the approach is deficient in solving several real flow problems in terms of both

geometry and materials, for example, moving boundary and free surface for com-

plex geometry and lack of closed-form constitutive equation for complex fluid.

Hence, any computational achievement in solving such problems will advance the

simulation method and bring enormous benefits to industry.

Recently, various multiscale methods for the modelling and simulation of poly-

meric fluid flows have been developed (Laso and Ottinger, 1993; Hulsen et al.,

1997; Van den Brule, 1993; Weinan and Engquist, 2003) and attracted significant

attention. In the multiscale approaches, different physical laws are often required

to describe the system at different scales. For example, at the macro-scale, com-

plex fluids are accurately described by the velocity, pressure, and temperature
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fields which satisfy the physical conservation equations while on the micro-scale,

it is necessary to use kinetic theory to get a more detailed material description in

terms of the probability distribution function of particles (Bird et al., 1987b). This

approach is known as the continuum-microscopic multiscale method and does not

require closed-form constitutive equations (Ottinger, 1996). More recently, the

Computational Engineering and Science Research Centre, University of Southern

Queensland, has developed radial basis function networks (RBFNs) based numer-

ical methods for the simulation of stochastic multiscale macro-micro models of

fluids (Tran-Canh and Tran-Cong, 2002b, 2004; Tran et al., 2011, 2012a). Our

research is a further development of this approach with the main objectives as

follows.

1. To devise multiscale simulation approaches, incorporating the IRBF ap-

proximation scheme, which will be both accurate and efficient, for the sim-

ulation of a system of hybrid governing equations of non-Newtonian flows;

2. To apply the new methods for the solution of complex fluid flows using

various kinetic models such as the Bead Spring Chain (BSC) models for

dilute polymer solutions and reptation models for concentrated polymer

solutions and polymer melts; and

3. To develop efficient computational procedures based on the BCF coarse

grained method and RBF schemes for the simulation of fibre suspension

flows in both dilute and non-dilute regimes.

1.2 Governing equations

This section is to briefly review the conservation equations of mass, momentum

and energy and the constitutive equations for Newtonian fluids, polymeric fluids

and fibre suspensions.
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1.2.1 Conservation equations

It is known from continuum fluid mechanics that the physical behaviour of a fluid

is completely governed by a set of conservation equations of mass, momentum

and energy as follows (Bird et al., 1987a).

• Equation of continuity

Dρ

Dt
+ ρ(∇ · u) = 0, (1.1)

• Equation of motion

ρ
Du

Dt
= (∇ · σ) + ρb, (1.2)

• Equation of energy

ρ
De

Dt
= −(∇ · q)− (σ : ∇u), (1.3)

where u is the velocity vector; t the time; ρ the density of the fluid; σ the total

stress tensor; b and e the body force and the internal energy per unit mass,

respectively; and q the heat flux vector. D/Dt is the substantial or material time

derivative associated with a specific fluid element (•) and defined as

D

Dt
(•) = ∂(•)/∂t + u · ∇(•). (1.4)

The total stress tensor σ for a given fluid can be decomposed as

σ = −pI+ τe, (1.5)

where p is the hydrostatic pressure; I the identity tensor; and τe the extra stress

tensor which is defined by means such as constitutive relations.

For an isothermal and incompressible fluid whose ρ is a constant, the conservation

equation of energy (1.3) is neglected. So the conservation equations of mass and
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momentum (1.1)-(1.2) with no body force (b = 0) are rewritten as follows.

∇ · u = 0, (1.6)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · τe. (1.7)

1.2.2 Constitutive equations

The constitutive equation derived from experimental observations or theoretical

principles describes the relation between the stress tensor and the flow kinematics.

Several constitutive equations are summarised as follows.

Newtonian fluids

For a Newtonian fluid, the extra stress tensor τe in Eq. (1.5) is replaced by the

Newtonian stress tensor τs, which is defined by the stress-strain relation of the

fluid as

τs = 2ηsD, (1.8)

where ηs is the fluid constant viscosity; D = 1
2
(∇u + (∇u)T ) the fluid defor-

mation rate tensor; and ∇u and (∇u)T the velocity gradient and its transpose,

respectively.

Polymeric fluids (solutions and melts)

For a polymeric fluid, the extra stress tensor τe consists of two components, one

contributed by the polymer and the other by a Newtonian matrix. Therefore, the

total stress tensor in Eq. (1.5) is rewritten as follows.

σ = −pI + τs + τp, (1.9)

where τp is the polymer contributed stress caused by the evolution of configu-

rations of polymer molecules in the fluid. Thus, the momentum conservation
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equation for a polymeric fluid is given by

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ ·

(
τs + τp

)
. (1.10)

Several common constitutive equations, which are listed below, are used to de-

termine the polymer-contributed stress τp.

• Upper-convected Maxwell (UCM) model

The linear UCM model was derived by Oldroyd (1950) as follows.

τp + λ
△
τp = 2ηpD, (1.11)

where λ is the relaxation time; ηp the polymer-contributed viscosity; and
△
τp the upper-convected derivative of the polymer stress tensor. In general,

the upper-convected derivative for any second-order tensor A is defined by

(Oldroyd, 1950)

△
A =

∂A

∂t
+ u · ∇A− (∇u)T ·A−A · ∇u. (1.12)

• Oldroyd-B model

A combination of the Newtonian solvent stress and the polymer stress in

the UCM model yields the Oldroyd-B model (Bird et al., 1987a)

τe + λ1
△
τe = 2η0

(
D+ λ2

△
D

)
, (1.13)

where λ1 is the relaxation time; λ2 = λ1
ηs
η0

the retardation time; and η0 =

ηs + ηp the total viscosity. It should be noted that the Oldroyd-B model

reduces to the Newtonian fluid for λ2 = λ1 and the UCM model for λ2 = 0.

• Phan-Thien–Tanner (PTT) models

The PTT models derived from the network theory have been introduced by

Phan-Thien and Tanner (1977) and Phan-Thien (1978) for polymer melts

and concentrated polymer solutions. The PTT models are expressed in the

following two forms
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– The linear PTT model (Phan-Thien and Tanner, 1977)

(
1 +

λ1ǫ

ηp
tr
(
τp

)
)
τp + λ1

△
τp+ξλ1

(
τp ·D+D · τp

)
= 2ηpD, (1.14)

where ǫ and ξ are the adjustable parameters of the model and deter-

mined from experiments; and tr(∗) the trace of (*).

– The exponential PTT model (Phan-Thien, 1978)

exp

(
λ1ǫ

ηp
tr
(
τp

)
)
τp + λ1

△
τp+ξλ1

(
τp ·D+D · τp

)
= 2ηpD. (1.15)

Other constitutive equations in the literature such as the differential Pom-Pom

model for branched polymer melt systems and the integral K-BKZ model for

polymer melts can be found in Bird et al. (1987b); Aksel (2002); McLeish and

Ball (1986) and Tanner (1988).

Fibre suspensions

For fibre suspensions with a Newtonian solvent, the extra stress tensor τe is

decomposed into two components: the Newtonian solvent stress τs and the fibre-

contributed stress τf . As a result, the total stress formulation (1.5) and the

momentum equation (1.7) are rewritten for fibre suspensions as follows.

σ = −pI + τs + τf , (1.16)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · τs +∇ · τf . (1.17)

It is worth noting that there is no closed-form constitutive equation for fibre

suspensions without using closure approximations (Fan, 2006; Lu et al., 2006;

Chinesta and Ausias, 2015). Therefore, most fibre stress formulations were de-

rived in terms of the orientation of fibre configurations, which is basically char-

acterised by a unit vector P along the fibre’s axis.

Fibres are considered as unique, rigid and cylindrical particles whose length and

diameter are lf and df , respectively. Several constitutive equations for fibre
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suspensions are briefly described as follows.

• Transversely isotropic fluid (TIF) model for dilute suspensions

The TIF model of an anisotropic fluid was first proposed by Ericksen (1960)

and then derived by Hinch and Leal (1975) for dilute suspensions from the

theory of microstructures. The particle/fibre-contributed stress by the TIF

model is determined as follows (Hinch and Leal, 1976).

τf = 2ηsφ
{
A 〈PPPP〉 : D+B

(
D · 〈PP〉+ 〈PP〉 ·D

)

+CD+DrF 〈PP〉
}
,

(1.18)

where P is the unit vector directed along a suspended particle; PPPP

and PP the fourth-order and second-order orientation tensors of P, respec-

tively;
〈
(∗)
〉
the statistical average of (∗); φ the fibre volume fraction of

the suspension; Dr the rotational diffusivity coefficient; ar =
lf
df

the aspect

ratio of the fibre; and A, B, C and F functions of ar. For a suspension

of high aspect ratio fibres, these coefficients are given by (Phan-Thien and

Graham, 1991)

A =
a2r

2 (ln2ar − 1.5)
, B =

6ln2ar − 11

a2r
,

C = 2, F =
3a2r

ln2ar − 0.5
.

(1.19)

• Lipscomb model for dilute suspensions

Lipscomb et al. (1988) has transformed the TIF constitutive equation into

a coordinate system which instantaneously coincides with the major axes

of the ellipsoid particle. The corresponding fibre-contributed stress for non-

Brownian suspensions of high aspect ratio fibres is determined as (Lipscomb

et al., 1988)

τf =
φµ

ηs
〈PPPP〉 : D, (1.20)

where µ is the material constant defined as µ = ηsa
2
r/lnar with a sufficiently

high aspect ratio of fibres. The Lipscomb model is used to simulate dilute

fibre suspensions in this research.
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• Dinh-Armstrong model for semi-concentrated suspensions

The model was developed to approximate the fibre stress for semi-concentrated

stiff fibre suspensions with a Newtonian solvent whose volume fraction is

in the range
[
1/a2r , 1/ar

]
(Dinh and Armstrong, 1984). The fibre stress

formulation of this model is given by

τf = 2ηsD

[
1

48

nf l
3
f

ln(2hf/df)
:

∫
PPPP

(1 + γ0 : PP)1.5
dP

]
, (1.21)

where nf is the fibres density; γ0 the infinite strain tensor; and hf the pa-

rameter representing the average distance from a fibre to its nearest neigh-

bour. Other parameters was defined as above. More details of the model

can be found in Dinh and Armstrong (1984).

• Phan-Thien–Graham model for concentrated suspensions

A constitutive equation for suspensions with rod-like particles whose aspect

ratio is in the range [5, 30] has been proposed by Phan-Thien and Graham

(1991). The equation neglects the Brownian motion of fibres and only

considers the dominant term related to the fourth-order orientation tensor

PPPP in the TIF model. The fibre-contributed stress tensor is determined

as (Phan-Thien and Graham, 1991)

τf = 2ηsf(φ, ar)D : 〈PPPP〉 . (1.22)

The function f(φ, ar) in Eq. (1.22) is given by

f(φ, ar) =
a2rφ(2− φ/φm)

4(ln2ar − 1.5)(1− φ/φm)2
, (1.23)

where φm is the maximum volume fraction of the suspension and approxi-

mated based on the experimental results of Kitano et al. (1981) as

φm = 0.53− 0.013ar, 5 < ar < 30. (1.24)

Introducing the rotational diffusivity of fibres Dr into Eq. (1.22) yields a
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modified Phan-Thien–Graham model (Fan et al., 1999)

τf = ηsf(φ)
(
AD : 〈PPPP〉+DrF 〈PP〉

)
, (1.25)

where A and F are the parameters as defined in Eq. (1.19); and f(φ) is

now given by

f(φ) =
φ(2− φ/φm)

2(1− φ/φm)2
. (1.26)

In this research project, the Phan-Thien–Graham model is used to approximate

fibre stress in the simulation of concentrated fibre suspension flows.

1.3 Simulation of polymeric fluids

Generally, there are two common approaches for simulations of flows of polymeric

fluid: the purely macroscopic approach and the macro-micro multiscale approach.

The two simulation approaches are similar in integrating the effect of polymer

phase in the motion equation of the flow but distinctively different in the manner

of calculating the polymer stress. Indeed, the polymer-contributed stress is ob-

tained by solving the constitutive equation in the macroscopic approach whereas

it is computed from the information of micro-structures, which represent the real

polymer molecules, in the macro-micro approach.

1.3.1 Macroscopic approach

In the macroscopic method, the conservation equations are closed by a constitu-

tive equation for polymeric fluids. The constitutive equation can be expressed in

either the differential form (Maxwell, Oldroyd-B and PTT models) or the integral

form (K-BKZ model). The two models have been investigated extensively in the

literature. However, the main difficulty in both models is how to find a suitable

closed-form constitutive equation for a specific fluid investigated in the problem.

In addition, it is known from the literature that the constitutive equations of

several complex fluids are not able to be derived in a closed form (Owens and
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Phillips, 2002; Engquist et al., 2009).

1.3.2 Macro-micro multiscale approach

In the macro-micro multiscale approach or the coarse-grained (CG) simulation,

there are two separate procedures which need to be carried out at each time step:

the macro and micro procedures. In the macro procedure, the kinetic behaviour

of the flow is governed by the conservation equations for mass and momentum.

Meanwhile, in the micro procedure, the dynamic behaviour of polymeric liquids

is described based on the micro-configuration/structure of polymers using kinetic

CG models. The governing equations in the two procedures are then linked

together by the Kramers expression, which is used to calculate the polymer stress

from the configurations of polymer models in the micro procedure.

One of the potential techniques in the CG simulation is the Brownian dynamics

simulation (BDS) technique in which the evolution of polymer configurations can

be captured by either a diffusion equation, known as the Fokker-Planck equation

(FPE), or the corresponding stochastic differential equations (SDEs) (Ottinger,

1996; Lozinski et al., 2011). The FPE is generally a deterministic PDE of a

probability density function whereas SDEs are differential equations whose inde-

pendent variables are stochastic processes. This yields the two main directions of

the BDS for viscoelastic fluid flows, namely the FPE-based and SDE-based meth-

ods. While the macro component can be discretised by either the conventional

numerical methods such as FEM (Laso and Ottinger, 1993) or the RBFN-based

mesh-free methods (Tran-Canh and Tran-Cong, 2002b; Tran et al., 2011), the

manner of processing of the micro component gives rise to the basic difference

between the two methods. The main advantage of the FPE-based method over

the SDE scheme is that the obtained solution is not disturbed by statistical noise

(Chauviere and Lozinski, 2004b; Tran et al., 2012b). However, the FPE-based

simulation is far less attractive to researchers than the stochastic ones due to (i)

the mathematical complexity in solving the FPE (Keunings, 2004), and (ii) the

instability caused by high Weissenberg numbers, especially, in complex flows of

viscoelastic fluids (Chauviere and Lozinski, 2004a). While both of the two meth-
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ods are studied in this thesis, the SDE-based method is the main focus of our

research project. The SDE simulation method can be classified into two main

groups: the Lagrangian BDS and the Eulerian BDS.

The Lagrangian BDS was developed by Ottinger and Laso (Laso and Ottinger,

1993) (named as the Calculation Of Non-Newtonian Flows: Finite Elements &

Stochastic Simulation Techniques (CONNFFESSIT)). The main idea of the CON-

NFFESSIT is that the polymer-contributed stress is averagely calculated from

the configurations of a large ensemble of microstructures, which describe poly-

mer chains existing in the polymer solution (Bird et al., 1987b; Ottinger, 1996).

Thus, there is no need for a closed form constitutive equation. However, there

are several challenges for the method, including: (i) the stochastic noise in the

solution of the fibre stress and (ii) particle tracking of a huge number of particles

at each time step.

Hulsen et al. (1997) have later proposed the Eulerian BDS scheme, also known

as the Brownian configuration field (BCF) technique. The BCF’s main idea is

that the collection of discrete particles in the CONNFFESSIT is replaced by

an ensemble of continuous configuration fields. These configuration fields are

convected and deformed by the drift components (the velocity gradient of flow and

elastic forces) and the Brownian diffusion motion during the simulation. Owing

to the Eulerian nature, the variance reduction techniques and parallel processing

simulations can be set up easily in the BCF-based algorithm (Ottinger et al.,

1997).

In the macro-micro multiscale approach, polymer liquids are described by kinetic

CG models. Some of them are presented in this chapter including the bead-rod-

spring (BRS) and reptation models, which are commonly used for the modelling of

dilute polymer solutions and polymer melts, respectively. A complete description

of kinetic CG models can be found in Bird et al. (1987b).
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Figure 1.1: An illustration of 5-bead chain of multi BRS models.

Bead-rod-spring (BRS) models for dilute polymer solutions

For these kinetic models, beads are considered as mass points, rods are massless

and have a fixed length, and the pendant hydrogen atoms are reduced for sim-

plicity. Generally, BRS models are divided into two basic subclasses. The first

group consists of the freely rotating chain model and the freely jointed multi-bead-

rod chain model (or the Kramers chain) (Fig. 1.1 - left figure). In the second

group, beads are connected by springs, forming the freely jointed bead-spring

chain model (Fig. 1.1 - right figure). The model offers some advantages over the

corresponding bead-rod model, e.g. the internal constraints are not considered

in the bead-spring model. However, it also suffers from some disadvantages. For

example, the chain length is not bounded, especially if the extension of spring is

governed by the Hookean law, the polymer chain can be stretched unlimitedly in

shear flow. The simplest form of the BRS models is the dumbbell model with

2 beads. More details of BRS models can be found in Bird et al. (1987b); Cruz

et al. (2012).

In order to enhance the ability of BRS models in expressing the properties of

viscoelastic fluid flows, the intramolecular interactions in a polymer system, in-

cluding the hydrodynamic interaction (HI) and the excluded volume (EV) effects

were introduced into the BRS models (Zimm, 1956; Verdier and Stockmayer,

1962). These models predict very well some properties of dilute polymer solu-

tions, for instance, the dependence of the viscometric functions, the diffusion

coefficient and the relaxation time on the molecular weight. By incorporating

HI and EV effects into the simulation, the rheological characteristics such as the
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existence of the second normal stress difference or the shear dependence of vis-

cometric functions are forecasted accurately (Zimm, 1956). Thus, the obtained

results by the simulation now are able to be compared with those achieved by

experiments. Recently, a number of significant advancements of the BRS models

have been developed to fully examine the effects of the intramolecular forces on

the motion of molecular chains (Ottinger, 1987b, 1989b; Zylka, 1991; Prakash,

2002).

Reptation models for concentrated polymer solutions and polymer

melts

Polymer melts and concentrated polymer solutions are extremely complex sys-

tems due to the very high density of polymer molecules. Thus, the motion of

a molecule is restricted by neighbouring ones. In addition, a polymer chain can

move mainly along its backbone and the motion in the direction perpendicular

to the backbone is mostly limited by surrounding polymers (Bird et al., 1987b).

As a result, the motion of a molecule in an undiluted polymer system is assigned

to so-called reptational motion (de Gennes, 1971). The reptation theory was

firstly proposed by Doi and Edwards (Doi and Edwards, 1978a,b,c). In the Doi-

Edwards (DE) model, each polymer chain reptates in a fictitious tube created by

its neighbouring ones. A transformation of the DE model based on a different

interpretation of reptation theory is the Curtiss-Bird (CB) model (Curtiss and

Bird, 1981a,b; Bird et al., 1982a,b). In this model, an anisotropic friction tensor

is employed to describe the limitation of the sideway motion instead of using

the “tube” constraint in the DE model. Ottinger (1990) proposed a stochastic

version for the reptation models in which the diffusion equation is transformed

into an SDE.
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1.4 Simulation of fibre suspensions

In this thesis, fibre suspension flows are simulated with the assumptions as follows.

(i) fibres are rigid, rod-like particles, and (ii) the fluid is homogeneous because

of a constant volume fraction on the whole investigated domain. Two character-

istic parameters of the fibres are the aspect ratio ar and the volume fraction φ,

which is defined as the total volume of fibres as a fraction of the total volume

of suspension. The constitutive equations for fibre suspensions (Section 1.2.2)

are formed in terms of statistical averages of the orientation tensors (PPPP and

PP) and it is not easy to derive deterministic closed-form constitutive equations

in terms of material properties and standard kinematic quantities. Therefore, in

order to close the system, it is necessary to establish an evolution equation for

fibres’ orientation P’s and a formulation to determine the orientation tensors. A

discussion on these issues is as follows.

1.4.1 Evolution equation

Jeffery (1922) has introduced the motion equation of a single ellipsoidal particle

as
dP

dt
= Ω ·P+ λ (D−D : PPI) ·P, (1.27)

where Ω = 1
2

(
(∇u)T −∇u

)
is the vorticity tensor; and λ is a parameter depen-

dent on the ellipsoidal aspect ratio and given by λ = (a2r − 1)/(a2r + 1).

This equation has been later used extensively by rheologists to simulate fibre

suspensions in dilute regime (Goettler et al., 1979, 1981; Givler, 1981; Givler

et al., 1983; Lipscomb et al., 1988; Chiba et al., 1990).

For dilute fibre suspensions, each fibre can rotate freely without any hindrance by

its neighbours, and the hydrodynamic interactions between fibres are small and

neglected. However, the assumption is not valid for suspensions in ‘non-dilute’

regimes. In such regimes, the motion of a fibre is restricted by neighbouring

ones, therefore, fibre-fibre interactions need to be introduced into the evolution
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equation. By experimental observations, Folgar and Tucker (1984) proposed an

evolution equation with the effect of fibre-fibre interactions for the description of

non-dilute suspensions as follows.

dP

dt
= Ω ·P+ λ (D−D : PPI) ·P− Dr

ψ
∇Pψ, (1.28)

where ψ is the probability distribution function of P (ψ = ψ (P, t) for the homo-

geneous suspensions); and ∇P the gradient operator associated with P. Dr is the

rotational diffusivity coefficient and approximated by (Folgar and Tucker, 1984).

Dr = Ciγ̇, (1.29)

where γ̇ =
√

2 (D : D) is the general strain rate; and Ci the interaction coefficient,

namely the Folgar-Tucker constant.

The diffusion equation or the FPE derived from Eq. (1.28) for fibre suspensions

is given by (Folgar and Tucker, 1984)

∂ψ

∂t
=

∂

∂P

{
ψ
[
Ω ·P+ λ (D−D : PPI) ·P

]}
+ Ciγ̇

∂2ψ

∂P2
. (1.30)

The stochastic version of the FPE (1.30) is written as follows (Fan et al., 1999)

dP

dt
= L ·P− L : PPP+ (I−PP) · F(b) (t) , (1.31)

where L is the effective velocity gradient tensor and given by L = (∇u)T − ζD

with ζ = 2/(a2r + 1) and ζ = 1 − λ. The Brwonian force F(b) (t) possesses the

properties
〈
F(b) (t)

〉
= 0 and

〈
F(b) (t+ s)F(b) (t)

〉
= 2Drδ(s)I where δ(s) is the

Dirac delta function. The Brownian force is a function of white noise and given

by (Ottinger, 1996).

F(b)(t) =
√
2Ciγ̇

dW

dt
, (1.32)

where W is a Wiener process. Substituting Eq. (1.32) into Eq. (1.31) yields the

evolution equation for non-dilute fibre suspensions as follows.

dP

dt
= L ·P− L : PPP+

√
2Ciγ̇ (I−PP) · dW

dt
, (1.33)
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where the interaction coefficient Ci 6= 0. Eq. (1.33) becomes the Jeffery equation

(1.27) for dilute fibre suspensions with Ci = 0 (Phan-Thien and Graham, 1991)

1.4.2 Simulation methods

The general procedure for the simulation of fibre suspensions consists of three

steps as follows: Firstly, solve the conservation equations with a known fibre

stress to update the velocity and pressure fields; Secondly, solve the evolution

equation with the updated pressure and velocity fields to determine the fibres’

configuration of the current time step; Lastly, calculate the fibre stress field from

the updated configuration of fibres. Follow this procedure, several simulation

methods have been devised to predict dynamic behaviours of fibre suspension

flows. The methods differ mainly in the way to proceed the last two steps in

the procedure. Generally, these methods can be classified into several main ap-

proaches as follows.

Closure approximation

In this approach, instead of solving the evolution equation for the unit orientation

vector P, ones solve the evolution equation for either the second-order or fourth-

order tensors of P. The evolution equation for the second-order tensor of P is

given by
d 〈PP〉
dt

= L · 〈PP〉+ 〈PP〉 · LT − 2L : 〈PPPP〉

+2Ciγ̇
(
I− αd 〈PP〉

)
,

(1.34)

where αd is the number of dimension of fibre, i.e. αd = 2 for 2-D orientation and

αd = 3 for 3-D orientation. Since Eq. (1.34) also includes the unknown fourth-

order orientation tensor 〈PPPP〉, it is not a closed form. Therefore, many closure

approximations have been proposed to approximate the fourth-order orientation

tensor from the second-order one.

Let Pijkl = 〈PPPP〉 and Pij = 〈PP〉 be the fourth-order and the second-order

orientation tensors, respectively. Several common closure approximations were
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developed as follows.

• The linear closure approximation (Hand, 1962),

P̂ijkl ≃
1

4 + αd

(
Pijδkl + Pikδjl + Pilδjk + Pklδij + Pjlδik + Pjkδil

)

− 1

(4 + αd)(2 + αd)

(
δijδkl + δikδjl + δilδjk

)
;

(1.35)

• The quadratic closure approximation (Lipscomb et al., 1988),

P̃ijkl ≃ PijPkl (1.36)

• The hybrid closure approximation (Advani and Tucker III, 1987, 1990),

which is a combination of the quadratic and linear approximations, is given

by

P̄ijkl ≃ (1− f)P̂ijkl + fP̃ijkl, (1.37)

where f is the scalar measure of orientation and given as f = 1−Ndet 〈PP〉
(Advani and Tucker III, 1990) withN = 4 for 2-D andN = 27 for 3-D fibre’s

orientation .

Other advanced closure approximations can be found in several publications by

Verleye et al. (1993); Dupret et al. (1997); Cintra Jr and Tucker III (1995); Chung

and Kwon (2001, 2002) and Jack et al. (2010).

Statistical scheme

For this approach, the Jeffery equation is integrated along streamlines and the

fourth-order orientation tensor at a particular point on the streamlines is directly

calculated from the orientation of Nf fibres surrounding that point as follows.

〈PPPP〉 = 1

Nf

Nf∑

i=1

PiPiPiPi. (1.38)
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Eq. (1.38) depicts that there is no need of any closure approximation. The

approach were used to successfully simulate several dilute fibre suspension flows

such as flow past 1:4 backward-facing step channels and flow between two parallel

plates (Chiba and Nakamura, 1998; Chiba et al., 2001)

FPE-based simulation

In this approach, the FPE (1.30) is solved for the probability distribution func-

tion ψ(P, t) and the orientation tensors are then calculated using the following

formulae (Advani and Tucker III, 1987)

〈PP〉 =
∫

P

PPψdP, (1.39)

〈PPPP〉 =
∫

P

PPPPψdP. (1.40)

The application of this scheme for complex flows is very challenging because of

the complexity in solving PDEs in multidimensional spaces (Ammar et al., 2006,

2007).

BCF-based simulation

This approach is based on the principle of the BCF approach, which was pro-

posed by Hulsen et al. (1997) for the multiscale simulation of viscoelastic fluids.

Following the approach, a set of Nf fibre configuration fields is used to replace

all individual fibres on the whole domain. Each configuration field is evolved by

Eq. (1.33), which is now rewritten under the Eulerian view as follows.

∂P (x, t)

∂t
+ u · ∇P = L ·P− L : PPP+

√
2Ciγ̇ (I−PP) · dW

dt
, (1.41)

Eq. (1.41) is solved by the BCF approach. This approach has been used to

successfully simulate many complex flows of non-dilute fibre suspensions with a

wide range of volume fractions, e.g. flow past a sphere in a tube (Phan-Thien and

Fan, 1999; Fan et al., 1999) and axisymmetric contraction and expansion flows
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(Lu et al., 2006).

1.5 Numerical methods for deterministic PDEs

From the classical mechanics, most physical phenomena can be described by a set

of deterministic partial differential equations (PDEs). The conventional methods

such as finite difference method (FDM), finite element method (FEM), boundary

element method (BEM) and finite volume method (FVM) had been thoroughly

developed and had demonstrated their superior ability in finding the numerical

solution of PDEs for various problems in sciences and engineering. Recently,

RBFN-based methods have emerged as a powerful tool and have been successfully

applied in several research areas.

1.5.1 Finite difference method

FDM is probably considered as the oldest and simplest method, especially for uni-

form grids, applied to find numerical solutions of differential equations (Hirsch,

2007). The method is based on the Taylor series expansion of an unknown func-

tion for a set of nodal points generated by a Cartesian grid. The derivatives of

the function are approximated from the function’s value at nodal points. These

approximations together with their truncated Taylor series are used to transform

the PDEs into a set of algebraic equations, which can be then solved by iterative

techniques such as the Newton-Raphson scheme. Owing to its simple implemen-

tation and the banded system matrix obtained from the set of linearised equa-

tions, FDM has been widely used in various problems in continuum mechanics

including the simulation of viscoelastic fluids (Perera and Walters, 1977; Olsson,

1994; Griebel and Ruttgers, 2014) and fibre suspensions (Chiba and Nakamura,

1998; Dou et al., 2007). However, the difficulty of handling complex geometry

and the significant truncation error for non-linear problems limit the range of its

applications.
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1.5.2 Finite element method

The method was first introduced by Turner et al. (1956) for the solution of struc-

tural problems and then applied to solve the Navier-Stokes equations for fluid flow

problems in the late 1970s by several authors, including Temam (1977); Chung

(1978); Girault and Raviart (1979). In this method, the investigated domain

is divided into unstructured finite elements, which are interconnected at points

called nodes. The approximate solution of an unknown variable at each node is

defined as a linear superposition of known basis functions or shape functions, usu-

ally polynomials, and the numerical values of the unknown at all nodes (Hirsch,

2007). In general, an FEM-based discretisation process can be done through

two steps: (i) Transform the original differential equations into integral equa-

tions, or their weak formulation, using the variational principle or the methods

of weighted residual; (ii) Discretise the weak form equations based on the chosen

shape functions to obtain a set of algebraic equations for unknowns. The FEMs

have been used extensively for the simulation of viscoelastic fluids in both the

macroscopic approach (Crochet et al., 1984; Baaijens, 1998; Sandri, 2004; Ganvir

et al., 2007; Mu et al., 2010) and the multiscale macro-micro methods (Laso and

Ottinger, 1993; Hulsen et al., 1997; Van Heel et al., 1999; Jourdain et al., 2002;

Le Bris and Lelievre, 2012; Lipscomb et al., 1988). An advantage of FEM in solv-

ing viscous and viscoelastic flows is its capacity in handling complex geometries.

However, generating a mesh of elements may be very time-consuming especially

for moving boundary or three-dimensional problems. In addition, the method

becomes unstable for highly nonlinear problems due to intrinsic errors produced

from Galerkin-based approximations (Osswald and Gramann, 2001).

1.5.3 Boundary element method

Unlike the FDM and FEM where the discretisation is required on the entire

domain as well as the boundary of the problem, the discretisation in BEM is

only processed on the boundary for certain class of problems. Therefore, the

dimensionality of the problem in BEM is reduced by one, which offers a typical
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advantage of BEM over the element-type methods for problems with complex

geometries and in 3D space (Brebbia et al., 1984; Hunter and Pullan, 2001). In

this method, an integral equation related to only boundary values needs to be for-

mulated from the original PDE using several mechanisms such as the reciprocal

theorems combined with the Green function and the method of weighted residual.

The approximate solution at the boundary nodes is then obtained from solving

the integral equation. The numerical values of the interior nodes can be approxi-

mated from the boundary data if required. The BEM has been rapidly developed

and broadly applied to various complex engineering problems (Brebbia et al.,

1984). In computational rheology, the method has been used successfully to solve

several complex flow problems such as the squeeze-film flow (Phan-Thien et al.,

1987a), the flagellar hydrodynamics problems (Phan-Thien et al., 1987b), the 3-

D extrusion processes (Tran-Cong and Phan-Thien, 1988), the Stokes problems

of multiparticle systems (Tran-Cong and Phan-Thien, 1989; Tran-Cong et al.,

1990), and the suspension problems (Phan-Thien et al., 1991; Fan et al., 1998).

However, while BEM works successfully for linear and mildly nonlinear problems,

it is less effective in solving highly non-linear viscoelastic problems (Tanner and

Xue, 2002).

1.5.4 Finite volume method

FVM is one of the most popular discretisation techniques used in CFD. The

computational domain is partitioned into a number of non-overlapping control

volumes (CVs). Generally, both structured and unstructured meshes are also

available in the FVM, which offers an advantage in handling problems with com-

plex geometry. There are two common approaches for the selection of the finite

volume, namely the cell-centred approach and the cell-vertex approach (Hirsch,

2007). The basic difference between the two is that the unknowns are defined

at the CV’s centre for the former approach whereas they are determined at the

corners of each CV for the latter. The original governing equation is transformed

into an integral equation, in which the surface integral term is approximated by

calculating the sum of fluxes passing all individual faces of each CV. The physical



1.5. Numerical methods for deterministic PDEs 22

balance laws are strictly obeyed on each CV, therefore, the governing conserva-

tion equations are automatically satisfied on the whole domain in the FVM-based

discretisation. The FVM has also been applied extensively to several problems

in computational rheology (Mompean and Deville, 1997; Xue et al., 1998; Wachs

and Clermont, 2000; Sahin and Wilson, 2008; Fu et al., 2009). However, like the

other element based methods (e.g. FDM, FEM, and BEM), FVM is also consid-

ered as a low-order interpolation scheme, therefore a huge number of elements

are necessary to obtain an accurate solution. This leads to difficulties in solving

large-scale problems.

1.5.5 Spectral method

Like in FEM, the discretisation process in spectral method (SM) is also based on

the method of weighted residuals, whose two key elements are the trial functions

(or basis functions or shape functions in FEM) and the test functions (or weight

functions) (Canuto et al., 1988). The trigonometric, Chebyshev and Legendre

polynomials are usually used as the trial functions in SM. Unlike FEM where

the trial functions are locally defined on each element, these functions in SM are

valid on the whole computational domain. As a result, SM outperforms FEM and

FDM in terms of solution accuracy and high-order convergence rate but is very

limited in handling problems with complex geometry (Gheorghiu, 2007; Canuto

et al., 1988). Therefore, there are just a few applications of SM in solving complex

fluid flow problems in the literature such as Beris et al. (1992); Avgousti et al.

(1993); Sureshkumar and Beris (1995); Bell et al. (1997).

The spectral element method which is the combination of SM and FEM has

been first introduced by Patera (1984) for fluid dynamics. The method still

maintains the accuracy of high-order approximation polynomials in SM but also

improves its ability in handling problems with complicated geometries like the

original FEM. Owing to this characteristic, the method has been used widely

for computations of non-Newtonian fluids in complex geometries using both the

macroscopic approach (Jafari, 2011; Lozinski et al., 2002; Van Os and Phillips,

2004, 2005) and the multiscale macro-micro approach (Chauviere and Owens,
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2002; Lozinski and Chauviere, 2003).

1.5.6 Radial basis function (RBF) methods

Basically, a RBF network can be considered as a universal approximator. In RBF-

based methods, the considered domain is discretised by a set of data points which

are distributed regularly or randomly and the unknown function and its deriva-

tives are approximated by a linear combination of RBFs. The RBF-based meth-

ods offer some advantages over some traditional methods. Firstly, the method

can be referred to as a truly meshless method in the context of the point col-

location formulation (Kansa, 1990). Consequently, the time-consuming meshing

process in the element-based methods is reduced significantly. Secondly, owing

to the use of RBF-based approximations instead of polynomial functions in other

methods, the RBFN-based methods can achieve higher order approximation and

fast convergence rate for the solution of PDEs (Fasshauer, 2007).

The RBF-based methods for the solution of PDEs can be classified into two

main branches: differentiated RBF (DRBF) (Kansa, 1990) and integrated RBF

(i.e. IRBF) (Mai-Duy and Tran-Cong, 2001). In the former method, the original

unknown function is first approximated by RBFs and then its first and second

derivatives are calculated by differentiation. On the other hand, the IRBF meth-

ods begin RBF-based approximation at the highest order derivative of the original

function. The lower order derivatives and the unknown function are obtained by

integration. Several strong points of the IRBF methods over the DRBF counter-

parts can be listed as follows. (i) a superior accuracy for the approximation of a

function and its derivatives, even with a relatively coarse discretisation (Mai-Duy

and Tran-Cong, 2003); and (ii) high convergence rate, good accuracy and easy

implementation in solving high-order ordinary differential equations and PDEs

(Mai-Duy, 2005; Mai-Duy and Tran-Cong, 2005). Multiquadric (MQ) or thin-

plate spline (TPS) functions are usually chosen for their superior performance

over other functions (Franke, 1982; Hardy, 1971).

The IRBF methods can be global, local or compact local and their implementation
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is based on both collocation points or control volume techniques. Generally, a

global scheme uses all grid nodes to approximate the dependent variable and its

derivatives at a specific point, whereas only a small number of neighbouring nodes

is needed for the approximation process in local schemes (Mai-Duy and Tran-

Cong, 2009a; An-Vo et al., 2011; Ngo-Cong et al., 2012). For large scale problems,

the global scheme becomes severely limited as the system matrix becomes too

large and ill-conditioned. Local schemes can overcome these drawbacks, however,

these schemes produce less accurate solutions than the global ones because of

the limitation of the number of nodes used in the approximation process. The

accuracy of the local IRBF methods can be recovered by incorporating compact

schemes into the approximation process, which is now based on not only the

function values of local grid nodes but also more information from the governing

equation and/or the function derivatives (Mai-Duy and Tran-Cong, 2011; Hoang-

Trieu et al., 2012; Thai-Quang et al., 2012; Pham-Sy et al., 2013; Tien et al.,

2015).

Recently, the RBF-based methods have been widely used for the simulation of

non-Newtonian fluid flows in both the macroscopic approach (Tran-Cong et al.,

2001; Tran-Canh and Tran-Cong, 2002a; Mai-Duy and Tanner, 2005; Bernal and

Kindelan, 2007; Lopez-Gomez et al., 2007; Mai-Duy and Tran-Cong, 2009b; Le-

Cao et al., 2010; Ho-Minh et al., 2010) and the multiscale macro-micro approach

(Tran-Canh and Tran-Cong, 2002b, 2004; Tran et al., 2009, 2011, 2012a; Nguyen

et al., 2015a,b,c).

In this thesis, the IRBF scheme in our present multiscale methods is used not only

to solve the macro governing equations of polymeric liquid and fibre suspension

flows but also to approximate the field variables and their derivatives in the micro

procedure.
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1.6 Numerical methods for Stochastic differen-

tial equations (SDEs)

Recently, the stochastic theory has significantly contributed to the development

of many disciplines such as applied mathematics, quantum physics, engineering

mechanics, communication process and economics (Gardiner, 2004; Henderson

and Plaschko, 2006). In particular, the incorporation of stochastic processes into

polymer kinetic theory yields extraordinary successes in the simulation of polymer

dynamics (Ottinger, 1996). Basically, a stochastic process can be interpreted in

two approaches: Ito and Stratonovich SDE (Kloeden and Platen, 1992). Since the

first one is more practical in the computation, a brief review of the Ito SDE and

its numerical integration schemes are presented in this section. Other extension

of the Ito SDEs related to this research will be presented in relevant chapters.

1.6.1 Introduction

Consider the multi-component SDE of an Ito process as follows.

dQ (t) = A
(
Q (t) , t

)
dt+B

(
Q (t) , t

)
dW (t) , (1.42)

where A is a d-dimensional column vector; B a [d × d] matrix; A
(
Q (t), t

)
dt

and B
(
Q (t), t

)
dW (t) the drift and the diffusion terms, respectively; and W (t)

a d-dimensional Wiener process. In the case of B = 0, Eq. (1.42) becomes a

deterministic differential equation. In addition, if B is a function of Q (t), the

SDE is a multiplicative random process, otherwise it is an additive random one. It

is worth noting that the existence and uniqueness conditions of a SDE’s solution,

which are accepted in many applications of the kinetic theory (Ottinger, 1996),

are also assumed in this thesis.



1.6. Numerical methods for Stochastic differential equations (SDEs) 26

1.6.2 Numerical integration schemes

Several numerical integration schemes for the solution of SDEs can be classified

into two main approaches: the stochastic theta (θ) method and the predictor-

corrector method.

• The stochastic theta method (STM):

Applying the STM with fixed step size ∆t to Eq. (1.42) yields the following

temporal discretisation

Qi+1 = Qi + (1− θ)A (Qi, ti)∆t + θA (Qi+1, ti+1)∆t +B (Qi, ti)∆Wi,

(1.43)

where ti = i∆t and ti+1 = (i+1)∆t are the times at step i and i+1, respec-

tively; Qi = Q (ti) and Qi+1 = Q (ti+1); ∆Wi = Wi+1 −Wi the increment

of the Wiener process at two successive time steps; and θ a parameter in

[0, 1]. There are several numerical integration schemes corresponding to

different values of θ as follows.

– For θ = 0, we have the explicit Euler-Maruyama method and Eq.(1.43)

is given by

Qi+1 = Qi +A (Qi, ti)∆t+B (Qi, ti)∆Wi; (1.44)

– For θ > 0, the scheme is implicit. Especially, the scheme is fully

implicit for the case of θ = 1 and Eq.(1.43) is rewritten as follows.

Qi+1 = Qi +A (Qi+1, ti+1)∆t +B (Qi, ti)∆Wi. (1.45)

It can be seen that the implicit method is applied only in the drift term but

not in the diffusion one. For the Euler-Maruyama explicit scheme, the size

of time step needs to be sufficiently small to ensure the numerical stability.

Furthermore, the convergence order of the this method for SDEs is only 0.5

whereas it is of the order 1 for deterministic differential equations (Kloeden

and Platen, 1992). The other methods with higher order Taylor approx-
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imation for SDEs can be found in Kloeden and Platen (1992); Ottinger

(1996).

• Predictor-corrector methods (PCMs):

PCMs are employed to enhance the stability in solving SDEs without the

demand of a small time step. The methods consist of the following two

steps:

1. The predictor step uses the explicit scheme for (1.42) as follows.

Q∗
i+1 = Qi +A (Qi, ti)∆t+B (Qi, ti)∆Wi, (1.46)

where Q∗
i+1 is a predicted solution of Qi+1;

2. The corrector step uses the implicit scheme, in which the predicted

value Q∗
i+1 is employed instead of Qi+1 on the right-hand side of the

corrector step. The corrected value is given by

Qi+1 = Qi +
{
θA
(
Q∗
i+1, ti+1

)
+ (1− θ)A (Qi), ti

}
∆ti

+
{
θ′B

(
Q∗
i+1, ti+1

)
+
(
1− θ′

)
B (Qi), ti

}
∆Wi,

(1.47)

where θ and θ′ are parameters defined in [0, 1]. Owing to the presence of

the corrector step which is implicit in nature, the stability of the method is

enhanced. In addition, the difference between Q∗
i+1 and Qi+1 from the two

steps can be used to assess the local error at each time step.

1.7 Outline of the Thesis

The present thesis is organised as follows.

• Chapter 2 presents an efficient CG method for the simulation of dilute

polymer solution flows. The method is based on the combination of high-

order IRBF schemes and the Brownian configuration field approach, namely

the IRBF-BCF multiscale method. In this chapter, the polymer solutions



1.7. Outline of the Thesis 28

are modelled by complex bead-spring chain models with the presence of all

nonlinear properties such as the finitely extensible nonlinear elastic spring

force, the hydrodynamic interaction, and the excluded volume. The method

efficiency is verified by comparing the obtained results for the creeping flow

and several transient flows with a range of Weissenberg numbers with those

in the literature (Nguyen et al., 2015b).

• Chapter 3 reports the simulation of polymer melt systems using the IRBF-

BCF multiscale method presented in Chapter 2. In this chapter, a damping

parameter is introduced into the macro governing equations to improve the

stability of the solutions of primitive variables (u-p). These transformed

equations are then solved by the IRBF based projection method. In the

microscopic procedure, the classical reptation models are used to predict the

dynamic behaviours of polymer melts. Some test and benchmark problems,

namely the start-up Couette flow and the flow over a cylinder in a channel,

are carried out to demonstrate the efficiency of the method (Nguyen et al.,

2016a).

• Chapter 4 is to develop a new multiscale simulation method for dilute fibre

suspension flows. The method is based on the marriage of the 1D-IRBF

scheme, the discrete adaptive viscoelastic stress splitting (DAVSS) tech-

nique and the BCF idea. In the work, the macro governing equations are

expressed by the vorticity-stream function (ω−Ψ) formulation. The DAVSS

transformation is introduced into the momentum equation to maintain the

stability of the solution. In the micro procedure, the evolution equation for

fibre configuration fields governed by the Jeffery equation and the Lipscomb

model are used to determine the fibre stress using the BCF approach. Some

test and benchmark problems, namely the flow between two parallel plates,

the flow through a circular tube, and the 4.5:1 and 4:1 contraction flows,

are simulated to demonstrate the method efficiency (Nguyen et al., 2015a).

• Chapter 5 is to report the application of the method introduced in Chap-

ter 4 to simulate ‘non-dilute’ fibre suspension flows. In this chapter, the

contraction and expansion flow problems are investigated with a range of
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volume fractions and fibre aspect ratios covering the semi-dilute and con-

centrated regimes. In addition, the dynamic behaviours of the flows and

the orientation of fibres are also studied with different values of Reynolds

numbers and fibre parameters. Some test and benchmark problems, namely

the flow through a circular tube, the 4:1 axisymmetric contraction flow and

the 1:4 axisymmetric expansion flow, are carried out to demonstrate the

working of the method (Nguyen et al., 2016b).

• Chapter 6 presents a numerical solution based on the Fokker-Planck equa-

tion for polymer solutions. In this chapter, the FPE based macro-micro

multiscale models for dilute polymer solution are simulated by the high-

order IRBF collocation scheme. In this approach, both the macro governing

equations and the FPE are discretised using the 1D-IRBF approach. The

method is verified through the solution of several test problems including

the startup Couette flow with the Hookean and FENE dumbbell models

(Nguyen et al., 2014).

• Chapter 7 gives some concluding remarks on the contributions and achieve-

ments of this research, and some recommendations for future works.



Chapter 2

RBFN stochastic coarse-grained

method for the simulation of

dilute polymer solutions using

nonlinear BSC models

In this chapter, dynamic behaviours of dilute polymer solutions of various bead-

spring chain (BSC) models in shear flows are studied using a coarse-grained (CG)

method based on the integrated radial basis function networks (IRBFNs) and

stochastic technique (Nguyen et al., 2015b). The velocity field governed by the

macroscopic conservation equations is determined by the IRBFN-based method,

whereas the evolution of configurations of polymer chains governed by the stochas-

tic differential equations (SDEs) is captured by the Brownian configuration field

(BCF) approach. The system of micro-macro equations is closed by the Kramers

expression, which allows for the determination of the polymer stresses in terms

of BCF configurations. In this work, all nonlinear effects in a BSC model such as

the finitely extensible nonlinear elastic (FENE) spring force, the hydrodynamic

interaction (HI) and the excluded volume (EV) effects between beads in the same

chain, are considered. Since the simulation requires a considerable computational

effort, parallel calculations are performed where possible. As an illustration of the



2.1. Introduction 31

method, the start-up planar Couette flow is examined, in which the evolution of

viscometric functions such as shear stress, the first and the second normal stress

differences is assessed with various BSC models.

2.1 Introduction

A polymer solution may be modelled as polymer chains suspended in a solvent.

Polymer chains are represented by particles connected by some connector force

laws. Several kinds of polymer chains have been used in polymer rheology as CG

models of macromolecules, for example, the bead-rod chain, the BSC, and the

worm-like chain. The BSC is a simple CG model of a polymer molecule, which

can capture most of the important nonlinear rheological properties of polymer

solution (Bird et al., 1987b). Recently, the CG simulation methods have been

developed and applied in several scientific and engineering areas because of their

advantages in the simulation of soft matters, including complex viscoelastic fluids

(Phan-Thien, 2012). Stochastic multiscale methods have also been introduced to

model the constitutive relations and mechanical behaviour of concretes (Liu et al.,

2013, 2014a,b). For polymeric fluids, the main idea of this approach is that the

polymer-contributed stress is calculated averagely from a large ensemble of con-

figurations of microstructures, which describe the real molecules existing in the

polymer solutions. Meanwhile, the velocity field is determined by discretising the

conservation equations. One scheme of this approach, namely the CONNFFES-

SIT (Laso and Ottinger, 1993; Ottinger, 1996), is a stochastic macro-micro multi-

scale simulation method. Another scheme, known as the BCF approach (Hulsen

et al., 1997), is based on the idea of an ensemble of configuration fields instead

of using a collection of individual micro elements as in the CONNFFESSIT. In

an alternative approach, the combination of the radial basis function networks

(RBFN) and the stochastic CG method has been suggested by Tran-Canh and

Tran-Cong (2002b). The method overcame the difficulties of complex meshing

task by discretising the conservation equations on a set of collocation points us-

ing the high-order RBFN approximation. As a result, the computed global stress

tensor and velocity field with respect to time are very smooth. Furthermore, with
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a rather coarse set of collocation points, the method showed a stable and accu-

rate solution for a range of problems, including planar Couette flow, Poiseuille

flow, lid-driven cavity flow and 10 : 1 planar contraction flow (Tran-Canh and

Tran-Cong, 2002b, 2004; Tran et al., 2009). Recently, the method was further

improved by introducing the IRBF-based approximation instead of the differenti-

ated/original RBF-based techniques to decrease the white noise in the stochastic

simulation and increase the convergence rate of numerical solutions (Tran et al.,

2011, 2012a). In this chapter, more complex BSC models are used to investigate

the efficiency and adaptability of the IRBF-based stochastic CG method in the

simulation of polymer solutions.

In the context of polymer kinetic theory, the simplest BSC model is the Rouse one,

which represents the real polymer chain by a set of identical dumbbells, each of

which consists of two beads linked by a Hookean spring (Rouse and Prince, 1953).

This model is very straightforward and is set up easily in Brownian dynamic sim-

ulations. However, the ability of the Rouse model to capture the properties of

viscoelastic fluids or polymer solutions is very limited. There are only a few basic

features of the dilute solution able to be predicted through the Rouse model,

for example, the existence of a constant nonzero value of the first normal stress

difference. However, other features, for example, the appearance of the nonzero

second normal stress difference and the shear rate dependence of the viscometric

functions cannot be predicted by the Rouse model (Bird et al., 1987b; Prakash,

2001). These limitations are due to (i) the existence of the Hookean law for the

springs in the Rouse model, which can make the chain become infinitely extensi-

ble in shear/elongational flows and (ii) the neglect of intramolecular interactions

of beads in a polymer chain such as HI and EV effects. In order to improve the

performance of the Rouse model, HI effect has been included in computational

models in the equilibrium averaged form by Zimm (1956). As a result, the Zimm

model has given better predictions of several properties of a polymer solution such

as the diffusion coefficient and the relaxation time which are dependent on the

molecular weight. Since both the Rouse and Zimm models are not successful in

predicting the nonvanishing second normal stress difference as well as the depen-

dence of viscometric functions on shear rate, the FENE spring-force law has been
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developed to resolve the limits of the Hookean-based BSC models (Wedgewood

et al., 1991; Herrchen and Ottinger, 1997). A number of significant advancements

of the BSC model have been recently achieved to relevantly examine the effects

of the intramolecular forces on the motion of molecular chains (Ottinger, 1987b,

1989b; Magda et al., 1988). These improvements are very useful to predict the

material properties of viscoelastic fluid flows and polymer solutions. By incorpo-

rating HI and EV into the simulation, the rheological characteristics including the

existence of the second normal stress difference or the shear dependence of visco-

metric functions are accurately forecast (Ottinger, 1989b; Zylka, 1991; Prakash,

2001). Thus, the obtained results from the simulation are now able to be com-

pared directly with those achieved from experiments. However, the considerable

consumption of time and computer resources is a major hindrance in this simu-

lation approach because the nonlinear intramolecular forces of each pair of beads

in a chain need to be calculated successively at each time step. This barrier can

be overcome by introducing a parallel calculation into the simulation. Hence, the

aim of this chapter is to predict some rheological properties of polymer solutions

in start-up shear flows, in which all nonlinear effects such as spring force laws,

HI and EV are included using the IRBF-based stochastic CG method, taking

advantage of parallel computation where possible.

The chapter is organised as follows. Section 2.2 gives a short review of the gov-

erning equations of incompressible polymeric fluid flows using the CG approach.

In Section 2.3, a stochastic CG simulation method is described in which the BCF

technique for the computation of the polymer contributed stress is presented us-

ing different BSC models with/without nonlinear effects such as the HI and the

EV. Specifically, the coupled macro-micro multiscale system for the BSC model

is introduced together with its dimensionless forms in Section 2.4. In Section 2.5,

the IRBF-based discretisation of governing macroscopic equations is introduced

in details, followed by the explicit integration scheme for microscopic equations.

A parallel computation for the microscopic simulation is also presented in this

section. Numerical examples and obtained results are discussed in Section 2.6.

Finally, the chapter is closed by several concluding remarks in Section 2.7.
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2.2 Coarse-grained (CG) models based simula-

tion approach

As introduced in Section 1.2.2, the mass and momentum conservation equations

of an isothermal and incompressible dilute polymer solution are written as follows.

∇ · u = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ, (2.2)

where ρ is the fluid density; u the velocity field; t the time; and σ is the total

stress tensor and given by

σ = −pI + τs + τp, (2.3)

where τs = 2ηsD and τp are stress components contributed by Newtonian solvent

and polymer, respectively; ηs the solvent viscosity; D = 1
2

(
∇u+ (∇u)T

)
the

rate of strain tensor; p the hydrostatic pressure; and I the unit tensor.

In a stochastic CG simulation method, the polymer-contributed stress (τp) can

be calculated by directly solving the Fokker-Planck equation or the correspond-

ing SDEs. The coupling of the conservation equations (Eqs. (2.1)-(2.2)) and

the equations expressing the evolution of grain configurations forms the basis for

stochastic CG methods (Ottinger, 1996). In this work, the BCF-based stochastic

CG method is used to describe the evolution of CG structures, and the non-

Newtonian contribution to the stress is deduced from the evolution of CG con-

figurations. This chapter focuses on considering BSC models (Fig. 2.1) with the

effects of EV and HI.
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Figure 2.1: Schema of a BSC model. The Latin subscripts (i, j, k, ...) of a
tensor/vector denote springs while the Greek ones (µ, ν, ...) denote beads in a
polymer chain; Qi = rµ+1 − rµ.

2.3 A BCF-based stochastic CGmethod for BSC

models

In the BCF approach, the general BSC model with all nonlinear effects, includ-

ing HI and EV for the evolution of a connector vector Qi, is given as follows.

(Prabhakar and Prakash, 2004).

dQi =


−u · ∇Qi + (∇u)T ·Qi +

1

ζ

Nb∑

ν=1

(
Υ(µ+1)ν −Υµν

)
· Fφν


 dt+

√
2kBT

ζ

Nb∑

ν=1

(
B(µ+1)ν −Bµν

)
· dWν ,

(2.4)

where subscript i denotes the index of connecting vectors (i = 1, . . . , Ns); sub-

script µ indicates the index of beads (µ = 1, . . . , Nb), µ = i; Ns and Nb = Ns + 1

are the numbers of springs and beads, respectively, in a polymer chain; u the

velocity field; ζ the friction coefficient of the solvent; kB the Boltzmann constant;

T the absolute temperature of the solution; and Wν is the Wiener process defined

by an independent Gaussian variable with zero mean and dt variance. Υµν is the

diffusion tensor and given by

Υµν = δµνI+ ζΩµν , (2.5)
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where Ωµν and δµν are the hydrodynamic interaction tensor and the Kronecker

delta, respectively. Ωµν is a function of vector rµν (rµν = rν − rµ) of the two

beads µ and ν. It is worth noting that if µ and ν are two adjacent beads then

rµν is the connector vector of spring (Q) between the two beads (Fig. 2.1). Bµν

is a second-order tensor and determined by Υµν = Bµν ·BT
µν . In the SDE (2.4),

Fφν is the intramolecular interaction force, defined as Fφν = − ∂φ
∂rν

and includes two

components written as follows.

Fφν = FSν + FEν , (2.6)

where φ is the potential energy; FEν is the excluded volume force on bead ν by

other beads in a chain; and FSν is the spring force by springs connected to bead

ν and given by

FSν =





FD1 if ν = 1,

FDk − FDk−1 if 1 < ν < Nb,

−FDNs
if ν = Nb,

(2.7)

where FDk is the force of spring k on bead ν and depends on the kinetic model

of polymer used. For example, the spring forces of the Hookean and FENE

dumbbells are given, respectively, as follows.

FDk = HQk, FDk =
HQk

1− Q2
k

b0

, (2.8)

where H is the spring constant; Qk (Qk = rν+1 − rν) the connector vector of the

kth spring (see Fig. 2.1); Qk the norm of Qk; and b0 the square of dimensional

maximum length/extension of the kth spring for the FENE dumbbell.

The system of multiscale governing equations Eqs. (2.1), (2.2) and (2.4) are closed

by a connecting equation which determines the polymer stress contribution. For a

CG model with intramolecular forces, the connecting equation known as Kramers

expression is given by (Bird et al., 1987b; Prakash, 2002)

τp = (Nb − 1)npkBT I− np

Ns∑

k=1

〈
QkF

D
k

〉
+ Z, (2.9)
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where np is the number of polymer chains in a unit volume and the other param-

eters were defined as before. On the right-hand side of Eq. (2.9), the first term is

the stress caused by the motion of beads in a polymer chain (Ottinger, 1996), the

second term results from spring forces and the last term is produced by excluded

volume interaction forces and given by (Prakash, 2002)

Z = np

Nb∑

ν=1

Ns∑

k=1

Dνk

〈
QkF

E
ν

〉
, (2.10)

where Dνk are the entries of matrix Dνk of dimension Nb × Ns and defined as

Dνk =
(
k/Nb

)
−Θ (k − ν) where Θ (k − ν) is the Heaviside function.

2.3.1 Nonlinear properties of bead-spring chain (BSC)

model

Hydrodynamic interaction (HI) effect

HI is an indirect influence by the motion of beads through a solvent. Indeed, a

bead moving in the solvent causes perturbations in the flow, which will influence

the motions of remaining beads in the chain. The HI effect is incorporated into

BSC models by introducing a hydrodynamic tensor Ωµν into the equation of

motion of beads. This tensor expresses the relationship between the force Fν

exerted on bead ν and the velocity perturbation by other beads µ’s in a polymer

chain ∆u
(
rµ
)
(µ = 1, · · · , Nb and µ 6= ν) as follows.

∆u
(
rµ
)
= Ωµν · Fν (rν) . (2.11)

A hydrodynamic tensor proposed by Rotne-Prager-Yamakawa (RPY) is given by

(Rotne and Prager, 1969; Yamakawa, 1971)

Ωµν =
1

8πηsrµν
C
(
rµν
)
, (2.12)
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with

C
(
rµν
)
=





(
1 + 2

3

a2
b

r2µν

)
I+

(
1− 2a2

b

r2µν

)
rµνrµν

r2µν
if rµν ≥ 2ab,

rµν
2ab

[(
8
3
− 3rµν

4ab

)
I+

r2µν
4ab

rµνrµν

r2µν

]
if rµν < 2ab,

(2.13)

where ab is the bead radius defined by the Stokes law as ζ = 6πηsab; rµν is

the connecting vector between two beads µ and ν and rµν is the length/norm of

vector rµν . An alternative formula of the hydrodynamic tensor Ωµν is established

by Zimm (1956) as follows.

Ωµν =





1
6πηs

√
2H

πkBT |µ−ν|I if µ 6= ν,

0 if µ = ν,
(2.14)

where all parameters were defined as before.

Excluded volume (EV) effect

The EV presence allows for an accurate prediction of the non-vanishing second

normal stress difference and the shear rate dependence of viscometric functions of

dilute polymer solutions. The EV effect can be incorporated into the simulation

by introducing a force FEν in the convective term of Eq. (2.4). The force exerted

on bead ν by the repulsive interactions from other beads µ’s in the chain is written

by (Prakash, 2001)

FEν = −∂E

∂rν
= −

Nb∑

µ=1
µ6=ν

∂

∂rν
Eµν

(
rµν
)
, (2.15)

where E is the EV potential energy; and Eµν is the short-range function and

given by (Prakash, 2002)

Eµν =

(
z

d
3

)
kBT exp

(
− H

2kBT

r2µν

d
2

)
, (2.16)

where z̄ and d̄ are the quantities characterizing the strength and the range of

the EV interactions, respectively. For the FENE BSC model, the strength z̄ and
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range d̄ of EV interaction are given by

z̄ =
zχ3

√
Nb

, (2.17)

d̄ = Kz̄ 1/5, (2.18)

where z is the solvent quality; K an arbitrary constant; and χ a known function

of bBSC and given spring force law. For example, χ = 1 for the Hookean BSC

model and χ =
(

bBSC

bBSC+5

)
for the FENE BSC model (Sunthar and Prakash, 2005).

2.3.2 A coupled stochastic multiscale system

Collecting the conservation equations (2.1)-(2.2), the total stress formula Eq.

(2.3), the stochastic BCF equation (2.4) and the Kramers expression Eq. (2.9)

yields a stochastic multiscale system as follows.

∇ · u = 0, (2.19)

ρ
∂u

∂t
+ ρ (u · ∇u)− ηs∆u+∇p = ∇ · τp, (2.20)

dQi =


−u · ∇Qi + (∇u)T ·Qi +

1

ζ

Nb∑

ν=1

(
Υ(µ+1)ν −Υµν

)
· Fφν


 dt+

√
2kBT

ζ

Nb∑

ν=1

(
B(µ+1)ν −Bµν

)
· dWν,

(2.21)

τp = (Nb − 1)npkBT I− np

Ns∑

k=1

〈
QkF

D
k

〉
+ Z, (2.22)

where all parameters were defined as before.

2.4 Non-dimensionalisation

Let U be a characteristic velocity; ηp = npkBTλH the viscosity associated with

the polymers; λH and L =
√
kBT/H the time scale and the characteristic length

scale of the BSC polymer, respectively. Dimensionless variables are given as
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follows.

Q∗
k =

Qk

L
, u∗ =

u

U
, t∗ =

t

λH
, τ

∗
p = τp

L

ηoU
, (2.23)

where ηo (ηo = ηs + ηp) is the total viscosity of the solution.

The dimensionless numbers Re, We, and ε are defined respectively as follows

(Ottinger, 1996; Laso and Ottinger, 1993).

Re =
ρUL

ηo
(Reynolds number), We =

λHU

L
(Weissenberg number), ε =

ηp
ηo
.

The stochastic multiscale system Eqs. (2.19)-(2.22) is rewritten in the dimen-

sionless form as follows.

∇∗ · u∗ = 0, (2.24)

Re
∂u∗

∂t∗
+Re (u∗ · ∇∗u∗)− (1− ε)∆∗u∗ +∇∗p∗ = ∇∗ · τ ∗

p , (2.25)

dQ∗
i =


−u∗ · ∇∗Q∗

i + (∇∗u∗)T ·Q∗
i +

1

4We

Nb∑

ν=1

(
Υ∗

(µ+1)ν−

Υ∗
µν

)
· Fφ∗ν


 dt∗ +

√
1

2We

Nb∑

ν=1

(
B∗

(µ+1)ν −B∗
µν

)
· dW∗

ν ,

(2.26)

τ
∗
p =

ǫ

W̃ e


(Nb − 1) I−

Ns∑

k=1

〈
Q∗
kF

D∗
k

〉
+ Z∗


 , (2.27)

where W̃ e is defined as We (Ns+1)2−1
3+15/bBSC

; and bBSC = Hb0
kBT

the square of maximum

dimensionless extension of each spring in the chain (Wiest and Tanner, 1989).

The other dimensionless quantities associated with the dimensional ones including

Υµν , Bµν and Wν were defined as before. It is worth noting that λH =
λDH
d

where

λDH = ζ/4H is the Hookean/FENE dumbbell relaxation time and coefficient d is

given by

d =

[
bBSC(bD + 7)

15bD(bBSC + 5)

][
2 (Ns + 1)2 + 7− 12

(
(Ns + 1)2 + 1

)

(Ns + 1)(bBSC + 7)

]
,

where bD is the square of dimensionless maximum extension of FENE dumbbell

model and defined as bD = bBSCNs (Koppol et al., 2007).
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The dimensionless form of Hookean and FENE spring forces FDk (Eq. (2.8)) and

the EV-contributed stress component Z (Eq. (2.10)) are respectively rewritten

as follows.

FD∗
k = Q∗

k, (2.28)

FD∗
k =

Q∗
k

1− Q∗2
k

bBSC

, (2.29)

Z∗ =

Nb∑

ν=1

Ns∑

k=1

Dνk

〈
Q∗
kF

E∗
ν

〉
, (2.30)

where the dimensionless form of the volume force FE∗
ν is given by

FE∗
ν = −

Nb∑

µ=1
µ6=ν

∂

∂r∗ν
E∗
µν

(
r∗µν

)
, (2.31)

with

E∗
µν =

(
z̄

d̄3

)
exp

(
−1

2

r∗2µν
d̄2

)
. (2.32)

The RPY hydrodynamic tensor in Eq. (2.12) is expressed in the dimensionless

form as follows (Prabhakar and Prakash, 2004).

ζΩ∗
µν =

3
√
πh̄

4r∗µν
C∗
(
r∗µν

)
, (2.33)

with

C∗
(
r∗µν

)
=





(
1 + 2π

3
h
2

r∗2µν

)
I+

(
1− 2πh

2

r∗2µν

)
pp, if r∗µν ≥ 2

√
πh̄,

r∗µν
2
√
πh

(
8
3
− 3

4

r∗µν√
πh

)
I+

r∗2µν
8πh

pp, if r∗µν < 2
√
πh̄,

(2.34)

where h̄ is the HI parameter and chosen within [0.1, 0.3] (Ottinger, 1987a); p

the unit vector (p = r∗µν/r
∗
µν); and r

∗
µν the norm of r∗µν . Other parameters were

defined as before.

Henceforth, all variables will be written in the dimensionless form and the asterisk

symbol will be removed for simplicity.
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2.5 Numerical discretisation schemes

In this section, numerical schemes for the solution of the macro-micro system of

differential equations are presented. Specifically, the deterministic PDEs (con-

tinuity and momentum equations) are approximated by a semi-implicit method

based on IRBFNs while the evolution of the SDEs is determined using the Euler-

Maruyama explicit scheme.

2.5.1 IRBF-based method for solution of the macroscopic

governing equations

Consider the conservation equations (2.24)-(2.25). In order to solve this system,

the problem domain is discretised using a set of nodal points, called the macro-

scale grid. Here, instead of using the continuity equation (2.24), the incompress-

ibility condition is enforced via the penalty method as follows (Laso et al., 1997;

Tran-Canh and Tran-Cong, 2004).

p = −pe∇ · u, (2.35)

where pe is a sufficiently large penalty parameter. Eqs. (2.24)-(2.25) and Eq.

(2.35) yield the following equation

Re
∂u

∂t
+Re (u · ∇u)− (1− ε)∆u− pe∇ (∇ · u) = ∇ · τp. (2.36)

In this work, the one-dimensional IRBFN (1D-IRBFN) based semi-implicit scheme

is employed to discretise the governing equation and presented in the next sub-

sections.

Spatial discretisation

Consider a two-dimensional (2-D) rectangular domain which is discretised by a

uniform Nx×Ny Cartesian grid, where Nx and Ny are the number of grid points
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on x-direction and y-direction, respectively. All grid points are assumed to be

numbered from bottom to top and from left to right.

At a time t, the second-order derivative of a dependent variable u (x, t) along an

x-gridline is decomposed as follows (Mai-Duy and Tanner, 2007).

∂2u

∂x2
=

Nx∑

j=1

wj (t)gj (x) =

Nx∑

j=1

wj (t)G
[2]
j (x) , (2.37)

where
{
wj (t)

}Nx

j=1
and

{
gj (x)

}Nx

j=1
are the set of RBF weights and the set of RBFs,

respectively. In this research, the multiquadric RBFs (MQ-RBFs) is employed to

approximate (i) the velocity field in the macroscopic conservation equations and

(ii) gradient of the stress field, and given by

gj (x) =
√

(x− cj)2 + a2j , (2.38)

where
{
cj
}Nx

j=1
and

{
aj
}Nx

j=1
are RBF centres and widths, respectively. The centres

are chosen to be the same as the data points xj in this work.

The corresponding first-order derivative and function itself are then determined

through the direct integration as follows.

∂u

∂x
=

Nx∑

j=1

wj (t)G
[1]
j (x) + C1 (t) , (2.39)

u (x, t) =

Nx∑

j=1

wj (t)G
[0]
j (x) + C1 (t)x+ C2 (t) , (2.40)

where G
[1]
j (x) =

∫
G

[2]
j (x) dx, G

[0]
j (x) =

∫
G

[1]
j (x) dx; and C1 and C2 are unknown

integration constants at time t.

Collocating Eqs. (2.37), (2.39) and (2.40) at every grid point
{
xj
}Nx

j=1
yields the

following set of algebraic equations

∂̂2u

∂x2
= Ĝ[2] (x) ŵ (t) , (2.41)

∂̂u

∂x
= Ĝ[1] (x) ŵ (t) , (2.42)
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û = Ĝ[0] (x) ŵ (t) , (2.43)

where

Ĝ[i] =




G
[i]
1 (x1) · · · G

[i]
Nx

(x1) a
[i]
1 b

[i]
1

...
. . .

...
...

...

G
[i]
1 (xNx

) · · · G
[i]
Nx

(xNx
) a

[i]
Nx

b
[i]
Nx



, i = 0, 1, 2 (2.44)

with

(
a
[i]
1 , a

[i]
2 , . . . , a

[i]
Nx

)T
=





(0 · · · 0)T , i = 2

(1 · · · 1)T , i = 1

(x1 · · · xNx
)T , i = 0

,

(
b
[i]
1 , b

[i]
2 , . . . , b

[i]
Nx

)T
=





(0 · · · 0)T , i = 1, 2

(1 · · · 1)T , i = 0
,

ŵ =

(
w1 (t) w2 (t) · · · wNx

(t) C1 (t) C2 (t)

)T
,

û =

(
u1 (t) u2 (t) · · · uNx

(t)

)T
,

∂̂ku

∂xk
=

(
∂ku1(x,t)

∂xk

∂ku2(x,t)
∂xk · · · ∂kuNx(x,t)

∂xk

)T
,

where ui = u(xi) with i = (1, 2, . . . , Nx).

The presence of integration constants in the IRBFN based approximation yields

beneficial mechanism for the incorporation of additional constraints such as nodal

derivative values into the algebraic equation system. Thus, the algebraic equation

system Eq. (2.43) can be reformulated as follows.




û

f̂


 =




Ĝ[0]

L̂


 ŵ = Ĉŵ,

where f̂ = L̂ŵ are additional constraints. The conversion of the network-weight
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space into the physical space yields

ŵ = Ĉ−1




û

f̂


 , (2.45)

where Ĉ−1 is the conversion matrix. By substituting Eq. (2.45) into Eqs. (2.37)

and (2.39), the second- and first-order derivatives of u will be expressed in terms

of nodal variable values as follows.

∂2u

∂x2
= D2xû+ k2x,

∂u

∂x
= D1xû+ k1x, (2.46)

where D1x and D2x are known vectors of length Nx; and k2x and k1x scalars

determined by f̂ . Applying Eq. (2.46) at every collocation point on the gridline

yields

∂̂2u

∂x2
= D̂2xû+ k̂2x,

∂̂u

∂x
= D̂1xû+ k̂1x, (2.47)

where D̂2x and D̂1x are known matrices of dimension Nx × Nx; and k̂2x and k̂1x

known vectors of length Nx.

The values of the second- and first-order derivatives of u with respect to y along

a vertical line can be expressed similarly as follows.

∂̂2u

∂y2
= D̂2yû+ k̂2y,

∂̂u

∂y
= D̂1yû+ k̂1y, (2.48)

where D̂2y and D̂1y are known matrices of dimension Ny×Ny; k̂2y and k̂1y known

vectors of length Ny; and Ny the number of grid points on a vertical line as defined

above.

For 2-D formulations, the values of the derivatives of u on the whole domain can

be produced by using Kronecker tensor products as follows.

∂̃2u

∂x2
=

(
D̂2x ⊗ Iy

)
ũ+ k̃2x = D̃2xũ+ k̃2x, (2.49)

∂̃u

∂x
=

(
D̂1x ⊗ Iy

)
ũ+ k̃1x = D̃1xũ+ k̃1x, (2.50)

∂̃2u

∂y2
=

(
Ix ⊗ D̂2y

)
ũ+ k̃2y = D̃2yũ+ k̃2y, (2.51)
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∂̃u

∂y
=

(
Ix ⊗ D̂1y

)
ũ+ k̃1y = D̃1yũ+ k̃1y, (2.52)

where Ix and Iy are the identity matrices of dimension Nx×Nx and Ny×Ny, re-

spectively; k̃2x, k̃1x, k̃2y and k̃1y known vectors of length NxNy; D̃2x, D̃1x, D̃2y and

D̃1y known matrices of dimension NxNy×NxNy; and û =
(
u1 u2 · · · uNxNy

)T
.

Time discretisation

A semi-implicit scheme (Crank-Nicolson) is employed to temporally discretise the

momentum equation, which is solved for the velocity field u at each time step

where the polymer contributed stress τp is considered as a known variable from

the microscopic procedure. Details will be presented in numerical examples in

Section 2.6.

2.5.2 Euler-Maruyama explicit scheme for solving micro-

scopic SDEs

The evolution of the configuration of polymer chains in Eq. (2.26) using the

Euler-Maruyama explicit scheme is given by (Ottinger, 1996)

Qn+1
i = Qn

i +


(∇un+1)T ·Qn

i − un+1 · ∇Qn
i +

1

4We

Nb∑

ν=1

(
Υn

(µ+1)ν −Υn
µν

)
· Fφν


∆t+

√
∆t

2We

Nb∑

ν=1

[
Bn

(µ+1)ν −Bn
µν

]
·Wν ,

(2.53)

where superscripts n and n+1 denote two successive time steps at tn = n∆t and

tn+1 = (n + 1)∆t, respectively; ∆t the time step size; (∇un+1)T the gradient of

the known velocity field computed in the macroscopic procedure at the time step

tn+1; Υ(µ+1)ν and Υµν the diffusion tensors; Fφν the intramolecular forces; and

Wν the three-dimensional (3-D) Wiener process at bead ν. The diffusion tensors
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and intramolecular forces are calculated based on the configuration of all BSCs

at time step tn. After a new configuration is obtained, the new polymer stress

tensor is determined by Eq. (2.27) and its first-order derivative is approximated

using MQ-RBF as presented in Section 2.5.1.

2.5.3 Parallel implementation

The stochastic macro-micro simulation requires considerable numerical compu-

tation. Furthermore, since the processing of tasks in the microscopic procedure

dominates the throughput (Table 2.2), a parallel algorithm for the stochastic

microscale simulation is incorporated into the present method to speed-up the

computation. The stochastic tasks consist of: (i) solving SDEs and (ii) comput-

ing average stresses at collocation points. In general, these tasks are carried out

independently for all configurations generated at each and every collocation point

in the considered domain of a problem.

The parallel implementation of the algorithm is based on the message passing

interface for parallel communication in Matlab environment. The implementation

is carried out on the High Performance Computing system of the University of

Southern Queensland whose details can be found in http : //hpc.usq.edu.au. The

parallelisation is established in regard to stochastic tasks at collocation points.

In the framework of this chapter, several results on the efficiency and speed-up

are presented for the FENE-based BSC model, taking into account the HI and

EV effects and discussed in Section 2.6.4.

2.5.4 Algorithm of the present approach

The present simulation method can now be described in a more detailed algorithm

as follows and the implementation will be expressed in the illustrative examples.

(a) Generate a set of collocation points. Start with a given initial condition for

the first iteration (velocity field, BSC configurations) together with the given
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boundary conditions of the problem. In the present work, the initial condi-

tions are zero initial velocity field, and initial BSC configurations sampled

from equilibrium Gaussian distribution.

(b) Assign Nf BSCs of Ns springs to each collocation point. All BSCs having

the same index constitute a configuration field. Hence, there is an ensemble

of Nf configuration fields. Since all the BSCs having the same index receive

the same random number, there is a strong correlation between BSCs in a

configuration field.

(c) Solving the macro PDEs for the velocity field using the 1D-IRBFN collocation

method described in Section 2.5.1.

(d) Solving the micro SDEs for the polymer configuration fields using the method

presented in Section 2.5.2. As mentioned in step (a), in order to ensure strong

correlation within a configuration field, all the BSCs of the same index have

the same random number.

(e) Determine the polymer contributed stress by taking the ensemble average

of the polymer BSC configurations at each collocation point xi, using Eq.

(2.27). The tasks include the computation of the HI tensor (the RPY tensor

in this work) and the EV interaction forces with regard to HI and EV effects,

respectively.

Note: A parallel algorithm is installed within steps (d)-(e), see Section 2.5.3

for details.

(f) With the stress field just obtained, approximate the gradient of stress field

using the IRBFNs and then solve the macroscopic governing equation (2.36)

for the new velocity field by the 1D-IRBFN method described in Section

2.5.1;

(g) Terminate the simulation when either the desired time or convergence is

reached. The latter is determined by a convergence measure (CM) for the

velocity field, defined by
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CM(u) =

√√√√
∑N

1

∑ds
i=1

(
uni − un−1

i

)2
∑N

1

∑ds
i=1(u

n
i )

2
≤ tol (2.54)

where ds is the number of dimensions; tol a preset tolerance; ui the i-

component of the velocity at a collocation point; N the total number of

collocation points; and n the iteration number.

(h) Return to step (d) for the next time step of the microscopic procedure until

a steady state or a given time is reached.

2.6 Numerical examples

The present method is employed to simulate the planar Couette flow described in

Fig. 2.2 using several BSC models. This problem with simpler polymer models

was earlier studied by Laso and Ottinger (1993); Mochimaru (1983); Tran-Canh

and Tran-Cong (2002b, 2004). Koppol et al. (2007) studied the same problem

using a finite element-based method.

Firstly, a creeping flow of viscoelastic fluid using FENE-BSC model which was

considered in Koppol et al. (2007) is simulated to assess the validity of the present

method. The problem is then further investigated with the Rouse and Zimm

models to study the HI effect on the rheological properties of the flow. Finally,

the start-up problem is solved using general BSC models with fully nonlinear

effects.

The problem is defined as follows. For time t < 0, the fluid is at rest. At

t = 0, the lower plate starts to move with a constant velocity V = 1. No-slip

condition is assumed at the walls. The fluid parameters of each considered BSC

model mentioned above are presented in the next subsections. A set of collocation

points is initialised uniformly along the y direction. Then the same number of

BSC configurations is initiated randomly on each and every collocation point (see

Section 2.5.4, item a).
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Figure 2.2: The start-up planar Couette flow problem. The collocation points
and the velocity profile are only presented schematically.

The polymer stress field is calculated by Eq. (2.27) based on the initial BSC

configurations. The obtained values by the microscopic procedure are located on

the collocation points (i.e. micro-structural properties are transferred to a bulk

property). These values at the grid points along with the boundary and initial

conditions are used to start the simulation in the macroscopic procedure. The

macroscopic governing equation is solved for the velocity field, and afterwards,

the transpose of velocity gradient (∇u)T in the SDE (2.26) is defined by the

IRBF-based approximation. All above calculations are repeated at each time

step until the numerical convergence is satisfied.

2.6.1 Governing equations

From the characteristics of the start-up Couette flow of dilute polymer solution

using the general BSC model, the system of stochastic multiscale equations (2.25)-

(2.27) is developed as follows.

Re
∂u

∂t
(y, t)− (1− ε)

∂2u

∂y2
(y, t) =

∂τp,xy
∂y

(y, t), (2.55)

dQi,x (y, t) =


∂u
∂y

(y, t)Qi,y (y, t) +
1

4We

Nb∑

ν=1

∆Υ
ν,[1]
(µ+1)µ·

Fφν
(
Qi (y, t)

)
]
dt+

√
1

2We

Nb∑

ν=1

∆B
ν,[1]
(µ+1)µ · dWν ,

(2.56)
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dQi,y (y, t) =
1

4We

Nb∑

ν=1

∆Υ
ν,[2]
(µ+1)µ · Fφν

(
Qi (y, t)

)
dt+

√
1

2We

Nb∑

ν=1

∆B
ν,[2]
(µ+1)µ · dWν,

(2.57)

dQi,z (y, t) =
1

4We

Nb∑

ν=1

∆Υ
ν,[3]
(µ+1)µ · Fφν

(
Qi (y, t)

)
dt+

√
1

2We

Nb∑

ν=1

∆B
ν,[3]
(µ+1)µ · dWν,

(2.58)

τp =
ǫ

W̃ e


(Nb − 1) I−

Ns∑

k=1

〈
QkF

D
k

〉
+ Z


 , (2.59)

where u is the x-component of the velocity; τp the polymer stress tensor including

the shear stress τp,xy; and Qi,x, Qi,y and Qi,z the components of connector vector

Qi at location y. ∆H
ν,[k]
(µ+1)µ is row k (k = 1, 2, 3) of matrix ∆Hν

(µ+1)µ (H = Υ

or B) with ∆Hν
(µ+1)µ = H(µ+1)ν − Hµν , F

φ
ν =

(
F φ
ν,x, F

φ
ν,y, F

φ
ν,z

)T
; and dWν =

(
dWν,x, dWν,y, dWν,z

)T
.

Other parameters are defined as before. The discretisation of equations (2.55)-

(2.58) are carried out through two interlaced procedures of different scales as

presented in Section 2.5.4.

Discretisation of the macro-scale governing equation

Applying the Crank-Nicolson scheme for time discretisation of the macroscopic

governing equation (2.55) yields

Re
un+1 − un

∆t
− (1− ε)

2

d2un+1

dy2
=

(1− ε)

2

d2un

dy2
+
dτnp,xy
dy

,

or

βun+1 − α
d2un+1

dy2
= α

d2un

dy2
+
dτnp,xy
dy

+ βun, (2.60)

where β = Re/∆t; α = 0.5(1− ε); and other parameters as defined above.
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Discretisation of the micro-scale stochastic governing equation

The equations (2.56)-(2.58) are discretised using the Euler explicit scheme with

Nf = 1024 realizations of each random process as follows.

Qn+1
i,x = Qn

i,x +
dun+1

dy
Qk,n
i,y ∆t+

∆t

4We

Nb∑

ν=1

∆Υ
ν,[1]
(µ+1)µ · Fφ,nν +

√
∆t

2We

Nb∑

ν=1

∆B
ν,[1]
(µ+1)µ ·Wk,n

ν ,

(2.61)

Qn+1
i,y = Qn

i,y +
∆t

4We

Nb∑

ν=1

∆Υ
ν,[2]
(µ+1)µ · Fφ,nν +

√
∆t

2We

Nb∑

ν=1

∆B
ν,[2]
(µ+1)µ ·Wn

ν , (2.62)

Qn+1
i,z = Qn

i,z +
∆t

4We

Nb∑

ν=1

∆Υ
ν,[3]
(µ+1)µ · Fφ,nν +

√
∆t

2We

Nb∑

ν=1

∆B
ν,[3]
(µ+1)µ ·Wn

ν , (2.63)

where all parameters were defined as above. The velocity field of the flow at the

time tn+1 is given by either the initial conditions or the solution of the macro-scale

procedure which was previously determined using the 1D-IRBFN method. The

stress τp is then calculated using the coupling equation (2.59).

2.6.2 Creeping flows of viscoelastic fluid using FENE-based

BSC models

This problem was solved by Koppol et al. (2007) with the Reynolds number

Re = 0 using the FENE-BSC model of NS = 1, 3, 6-dumbbell chains and ne-

glecting HI and EV effects. The parameters of the BSC model fluid include:

the ratio of polymer viscosity and total viscosity of the fluid ǫ = 0.5, the square

of maximum extensibility of the FENE dumbbell model bD = 900 and thus the

square of maximum extension of each spring in the chain bBSC = bD/Ns, and the

Weissenberg number of the flow We = 5. The SDE equation is developed for

each dumbbell in a configuration of the 3-dumbbell BSC model as follows.

dQ1 =

[
(∇u)T ·Q1 −

1

4We

(
2FD1 − FD2

)]
dt+

1√
2We

(dW2 − dW1) , (2.64)
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dQ2 =

[
(∇u)T ·Q2 −

1

4We

(
−FD1 + 2FD2 − FD3

)]
dt+

1√
2We

(dW3 − dW2) ,

(2.65)

dQ3 =

[
(∇u)T ·Q3 −

1

4We

(
−FD2 + 2FD3

)]
dt+

1√
2We

(dW4 − dW3) , (2.66)

where FDk (k = 1, 2, 3) is given by Eq. (2.29) for a FENE dumbbell. The 3-D

development of the equation (2.64) for dumbbell 1 is given by

dQ1,x =

[
− 1

4We

(
2Q1,x

C1
− Q2,x

C2

)
+
∂u

∂y
Q1,y

]
dt+

1√
2We

(
dW2,x − dW1,x

)
,

(2.67)

dQ1,y = − 1

4We

(
2Q1,y

C1
− Q2,y

C2

)
dt+

1√
2We

(
dW2,y − dW1,y

)
, (2.68)

dQ1,z = − 1

4We

(
2Q1,z

C1

− Q2,z

C2

)
dt+

1√
2We

(
dW2,z − dW1,z

)
, (2.69)

where Ck = 1− ‖Qk‖2
bBSC

; and ‖ Qk ‖2= Q2
k,x +Q2

k,y +Q2
k,z (k = 1, 2).

Temporal discretisation scheme

For microscopic procedure, the use of Euler integration scheme to discretise the

SDEs (2.64)-(2.66) yields

Qn+1
1 = Qn

1 +

[
(∇un+1)T ·Qn

1 −
1

4We

(
2FD1 − FD2

)n]
∆t+

√
∆t

2We
(Wn

2 −Wn
1 ) ,

(2.70)

Qn+1
2 = Qn

2 +

[
(∇un+1)T ·Qn

2 −
1

4We

(
−FD1 + 2FD2 − FD3

)n]
∆t+

√
∆t

2We
(Wn

3 −Wn
2 ) ,

(2.71)

Qn+1
3 = Qn

3 +

[
(∇un+1)T ·Qn

3 −
1

4We

(
−FD2 + 2FD3

)n]
∆t+

√
∆t

2We
(Wn

4 −Wn
3 ) .

(2.72)
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Based on the Euler explicit scheme, the time discretisation of Eqs. (2.67) -(2.69)

for dumbbell 1 is written as follows.

Qn+1
1,x =

(
1− ∆t

2WeC1

)
Qn

1,x +
∆t

4WeC2
Qn

2,x +
dun+1

dy
Qn

1,y∆t+

√
∆t

2We

(
W n

2,x −W n
1,x

)
,

(2.73)

Qn+1
1,y =

(
1− ∆t

2WeC1

)
Qn

1,y +
∆t

4WeC2

Qn
2,y +

√
∆t

2We

(
W n

2,y −W n
1,y

)
, (2.74)

Qn+1
1,z =

(
1− ∆t

2WeC1

)
Qn

1,z +
∆t

4WeC2
Qn

2,z +

√
∆t

2We

(
W n

2,z −W n
1,z

)
. (2.75)

A study for the convergence of time step for the case of Ns = 6 and Nf = 1024 is

done with a range of values of ∆t = {0.01, 0.005, 0.001, 0.0005, 0.0001} using the

number of grid nodes Ny = 11 and parameters presented above. The evolution of

the shear stress (τxy) and the velocity field (u) with different ∆t’s are introduced

in Figs. 2.3 and 2.4, respectively. For τxy, the results produced from ∆t =

{0.001, 0.0005, 0.0001} are nearly identical and only show a minor difference to

the results using coarser time steps ∆t = {0.01, 0.005}. Meanwhile, the solutions

of the velocity field are mostly unchanged with ∆t’s examined. Therefore, the

value of ∆t = 0.001 is sufficiently small to obtain converged solutions and is

chosen for this problem.

For the creeping problem (Re = 0), the pseudo-time scheme is used to discretise

the momentum conservation equation with time step size ∆t = 0.001 for both the

micro and macro procedures. With a coarse spatial discretisation ∆y = 0.1 (Ny =

11) and number of chains Nf = 1024 at each collocation point, the numerical

solutions obtained by the present method confirm a very good agreement with

the results where finer meshes were used in Koppol et al. (2007), evidenced by

the following

• Fig. 2.5 describes evolutions of the velocity at four locations y = 0.2, 0.4,

0.6 and 0.8 of the BSC models of 1, 3 and 6 dumbbells. The evolution of

the velocity profile indicates that the overshoots before reaching the steady

state are not significant. The results show that the method is able to achieve

a very high accuracy using a coarse grid (Ny = 11, ∆t = 0.001);
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Figure 2.3: The creeping planar Couette flow problem using the FENE-based BSC
model. A convergence study for the time step size ∆t with Ns = 6, Nf = 1024,
Re = 0, ǫ = 0.5, bD = 900 and We = 5. The evolution of the shear stress at
y = 0.2 for a range of values of ∆t.
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Figure 2.4: The creeping planar Couette flow problem using the FENE-based
BSC model. A convergence study for the time step size ∆t with parameters
mentioned in Fig. 2.3. The evolution of the velocity at y = 0.2 and y = 0.8 for a
range of values of ∆t.
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Figure 2.5: The creeping planar Couette flow problem using FENE-based BSC
models of 1, 3 and 6 dumbbells. The parameters of the problem: number of
collocation points Ny = 11, Nf = 1024, bD = 900, We = 5, ǫ = 0.5, Re = 0
and ∆t = 0.001. The evolution of the velocity at four locations y = 0.2, y = 0.4,
y = 0.6 and y = 0.8.

• Figs. 2.6 depict the evolution of the first normal stress (Fig. 2.6(a)) and the

shear stress (Fig. 2.6(b)) at the location y = 0.8 for several BSC models of

1, 3 and 6 dumbbells using 1024 and 2048 configurations at each collocation

point. The absolute values of shear stresses reach a stable stage around 0.42

to 0.48 while the stable first normal stresses cover a range from 3.2 to 4.

Theses results are in very good agreement with ones in Fig. 3 presented in

Koppol et al. (2007);

• Figs. 2.7 show the evolution of the first normal stress difference (Fig. 2.7(a))

and the square of end-to-end distance of chain configuration (Fig. 2.7(b))

at the location y = 0.8 for the different BSC models of 1, 3 and 6 dumbbells.

Several interesting points by the results for this case include: (i) the number

of configurations Nf = 1024 is sufficient for a reliable stochastic simulation

and (ii) the more number of springs/dumbbells in a BSC model is, the

higher extensibility of the BSC is.
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Ns = 6, Nf = 2048 - Koppol et al. (2007)

(b)

Figure 2.6: The creeping planar Couette flow problem using the FENE-based
BSC model of 1, 3 and 6 dumbbells. The parameters of the problem are given in
Fig. 2.5. The evolution of the first normal stress (figure (a)) and the shear stress
(figure (b)) at location y = 0.8.
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(b)

Figure 2.7: The creeping planar Couette flow problem using the FENE-based
BSC model of 1, 3 and 6 dumbbells. The parameters of the problem are given in
Fig. 2.5. The the evolution of first normal stress difference (figure (a)) and the
square of end-to-end distance of the BSC configuration (figure (b)) at location
y = 0.8.
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Fig. 2.8 depicts the evolution of the convergence measure of the velocity field

using the FENE-based BSC model of 1, 3 and 6 dumbbells by the present IRBF-

BCF collocation method. While most published results confirmed that conver-

gence measures obtained for a stochastic approach are not high (from 1E − 2 to

1E − 3 for velocity and stress (Laso and Ottinger, 1993; Tran et al., 2012a)), the

results in Fig. 2.8 show that the convergence measure has been significantly en-

hanced by the present method. Furthermore, the statistical errors obtained at the

steady state show a significant improvement by the present method as described

in Table 2.1. Indeed, in most of the cases, except Ns = 3 with Nf = 1024, the

statistical errors by the present method are smaller than those of Koppol et al.

(2007).

t
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C
M

(u
)

10-6
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10-4

10-3

10-2

10-1

Ns = 1, Nf = 1024

Ns = 3, Nf = 1024

Ns = 6, Nf = 1024

Figure 2.8: The creeping planar Couette flow problem using the FENE-based
BSC model of 1, 3 and 6 dumbbells. The parameters of the problem are given
in Fig. 2.5. The convergence measures for the velocity field are significantly
enhanced in comparison with other published results.
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Table 2.1: The creeping planar Couette flow problem using the FENE-based BSC
model of 1, 3 and 6 dumbbells. The parameters of the problem are given in Fig.
2.5. An evaluation of the numerical stability of the present method: the statistical
errors of the shear stress and the first normal stress of the present method are
compared with those of Koppol et al. (2007). S[τxy] and S[τxx] are the statistical
errors of the shear stress and the first normal stress, respectively.

Koppol et al.(2007) The present method
Ns Nf S[τxy] S[τxx] S[τxy] S[τxx]
1 1024 0.025 0.172 0.024 0.167
1 2048 0.018 0.120 0.017 0.112
3 1024 0.016 0.123 0.018 0.137
3 2048 0.012 0.091 0.012 0.085
6 1024 0.015 0.117 0.015 0.117
6 2048 0.011 0.088 0.011 0.077
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2.6.3 Comparisons between the Rouse and Zimm models

In this section, the difference in dynamic behaviour of dilute polymer solution in

shear flow using the Rouse and Zimm models is discussed. While both of them are

Hookean dumbbell-based BSC models, only the Zimm model takes into account

the effect of HI. The SDE (2.26), describing the evolution of the configuration in

dimensionless form, is rewritten for the Rouse model as

dQi =


(∇u)T ·Qi −

1

4We

Ns∑

k=1

ARikF
D
k


 dt+

√
1

2We

(
dWµ+1 − dWµ

)
, (2.76)

where µ = i and ARik are entries of the Rouse matrix of dimension Ns × Ns and

given by

ARik =





2 if |i− k| = 0,

−1 if |i− k| = 1,

0 otherwise.

(2.77)

and for the Zimm model by

dQi =


(∇u)T ·Qi −

1

4We

Ns∑

k=1

AZikF
D
k


 dt+

√
1

2We

Nb∑

ν=1

(
B(µ+1)ν −Bµν

)
· dWν ,

(2.78)

where AZik are entries of the Zimm matrix of dimension of Ns×Ns and defined as

AZik = ARik +
√
2h̄

(
2√

|i− k|
− 1√

|i− k + 1|
− 1√

|i− k − 1|

)
, (2.79)

where h̄ is the HI parameter (h̄ = 0.25 is used in this work); tensor Bµν is

determined by formulae (2.5) and (2.14).

The polymer stresses are given by

τp =
ǫ

W̃ e


(Nb − 1) I−

Ns∑

k=1

〈
QkF

D
k

〉

 , (2.80)

where Nb and Ns are the numbers of beads and springs, respectively. Other

parameters are defined as before.
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The start-up problem of the Rouse and Zimmmodels is analysed using 2-dumbbell

chains with the following physical parameters: ηo = ηs+ηp = 1, ρ = 1.2757, λH =

49.62, ηs = 0.0521 as done in Laso and Ottinger (1993); Tran-Canh and Tran-

Cong (2004) where ηo, ηs, ηp, ρ, are defined above.

The corresponding Weissenberg number, Reynolds number and the ratio ε are

given by

Re = ρUL
ηo

= 1.2757; We = λHU
L

= 49.62 and ε = ηp
ηo

= 0.9479.

Since the Zimm model takes into account the HI effect, the mechanical behaviours

are significantly different from those in the Rouse model and that is shown in nu-

merical results by the present method. Results clearly showed that the maximum

extension of BS chains of the two models increases monotonically with respect

to time and the increment rate of Zimm chains is higher than the Rouse ones

because of the HI effect (Fig. 2.9). Indeed, BS chain lengths reach the values

of 800 and 1000 after the elapsed time t = 25 for the Rouse and Zimm models,

respectively.

Figs. 2.10 depict the evolution of velocity field at four locations y = 0.2, y = 0.4,

y = 0.6 and y = 0.8 by the Rouse and Zimm models. Since they are Hookean-

based BS chains, the evolution of velocity profile and values of flow velocity

are nearly identical (Fig. 2.10(a)) except a small difference during the velocity

overshoot at the start-up period (Fig. 2.10(b)).

On the rheological behaviour, the comparison between the models in the Couette

start-up flows is summarised in Fig. 2.11 for the evolution of stresses. Results

in Figs. 2.11 show that due to the HI effect, the magnitude of shear stress (Fig.

2.11(a)) and the first normal stress difference (Fig. 2.11(b)) by the Zimm model

are higher than the Rouse’s ones whereas a zero-value is observed for the second

normal stress differences of the two models. These results are completely in line

with predictions in classical kinetic theory (Bird et al., 1987b; Ottinger, 1996).

The simulation is also carried out with a range of Weissenberg numbers (We = 5,

10 and 30) to investigate the present method. Results presented in Figs. 2.12 and
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Figure 2.9: The start-up planar Couette flow problem using the Rouse and the
Zimm models. The parameters of the problem: number of configurations Nf =
1024, number of springs Ns = 2, the hydrodynamic interaction parameter for
Zimm model h̄ = 0.25, number of collocation points Ny = 11, Re = 1.2757,
We = 49.62, ǫ = 0.9479 and ∆t = 0.001. The evolution of the square of end-to-
end distance at the location y = 0.2.

2.13 confirm the influence of the Weissenberg number on the velocity through the

start-up period, the shear stress and the first normal stress difference.

For the evolution of velocity, Fig. 2.12 shows that the maximum amplitude as

well as the oscillatory frequency of the over/undershoot are higher for smaller

Weissenberg numbers for both Rouse and Zimm models. Meanwhile, with a

given Weissenberg number, due to the HI effect, the over/undershoot of velocity

is stronger with the Zimm model.

On the polymer stresses, the higher Weissenberg number is, the lower magni-

tude of the shear stress (Fig. 2.13(a)) and the first normal stress difference (Fig.

2.13(b)) are for both Rouse and Zimm models. Furthermore, with a given Weis-

senberg number, the absolute value of shear stress and the first normal stress

difference of flow by the Zimm model are higher than those by the Rouse model.
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Figure 2.10: The start-up planar Couette flow problem using the Rouse and
the Zimm models. The parameters are given in Fig. 2.9. The evolution of the
velocity profile (figure (a)) and the comparison of the evolution of velocity (figure
(b)) between Rouse and Zimm models at locations y = 0.2, y = 0.4, y = 0.6 and
y = 0.8.
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Figure 2.11: The start-up planar Couette flow problem using the Rouse and the
Zimm models. The parameters are the same as in Fig. 2.9. The evolution of
the shear stress (figure (a)) and the evolution of the first and the second normal
stress differences (figure (b)) at location y = 0.2.
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Figure 2.12: The start-up planar Couette flow problem using the Rouse and the
Zimm models. The parameters are the same as in Fig. 2.9. Comparison of
the fluid rheological properties using the Rouse and Zimm models for several
Weissenberg numbers (We = 5, 10 and 30). The evolution of velocity.



2.6. Numerical examples 67

t
0 5 10 15 20 25

−
τ y

x

0

0.5

1

1.5
Rouse We = 5

Rouse We = 10

Rouse We = 30

Zimm We = 5

Zimm We = 10

Zimm We = 30

(a)

t
0 2 4 6 8 10

Ψ
1

0

2

4

6

8
Rouse We = 5
Rouse We = 10
Rouse We = 30
Zimm We = 5
Zimm We = 10
Zimm We = 30

(b)

Figure 2.13: The start-up planar Couette flow problem using the Rouse and the
Zimm models. The parameters are the same as in Fig. 2.9. Comparison of
the fluid rheological properties using the Rouse and Zimm models for several
Weissenberg numbers (We = 5, 10 and 30). The evolution of the shear stress
(figure (a)) and the first normal stress difference at location y = 0.2 (figure (b)).
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2.6.4 Start-up Couette flow using the FENE-based BSC

models with HI and EV effects

The method is finally demonstrated with the start-up Couette flow of fully non-

linear FENE-based BSC model fluids. The HI and EV effects are included in the

model with varying number of FENE dumbbells in each chain (Ns = 1, 2, · · · , 6).
The governing SDE (2.26) of a general BSC model with HI and EV effects and

the stress formula for the polymer (2.27) are reproduced as follows.

dQi =


(∇u)T ·Qi +

1

4We

Nb∑

ν=1

(
Υ(µ+1)ν −Υµν

)
· Fφν


 dt+

√
1

2We

Nb∑

ν=1

(
B(µ+1)ν −Bµν

)
· dWν,

(2.81)

τp =
ǫ

W̃ e


(Nb − 1) I−

Ns∑

k=1

〈
QkF

D
k

〉
+ Z


 , (2.82)

where Z is determined by Eq. (2.30) and other parameters are defined as before.

The physical parameters of the fluid, including theWeissenberg number, Reynolds

number and the ratio ε, are chosen as presented in Section 2.6.3. The parameters

h̄ = 0.25 for the HI effect and the constants z = 1 (Eq. (2.17)) and K = 1 (Eq.

(2.18)) for the EV effect are used in this section.

On the mechanical behaviour, Fig. 2.14 depicts the evolution of shear stress

and Figs. 2.15 the first normal stress difference (Fig. 2.15(a)) and the second

normal stress difference (Fig. 2.15(b)) at the location of y = 0.2. Overshoots are

observed for shear stress, the first and the second normal stress differences. In

particular, the existence of the non-zero second normal stress difference is very

clear as compared with simulations using the BSC models without both HI and

EV effects (see cases of Rouse and Zimm models in Fig. 2.11(b)). This is because

the nonlinear effects of HI and EV have been included in the simulations. Results

also show the influence of the number of dumbbells in a polymer chain on the

dynamics properties through the start-up time before reaching stable values. For

example, the overshoot of the shear stress (Fig. 2.14) and the first normal stress
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difference (Fig. 2.15(a)) decrease with increasing number of dumbbells in the

chain configuration.

The development of velocity with respect to time at different locations (y = 0.2,

0.4, 0.6 and 0.8) are presented in Figs. 2.16. Generally, an overshoot at the

beginning time is formed before a stable state is reached. The obtained results

show a significant influence of the number of dumbbells in the chain on the initial

transient behaviour. It can be seen clearly that the velocity simulated with higher

number of dumbbells achieves the maximum value (or the debut position of the

overshoot) sooner and thus needs less time to reach a stable state (Fig. 2.16(b)).

Last but not least, it is worth noting that with a given bD, the HI and EV

influences on the polymer stresses increase and only significantly for polymer

chains having large enough number of dumbbells in chain (Figs. 2.17). For

example, the difference of the shear stress (Fig. 2.17(a)) and the first normal

stress difference (Fig. 2.17(b)) of the FENE-BSC models with and without HI

and EV are very small for the 2-dumbbell chain model but very significant for

the 6-dumbbell chain model. A similar observation can be seen for the square

maximum extension of end-to-end connecting vector (Fig. 2.18). Meanwhile,

these nonlinear effects are not significant for the velocity field of the flow (Figs.

2.19).

2.6.5 Performance of parallel computation

The problem is solved using 1024 BSCs at each collocation point to ensure the

accuracy and stability in stochastically determining the stresses. In order to

estimate the efficiency of the parallel algorithm, a range of 2, 4 and 8 CPUs is

used to solve the SDEs corresponding to 1024 configurations in parallel generated

at each and every collocation point and to determine the averaged stresses at the

grid points. Especially, the presence of HI and EV effects makes a massive increase

in the computational cost because of the bead-bead and bead-spring interactions

in the fluid model. For this numerical example, the FENE-BSC model of 2

dumbbells with HI and EV effects is considered to initially evaluate the efficiency
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Figure 2.14: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells with HI and EV effects. The parameters
of the problem: h̄ = 0.25, z = 1, K = 1, Ny = 11, We = 49.62, ǫ = 0.9479,
bD = 50. The evolution of the shear stress at location y = 0.2 using 1, 2, 3, 4, 5
and 6 dumbbells.

of the parallel algorithm.

Table 2.2 shows the effect of the number of CPUs on the speed-up as well as the

efficiency of the parallel technique. A significant improvement of the throughput

has been achieved. For example, the speed-up increased 1.7, 2.96 and 3.66 times

when using 2, 4 and 8 CPUs, respectively. However, the efficiency of the algorithm

reduces with increasing number of CPUs. The results presented in Table 2.2

and Figs. 2.20 show the effect of the number of CPUs on the speed-up and

the efficiency of the present method are in agreement with several recent results

reported in Tran et al. (2009); Laso et al. (1997).
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Figure 2.15: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells with HI and EV effects. The parameters
are the same as in Fig. 2.14. The evolution of the first normal stress difference
(figure (a)) and the second normal stress difference (figure (b)) at location y = 0.2
using 1, 2, 3, 4, 5 and 6 dumbbells.
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Figure 2.16: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells with HI and EV effects. The parameters
are the same as in Fig. 2.14. The evolution of the velocity field at locations
y = 0.2, y = 0.4, y = 0.6 and y = 0.8 (figure (a)) and an enlarged velocity profile
at location y = 0.6 (figure (b)) using 1, 2, 3, 4, 5 and 6 dumbbells.
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Figure 2.17: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells. The parameters are shown as in Fig.
2.14. The influence of HI and EV effects on rheological properties of the fluid.
The evolution of the shear stress (figure (a)) and the first normal stress difference
(figure (b)) at location y = 0.2.
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Figure 2.18: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells. The parameters are shown as in Fig.
2.14. The influence of HI and EV effects on rheological properties of the fluid.
The evolution of the end-to-end connector vector at location y = 0.2.
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Figure 2.19: The start-up planar Couette flow problem using FENE-based BSC
models of several numbers of dumbbells. The parameters are shown as in Fig.
2.14. The influence of HI and EV effects on rheological properties of the fluid. The
evolution of the velocity profile with/without EV and HI effects using 2-dumbbell
(figure (a)) and 6-dumbbell (figure (b)) BSC models at locations y = 0.2, y = 0.4,
y = 0.6 and y = 0.8.
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Table 2.2: The start-up planar Couette flow problem using FENE-BSC models
with HI and EV effects. The parameters of problem: number of dumbbells in a
BSC Ns = 2, number of BSC configurations at each collocation point Nf = 1024,
∆t = 0.001, number of iterations it = 2.5E + 4. Parallel computation results are
shown in the table where CPUs is number of CPUs, tm is elapsed time for the
micro procedure, tM is elapsed time for the macro procedure, S is single mode, P
is parallel mode, Spd is speed-up and Eff is efficiency.

Mode CPUs tm tM Spd Eff (%)
S 1 3.02E+5 3.957267 1.00 100%
P 2 1.78E+5 4.311329 1.70 85%
P 4 1.02E+5 4.334896 2.96 74%
P 8 8.27E+4 4.333779 3.66 46%
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Figure 2.20: The start-up planar Couette flow problem using FENE-BSC models
of 2 dumbbells with HI and EV effects: The parameters are shown as in Fig.
2.14. Parallel computation results: The efficiency (figure (a)) and the speed-up
(figure (b)) with respect to the number of CPUs.
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2.7 Concluding remarks

The IRBFN-BCF based CG method is employed to simulate the flow of dilute

polymer solutions using complex nonlinear BSC models. The hybrid simulation

method is a combination of a high-order RBFN-based approximation for the so-

lution of macroscopic conservation equations and a BCF-based CG technique for

the evolution of polymer configuration. The present method offers the advan-

tages of a mesh-free based stochastic CG method in the simulation of viscoelastic

polymer flows as presented in Tran et al. (2011). The method efficiency based on

both the enhanced convergence rate of numerical solution and the stability of a

stochastic process is evidenced by the successful simulation of flows using complex

BSC models which take into account nonlinear interaction forces in the polymer

solution, e.g. HI and EV effects. This allows the method to effectively simulate

models which are realistic in comparison with experimental results. The method

will be further applied for simulations of polymer melts in the next chapter.



Chapter 3

Simulation of polymer melt flows

modelled by reptation models

using a high-order RBF–BCF

approach

The radial basis function and Brownian configuration fields (RBF-BCF) based

coarse-grained method, which was reported for the flow of dilute polymer solu-

tions in Chapter 2, is further developed to simulate the dynamic behaviours of

polymer melt flows (Nguyen et al., 2016a). Macro-micro equations of a polymer

melt are discretised and solved for the primitive variables, including velocity and

pressure, as well as the evolution of kinetic behaviours of the polymer melt, yield-

ing the stress in the fluid. In this chapter, a polymer melt system is modelled

using “single-segment” reptation models or tube models where the polymer stress

is averagely computed from an ensemble of thousands of tube segments at each

grid point. The use of a Cartesian grid-based 1D-integrated RBF (1D-IRBF)

approximation not only helps avoid any complex meshing process but also en-

sure a fast convergence rate for the solution of macro-micro governing equations.

Furthermore, the use of BCF maintains the correlation of polymer stress fields

in the simulation and hence enhances the numerical stability of the method. As
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an illustration of the method, the start-up Couette polymer melt flow and the

polymer melt flow over a cylinder in a channel are examined using four classical

reptation models including the Doi-Edwards, Curtiss-Bird, reptating rope, and

double reptation models.

3.1 Introduction

Polymer melts and concentrated polymer solutions are extremely complex fluids

due to the existence of very high density of polymer molecules. In such systems,

the motion of a molecule is restricted by the neighbouring ones. Thus, a polymer

chain can move mainly along its backbone and the motion in the direction perpen-

dicular to the backbone is mostly limited by surrounding polymers (Bird et al.,

1987b). Therefore, the motion of a molecule in an undiluted polymer system is

assigned to a so-called reptational motion (de Gennes, 1971). In the first publica-

tion on the use of reptation theory to model undiluted polymer systems (known

as the Doi and Edwards (DE) model), Doi and Edwards assumed each polymer

chain in a highly concentrated system reptates in a fictitious tube created by

its neighboring molecules (Doi and Edwards, 1978a,b,c). Based on the reptation

concept, Curtiss and Bird (CB) model uses an anisotropic friction tensor instead

of using the “tube” constraint to describe the limit of the sideways motion of

polymers in the DE model (Curtiss and Bird, 1981a,b; Bird et al., 1982a,b). Fur-

thermore, other reptation based models for the simulation of undiluted polymers

such as reptating rope (RR) and double reptation (DR) models were developed.

While the RR model considers the interaction between segments in each polymer

chain (Jongschaap, 1988; Jongschaap and Geurts, 1988), the DR model takes into

account the effect of the constraint release mechanism (des Cloizeaux, 1988). Re-

cently, Ottinger and his coworkers developed the theory of stochastic processes

which relates to theoretical kinetic models governed by a corresponding diffu-

sion equation (Ottinger, 1989a, 1990). In this approach, the diffusion equation is

transformed into a stochastic differential equation that preserves all the physical

meanings while the numerical simulation method for its solution is very elegant

(Ottinger, 1989a).
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Over the past two decades, the stochastic macro-micro methods have been con-

tributing significantly to the simulation of flows of viscoelastic fluids, including di-

lute polymer solutions, liquid crystals and polymer melts. Basically, the “macro-

micro” term is based on the fact that the governing conservation equations in con-

tinuum mechanics are coupled with the coarse-grained molecular models based on

kinetic theory for the solution of viscoelastic flow problems. In 1992, Ottinger and

coworkers proposed the CONNFFESSIT method (Calculation of Non-Newtonian

Flow: Finite Elements and Stochastic Simulation Technique) (Ottinger and Laso,

1992). One of the notable characteristics of the CONNFFESSIT is that the poly-

mer stress field is calculated from the configuration distribution of coarse-grained

molecules (dumbbells) instead of using a constitutive equation. Owing to this

great advantage, the method has become a preferable choice for rheologists in

finding out the dynamic characteristics of polymer flows without the need of a

closed form constitutive equation (Keunings, 2004). The Eulerian approach of this

method, namely Brownian configuration field (BCF) (Hulsen et al., 1997), uses

an ensemble of continuous configuration fields which are convected and deformed

by the drift components including the velocity gradient of the flows, elastic forces

and the Brownian diffusion motion in the simulation. In an alternative approach,

Tran-Canh and Tran-Cong developed an RBFN-based stochastic macro-micro

meshfree method using both Lagrangian and Eulerian approaches to simulate

dilute polymer solutions (Tran-Canh and Tran-Cong, 2002b, 2004). In this ap-

proach, the domain under consideration is discretised by a set of uniform or

random collocation points instead of using an element-based method. Thus, it is

more flexible than the CONNFFESSIT for the solution of problems with complex

geometries, moving boundary and free surface. High performance computing with

domain decomposition and parallel computation was also applied in the method

to efficiently deal with the large-scale problems (Tran et al., 2009). The method

has been further developed with the use of the integrated RBF (IRBF) (Mai-Duy

et al., 2008) in discretising partial differential governing equations of the system

to enhance the convergence rate as well as reduce the white noise of the multi-

scale method (Tran et al., 2011, 2012a; Nguyen et al., 2015b). In this chapter,

the IRBF-BCF-based coarse-grained method (Nguyen et al., 2015b) is extended

to simulate polymer melt systems using reptation models in a transient flow.
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The chapter is organized as follows. The equations for the conservation of mass

and momentum for a polymer melt flow are presented in Section 3.2. Section

3.3 is a brief introduction of the “single-segment” reptation models used in the

simulation, the micro governing equations and the stress formula for each model

are also shown. A general system of macro-micro governing equations is presented

in Section 3.4. The numerical method is introduced in detail in Section 3.5.

Section 3.6 describes the main points of the present algorithm. The numerical

examples of the start-up Couette flow and the flow past a cylinder are illustrated

in Section 3.7. Finally, the chapter is closed by a conclusion in Section 3.8.

3.2 Governing equations of a polymer melt flow

The flow of an incompressible and isothermal polymer melt is governed by the

following equations for the conservation of mass and momentum

∇ · u = 0, (3.1)

ρ
Du

Dt
= −∇p+∇ · τp, (3.2)

where ρ is the polymer melt density; u the velocity field; t the time; D
Dt
(•) the

material derivative defined by D
Dt
(•) = ∂

∂t
(•) + (u · ∇) (•); p the hydrostatic

pressure; and τp the polymer stress tensor. It is worth noting that since the melt

density is very high, the motion of polymer molecules is severely restricted by

neighbouring ones. Thus, the behaviour of polymer melt flow is mostly dominated

by the viscous component rather than inertia one and the motion equation of

polymer melt flows is rewritten as

−∇p+∇ · τp = 0. (3.3)

Polymer melt flows behave like an inertialess flow as there is no contribution from

solvent viscosity. Its numerical simulation, however, faces difficulties because the

macro velocity field becomes oscillating in the absence of the solvent viscosity.

This instability in simulations of polymer melt system has been mentioned by
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Hua and Schieber (1998) and Van Heel et al. (1999). In their work, a “numer-

ical damping term” has been added into the inertialess momentum equation to

ensure that a large change between two iterations cannot occur. The momentum

equation for polymer melt flow is now modified as (Van Heel et al., 1999)

−∇p+DP∇2 (u− u0) +∇ · τp = 0, (3.4)

where DP is a numerical damping parameter in a polymer melt flow simulation;

p, τp and u0 the known pressure, polymer stress and velocity fields, respectively,

of the previous time step and u the unknown current velocity field. It should

be noted that when the velocity field achieves a stable state, that is u ≈ u0,

the “damping term” disappears and Eq. (3.4) returns to its original inertialess

momentum equation for polymer melt flow (3.3).

In the macroscopic approach the system (3.1)-(3.4) is usually closed by a constitu-

tive equation using several models of polymer melts such as the K-BKZ (Bernstein

et al., 1963; Kaye, 1962), Phan-Thien–Tanner (Phan-Thien and Tanner, 1977) or

Pom-Pom models (McLeish and Larson, 1998) for the polymer-contributed stress

τp. In contrast, τp is here determined numerically via a coarse-grained technique

(Bird et al., 1987b; Ottinger, 1996) using reptation models. An overall micro-

scopic procedure is described in the next section.

3.3 Stochastic mesoscopic technique for poly-

mer melt flows using reptation models

In this approach, the determination of polymer stress tensor is carried out through

two steps (Ottinger, 1996). The first step is to derive the diffusion equation or

Fokker-Planck equation for the configurational distribution function which is the

probability density of the polymer configuration P occurring at time t. The

second step is to develop an expression for the stress tensor corresponding to

reptation models. The stochastic simulation is based on the relationship between

the diffusion equation and the stochastic differential equation (SDE). In poly-
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mer kinetic theory, polymer melts and concentrated polymer solutions are often

represented in the form of tube or reptation models (Masubuchi, 2014). For the

reptation concept, the evolution of tube configurations is determined and the

polymer melt stress tensor is updated at each time step based on the obtained

configurations of the tube model. In this work, “single-segment” tube models in-

cluding the DE, CB, RR and DR models are studied using BCF based stochastic

simulation technique.

In this approach, two characteristics of the segment monitored are the unit vector

P along the segment and the position of the segment on the tube S, with S ∈
[0, 1]; and S = 0 and S = 1 are two ends of the tube. It should be emphasised

that, the two characteristic quantities P and S of the stochastic process are

governed by two separate differential equations. The stochastic and deterministic

differential equations and the polymer stress formulae of reptation models are

briefly presented in the forthcoming sections. The rheological aspects of the

models in relation to the polymer kinetic theory were detailed in Ottinger (1996).

3.3.1 Doi-Edwards (DE) and Curtiss-Bird (CB) models

The DE and CB models are based on the diffusion equation for a probability

density function ψ(p, s, t) as follows (Doi and Edwards, 1978a).

∂ψ(p, s, t)

∂t
= − ∂

∂u
·
{[(

∇u(t)
)T · p−

(
∇u(t)

)T
: ppp

]
ψ(p, s, t)

}
+
1

λ

∂2ψ(p, s, t)

∂s2
,

(3.5)

where p is a unit vector describing the direction of polymer at the position s

(s ∈ [0, 1]); (∇u)T the transposed velocity gradient tensor; and λ a characteristic

or reptation time constant. The boundary condition for s = 0 and s = 1 is

ψ(p, 0, t) = ψ(p, 1, t) = 1
4π
δ(|p| − 1) where δ is the Dirac delta function.

The system of deterministic and stochastic differential equations for a stochastic

process (P,S) corresponding to the DE and CB models derived from Eq. (3.5) is
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given by (Van Heel et al., 1999).

dP (x, t) = (I−PP) ·
(
∇u (x, t)

)T ·P (x, t) dt− u (x, t) · ∇P (x, t) dt,(3.6a)

dS =
√

2
λ
dW (t) , (3.6b)

where I is the identity matrix or tensor; W (t) the 1-D time-dependent Wiener

process; and P and S (S ∈ [0, 1]) the unit vector and real value associated with p

and s, respectively. Since the two characteristics P and S of the stochastic process

are governed by two separate differential equations (3.6a)-(3.6b), respectively,

when S goes beyond the limits (S < 0 or S > 1), a reflection needs to be done

as follows: S → −S for S < 0, and S → 2 − S for S > 1. In such cases, the

configuration field P’s is randomly re-initialised.

The polymer stress tensor associated with the DE and CB models is given by

τp (t) = NnpkBT

[
1

3
I− 〈PP〉 − l1λ(∇u)T :

〈
S (1− S)PPPP

〉]
(3.7)

where T is the absolute temperature; kB the Boltzmann constant; np the density

of polymers; N the number of beads of a Kramers chain; 〈PP〉 the statistical

average of PP; and l1 (l1 ∈ [0, 1]) the link tension coefficient (Curtiss and Bird,

1981a). With l1 = 0, the stress tensor in Eq. (3.7) is for the DE model.

3.3.2 Reptating rope (RR) model

In the RR model, each polymer molecule is considered as an elastic rope moving

in a constraining tube and the interaction between segments within a single chain

is taken into account in the simulation of polymer melt flows. Thus, two reptation

processes (P, S) and (P′, S ′) governed by Eqs. (3.6a)-(3.6b) are simultaneously

processed to simulate polymer melt flows (Ottinger, 1990). The stress tensor of

the model is determined as follows.

τp (t) = NnpkBT

(
1

3
I− 〈PP〉

)
+∆τp, (3.8)
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where ∆τp (t) is given by

∆τp = −1

2
npkBTλ(∇u)T :

〈(
S + S ′ −

∣∣S − S ′∣∣− 2SS ′
)
P′P′PP

〉
. (3.9)

It should be noted that S and S ′ are two separate segments within the same

polymer chain; P and P′ denote the direction of the two segments S and S ′,

respectively.

In order to consider the correlation between the two reptation processes, a length

parameter ∆ (0 ≤ ∆ ≤ 1) is introduced into the simulation (Ottinger, 1996).

If the difference |S − S ′| is larger than ∆, the processes have no correlation and

the directions of P and P′ are independent from each other. Otherwise, their

directions are coincident.

3.3.3 Double reptation (DR) model

In the DR model, a constraint release mechanism is introduced into the evolution

of P. The system of deterministic and stochastic differential equations is given

by (Ottinger, 1996).

dP (x, t) = (I−PP) ·
[
(∇u)T ·Pdt+ πl2√

3λ
dW2(t)

]

−π
2l2

2

3λ
Pdt− u · ∇Pdt,

(3.10a)

dS =
√

2
λ
dW1 (t) , (3.10b)

where l2 is a real number related to the reptation coefficient l′ (Ottinger, 1996);

and W2 the 3-D Wiener process describing the effect of constraint release which

was introduced into the DE and CB models. The corresponding stress tensor for

the DR model is determined as follows.

τp(t) = NnpkBT

[
1

3
I− 〈PP〉 − l1λ (∇u)T :

〈
S (1− S)PPPP

〉

−l3λ(∇u)T : 〈PPPP〉
] (3.11)
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where l3 is the dimensionless parameter defined from experimental or theoretical

methods; and others as defined above. It is worth emphasising that the system

(3.10) can be considered as the general form for classical reptation models.

3.4 A coupled macro-micro multiscale system

for polymer melt flows using the classical

reptation models

Collecting the differential conservation equations (3.1)-(3.4), the BCF stochas-

tic differential equations of tube segments, the Brownian motion of the random

walker and the stress tensor using the classical reptation models yields a macro-

microscopic multiscale system as follows.

∇ · u = 0, (3.12a)

DP∇2 (u− u0) +∇ · τp −∇p = 0, (3.12b)

dP (x, t) = (I−PP) ·
[
(∇u)T ·Pdt+ πl2√

3λ
dW2(t)

]

−π
2l2

2

3λ
Pdt− u · ∇Pdt,

(3.12c)

dS (t) =
√

2
λ
dW1 (t) , (3.12d)

τp = NnpkBT

[
1

3
I− 〈PP〉 − l1λ (∇u)T :

〈
S (1− S)PPPP

〉

−l3λ (∇u)T : 〈PPPP〉
]
+ l4∆τp,

(3.12e)

where all parameters are defined in previous sections. It should be noted that

the system of macro-micro equations (3.12) are developed in the general form for

all reptation models. Specifically, with l1 = l2 = l3 = l4 = 0 the equations are for

the DE model; l2 = l3 = l4 = 0 for the CB model; l1 = l2 = l3 = 0 for the RR

model; and l4 = 0 for the DR model.

Let Uc and Lc be the characteristic velocity and length, respectively; tc = Lc

Uc

the macroscopic characteristic time; τd =
λ
π2 the characteristic relaxation time of
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reptation models used in the present work. Dimensionless variables are given by

(Van Heel et al., 1999).

p∗ = p
Lc
η0Uc

τ
∗
p = τp

Lc
η0Uc

, u∗ =
u

Uc
, t∗ =

t

tc
, (3.13)

where η0 is the zero-shear-rate viscosity. Other parameters were defined as before.

The dimensionless Weissenberg number We is defined as follows.

We =
τd
tc

=
λUc
π2Lc

.

The stochastic multiscale system (3.12a)-(3.12e) are rewritten in dimensionless

form as

∇∗ · u∗ = 0, (3.14a)

D∗
P (∇∗)2 (u∗ − u∗

0) +∇∗ · τ ∗
p −∇∗p∗ = 0, (3.14b)

dP = (I−PP) ·
[
(∇∗u∗)T ·Pdt∗ + l2√

3We
dW∗

2

]

− l2
2

3We
Pdt∗ − u∗ · ∇∗Pdt∗,

(3.14c)

dS =
√

2
π2We

dW ∗
1 , (3.14d)

τ
∗
p =

[
NnpkBT

]∗
[
1

3
I− 〈PP〉 − l1π

2We (∇∗u∗)T :
〈
S (1− S)PPPP

〉

−l3π2We (∇∗u∗)T : 〈PPPP〉
]
+ l4∆τ

∗
p ,

(3.14e)

where ∆τ
∗
p is given by

∆τ
∗
p = −1

2

[
npkBT

]∗
π2We(∇∗u∗)T :

〈(
S + S ′ −

∣∣S − S ′∣∣− 2SS ′
)
P′P′PP

〉
.

(3.15)

In Eqs. (3.14)-(3.15), the asterisk symbol (∗) indicates the dimensionless form

of variables. It should be pointed out that
[
NnpkBT

]∗
and

[
npkBT

]∗
depict the

dimensionless form of NnpkBT and npkBT (stress dimension), respectively.

Henceforth, all variables will be written in the dimensionless form and the asterisk

symbol will be removed for simplicity.
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3.5 Numerical method

In this section, the spatial and temporal discretisations for the hybrid system of

macro-micro governing equations are introduced in detail. In the macro proce-

dure, the 1D-IRBF scheme is applied to spatially discretise the conservation equa-

tions (3.14a)-(3.14b). In the micro procedure, the stochastic differential equations

(3.14d)-(3.14c) are advanced with respect to time using a simple Euler explicit

scheme.

3.5.1 IRBF-based projection method for solution of the

macroscopic governing equations

The projection method is used to solve the macroscopic governing equations

(3.14a)-(3.14b) of a polymer melt flow. The process includes three steps as follows

(Kim and Moin, 1985).

• Step 1: An intermediate velocity ū is calculated by solving Eq. (3.14b),

neglecting the pressure gradient term and incompressibility.

ū− un

∆t
= DP∇2 (ū− un) +∇ · τ np , (3.16)

where ∆t is the time step size; and un and τ
n
p the known velocity vector

and stress tensor, respectively, in the previous time step tn = n∆t. The

Dirichlet boundary conditions ū = un are imposed on boundaries.

• Step 2: Solve the Poisson equation for the pseudo pressure φ,

∇2φ =
1

∆t
∇ · ū, (3.17)

where φ is related to the pressure p by the expression p = φ−DP∆t
(
∂2φ
∂x2

+ ∂2φ
∂y2

)
.

The Neumann boundary condition for the solution of Eq. (3.17) is deter-

mined by

n · ∇φ =
1

∆t
n · (ū− un) , (3.18)
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where n is the outward normal vector of the boundary. It can be seen that

the mass conservation equation (3.14a) is satisfied by the introduction of

Eq. (3.17).

• Step 3: Determine the velocity field un+1 at the current time step tn+1 =

(n+ 1)∆t,

un+1 = ū−∆t∇φ. (3.19)

The boundary value problems mentioned in steps 1 and 2 of Section 3.5.1 are

discretised using the 1D-IRBF approximation scheme as presented in Section

2.5.1.

3.5.2 BCF-based simulation technique for the evolution

of polymer melt configurations

BCF algorithm for the simulation of a reptation process

In the present BCF-IRBFN multiscale approach, the analysis domain is discre-

tised by a set of N collocation points instead of using a mesh of elements in

the element based methods. At each collocation point, Nf tube segments Pi (t)

(i = 1, 2, 3, ..., Nf) are attached to the point in the course of simulation. There-

fore, there are N sets of Nf tube segments on the whole domain. A configuration

field Pi (x, t) is defined as a set of the tube segments having the same index i on

the domain or, in other words, a configuration field consists of N tube segments

indexed by i on N collocation points. An illustrative example with N = 9 and

Nf = 2 is presented in Fig. 3.1.

At the initial time, Nf configuration fields are uniformly initiated on all colloca-

tion points,

Pi (x, 0) = P0
i (i = 1, 2, 3, . . . , Nf ). (3.20)

The initialising of a uniform tube configuration field yields an identical stress field

on the whole domain, which reduces the numerical instability of the stress field in

the simulation. The evolution of the configuration field is governed by equation
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Figure 3.1: An illustrative example of configuration fields with M = 9 and Nf =
2. N : Number of collocation points; Nf : number of tube segments attached at
each collocation points. Thus, there are two configuration fields: P1 (x, t) and
P2 (x, t).

(3.14c) which is solved with the boundary condition of Si ∈ [0, 1]. Nonetheless,

since each tube segment makes a random walk S governed by Eq. (3.14d) through

the reptation process, the initial correlation of the stress field is more likely to

be degraded by the stochastic process. In order to fix this issue, Van Heel et al.

(1999) have proposed that each configuration field Pi (x, t) associates with only

one random walk Si. When Si is reflected at a boundary, a random unit vector

is generated and assigned to all tube segments in the configuration field Pi (x, t).

The Euler explicit method for temporal discretisation of the stochastic

differential equations

The evolution of the polymer melt configuration in Eqs. (3.14c)-(3.14d) using

the Euler explicit scheme is given for the characteristic S by

Si
n+1 = Si

n +

√
2∆t

π2We
W1i

n, (3.21)

where ∆t is the time step; Si
n+1 and Si

n values of S at two successive time steps

tn+1 = (n + 1)∆t and tn = n∆t, respectively; W1i a single Gaussian random

number and i presents the configuration field as described in the previous sub-
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section; and for the characteristic P by

Pi
n+1 = Pi

n + (I−Pi
nPi

n)

[
(∇un)T ·Pi

n∆t+
l2
√
∆t√

3We
Wi

n

]

− l22
3We

Pi
n∆t− un · ∇Pi

n∆t,

(3.22)

where un and ∇un are the velocity and velocity gradient at the time step n,

respectively.

The Euler discretisation causes a significant error unless sufficiently small time

steps are used. Indeed, at time step tn, if Sn is out of [0, 1], an observed reflection

at boundaries is carried out. Otherwise, Sn could go beyond the limit [0, 1]

during the time period [tn = n∆t, tn+1 = (n + 1)∆t]. Thus, Ottinger (1989a)

has proposed a treatment at boundaries S = 0 and S = 1 in the simulation of

polymer melt flows using an unobserved reflection as follows.

The conditional probability for an unobserved reflection to happen is given by

Pur = e−
π2We(b−Sn

i )(b−S
n+1
i

)

∆t , (3.23)

where b is a boundary at which an unobserved reflection happens and determined

as follows. 

b = 0 if Sni + Sn+1

i ≤ 1,

b = 1 if Sni + Sn+1
i > 1.

(3.24)

The unobserved reflection algorithm associated with the BCF approach for the

treatment of stochastic process (P, S) is presented in Fig. 3.2.

3.6 Algorithm of the present procedure

The algorithm of the BCF-IRBFN based macro-micro multiscale method as re-

ported in Section 2.5.4 is modified to incorporate the reptation concept for dif-

ferent polymer melt systems as follows.

(a) The simulation starts with Nf initial configurations of tube segments (P0
i ,
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i =
(
1, 2, . . .Nf

)
) which are generated and uniformly distributed on every

collocation points for the microscopic procedure. A set of Nf values of Si in

[0, 1] is also initiated corresponding with P0
i .

(b) The stress tensor at every point on the considered domain is calculated from

a set of Nf tube segments assigned to each collocation point. A uniform poly-

mer stress field is obtained at the first iteration because the initial molecular

configurations are identical.

(c) The projection method, presented in Section 3.5.1, is applied to solve the

conservation equations (3.14a)- (3.14b) for the new velocity and pressure

fields .

(d) The polymer configuration fields are processed by advancing the stochastic

differential equations (3.14d)-(3.14c) of reptation models with respect to time

using the improved algorithm presented in Fig. 3.2. The correlation of con-

figurations is maintained at each time step because each configuration field

associates with only one random walk S.
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...

i = 1

Calculate Sn+1
i

using Eq. (3.21)

Sn+1
i ∈ [0, 1]

Unobserved reflection: Cal-
culate Pur using Eq. (3.23)

Observed
reflection

Pur ≥ nrand(∗)Update Pn+1
i

randomly

Update Pn+1
i using Eq. (3.22)

i < Nf i = i + 1

...

Yes

No

Yes

No

No

Yes

Figure 3.2: The BCF-based unobserved reflection algorithm for the treatment
of stochastic process (P, S). (∗) nrand is a uniformly distributed random scalar
number in the interval (0,1).
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3.7 Numerical examples

In this work, the start-up Couette flow and the flow past a cylinder in a long

channel of polymer melt systems of different reptation models are simulated using

the BCF-IRBF methods. While results obtained by the simulation of the latter

problem are verified with those by Van Heel et al. (1999), the solutions of the

former one are compared with those of Ottinger and Laso (1995) for the DE

model.

3.7.1 Start-up Couette flow of polymer melts with repta-

tion models

The start-up Couette flow problem is presented in Fig. 3.3. It consists of two

parallel plates, where the top plate is fixed while the bottom plate constantly

moves with a velocity Uc = 1. The distance between two plates is scaled as

Lc = 1.

Figure 3.3: The start-up Couette flow problem. The collocation points and the
velocity profile are only presented schematically.

From the characteristics of the problem of Couette flow problem of polymer melts,

a system of stochastic macro-micro equations (3.12a,b,c,d,e) is developed as fol-



3.7. Numerical examples 94

lows.

DP

(
∂2u

∂y2
(y, t)− ∂2u0

∂y2
(y, t)

)
+
∂τp,xy
∂y

(y, t) = 0, (3.25)

dS (t) =

√
2

π2We
dW1 (t) , (3.26)





dPx (y, t) =
∂u
∂y

(y, t)Py (y, t) dt+
l2√
3We

dW2x − l2
2

3We
Px (y, t) dt,

dPy (t) =
l2√
3We

dW2y − l2
2

3We
Py (y, t) dt,

dPz (t) =
l2√
3We

dW2z − l2
2

3We
Pz (y, t) dt,

(3.27)





τp,xx = NnpkBT
[
1
3
− 〈PxPx〉 − l1π

2We∂u
∂y
S(1− S)

〈
PxPyPxPx

〉

−l3π2We∂u
∂y

〈
PxPyPxPx

〉]
+∆τp,xx,

τp,yy = NnpkBT
[
1
3
−
〈
PyPy

〉
− l1π

2We∂u
∂y
S(1− S)

〈
PxPyPyPy

〉

−l3π2We∂u
∂y

〈
PxPyPyPy

〉]
+∆τp,yy,

τp,zz = NnpkBT
[
1
3
− 〈PzPz〉 − l1π

2We∂u
∂y
S(1− S)

〈
PxPyPzPz

〉

−l3π2We∂u
∂y

〈
PxPyPzPz

〉]
+∆τp,zz,

τp,xy = NnpkBT
[
−
〈
PxPy

〉
− l1π

2We∂u
∂y
S(1− S)

〈
PxPyPxPy

〉

−l3π2We∂u
∂y

〈
PxPyPxPy

〉]
+∆τp,xy,

(3.28)

where
(
Px, Py, Pz

)
and

(
W2x,W2y,W2z

)
are three components of vectors P, and

W2, respectively; τp,xx, τp,yy, τp,zz and τp,xy the normal and shear stress com-

ponents of τp. ∆τp,xx, ∆τp,yy, ∆τp,zz and ∆τp,xy are components of the stress

contribution characterised by the RR model and given by (see Eq. (3.15))





∆τp,xx = −1
2
npkBTπ

2We∂u
∂y

(
S + S ′ −|S − S ′| − 2SS ′) 〈P ′

xP
′
yPxPx

〉
,

∆τp,yy = −1
2
npkBTπ

2We∂u
∂y

(
S + S ′ −|S − S ′| − 2SS ′) 〈P ′

xP
′
yPyPy

〉
,

∆τp,zz = −1
2
npkBTπ

2We∂u
∂y

(
S + S ′ −|S − S ′| − 2SS ′) 〈P ′

xP
′
yPzPz

〉
,

∆τp,xy = −1
2
npkBTπ

2We∂u
∂y

(
S + S ′ −|S − S ′| − 2SS ′) 〈P ′

xP
′
yPxPy

〉
,

(3.29)

where P ′
x, P

′
y and P

′
z are three components of the unit segment P′; S ′ the position

of the P′ in a rope model; and ∆ the correlation length parameter related to the

link tension coefficient l1 by ∆ = 1
2l1N

(Ottinger, 1996).

It is worth noting that while the Couette flow problem is in 1-D space, the micro

configuration fields are processed in 3-D one. Hence, the time discretisation of the
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macro-microscopic governing equations (3.25)-(3.27) using the numerical schemes

presented in Sections 3.5.1 and 3.5.2 yields

un+1 −DP
d2un+1

dy2
∆t = un −DP

d2un

dy2
∆t +

dτnp,xy
dy

∆t, (3.30)

Sn+1 = Sn +

√
2∆t

π2We
W n

1 , (3.31)





P n+1
x = P n

x +
(
du
dy

)n+1

P n
y ∆t+

l2
√
∆t√

3We
W n

2x − l2
2

3We
P n
x∆t,

P n+1
y = P n

y + l2
√
∆t√

3We
W n

2y − l2
2

3We
P n
y ∆t,

P n+1
z = P n

z + l2
√
∆t√

3We
W n

2z − l2
2

3We
P n
z ∆t,

(3.32)

where ∆t is the time step size for both macro and micro procedures; the su-

perscripts (n + 1) and n depict the two successive time steps tn+1 = (n + 1)∆t

and tn = n∆t, respectively. The numerical damping parameter DP is defined as

DP = G∆t, where G = NnpkBT is the modulus of rigidity of the reptation model

(Van Heel et al., 1999).

Numerical results and discussion for the flow using the DE model

The polymer melt parameters used in the simulation include the fluid density

ρ = 1, the zero-shear-rate viscosity ηDE0 = 1 and the relaxation time λ = 50. The

Weissenberg number of the polymer melt flow is defined as We = λUc

π2Lc
= 50

π2 ≃ 5.

The time step size ∆t for this problem is studied with the number of collocation

points Ny = 21 and the number of configuration fields Nf = 2500. The results

for the evolution of shear stress (τyx) and the convergence measures of velocity

field (CM(u)) for ∆t = {0.01, 0.005, 0.002, 0.001, 0.0005, 0.0001} are presented

in Figs. 3.4 and 3.5. It is observed that the difference of τyx with different

∆t’s is insignificant. However, CM(u)’s for large time steps ∆t = {0.01, 0.005}
show a sudden increase after the time t ≈ 17 (Fig. 3.5). Therefore, ∆t should

be chosen in the range of {0.002, 0.001, 0.0005, 0.0001} to maintain the stability

of the present method in both macro and micro procedures. In this example,

∆t = 0.001 is chosen.
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Figure 3.4: The start-up Couette flow of polymer melt using the DE model:
the evolution of the shear stress at the position y = 0.2 for ∆t =
{0.01, 0.005, 0.002, 0.001, 0.0005, 0.0001}.
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Figure 3.5: The start-up Couette flow of polymer melt using the DE
model: the convergence measure of the velocity field (CM(u)) for ∆t =
{0.01, 0.005, 0.002, 0.001, 0.0005, 0.0001}.
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The results by the present method show a very good agreement with those by

Ottinger and Laso (1995) where finer meshes (40 elements) and finer time step

(∆t = 0.0001) were used. A discussion of the present results and a comparison

with others are as follows.

• Fig. 3.6 describes the evolution of the velocity profile in the considered

domain as follows. At a very early time (t = 0.25), the plate motion causes

a perturbation on the velocity field in the region near the plate. Then, the

momentum caused by the plate motion is successively transferred to next

layers of polymer melt along the y-direction with a propagating speed (c)

given by (Ottinger and Laso, 1995)

c2 =
12ηDE0

ρλ
, (3.33)

where ηDE0 = NnpkBTλ/60 is the zero-shear-rate viscosity for the DE

model. Other parameters are defined as before. As a result, the poly-

mer layer near the wall (top plate, Fig. 3.3) starts moving after t = 2 of the

flow’s start-up (see Fig. 3.6: t = 2) according to Eq. (3.33). The velocity

then gradually decreases until reaching a stable state. Fig. 3.6 also depicts

the existence of two separate shear regions at the stable state of the flow

as reported in McLeish and Ball (1986); Malkus et al. (1990); Ottinger and

Laso (1995); Hua and Schieber (1996). Very low velocity gradient dom-

inates most of the flow field (y ∈ [0.1, 1]) and a narrow region near the

moving plate (y ∈ [0, 0.1]) is influenced by a very high velocity gradient

(see Fig. 3.7). This characteristic distinguishes polymer melt from dilute

solutions in a shear flow.

• The evolution of velocity at locations y = 0.05, 0.1, 0.4 and 0.8 is presented

in Fig. 3.8. Due to the existence of two different shear rate zones in the flow,

the velocity evolution at different locations are very distinct. To be more

specific, the velocity in the high-shear-rate region at location y = 0.05 is

significantly higher than ones in the low-shear-rate zone at locations y = 0.1,

0.4 and 0.8. Furthermore, the overshoot of the velocity is always observed

before reaching a stable value.
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Figure 3.6: The start-up Couette flow of polymer melt using the DE model: The
evolution of velocity profile on whole domain.
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Figure 3.7: The start-up Couette flow of polymer melt using the DE model: The
velocity gradient with respect to time in the high-shear-rate region at location
y = 0.05 and the low-shear-rate region at locations y = 0.1, 0.4 and 0.8.
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Figure 3.8: The start-up Couette flow of polymer melt using the DE model: The
evolution of the velocity field at locations y = 0.05, 0.1, 0.4 and 0.8.

• Figs. 3.9 show the evolution of the shear stress (Fig. 3.9(a)) and the first

normal stress difference (Fig. 3.9(b)) at locations y = 0.05, 0.1, 0.4 and 0.8.

The shear stress is the same whereas the first normal stress difference is

very distinct in the two shear rate areas. This typical behaviour of polymer

melt in the start-up Couette flow was reported in Hua and Schieber (1996).

Furthermore, the overshoot also appears in the evolution of shear stress at

any location of the domain (Fig. 3.9(a)) whereas it only appears for the

first normal stress difference in the low-shear-rate region (Fig. 3.9(b)). A

study on the stresses’ evolution in the high and low-shear-rate regions is

highlighted in Figs. 3.10. The results in Figs. 3.10 show that the second

normal stress difference is always negative in both high and low-shear-rate

regions, which agrees with experimental observations presented in Beris

et al. (1992) and Keentok et al. (1980)
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Figure 3.9: The start-up Couette flow of polymer melt using the DE model: The
evolution of the shear stress (figure (a)) and the first normal stress difference
(figure (b)) at locations y = 0.05, 0.1, 0.4 and 0.8.

Comparison of numerical simulation of the flows using the DE, CB,

RR and DR models

In this section, the Couette flow of polymer melt is simulated by the present

macro-micro multiscale using other reptation models including the CB, RR and
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Figure 3.10: The start-up Couette flow of polymer melt using the DE model:
polymer stresses (shear stress, the first and second normal stress differences) in
the high-shear-rate zone at location y = 0.05 (figure (a)) and the low-shear-rate
zone at location y = 0.4 (figure (b)).

DR to investigate the role of several physical interactions of polymer chains. For

example, the RR model considers the interaction between segments in a single
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chain through the correlation parameter ∆ and the link tension parameter l1

while the DR model takes into account the constraint release mechanism via the

parameters l1, l2 and l3.

As pointed out in Section 3.4, a polymer melt of the classical reptation models is

governed by the system of macro-micro equations (3.14a)-(3.14e) with l1 = l2 =

l3 = l4 = 0 for the DE model; l2 = l3 = l4 = 0 for the CB model; l1 = l2 = l3 = 0

for the RR model; and l4 = 0 for the DR model. Hence, the start-up Couette flow

of polymer melt is successively simulated using the CB, RR, DR models whose

parameters are given and derived from those of the DE model in Section 3.7.1.

The simulated cases together with parameters are given in Table 3.1 where the

modulus of rigidity G (G = NnpkBT ) in the last column is determined for the

DE, CB, RR and DR models, respectively, as follows (Ottinger, 1996).

ηDE0 = 1
60
NnpkBTλ, (3.34a)

ηCB0 = 1
60

(
1 + 2

3
l1
)
NnpkBTλ (3.34b)

ηRR0 = 1
60

[
1 + 2

3
l1∆

2
(
4− 6∆ + 4∆2 −∆3

)]
NnpkBTλ, (3.34c)

ηDR0 = 1
60

{
12

π2l2
2

[
1− tanh(πl2/2)

πl2/2

]
+ 2

3
l1 + 4l3

}
NnpkBTλ. (3.34d)

Fig. 3.11 shows the velocity profiles of the Couette flow of polymer melt using the

CB model by the present multiscale method for a range of values of l1 ∈ [0.01, 1]

as presented in Table 3.1. The results confirm that the coefficient l1 reflects the

appearance of a “two different shear rate regions” which is a distinctive feature

of a polymer melt system. When the value of l1 increases, the steady velocity of

polymer melt system reaches that of a Newtonian flow (l1 = 0.5, 1, Fig. 3.11).

Therefore, a sufficiently small value of l1 (l1 = 0.01 in this simulation) is necessary

to characterise this typical behaviour of polymer melt systems as discussed in

Ottinger (1996).

For the RR-modelled polymer melt, the link tension coefficient l1 is chosen as

0.01 and the start-up Couette flow is investigated with a range of correlation

parameter values ∆ in {0, 0.1, 0.25, 0.5, 0.75, 1}. The velocity profile for all cases
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Table 3.1: Simulation of the start-up Couette flow of polymer melt using the
DE, CB, RR, DR models. Parameters of 16 different cases including six cases of
the CB model (CBT1 - CBT6), six cases of the RR model (RRT1 - RRT6) and
three cases of the DR model (DRT1 - DRT3) are derived from the DE model
with λ = 50, ηo = 1 and l3 = 0; G = NnpkBT : the rigidity modulus of models.
Parameters were defined in previous sections.

Cases Model l1 l2 ∆ G
1 DE 0 0 0 1.200
2 CBT1 0.01 0 0 1.192
3 CBT2 0.05 0 0 1.161
4 CBT3 0.1 0 0 1.125
5 CBT4 0.25 0 0 1.029
6 CBT5 0.5 0 0 0.900
7 CBT6 1 0 0 0.720
8 RRT1 0.01 0 0 1.200
9 RRT2 0.01 0 0.1 1.2
10 RRT3 0.01 0 0.25 1.199
11 RRT4 0.01 0 0.5 1.196
12 RRT5 0.01 0 0.75 0.194
13 RRT6 0.01 0 1 1.192
14 DRT1 0 0.25 0 1.274
15 DRT2 0 0.5 0 1.495
16 DRT3 0 0.75 0 1.862

of the flow is presented in Fig. 3.12. Results in the figure depict that for the RR

modelled polymer melt, the correlation parameter only impacts the shape of the

low-shear-rate zone in a shear flow.

The polymer melt flow using the DR model is governed by Eqs. (3.14a)- (3.14e)

with l1 = l3 = 0. Thus, the problem is examined with a range of the parameter

l2 in {0.25, 0.5, 0.75}. The velocity profile is described in Fig. 3.13, showing that

the low-shear-rate zone is enlarged with increasing l2.

Finally, the simulation of the start-up Couette flow of polymer melt using four

reptation models: DE, CBT1, RRT4 and DRT1, whose parameters are given in

Table 3.1, is carried out in order to compare the behaviour of these models in

this particular flow.

• Fig. 3.14(a) depicts the velocity profiles at the steady state of the fluid flow

using the four models. The results show that while there is not any signifi-

cant change in the high-shear-rate zone, the velocity gradient is decreasing
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Figure 3.11: The start-up Couette flow of polymer melt using the CB model:
The steady velocity profiles of the flow with a range of values of the link tension
coefficient l1 ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 1}. Other parameters of the simulation
are given in Section 3.7.1 and in Table 3.1.
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Figure 3.12: The start-up Couette flow of polymer melt using the RR model: The
steady velocity profiles of the flow with a range of values of the correlation length
parameter ∆ ∈ {0, 0.1, 0.25, 0.5, 0.75, 1} and the link tension coefficient l1 = 0.01.
Other parameters of the simulation are given in Section 3.7.1 and in Table 3.1.
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Figure 3.13: The start-up Couette flow of polymer melt using the DR model:
The steady velocity profiles of the flow with l2 ∈ {0.25, 0.5, 1} and l1 = l3 = 0.
Other parameters of the simulation are given in Section 3.7.1 and in Table 3.1.

in the order of the RR, CB, DE and DR models in the low-shear-rate zone.

Furthermore, the evolution of velocity at location y = 0.5 in the low-shear-

rate zone given is also investigated as shown in Fig. 3.14(b). An overshoot

is observed in all models at t ≈ 3 and the velocity profiles then reach a

quasi-steady value after t ≈ 20 for all models.

• The evolution of shear stress (τxy) and the first normal stress difference (Ψ1)

at location y = 0.5 for the four models are shown in Fig. 3.15(a) and Fig.

3.15(b), respectively. Unlike the velocity field, there is not any significant

difference between the stresses obtained by the simulation using the four

reptation models.
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Figure 3.14: The start-up Couette flow of polymer melt using reptation models:
The steady velocity profiles of the flow (figure (a)) and the evolution of the
velocity at location y = 0.5 (figure (b)) using the DE, CB, RR and DR models.
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Figure 3.15: The start-up Couette flow of polymer melt using different reptation
models: The evolution of the shear stress τxy (figure (a)) and the first normal
stress difference Ψ1 (figure (b)) at the location y = 0.5 using the DE, CB, RR
and DR models.
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3.7.2 Polymer melt flow past a circular cylinder in a chan-

nel using the DE model

The geometry of the flow past a cylinder in a channel is presented in Fig. 3.16

where only half of the flow’s domain is considered owing to the geometrical sym-

metry: L = 30 is the total length of the channel; LU = 15 and LD = 15 the

upstream and downstream lengths, respectively; Rc = 1 the cylinder’s radius and

H = 2 half of the height of the channel. The flow is simulated with the DE model

which was studied by Van Heel et al. (1999) using the BCF and finite element

method.

Figure 3.16: The flow past a circular cylinder in a channel: geometrical parame-
ters of the problem.

Governing equations and boundary conditions

The macro-micro governing equations of the problem in 2-D Cartesian coordinates

are written as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.35)





DP

[(
∂2u
∂x2

(x, t) + ∂2u
∂y2

(x, t)
)
−
(
∂2u0
∂x2

(x, t) + ∂2u0
∂y2

(x, t)
)]

− ∂p
∂x

(x, t)

+∂τp,xx
∂x

(x, t) + ∂τp,xy
∂y

(x, t) = 0,

DP

[(
∂2v
∂x2

(x, t) + ∂2v
∂y2

(x, t)
)
−
(
∂2v0
∂x2

(x, t) + ∂2v0
∂y2

(x, t)
)]

− ∂p
∂y

(x, t)

+∂τp,xy
∂x

(x, t) + ∂τp,yy
∂y

(x, t) = 0,

(3.36)
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dS (t) =

√
2

π2We
dW1 (t) , (3.37)





dPx (x, t) =
[
∂u
∂x

(x, t)Px (x, t) +
∂u
∂y

(x, t)Py (x, t)
]
dt

−
[
u (x, t) ∂Px

∂x
(x, t) + v (x, t) ∂Px

∂y
(x, t)

]
dt,

dPy (x, t) =
[
∂v
∂x

(x, t)Px (x, t) +
∂v
∂y

(x, t)Py (x, t)
]
dt

−
[
u (x, t) ∂Py

∂x
(x, t) + v (x, t) ∂Py

∂y
(x, t)

]
dt,

dPz (x, t) = −
[
u (x, t) ∂Pz

∂x
(x, t) + v (x, t) ∂Pz

∂y
(x, t)

]
dt,

(3.38)





τp,xx = NnpkBT
(
1
3
− 〈PxPx〉

)
,

τp,yy = NnpkBT
(

1
3
−
〈
PyPy

〉)
,

τp,zz = NnpkBT
(
1
3
− 〈PzPz〉

)
,

τp,xy = −NnpkBT
〈
PxPy

〉
,

(3.39)

where parameters and variables are defined in previous sections. The boundary

conditions of the problem are determined correspondingly to ones by Van Heel

et al. (1999) as follows.

• At the inlet AB: A fully developed velocity profile is assigned. The velocity

profile is pre-defined by the simulation of the Poiseuille flow through a

long channel using the same polymer melt model with a parabolic inlet

velocity profile u = 1.5
(
1− y2

H2

)
and v = 0 where u and v are the velocity

components along the x and y directions, respectively, and other parameters

are defined as before. The boundary condition for pressure is calculated at

each time step as presented in Section 3.5.1;

• At the outlet DC: The fully developed velocity profile u is also set up as

for the inlet, v = 0 and p = 0;

• On the channel wall BC and the cylinder wall FE: The non-slip boundary

condition is imposed: u = v = 0. The boundary condition of pressure is

determined at each time step as presented in Section 3.5.1;

• On the centreline AF and ED: The symmetrical boundary condition of the

velocity is applied: ∂u
∂y

= 0 and v = 0; and the Neumann boundary condition

for pressure is determined at each time step as mentioned in Section 3.5.1.
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A pseudo time method combined with the projection technique presented in Sec-

tion 3.5.1 is used to temporally discretise Eqs (3.36) whereas the explicit time

discretisation scheme is applied to Eqs. (3.38). These discretisations yield, re-

spectively





un+1 −Dp∆t
(
∂2un+1

∂x2
+ ∂2un+1

∂y2

)
+∆t∂p

n+1

∂x
= un−

Dp∆t
(
∂2un

∂x2
+ ∂2un

∂y2

)
+∆t

(
∂τnp,xx
∂x

+
∂τnp,xy
∂y

)
,

vn+1 −Dp∆t
(
∂2vn+1

∂x2
+∆t∂

2vn+1

∂y2

)
+ ∂pn+1

∂y
= vn−

Dp∆t
(
∂2vn

∂x2
+ ∂2vn

∂y2

)
+∆t

(
∂τnp,xy
∂x

+
∂τnp,yy
∂y

)
,

(3.40)





P n+1
x = P n

x +
(
∂un+1

∂x
P n
x + ∂un+1

∂y
P n
y

)
∆t−

(
un+1 ∂P

n
x

∂x
+ vn+1 ∂P

n
x

∂y

)
∆t,

P n+1
y = P n

y +
(
∂vn+1

∂x
P n
x + ∂vn+1

∂y
P n
y

)
∆t−

(
un+1 ∂P

n
y

∂x
+ vn+1 ∂P

n
y

∂y

)
∆t,

P n+1
z = P n

z −
(
un+1 ∂P

n
z

∂x
+ vn+1 ∂P

n
z

∂y

)
∆t,

(3.41)

The velocity and velocity gradient in the micro process governed by Eqs. (3.41)

are known and given by the solution of Eqs. (3.40) of the macro process. The

time step size is chosen ∆t = 0.001. The parameters of fluid include Nf = 2000,

λ = 1, We = λ/π2, ηDE0 = 1 and the rigidity modulus G and damping parameter

DP for the DE model which are determined, respectively, as follows.

G = NnpkBT =
60ηDE0

λ
= 60, DP =

G∆t

ηDE0

= 0.06, (3.42)

where the parameters are defined as before.

Numerical results and discussion

A grid convergence study is carried out for the case of ∆t = 0.001 with three

non-uniform Cartesian grids whose grid parameters are given in Table 3.2 and

described in Fig. 3.17. The three meshes are labelled as M1, M2 and M3 where

M1 is the coarsest one and M3 is the finest one. Fig. 3.18 shows the convergence

of the velocity field reached in the simulation using the three grids.

The convergence of the present scheme for the time step size (∆t) is studied for

the case of grid M3 and ∆t = {0.005, 0.002, 0.001}. The convergence measure of
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Figure 3.17: The non-uniform Cartesian grids at the region around the cylinder.
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Table 3.2: The flow past a circular cylinder in a channel. The parameters of
the three grids M1, M2 and M3. ∆x1: the grid spacing in x-direction ∀x ∈
[−15,−5]

⋃
[5, 15], ∆x2 ∀x ∈ [−5,−2]

⋃
[2, 5], ∆x3 ∀x ∈ [−2,−1]

⋃
[1, 2]; ∆y:

the grid spacing in y-direction; Ncyn: the number of collocation points on the
cylinder’s surface and N : the number of collocation points on the whole domain.

Grid ∆x1 ∆x2 ∆x3 ∆y Ncyn N
M1 0.5 0.3 0.1 0.1 17 1649
M2 0.5 0.3 0.1 0.1 25 1991
M3 0.4 0.2 0.0625 0.0625 33 3761

t
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Figure 3.18: The flow past a circular cylinder in a channel: The convergence
measure of the velocity field with grid refinement.

the velocity field (CM(u)) and the velocity profile in the gap between the wall

and the cylinder are introduced in Figs. 3.19 and 3.20, respectively. Results

show that the divergence of the velocity field’s solution appears after t ≈ 1.6 for

the case of ∆t = 0.005 (Fig. 3.19) while there is mostly no difference between

the velocity’s solutions for ∆t = 0.002 and ∆t = 0.001 (Fig. 3.20). Therefore,

∆t = 0.001 is chosen as the time step size for this problem.

The results by the present method confirm a very good agreement with those by

Van Heel et al. (1999) using 564 elements and the same time step (∆t = 0.001).

Details are presented as follows.
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Figure 3.19: The flow past a cylinder in a channel using grid M3: the con-
vergence measure (CM) of the velocity field (u) for different time steps ∆t =
{0.005, 0.002, 0.001}.
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Figure 3.20: The flow past a cylinder in a channel using grid M3: the velocity
profile in the gap between the wall (y = 2) and the cylinder (y=1) for different
time steps ∆t = {0.005, 0.002, 0.001}.
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• The velocity profile in the gap between the wall and the cylinder is shown

in Fig. 3.21. The numerical result for a Newtonian fluid included in the

figure shows the difference between polymer melt and Newtonian flows. A

nearly symmetrical parabolic shape is for the Newtonian profile whereas an

asymmetrical bell-shaped profile is observed in the simulation of polymer

melt flows. Indeed, the velocity gradient at the region near the cylinder

wall (y = 1) is steeper than one near the channel wall (y = 2) for the

polymer melt flows as observed in Fig. 3.22 whereas it is nearly linear for

the Newtonian fluid. Furthermore, the maximum values of the velocity

profiles at the middle point of the gap are approximate 2.9 and 2.7 for the

Newtonian and the polymer melt flows, respectively, using mesh M3. The

obtained results are in excellent agreement with those described in Figs. 6

and 7 of Van Heel et al. (1999).

y
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0
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Mesh M1

Mesh M2
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Newtonian

Figure 3.21: The flow past a cylinder in a channel: The velocity profile in the
gap between the wall (y = 2) and the cylinder (y = 1).

Furthermore, the velocity field, described by contours and vectors in the

domain, is presented in Figs. 3.23. The results depict a smooth change of

the velocity components u, v around the cylinder in Figs. 3.23a, 3.23b and

3.23c.



3.7. Numerical examples 115

y
1 1.2 1.4 1.6 1.8 2

∂
u
/
∂
y

-20

-10

0

10

20

30
Mesh M1

Mesh M2

Mesh M3

Newtonian

Figure 3.22: The flow past a cylinder in a channel: The velocity gradient ∂u/∂y
in the gap between the wall (y = 2) and the cylinder (y = 1).

• The stress field is a function of the orientation tensor 〈PP〉 via Eqs. (3.39).

Thus, the distribution of the components of 〈PP〉 along the centreline and

the cylinder’s surface is studied and shown in Figs. 3.24, 3.25 and 3.26 for

〈PxPx〉,
〈
PxPy

〉
and

〈
PyPy

〉
, respectively, with the three different meshes.

It is worth noting that the surface of the cylinder covers on the range of

x ∈ [−1, 1]. The results are in strong agreement with those presented in

Van Heel et al. (1999) using the BCF-finite element method.

Furthermore, the contours with 20 levels of the 〈PxPx〉,
〈
PxPy

〉
, and

〈
PyPy

〉

components around the cylinder are presented in Figs. 3.27a, 3.27b and

3.27c, respectively. The only contours reported by Van Heel et al. (1999)

(their Fig. 8) are 〈PxPx〉 ones which are in very good agreement with results

described in Fig. 3.27a of this work.

• Fig. 3.28 describes the pressure distribution on the cylinder’s surface with

three different meshes M1, M2 and M3. The results show that the pressure

gradually increases from the starting point E (θ = 0) to the end point F

(θ = π) of the cylinder where θ is the angle determining the position of
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Figure 3.23: The flow past a circular cylinder in a channel using Mesh M3: The
velocity field around the cylinder.
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Figure 3.24: The flow past a cylinder in a channel. The distribution of 〈PxPx〉 of
the orientation tensor 〈PP〉 along the centreline y = 0 and the cylinder’s surface.
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Figure 3.25: The flow past a cylinder in a channel. The distribution of
〈
PxPy

〉
of

the orientation tensor 〈PP〉 along the centreline y = 0 and the cylinder’s surface.

the collocation point on the cylinder’s surface (see Fig. 3.16). The pressure

distribution corresponding to the Newtonian fluid is also included in the
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Figure 3.26: The flow past a cylinder in a channel. The distribution of
〈
PyPy

〉
of

the orientation tensor 〈PP〉 along the centreline y = 0 and the cylinder’s surface.

figure for comparison. Overall, the pressure gradient for the Newtonian fluid

is steeper than one for the polymer melt. Indeed, starting from mostly the

same pressure (p ≈ 9) within θ ∈
[
0, π/4

]
, the pressure for the Newtonian

flow increases faster to reach a maximum value of p = 59 versus p = 49

for polymer melt flow θ = π. A shear-thinning behaviour for polymer melt

flow is clearly reflected at the region around the cylinder when an increase

of the velocity gradient is followed by a decrease of the pressure (see Fig.

3.22). This observation was also reported in Van Heel et al. (1999).

• While analyzing a fluid flow past a cylinder in a channel, together with

pressure, it is desirable to determine the drag force per unit length that the

fluid exerts on the cylinder as follows (Phan-Thien and Fan, 1999).

FD = −2

π∫

0

[(
−p+ τp,xx

)
cos θ + τp,xy sin θ

]
r=R

Rdθ. (3.43)

The dimensionless drag force per a unit length K is calculated as K =

FD/η
DE
0 Uc, where Uc is the characteristic velocity, Uc and η

DE
0 are chosen
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Figure 3.27: The flow past a circular cylinder in a channel using Mesh M3: The
contour values of the xx-, xy- and yy-components of the tensor 〈PP〉 around the
cylinder.

as 1 in the present work. The evolution of K is presented in Fig. 3.29 with

three meshes M1, M2 and M3, and is in very good agreement with those

by Van Heel et al. (1999) except a small fluctuation observed in the case

of mesh M1. The values of K are around 132 and 98 for the corresponding

Newtonian fluid and dilute polymer solution flows, respectively (Hulsen

et al., 1997), whereas it is about 93 for the polymer melt flow by this work.

The decrease of K with an increase of concentration of polymer solutions

confirms the shear-thinning behaviour of a viscoelastic fluid (Bird et al.,
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Figure 3.28: The flow past a cylinder in a channel: The distribution of pressure
on the cylinder’s surface.

1987b).

t
0 1 2 3 4

K

0

20

40

60

80

100

120

Mesh M1

Mesh M2

Mesh M3

Figure 3.29: The flow past a cylinder in a channel: The evolution of the drag
force per unit length exerted on the cylinder using three meshes M1, M2 and M3.
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3.8 Concluding remarks

The IRBFN-BCF based coarse-grained method presented in Chapter 2 (Nguyen

et al., 2015b) is further developed to simulate polymer melt flows using different

reptation models in this chapter (Nguyen et al., 2016a). In the method, the

macro conservation equations are solved for the primitive variables including the

velocity and pressure using 1D-IRBFN scheme, whereas the BCF based coarse-

grained approach is used to determine the polymer stress via stochastic processes

associated with a reptation model. Four models (DE, CB, RR and DR) are

used in the simulation. The numerical results for the start-up planar Couette

flow and the flow over a cylinder in a channel of these model fluids confirm

the method efficiency, considering both the enhanced convergence rate of the

simulation and the stability of a stochastic process. In the next two chapters

some of the techniques developed so far are adapted and augmented with other

methods for the simulation of fibre suspension flows.



Chapter 4

A multiscale method based on

the fibre configuration field,

IRBF and DAVSS for the

simulation of dilute fibre

suspension flows

In this chapter, a new multiscale simulation technique, which is based on the

combination of the integrated radial basis function (IRBF) scheme, the discrete

adaptive viscoelastic stress splitting (DAVSS) formulation and the core idea of

the Brownian configuration field (BCF) approach, is developed to investigate the

rheological properties of dilute fibre suspensions (Nguyen et al., 2015a). In the

approach, the evolution of the macroscopic flow and the fibre configurations are

captured through two separate computational processes. Indeed, the flow conser-

vation equations, which are expressed in vorticity-stream function formulation,

are solved using IRBF-based numerical schemes while the evolution of fibre con-

figuration fields governed by the Jeffery equation is captured using the BCF’s

principle. The two procedures are coupled together by the Lipscomb expression

which is used to determine the fibre stress of dilute fibre suspensions. Owing to
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advantages of the IRBF scheme and the DAVSS technique, the present method

yields a more accurate solution and faster convergence rate. The simulation

method is verified and its capability is demonstrated with the fibre suspension

flows through two parallel plates, a circular tube and the 4:1 and 4.5:1 axisymmet-

ric contraction geometries which are usually chosen to test a numerical method

because of the challenging nature of these problems.

4.1 Introduction

Fibre-reinforced composite materials, e.g. polymer matrices strengthened by glass

fibres, are popularly used in many important industrial areas because of their

advanced mechanical properties such as high strength and stiffness, and low den-

sity (Folkes, 1982). These exceptional properties are mostly dominated by the

distribution and orientation of fibres existing inside matrices. Hence, a sufficient

understanding of the orientation distribution of fibre configurations in the solvent

of a moulding process is very important and needs to be carefully investigated us-

ing both experimental and numerical approaches. Indeed, one of the most active

research trends in this area is to simulate the flow of fibre suspensions in complex

geometries, which has been stimulated by Lipscomb et al. (1988).

In the scope of this research project, we consider rigid cylindrical fibres of the same

length and diameter. Fibre suspensions can be classified into three main groups:

dilute, semi-dilute and concentrated suspensions based on two basic parameters,

the fibre volume fraction φ and the aspect ratio ar of the fibre (length/diameter).

Specifically, a suspension is considered as dilute, semi-dilute or concentrated for

the case of φa2r < 1, 1 < φa2r < ar or φar > 1, respectively.

Generally, the physical description of flow and the evolution of fibre configurations

poses challenges related to the necessity to take into account the fibre-fibre, fibre-

fluid, and fibre-boundary interactions, especially for suspension flows through

complex geometries (Lipscomb et al., 1988). For dilute suspensions, the fibre-fibre

interaction is neglected and the evolution of the fibre configuration is captured
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by the Jeffery motion equation (Jeffery, 1922). For semi-dilute and concentrated

suspensions, the fibre-fibre interaction is significant. Thus, it is necessary to take

into consideration this interaction and one possible way is to introduce a diffusion

term into Jeffery equation (Folgar and Tucker, 1984).

From the literature, the simulation of a fibre suspension is basically carried out

through the following three steps: (i) Introduce a fibre stress component into the

momentum conservation equation to include dynamic effects of fibres on the bulk

properties of the flow; (ii) Apply an appropriate motion equation to describe the

evolution of fibre configuration, as stated above, the Jeffery equation is suitable

for dilute suspension whereas the Folgar-Tucker equation is applicable for semi-

dilute and concentrated ones; and (iii) Determine the fibre contribution to stress

(named fibre stress tensor) using a relevant constitutive equation as a function of

the fibres’ orientation.

Since the fibre stress tensor is essentially calculated from the fourth-order ori-

entation tensor 〈PPPP〉, the basic difference between numerical methods for

the simulation of fibre suspensions is the way to handle the fourth-order struc-

ture tensor. There are several approaches, reviewed in Section 1.4.2, to process

the fourth-order orientation tensor. Among these, the BCF-based approach has

emerged as a powerful tool for a stable and accurate solution of fibre suspensions.

Following the approach, a high number of fibre configurations is initiated on each

computational node/element and the fourth-order tensor is directly calculated

from these configurations without using any closure approximations. The ap-

proach, in the combination with the DAVSS formulation (Sun et al., 1996) and

FEM, has been successfully applied for a range of complex flow problems of fibre

suspensions by Fan et al. (1999); Phan-Thien and Fan (1999); Fan et al. (2000)

and Lu et al. (2006).

Recently, the macro-micro multiscale methods based on the differentiated and

integrated RBF (i.e. DRBF and IRBF) approximations have been developed to

simulate successfully a range of dilute polymer solutions (Tran et al., 2009, 2011;

Nguyen et al., 2015b). Owing to the advantages of RBF-based high order approxi-

mation schemes, the approach achieved high-order convergence rate and accuracy
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(Tran et al., 2012a; Nguyen et al., 2015b). In this research, one-dimensional IRBF

(1D-IRBF) scheme (Mai-Duy et al., 2008) is employed to discretise the conserva-

tion equations using the vorticity-stream function formulation, whereas the fibre

configurations governed by Jeffery equation are processed using BCF approach.

In addition, the constitutive equation of Lipscomb is exploited to evaluate the

fibre stress tensor.

This chapter is organised as follows. The governing equations in the dimensionless

form are presented in Section 4.2. Section 4.3 gives a short review of the DAVSS’s

formulation introduced in the governing momentum equation. The vorticity-

stream function approach in planar and axisymmetric flow problems are detailed

in Section 4.4, where an implementation of DAVSS technique for the axisymmetric

geometry is also described. In Section 4.5, the Euler explicit scheme for temporal

discretisation of the equation for fibre configuration fields is presented. The semi-

implicit schemes followed by the IRBF-based approximation to the governing flow

equations are also described. An algorithm is introduced in detail in Section 4.6.

Numerical examples and obtained results are discussed in Section 4.7. Finally,

the work is closed by concluding remarks in Section 4.8.

4.2 Dimensionless governing equations for fibre

suspension flow

Consider an isothermal and incompressible flow of fibre suspensions in 2-D space.

The continuity and momentum equations of the flow are given by (Lu et al., 2006)

∇ · u = 0, (4.1)

∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇ · τe, (4.2)

where t, u, p and τe are the time, velocity field, pressure and extra stress tensor,

respectively; and Re the Reynolds number based on the viscosity η0 of the New-

tonian solvent. For fibre suspensions with a Newtonian solvent, the extra stress
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tensor (τe) consists of two components as follows.

τe = τs + τf , (4.3)

where τs = 2D and τf are the stress components contributed by the Newtonian

solvent and the suspended fibres, respectively; and D = 1
2
(∇u + (∇u)T

)
the

rate of strain tensor.

There are several models used to calculate the stress contributed by suspended

fibres, for example, the Lipscomb model (Lipscomb et al., 1988) for dilute sus-

pensions and the Phan-Thien–Graham model (Phan-Thien and Graham, 1991)

for semi-dilute and concentrated suspensions. In this chapter, the former one is

used to investigate the present method in simulations of dilute fibre suspension

flows. The Lipscomb model is given by

τf = kfD : 〈PPPP〉 , (4.4)

where P is the unit vector representing the orientation of a fibre; 〈PPPP〉 the

fourth-order orientation tensor or structure tensor; and
〈
(·)
〉
the statistical av-

erage of (·). The dimensionless quantity kf is the fibre parameter and defined

by

kf =
φµ

η0
, (4.5)

where η0 is the Newtonian fluid viscosity; φ the volume fraction of fibres; µ is the

material constant and chosen in the limit of high aspect ratio of fibre as follows

(Chiba et al., 2001).

µ =
η0ar

2

ln (ar)
, (4.6)

where ar is the aspect ratio of fibres. Substituting Eq. (4.6) into Eq. (4.5) yields

kf =
φar

2

ln (ar)
. (4.7)

Therefore, the fibre parameter is considered as the only single one in the fibre

stress equation (4.4), which describes the impact of suspended fibres on the kine-

matic behaviour of the flow.
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The evolution of fibres’ orientation in flow is captured by the Jeffery equation as

follows (Lipscomb et al., 1988).

∂P

∂t
+ u · ∇P = Ω ·P+ λ (D−D : PPI) ·P, (4.8)

where Ω = 1
2

(
(∇u)T −∇u

)
is the vorticity tensor; λ a parameter dependent on

the aspect ratio, λ = a2r−1
a2r+1

; and I the identity matrix. As shown in Phan-Thien

and Graham (1991), by introducing

Q (x, t) = QP (x, t) , (4.9)

where Q is the modulus of Q, the Jeffery equation (4.8) is transformed into

∂Q

∂t
+ u · ∇Q = (∇u)T ·Q− ζD ·Q (4.10)

where ζ = 2/(a2r + 1) = 1− λ.

The fourth-order orientation tensor 〈PPPP〉 in Eq. (4.4) can be now defined by

〈PPPP〉 = 1

Nf

Nf∑

i=1

Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi
, (4.11)

where Nf is the number of fibres. The components of the tensor 〈PPPP〉 in a

2-D fibre orientation field are given by (Chiba et al., 2001)

P1111 =

Nf∑

i=1

cos4 θi
Nf

, P1112 =

Nf∑

i=1

cos3 θi sin θi
Nf

, P1122 =

Nf∑

i=1

cos2 θi sin
2 θi

Nf

,

P1222 =

Nf∑

i=1

cos θi sin
3 θi

Nf
, P2222 =

Nf∑

i=1

sin4 θi
Nf

,

(4.12)

where P1111 = 〈P1P1P1P1〉, P1112 = 〈P1P1P1P2〉, P1122 = 〈P1P1P2P2〉, P1222 =

〈P1P2P2P2〉, P2222 = 〈P2P2P2P2〉; and θi is the angle between the x-axis and the

axis of fibre i.
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4.3 The discrete adaptive viscoelastic stress split-

ting (DAVSS) formulation

The DAVSS scheme has been widely used in numerical methods to maintain

the numerical stability for simulations of viscoelastic fluids (Sun et al., 1996,

1999) and fibre suspensions (Fan et al., 1999; Lu et al., 2006). The DAVSS

transformation is introduced into the original momentum equation (4.2) as follows

(Fan et al., 1999; Lu et al., 2006).

∂u

∂t
+ u · ∇u− 1

Re
∇ ·
[
ηa

(
∇u+ (∇u)T

)]
= −∇p

− 2

Re
∇ ·
[
(ηa − 1)D

]
+

1

Re
∇ · τf ,

(4.13)

where ηa is the adaptive viscosity. For the dilute fibre suspension using Lipscomb

model, the adaptive viscosity is a function of fibre stress and given by (Lu et al.,

2006)

ηa = kf +
1 +

√
(1/2)τf : τf

1 +
√
2D : D

, (4.14)

where kf is the fibre parameter. It is worth noting that there are several dif-

ferences appearing in the second term of the right-hand side of Eq. (4.13) and

in the denominator of the second term in Eq. (4.14) as compared with ones

mentioned in Fan et al. (1999) and Lu et al. (2006). These differences happen

because the strain rate tensor D is here defined as 1
2

(
∇u+ (∇u)T

)
, instead of(

∇u+ (∇u)T
)
as presented in the cited papers. Furthermore, in this work, the

DAVSS formulation is only applied to simulate fibre suspensions in axisymmetric

flows but not in the planar Poiseuille one whose geometry is quite simple.

4.4 Vorticity-stream function formulation for 2-

D flows

For 2-D problems considered in this work, it is more convenient to use the

vorticity-stream function formulation which offers several numerical benefits as
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(i) the continuity equation is automatically satisfied; and (ii) the pressure field

disappears in the equation of motion.

4.4.1 Vorticity-stream function formulation in the Carte-

sian coordinates (x, y)

The relations between velocity (u, v), vorticity ω and stream function Ψ are given

by

ω =
1

2

(
∂u

∂y
− ∂v

∂x

)
, (4.15)

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (4.16)

Substituting the expressions in Eq. (4.16) into Eq. (4.15) yields the following

vorticity-stream function formulation

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 2ω. (4.17)

Taking the curl of Eq. (4.2) and using Eqs. (4.1), (4.3) - (4.15), the vorticity

transport equation is written as follows.

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)

+
1

2Re

(
∂2τxxf
∂x∂y

+
∂2τxyf
∂y2

−
∂2τ yxf
∂x2

−
∂2τ yyf
∂x∂y

)
,

(4.18)

where τxxf , τxyf , τ yxf and τ yyf are the stress components of the symmetric fibre

stress tensor τf .
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4.4.2 Axisymmetric vorticity-stream function formulation

in the cylindrical coordinates (r, z)

The considered flow is predominantly in the z-direction and the relations between

velocity (ur, uz), vorticity ω, and stream function Ψ are given by

ω =
1

2

(
∂uz
∂r

− ∂ur
∂z

)
, (4.19)

uz =
1

r

∂Ψ

∂r
, ur = −1

r

∂Ψ

∂z
. (4.20)

Following manipulation as done in Section 4.4.1, the vorticity transport and

stream function equations are given by

∂ω

∂t
+ uz

∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω =

1

Re

(
∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− 1

r2
ω

)
+

1

2Re

(
∂2τ rzf
∂r2

−
∂2τ zrf
∂z2

+
∂2τ zzf
∂r∂z

−
∂2τ rrf
∂z∂r

+
1

r

∂τ rzf
∂r

− 1

r

∂τ rrf
∂z

− 1

r2
τ rzf

)
,

(4.21)

1

r

∂2Ψ

∂z2
+

1

r

∂2Ψ

∂r2
− 1

r2
∂Ψ

∂r
= 2ω, (4.22)

where τ zzf , τ zrf , τ rzf and τ rrf are the stress components of the fibre stress tensor τf .

The vorticity transport equation (4.21) is rewritten with the implementation of

DAVSS as follows.

∂ω

∂t
+ uz

∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω − ηa

Re

(
∂2ω

∂z2
+
∂2ω

∂r2

)
=

−ηa − 1

Re
·
(
∂2ω

∂z2
+
∂2ω

∂r2

)
+

1

Re

(
1

r

∂ω

∂r
− 1

r2
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(4.23)

where ηa is the adaptive viscosity and given in Eq. (4.14).
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4.5 Numerical method

In this work, the fusion of IRBF and DAVSS is used to simulate fibre suspension

flows, in which a semi-implicit scheme is applied to temporally discretise the

vorticity transport equations (4.18) and (4.23) while the Euler explicit scheme is

used for the equation of fibre configuration fields (4.9). At each time step, the

1D-IRBF scheme is employed to approximate both the field variables of flow and

the fibre stress tensor.

4.5.1 Temporal discretisations of governing equations

Consider a time dependent differential equation together with its initial and

boundary conditions as follows.

∂ω(x, t)

∂t
+ Lω(x, t) = f, (x, t) ∈ Γ× [0, T ] , (4.24)

ω(x, t) = g, (x, t) ∈ Γ× {0}, (4.25)

Bω(x, t) = h, (x, t) ∈ ∂Γ× [0, T ] , (4.26)

where Γ and ∂Γ are a bounded domain and its boundary, respectively; T a final

time; L a differential operator; B an operator expressing a boundary condition;

and f , g and h known functions. Assume that the time interval [0, T] is parti-

tioned into Nt equal sub-intervals [t
n, tn+1] of length ∆t (∆t = T/Nt) with t

0 = 0

and tNt = T . In fully discrete schemes, Eq. (4.24) is discretised with respect to

both time and space variables. The discretisation in time is accomplished by a

time-stepping scheme, followed by the spatial discretisation based on an IRBFN

method. Applying the θ scheme to Eq. (4.24) yields

ωn+1 − ωn

∆t
+ θLωn+1 + (1− θ)Lωn = f, (4.27)

where superscripts (n+1) and n indicate the two successive time steps at tn+1 =

(n + 1)∆t and tn = n∆t, respectively; ∆t the size of the time step; and ωn =

ω(x, tn) and ωn+1 = ω(x, tn+1). Equation (4.27) together with the constraint
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conditions Eq. (4.25) and Eq. (4.26) at time tn+1 are then spatially discretised

using an IRBF approach described in the next section. The obtained solution is

the values of the field variable at the grid points.

It is noted that the θ-formulation (4.27) is the Euler explicit, fully implicit and

semi-implicit (Crank-Nicolson) schemes for θ = 0, θ = 1 and θ = 0.5, respectively.

Semi-implicit scheme for temporal discretisation of the vorticity trans-

port equation

For 2-D planar flow problem, the Crank-Nicolson scheme is employed to discretise

the vorticity transport equation (4.18) in the Cartesian coordinate system as

follows.

ωn+1 − ∆t

2Re

(
∂2ωn+1

∂x2
+
∂2ωn+1

∂y2

)
= ωn +

∆t

2Re

(
∂2ωn

∂x2
+
∂2ωn

∂y2

)

−∆tun
∂ωn

∂x
−∆tvn

∂ωn

∂y
+

∆t

2Re

(
∂2(τxxf )n

∂x∂y
+
∂2(τxyf )n

∂y2

−
∂2(τ yxf )n

∂x2
−
∂2(τ yyf )n

∂x∂y

)
,

(4.28)

where superscripts (n+1), n and ∆t are defined above. The components of fibre

stress tensor τxxf , τxyf , τ yxf and τ yyf on the right-hand side of Eq. (4.28) are known

quantities, which are determined from the solution of the fibre configuration fields

at the previous time step tn.

For 2-D axisymmetric flow problems, the vorticity equation (4.23) is temporally

discretised as follows.
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(4.29)

where the adaptive viscosity ηa is defined as before; and τ zzf , τ zrf , τ rzf and τ rrf are

components of fibre stress tensor τf .

Euler explicit scheme for temporal discretisation of the equation of

fibre configuration fields

As noted in Section 4.2, the motion equation for fibres’ direction (4.8) has been

converted into the evolution equation (4.10) for the configuration Q by executing

a variable transformation in Eq. (4.9). Thus, the Euler explicit scheme is applied

for Eq. (4.10) as follows.

Q
(
x, tn+1

)
= Q (x, tn)−∆tu (x, tn) · ∇Q (x, tn) + ∆t

(
∇u (x, tn)

)T ·Q (x, tn) ,

(4.30)

where tn = n∆t and tn+1 = (n + 1)∆t are the times at steps n and (n + 1),

respectively; and ∆t the time step size for both micro and macro procedures as

stated above.

In Eq. (4.30), the velocity field and its gradient are known and obtained from

the macro procedure. Furthermore, in order to ensure the stability of the present

method, the high-order upwind scheme (Ferreira et al., 2002) is used to approxi-

mate the gradient of configuration fields (∇Q).

Since the configuration fields, Qi’s with i =
(
1, 2, · · · , Nf

)
, are independent from
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each other, Eq. (4.30) can be solved for each configuration field in parallel. The

original fibre configuration fields Pi are then calculated using Eq. (4.9). The

fourth-order orientation tensor and the fibre stress are subsequently determined.

Lastly, the gradient of the fibre stress tensor is approximated and introduced into

the vorticity transport equation in the macro procedure.

4.5.2 Spatial discretisation of elliptic differential equation

At a time t, Eqs. (4.28) and (4.29) are discretised using the 1D-IRBF approx-

imation scheme which has been detailed in Section 2.5.1. The algorithm of the

present multiscale method is detailed in the next section.

4.6 Algorithm of the present method

The algorithm of the present method is presented in this section. The implemen-

tation will be then described in several illustrative examples in the next section.

(a) Generate a set of collocation points on the considered domain. The initial

and boundary conditions of the velocity field and fibre configurations are

correspondingly assigned at each collocation point. The stream function’s

and vorticity’s initial and boundary conditions are then determined using

Eqs. (4.15), (4.16) and (4.17) for planar flow problems or Eqs. (4.19), (4.20)

and (4.22) for axisymmetric ones. Meanwhile, the initial fibre configurations

including a set of randomly oriented unit vectors P’s and the transformed

vectors Q’s are defined by Eq. (4.9);

(b) Assign Nf fibres to each collocation point based on the BCF idea. All fibres

having the same index constitute a fibre configuration field. Hence, there is

an ensemble of Nf fibre configuration fields;

(c) Velocity gradients and the strain rate tensor D are directly calculated from

the current velocity field.
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(d) Solve the evolution equation of fibres (4.30) for the new configurations (Q’s).

Determine the orientation vectors of fibre configurations using Eq. (4.9)

and then calculate the fourth-order orientation tensor 〈PPPP〉 and the fibre

stress tensor at each collocation point. The gradients of fibre stresses are cal-

culated in advance and will be used in the following step as known quantities

in the vorticity transport equation;

(e) Solve the stream function equation for the new solution and then calculate

the new velocity field. The new velocity field together with the gradients

of the fibre stress components obtained by step (d) are used to solve the

vorticity equation;

(f) Terminate the simulation when either the desired time or the convergence

measure (CM) for the velocity given by Eq. (2.54) is reached.

(g) Return to step (c) for the next time step until the steady state or a given

time is reached.

4.7 Numerical examples

The present method is employed to simulate fibre suspension flows between two

parallel plates (a planar channel) and through a circular tube. The capability of

the present method is then demonstrated with the simulation of the axisymmetric

contraction flow of fibre suspension. The obtained results of the first problem are

compared with the results published by Chiba et al. (2001) whereas the solutions

to the last problem are compared with those presented in Chiba et al. (1990) and

Lipscomb et al. (1988). In order to compare the present results with those cited

above, we also choose λ = 1, and as a result ζ = 0 in Eq. (4.10) as shown in the

examples below.
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4.7.1 Flow between two parallel plates

This problem was studied by Chiba et al. (2001). The geometry of the problem

is given in Fig. 4.1 where L = 10 and H = 1 are the length and height of the

channel, respectively.

Figure 4.1: Flow through two parallel plates: the geometry of the problem.

Governing equations and boundary conditions

The system of governing equations for this particular problem is obtained from

the discussion in sections 4.2 and 4.4 as follows.

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)

+
1

2Re

(
∂2τxxf
∂x∂y

+
∂2τxyf
∂y2

−
∂2τ yxf
∂x2

−
∂2τ yyf
∂x∂y

)
,

(4.31)

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 2ω, (4.32)

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
, (4.33)

∂Q

∂t
+ u · ∇Q = (∇u)T ·Q, (4.34)

〈PPPP〉 =
〈
Q

Q

Q

Q

Q

Q

Q

Q

〉
, (4.35)

τf = kfD : 〈PPPP〉 . (4.36)

In the system of equations (4.31) - (4.36), the first three equations relate to

solutions of stream function, vorticity and velocity variables of the flow, while

the next two equations are for solutions of the fibre configuration fields Q’s and

P’s. The solutions at two different scales are linked together by the last equation,

which is to calculate the fibre stress tensor τf .
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Boundary conditions are applied to the problem as follows.

• At the inlet AB:

– A parabolic velocity profile of the Newtonian fluid is applied, i.e. u =

umax

(
1−

(
2y
H
− 1
)2)

and v = 0, where umax = 1.5 is the maximum

value of the velocity profile;

– For the fibre configuration field, a set of Nf fibres are generated and

assigned at each collocation point on the inlet boundary. A fibre i is

defined by its angle θi = −π
2
+ π(i−1)

Nf
,
(
i = 1, ..., Nf

)
;

• On the walls BC and AD:

– There is no-slip boundary condition for the velocity field, i.e. u = 0

and v = 0;

– The condition of co-linear alignment is used for the fibre configuration

fields, i.e. θi = 0;

• At the outlet DC: The flow out condition is applied, i.e. ∂u
∂x

= 0 and v = 0.

Discretisation of governing equations and numerical results

Applying the temporal discretisation schemes presented in Section 4.5 to the

vorticity transport equation and the evolution equation for fibre configurations

in 2-D space yields the following equations

ωn+1 − ∆t

2Re

(
∂2ωn+1

∂x2
+
∂2ωn+1

∂y2

)
= ωn +

∆t

2Re

(
∂2ωn

∂x2
+
∂2ωn

∂y2

)
−∆tun·

∂ωn

∂x
−∆tvn

∂ωn

∂y
+

∆t

2Re

(
∂2(τxxf )n

∂x∂y
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∂2(τxyf )n

∂y2
−
∂2(τ yxf )n
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−
∂2(τ yyf )n
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(4.37)

Qn+1
x = Qn

x −∆t

(
un
∂Qn

x

∂x
+ vn

∂Qn
x

∂y

)
+∆t

(
∂un
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∂un
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)
, (4.38)

Qn+1
y = Qn

y −∆t

(
un
∂Qn

y

∂x
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∂Qn
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+∆t

(
∂vn
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∂vn
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Qn
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)
, (4.39)
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where superscripts n and (n+1) indicate the two successive time steps tn = n∆t

and tn+1 = (n+1)∆t; and Qn+1
x and Qn+1

y the two components of vector Q along

x and y directions at the time tn+1, respectively. A range of fibre parameters,

kf ∈ {2, 4, 6, 8, 10, 12} is considered. Other parameters of the fluid include the

Reynolds number, Re = 10 and the number of configuration fields, Nf = 180.

A grid convergence study for the flow with kf = 12 and ∆t = 0.001 is done with

four different uniform Cartesian grids, whose grid parameters are given in Table

4.1. The four grids are labelled as M1, M2, M3 and M4 where M1 is the coarsest

one and M4 is the finest one.

Table 4.1: A grid convergence study for the fibre suspension flow between two
parallel plates. Four different grids are used where ∆x and ∆y are grid spaces
in x-direction and y-direction, respectively; and Nx and Ny the number of grid
nodes in each direction.

Grid’s label ∆x ∆y Nx ×Ny

M1 1/16 1/16 161× 17
M2 1/18 1/18 181× 19
M3 1/20 1/20 201× 21
M4 1/24 1/24 241× 25

The convergence of the solutions with four different meshes is confirmed through

the convergence measure of the velocity field introduced in Fig. 4.2. Meanwhile,

the grid convergence is reflected through the centreline velocity profile and the

distribution of the extra shear stress at the outlet in Figs. 4.3.

The effect of the time step size (∆t) on the stability of the present method is also

studied for grid M3. A range of simulations with ∆t ∈ {0.01, 0.005, 0.002, 0.001, 0.0005}
and kf ∈ {2, 4, 6, 8, 10, 12} is done. The convergence measures of the veloc-

ity field (CM(u)) at t = 10 for each and every simulation are given in Table

4.2. Symbol ‘X’ indicates a divergent measure. It is observed that a sufficiently

small time step is required for simulations with high fibre parameters and the

CM(u)’s decrease with the increase of ∆t or kf . Specifically, the coarsest time

step ∆t = 0.01 can be used only in the simulation with kf = 2 while finer time

steps ∆t = {0.001, 0.0005} can be used for all values of kf .

Therefore, grid M3 with ∆x = ∆y = 0.05 presented in Fig. 4.4 and ∆t = 0.001
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Figure 4.2: A grid convergence study for flow with kf = 12: the convergence
measure of the velocity field for grids M1, M2, M3, and M4.

Table 4.2: Fibre suspension flow between two parallel plates. A study for the
stability of the present method based on the fibre parameter kf and the time
step size ∆t for grid M3. The figures shown in the table are the values of the
convergence measure of the velocity field (CM(u)) at t = 10. ‘X’ is a divergent
measure.

kf
∆t 2 4 6 8 10 12
0.01 2.58E-5 X X X X X
0.005 6.78E-6 2.11E-5 X X X X
0.002 2.86E-6 1.02E-5 1.84E-5 1.94E-5 X X
0.001 1.54E-6 3.82E-6 7.77E-6 8.78E-6 1.28E-5 1.76E-5
0.0005 7.45E-7 1.93E-6 3.69E-6 3.95E-6 6.01E-6 7.57E-6

are chosen for all simulation cases in this problem. The numerical results obtained

by the present method confirm a very good agreement with those by Chiba et al.

(2001) using the finite difference method and the statistical scheme and a much

finer mesh of ∆x = ∆y = 0.025. Several observations are presented as follows.

The orientation of fibres at a position in the flow is illustrated by the ellipse’s

geometry (Fig. 4.5) whose length and direction of two axes are determined by

the eigenvalues and the eigenvectors of the second-order orientation tensor 〈PP〉.
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Figure 4.3: A grid convergence study for flow with kf = 12: the axial velocity
distribution on the centreline (figure (a)) and the distribution of the extra shear
stress at the outlet (figure (b)) for grids M1, M2, M3, and M4.

Thus, there are three cases: a) a circle/circular ellipse indicates an isotropic

orientation of fibres at a position; b) an ellipse implies that the predominant

direction of fibres is parallel with its major axis and c) a straight line depicts that
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Figure 4.4: Flow through two parallel plates: a uniform Cartesian grid.

Figure 4.5: Orientation of fibres: a) Circle: the fibres’ direction is isotropic; b)
Ellipse: the major axis is the predominant direction of fibres and c) Straight line:
all fibres completely align with the line.

all fibres completely align with the line.
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Figure 4.6: Fibre suspension flow between two parallel plates: the evolution of
fibres’ orientation along the channel with kf = 2 (figure (a)) and kf = 10 (figure
(b)).
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Figs. 4.6 show that the fibres near the channel wall tend to align with the flow

direction (x) whereas the fibres’ orientation is isotropic at the centreline. The

relationship between the shear stress and the fibre’s orientation will be discussed

later in this section. The results for kf = 2 (Fig. 4.6(a)) and kf = 10 (Fig.

4.6(b)) also show that the fibre parameter does not significantly affect the fibres’

orientation in the flow.
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Figure 4.7: Fibre suspension flow between two parallel plates: the
distribution of components P1111 (figure (a)) and P1122 (figure (b)) of
the fourth-order orientation tensor on several vertical planes (xi =
{0.05, 0.15, 0.25, 0.5, 0.75, 1, 1.25, 2.5, 5, 7.5, 10}) with respect to y using kf = 10.
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Furthermore, Figs. 4.7 present the distribution of the components P1111 (Fig.

4.7(a)) and P1122 (Fig. 4.7(b)) of the fourth-order tensor 〈PPPP〉 on several

vertical planes (xi ∈ {0.05, 0.15, 0.25, 0.5, 0.75, 1, 1.25, 2.5, 5, 7.5, 10}) along the

channel’s length with respect to y (across the channel). The results show that

more and more fibres tend to align with the main flow direction (x) as they

approach the outlet, especially in the near-wall region.

Fig. 4.8 depicts the development of velocity along the centreline of the channel

with a range of fibre parameters kf ∈ {2, 4, 6, 8, 10, 12}. The undershoot is ob-

served in all cases and the undershoot is more pronounced as the fibre parameter

increases. The undershoot reflects the effect of the isotropy of fibre configura-

tions at the inlet. The isotropy of fibre configurations resists the development of

velocity (u) on the flow direction (x) at the region near the inlet. The velocity

then increases along the flow direction to the outlet with a gradual decrease of

the isotropy of fibres orientation as described in Fig. 4.6.
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kf = 10 - The present method
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kf = 12 - The present method

kf = 12 - Chiba et al. (2001)

Figure 4.8: Fibre suspension flow between two parallel plates: the centreline
velocity profiles for flows with kf ∈ {2, 4, 6, 8, 10, 12}.

Numerical experiments show that the fibre parameter has a considerable effect on

the transient velocity field near the inlet (Fig. 4.8). In the downstream direction,
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as the flow becomes more and more developed, there is an insignificant difference

between the velocity profiles at the outlet as shown in Figs. 4.9.

y
0 0.2 0.4 0.6 0.8 1

u

0

0.5

1

1.5

kf = 2 - The present method
kf = 2 - Chiba et al. (2001)
kf = 6 - The present method
kf = 6 - Chiba et al. (2001)
kf = 10 - The present method
kf = 10 - Chiba et al. (2001)

(a) At x = 0.5
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(b) At x = 1.25
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(c) At x = 2.5
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(d) At x = 10

Figure 4.9: Fibre suspension flow between two parallel plates: the effect of
the fibre parameter kf on the axial velocity profiles at several sections x ∈
{0.5, 1.25, 2.5, 10} of the channel.

Finally, the distributions of the shear stress (Txy) and the first normal stress dif-

ference (Txx−Tyy) for the flow with kf = 10 are presented in Figs. 4.10 and 4.11,

respectively. In contrast to the Newtonian flow, a high-stress concentration for

the shear stress (Fig. 4.10(a)) and the first normal stress difference (Fig. 4.11(a))

appears near the corner between the inlet and the walls in the fibre suspension

flow. The reason of the high-stress concentration is the anisotropy of fibres’ ori-
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entation near the corner (see Figs. 4.6), where there is a steep transition between

two extreme states of fibres’ orientation, namely the co-linear alignment config-

uration on the wall and the isotropic configuration at the inlet. The distribution

of Txy and Txx − Tyy together with their values are in very good agreement with

those presented in Chiba et al. (2001).

On the efficiency of the present method, the convergence measures (CM ’s) of the

vorticity, stream function and velocity fields are presented in Fig. 4.12, where

the top figure is for kf = 2 and the bottom figure for kf = 10. The convergence

in the present method is significantly improved in comparison with one achieved

by Chiba et al. (2001). Specifically, with kf = 10 the present method achieves a

convergence measure of approximately 3E−4 for vorticity and 2E−6 for stream

function (Fig. 4.12(b)) using a much coarser mesh (a factor of 2 in each of the

coordinate directions). Furthermore, the results depict that CMs decrease with

increasing value of the fibre parameter, for example, CM(ω) ≈ 3E−5, CM(Ψ) ≈
2E−7, CM(V ) ≈ 1E−6 for kf = 2 and CM(ω) ≈ 3E−4, CM(Ψ) ≈ 2E−6,

CM(V ) ≈ 1E−5 for kf = 10. Finally, the efficiency of the present method can

also be improved by increasing the number of fibre configuration fields (see Figs.

4.13).
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Figure 4.10: Fibre suspension flow between two parallel plates: the distribution of
shear stress in the fibre suspension flow with kf = 10 (figure (a)). Figure (b) has
been extracted from Fig. 8(a) on page 154 of Chiba et al. (2001) for comparison.

x
0 0.5 1 1.5 2

y

0
0.1
0.2
0.3
0.4
0.5

-2 -1

1
3

5

79

11

(a)

(b)

Figure 4.11: Fibre suspension flow between two parallel plates: the distribution
of the first normal stress difference (figure (a)) in the fibre suspension flow with
kf = 10. Figure (b) has been extracted from Fig. 9(a) on page 155 of Chiba
et al. (2001) for comparison.
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Figure 4.12: Fibre suspension flow between two parallel plates: the convergence
measure for vorticity, stream function and velocity fields of flows with kf = 2
(figure (a)) and kf = 10 (figure (b)).
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Figure 4.13: Fibre suspension flow between two parallel plates: the conver-
gence measure for vorticity (figure (a)), stream function (figure (b)) and ve-
locity field (figure (c)) of flows using several fibre configuration fields Nf ∈
{180, 270, 360, 450, 540}.
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4.7.2 Flow through a circular tube

This problem is simulated using the same parameters as described in the fibre

suspension flow between two parallel plates. The obtained results are compared

with those for fibre suspension flow between two parallel plates. Furthermore, the

velocity profile as well as the vorticity and stream function at the outlet will be

used to determine several Dirichlet boundary conditions for the fibre suspension

flow through an axisymmetric contraction presented in Section 4.7.3.

The flow through a circular tube is an axisymmetric problem, therefore, the

investigated domain can be described in Fig. 4.14 where L = 10 is the length

of the tube and R = 0.5 the tube’s radius. The other parameters include the

Reynolds number Re = 10, time step size ∆t = 1E−3 and the number of fibre

configuration fields Nf = 180.

Figure 4.14: Fibre suspension flow through a circular tube: the geometry of the
problem.

Governing equations and boundary conditions

The governing equations for this particular problem is obtained from sections 4.2

and 4.4 as follows.

∂ω

∂t
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∂ω
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(4.40)

1
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1
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− 1

r2
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∂r
= 2ω, (4.41)
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uz =
1

r

∂Ψ

∂r
, ur = −1

r

∂Ψ

∂z
, (4.42)

∂Q

∂t
+ u · ∇Q = (∇u)T ·Q, (4.43)

〈PPPP〉 =
〈
Q

Q

Q

Q

Q

Q

Q

Q

〉
, (4.44)

τf = kfD : 〈PPPP〉 , (4.45)

where the parameters in the system (4.40) - (4.45) were presented before. For the

numerical stability of the present method, the vorticity transport equation (4.40)

is developed using the DAVSS scheme as follows.
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(4.46)

Similar to the previous problem, the boundary conditions are given by

• At the inlet OB:

– A Newtonian parabolic velocity profile is applied, i.e. uz = umax (1−
(
r
R

)2)
and ur = 0, where umax = 1.5 is the maximum value of the

velocity profile;

– For the fibre configuration field, a set of Nf = 180 fibres are generated

and assigned at each collocation point on the inlet boundary. A fibre

i is defined by the angle θi = −π
2
+ π(i−1)

Nf
,
(
i = 1, ..., Nf

)
;

• On the wall BC:

– No-slip boundary condition is used, i.e. uz = 0 and ur = 0;

– For the fibre configuration, the co-linear alignment condition is im-

posed on the wall, i.e. θi = 0;
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• At the outlet DC: A flow out condition is used, i.e. ∂uz
∂z

= 0 and ur = 0;

• On the centreline OD: The symmetric boundary condition is imposed, i.e.

∂uz
∂r

= 0 and ur = 0.

Discretisation of governing equations

The temporal discretisation of the fibre configuration field Q is described in the

axisymmetric cylindrical coordinates as follows.

Qn+1
z = Qn

z −∆t

(
unz
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z
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+ unr

∂Qn
z
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, (4.47)
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where parameters were defined before. A non-uniform grid described in Fig. 4.15

is installed for the simulation with ∆z1 = 0.05, ∀z ∈ [0, 9.9] and ∆z2 = 0.01, ∀z ∈
[9.9, 10]; ∆r1 = 0.01, ∀r ∈ [0, 0.1]; and ∆r2 = 0.05, ∀r ∈ [0.1, 0.5]. Experiences

show that finer meshes near the outlet and the centreline are necessary for an

accurate solution at these regions.

z
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r
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0.5

Figure 4.15: Fibre suspension flow through a circular tube: a non-uniform Carte-
sian grid for the problem.

Results and discussion

Fig. 4.16 depicts the velocity distribution of fibre suspension flows along the cen-

treline of the tube for a range of fibre parameters kf ∈ {2, 6, 10}. An undershoot

is also observed in all cases of fibre parameter (solid lines) as in the flow between

two parallel plates (dashed lines) but much stronger. Furthermore, the under-

shoot’s positions are closer to the entrance than the ones in the flows between two
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parallel plates. The undershoot’s feature is presented in detail in Table 4.3 for

the fibre suspension flows between two parallel plates and a circular tube. The

influence of the fibre parameter on the undershoot feature of velocity profiles for

both fibre suspension flows is illustrated in Fig. 4.17.
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Figure 4.16: Fibre suspension flow through a circular tube: the centreline velocity
profiles of flows with kf ∈ {2, 6, 10} (solid lines). The corresponding results for
the fibre suspension flow between two parallel plates presented in Section 4.7.1
are also reproduced in dashed-line form for comparative purpose.

Table 4.3: Fibre suspension flow through a circular tube. Value and distance
from the inlet boundary of undershoots appearing in the centreline velocity pro-
files with kf ∈ {2, 6, 10}. Results for planar flows are included for comparative
purpose.

kf Undershoot value Undershoot’s position

Flow through a
circular tube

2 1.362 z = 0.65
6 1.2177 z = 0.65
10 1.1338 z = 0.55

Flow between
two parallel

plates

2 1.4552 x = 0.95
6 1.3954 x = 0.95
10 1.3547 x = 1
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Figure 4.17: Fibre suspension flow through a circular tube: the undershoot
value of the centreline velocity profiles for the fibre suspension flows with
kf ∈ {2, 4, 6, 8, 10, 12}. The corresponding results of the flow between two parallel
plates are also presented here for comparative purpose.
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Figs. 4.18 depict the shear stress and the first normal stress difference of the

suspension flow through a circular tube with the fibre parameter kf = 10. The

distribution of shear stress presented in Fig. 4.18(a) shows that there is no signif-

icant difference in comparison with the one by the suspension flow between two

parallel plates (Fig. 4.10(a)) . Furthermore, a maximum shear stress of 12 was

also observed near the corner of the inlet and the wall boundaries. Meanwhile

there is only a small difference in the first normal stress difference distribution

between the two suspension flows: a distribution of the first normal stress differ-

ence [−3, 13] (Fig. 4.18(b)) for the flow through a circular tube versus [−2, 11]

(Fig. 4.11(a)) for the flow between two parallel plates.
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Figure 4.18: Fibre suspension flow through a circular tube: the distribution of
shear stress (figure (a)) and the first normal stress difference (figure (b)) for the
case of fibre parameter kf = 10.
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4.7.3 Flow through 4:1 and 4.5:1 axisymmetric contrac-

tions

Figure 4.19: Fibre suspension flow through an axisymmetric contraction: A
schematic geometry for the 4:1 and 4.5:1 axisymmetric contraction flows.

The geometry of the axisymmetric contraction problem presented in Fig. 4.19

was considered by Chiba et al. (1990) where LU = 5 and RU = 1 are the length

and radius of the upstream tube; LD = 3 and RD = 0.25 the length and radius of

the downstream tube and Lv the vortex length at the upstream corner. For the

4.5:1 contraction flow, the radius of the upstream tube is increased to RU = 1.125

while the other geometry parameters are the same.

The contraction ratio β and the dimensionless vortex length L∗
v of the problem

are defined, respectively, as follows.

β =
RU

RD
, L∗

v =
Lv
2RU

. (4.49)

A non-uniform grid used in the simulation is described in Fig. 4.20. A finer grid

are generated to capture sufficiently the values of field variables in the contraction

area where the variable gradients are very steep. Furthermore, the axial velocity

in the area close to the centreline cannot be calculated using uz =
1
r
∂Ψ
∂r

because of

the singularity. In order to avoid this issue, uz is approximated as limr→0
1
r
∂Ψ
∂r

=

∂2Ψ
∂r2

(L’Hospital rule) on the centreline. Therefore, a finer mesh is installed near
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the centreline. A detailed cartesian grid is generated as follows. ∆z1 = 0.05, ∀z ∈
[4, 6] and ∆z2 = 0.1, ∀z < 4

⋃
z > 6; and ∆r1 = 0.01, ∀r ∈ [0, 0.1] and ∆r2 =

0.025, ∀r > 0.1. The time step size is chosen as 5E−4.
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Figure 4.20: Fibre suspension flow through an axisymmetric contraction: a non-
uniform Cartesian grid for the 4:1 axisymmetric contraction flow.

Governing equations and boundary conditions

The fibre suspension flow through an axisymmetric contraction is governed by

Eqs. (4.40) - (4.48) with the following boundary conditions (see Fig. 4.19).

• At the inlet OA: The velocity profile and the corresponding stream function

and vorticity at the inlet are obtained from the solution of the fibre sus-

pension flow through circular tube with the same parameters of the fluid as

presented in Section 4.7.2 (We use a length to diameter ratio of 30 to obtain

a fully developed velocity profile). Furthermore, ∂Ψ
∂z

= 0 is also imposed;

• At the outlet DE: The flow-out boundary condition is defined by ∂uz
∂z

= 0

and ur = 0; ∂Ψ
∂z

= 0; and ∂ω
∂z

= 0;

• On the walls AB, CD and BC: The non-slip boundary condition is imposed

for the velocity: uz = 0 and ur = 0. Hence, the corresponding boundary

conditions for the stream function and the vorticity on the walls are given

as follows.
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– On the wall AB: Ψ = 0, ∂Ψ
∂r

= 0; and ω = ωw1;

– On the wall CD: Ψ = 0, ∂Ψ
∂r

= 0; and ω = ωw3 ;

– On the wall BC: Ψ = 0, ∂Ψ
∂z

= 0; and ω = ωw2 , where ωw1 , ωw2 and ωw3

are determined and updated using Eq. (4.41) with the known stream

function at each time step;

• On the centreline OE:

– The symmetric boundary condition of the velocity field is applied, i.e.

∂uz
∂r

= 0 and ur = 0;

– The corresponding boundary conditions for the stream function and

the vorticity are given by Ψ = Ψc,
∂Ψ
∂r

= 0; and ω = 0, where Ψc is

determined by Eq. (4.42) using the inlet boundary condition of the

velocity.

Results and discussion

A range of fibre parameters and Reynolds numbers is used to simulate the two

challenging 4:1 and 4.5:1 axisymmetric contraction flow problems by the present

method. The number of fibre configuration fields used in all cases is Nf = 1000.

Results obtained by the present method are in very good agreement with those of

Chiba et al. (1990) or Lipscomb et al. (1988). Results are detailed and discussed

as follows.

The 4:1 contraction flow is simulated with a range of fibre parameters kf ∈
{0, 1, . . . , 11, 12} for Re = 0 (the creeping flow); kf ∈ {0, 1, . . . , 7, 8} for Re = 1;

and kf = 6 for Re = 2 and Re = 5. Fig. 4.21 presents the effect of the fibre

parameter (kf) on the vortex length for the flows with Re = 0 and Re = 1. Re-

sults showed insignificant differences on the vortex length by the present method

and the publication in Chiba et al. (1990). For example, for the creeping fibre

suspension flow (Re = 0), while the vortex length is 0.170 by the experiment

mentioned in (Chiba et al., 1990), it is approximately 0.160 and 0.175 by (Chiba

et al., 1990) using the Finite Different Method and the present method, respec-

tively. Furthermore, the vortex lengths by our present method are slightly higher
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for kf < 5 but a bit lower for kf > 5 than those of Chiba et al. (1990) for creeping

fibre suspension flows, whereas the obtained results by the present work and from

Chiba et al. (1990) are nearly the same for the flows with Re = 1.
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Figure 4.21: The axisymmetric 4:1 contraction flows of fibre suspensions: the
effect of the fibre parameter on the vortex length (L∗

v) with a range of kf ∈
{0, 1, . . . , 11, 12} for the flows with Re = 0 and kf ∈ {0, 1, . . . , 7, 8} for the flows
with Re = 1.

Effect of the fibre suspension on the development of the salient corner vortex

is clearly reflected in Fig. 4.22. As compared with the Newtonian fluid flow

(kf = 0 - Fig. 4.22(a)) the size of the salient corner vortex of fibre suspension

flows gradually grows with increasing fibre parameter. Furthermore, due to the

impact by the growing vortex, the gradient of streamlines close to the contraction

area reduces with increasing fibre parameter. Results shown in Figs. 4.22 by

the present work are in very good agreement with those of Chiba et al. (1990).

However, a minor difference has been found in our present work in comparison

with others (Chiba et al., 1990; Lipscomb et al., 1988; Lu et al., 2006) in the form

of a small secondary vortex at the upstream corner of the contraction as shown

in Figs. 4.22. This result may indicate that the present method is capable of

capturing such fine details.
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Figure 4.22: The axisymmetric 4:1 contraction flows of fibre suspensions: the
effect of the fibre parameter on the streamlines and the vortex of the velocity
field for the flows with Re = 0 and a range of kf ∈ {0, 4, 8, 12}.
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Figure 4.23: The axisymmetric 4:1 contraction flows of fibre suspensions: the
distribution of the fibres’ orientation around the contraction area for the flows
with Re = 0 and a range of kf ∈ {0, 4, 8, 12}.

Figs. 4.23 depict the effect of the fibre parameter on the fibres orientation around

the contraction area. It can be recognised that fibres tend to align with the flow

direction when approaching the contraction region. The fibres are mostly parallel

with the flow direction in the downstream due to the impact of the elongation of

the fluid. This tendency is more pronounced with increasing fibre parameter.

The effect of Reynolds number on the contraction flow of fibre suspensions was

also investigated and presented in Figs. 4.24 with a range of Re ∈ {0, 1, 2, 5} with
kf = 6. In contrast to the effect of the fibre parameter (Figs. 4.22), the salient

corner vortex diminishes in size as the Reynolds number increases as stated and

explained by Chiba et al. (1990).

Fig. 4.25 describes the axial velocity profile along the centreline of fibre suspen-

sion flows with a range of kf ∈ {0, 4, 8, 12} and Re = 0. Unlike the case of a

viscoelastic fluid, where an overshoot of the velocity profile on the centreline ap-

pears near the contraction area (Marchal and Crochet, 1987), it was not observed
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Figure 4.24: The axisymmetric 4:1 contraction flows of fibre suspensions: the
effect of Reynolds number on the streamlines and vortices of the velocity field for
a range of Re ∈ {0, 1, 2, 5} and kf = 6.
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in the fibre suspension flows. This result was previously confirmed by Chiba et al.

(1990); Baloch and Webster (1995). Furthermore, results presented in Fig. 4.25

showed that the axial velocity at the far upstream and far downstream of the flow

does not significantly change with the fibre parameter while the velocity gradient

increases, with the decrease of the fibre parameter, around the contraction region

(Fig. 4.26). This increment of the velocity gradient reaches a maximum peak

value (65) with the case of Newtonian fluid (kf = 0).
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Figure 4.25: The axisymmetric 4:1 contraction flows of fibre suspensions: The
axial velocity profile on the centreline for a range of kf ∈ {0, 4, 8, 12} and Re = 0.

The first normal stress difference (τ zze − τ rre ) of the fibre suspension flow on the

centreline is finally determined by the following expression of Chiba et al. (1990)

τ zze − τ rre = 2(
∂uz
∂z

− ∂ur
∂r

) + kf
∂uz
∂z

, (4.50)

where the first and second terms on the right-hand side are the Newtonian solvent

contribution and the fibre stress contribution to the first normal stress difference

of the fibre suspension flow, respectively. Fig. 4.27 depicts the first normal stress

difference which gradually increases and reaches a peak value at the position just

before the contraction region of the upstream. Furthermore, the first normal
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Figure 4.26: The axisymmetric 4:1 contraction flows of fibre suspensions: The
velocity gradient profile on the centreline for a range of kf ∈ {0, 4, 8, 12} and
Re = 0.

stress difference together with its peak value increase with increasing fibre pa-

rameter. In other words, the first normal stress difference along the centreline is

smallest for the Newtonian fluid where fibre stress contribution is non-existent

(black line, Fig. 4.27).

Finally, the 4.5:1 contraction flow of fibre suspensions is simulated with range of

kf ∈ {0, 1, . . . , 7, 8} and Re = 0. The problem was previously investigated by

both experiment and the finite element method in Lipscomb et al. (1988). Fig.

4.28 describes the effect of the fibre parameter on the length of the vortex at

the contraction corner. The figure shows that the results by the present method

are comparable with the experimental ones and in very good agreement with the

numerical ones presented by Lipscomb et al. (1988).
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Figure 4.27: The axisymmetric 4:1 contraction flows of fibre suspensions: The
first normal stress difference on the centreline for a range of kf ∈ {0, 4, 8, 12} and
Re = 0.
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Figure 4.28: The axisymmetric 4.5:1 contraction flows of fibre suspensions:
the effect of the fibre parameter on the vortex length (L∗

v) for a range of
kf ∈ {0, 1, . . . , 7, 8} and Re = 0.
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4.8 Conclusions

This chapter reports the use of a multiscale method based on the fibre configura-

tion field, the 1D-IRBF scheme and the DAVSS technique to simulate dilute fibre

suspension flows. In this new approach, at each time step, the governing differ-

ential equations, including the stream function and vorticity transport equations,

are spatially discretised using the 1D-IRBF method. Meanwhile, the evolution of

fibre configurations governed by Jeffery equation is approximated using the BCF

principle. The two scales are linked together by the Lipscomb’s model, which is

applied to calculate the fibre stress tensor for dilute suspensions. In addition, the

adoption of the DAVSS enhances the numerical stability of the 1D-IRBF based

scheme in simulating fibre suspension flow problems. As a result, the efficiency

of the present approach is significantly increased as stated in Section 4.7. Indeed,

the obtained results of the simulation of fibre suspension flows through the chal-

lenging 4:1 and 4.5:1 axisymmetric contraction geometries may indicate that the

present approach is capable of capturing such fine details as secondary vortices

in the corners. An extension of the method for simulations of non-dilute fibre

suspensions will be presented in the next chapter.



Chapter 5

Stochastic multiscale simulation

of non-dilute fibre suspensions

The multiscale simulation method based on the combination of the Brownian con-

figuration field (BCF), the integrated radial basis function (IRBF) approximation

and the discrete adaptive viscoelastic stress splitting (DAVSS) for dilute fibre sus-

pensions reported in Chapter 4 (Nguyen et al., 2015a), is further developed to

simulate non-dilute fibre suspension flows. The macro and micro processes are se-

rially proceeded at each time step and then linked together via a fibre-contributed

stress formula associated with the kinetic model used. Since the interaction be-

tween fibres in non-dilute fibre suspensions is significant, this random interaction

is introduced into the evolution equation for the determination of fibre config-

urations (Folgar and Tucker, 1984) by the BCF method. The fibre stresses are

then determined based on the fibre configuration fields using the Phan-Thien–

Graham model (Phan-Thien and Graham, 1991). The efficiency of the simulation

method is demonstrated with the analysis of the circular Poiseuille flow and the

challenging axisymmetric contraction and expansion flows, for a range of fibre

concentration from semi-dilute to concentrated regimes.
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5.1 Introduction

Generally, fibre suspension flows can be classified into dilute, semi-dilute and con-

centrated regimes based on two basic parameters: the volume fraction φ and the

aspect ratio ar. Specifically, a suspension flow is considered as dilute, semi-dilute

or concentrated for the cases of φa2r < 1, 1 ≤ φa2r < ar or φa
2
r ≥ ar, respectively.

For dilute suspension flows, the interaction between fibres can be neglected and

the evolution of fibres can be captured by the Jeffery equation (Jeffery, 1922).

For the semi-dilute and concentrated suspensions, the physical description of the

flow and the evolution of fibre configurations poses a challenge due to the ne-

cessity to take into account fibre-fibre interactions. In this work, we modify the

high-order IRBF-BCF based stochastic multiscale method described in Chapter

4 (Nguyen et al., 2015a) for dilute suspensions by introducing a diffusion term

into the Jeffery equation (Folgar and Tucker, 1984) to obtain the Folgar-Tucker

equation for capturing fibre-fibre interaction in non-dilute suspensions. The high-

order IRBF scheme is employed to discretise the conservation equations whereas

the fibre configurations governed by the Folgar-Tucker equation are advanced us-

ing the BCF approach. The two macro-micro processes are coupled using the

Phan-Thien–Graham model (Phan-Thien and Graham, 1991) for the fibre stress.

The chapter is organised as follows. The governing equations in the dimensionless

form are presented in Section 5.2. Section 5.3 presents macro-micro equations in-

cluding an introduction of the DAVSS technique into the conservation equations.

A coupled macro-micro system of governing equations is presented in Section 5.4,

followed by a short review of the present numerical method together with its al-

gorithm. Numerical examples and obtained results are discussed in Section 5.5.

Finally, the work is closed by concluding remarks in Section 5.6.
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5.2 Governing equations for semi-dilute and con-

centrated suspension flows

The dimensionless conservation equations for a flow of fibre suspensions is given

by (Lu et al., 2006)

∇ · u = 0, (5.1)

∂u

∂t
+ u · ∇u = −∇p+ 1

Re
∇ ·
(
τs + τf

)
, (5.2)

where t, u and p are the time, velocity and pressure, respectively; Re = ρUL/η0

the Reynolds number where ρ is the fluid density, η0 the Newtonian solvent

viscosity, and U and L the characteristic velocity and length, respectively; τs =

2D the stress contribution of the Newtonian solvent, D = 1
2

(
∇u+ (∇u)T

)
the

rate of strain tensor; and τf the stress component contributed by the suspended

fibres.

In the present work, the fibre stress τf for semi-dilute and concentrated sus-

pensions is determined using the modified Phan-Thien–Graham model as follows

(Fan et al., 1999; Phan-Thien and Graham, 1991).

τf = f (φ)
(
AD : 〈PPPP〉+ 2DrF 〈PP〉

)
, (5.3)

where P is the unit direction vector of fibres; 〈PP〉 and 〈PPPP〉 the second- and
the fourth-order orientation tensors, respectively;

〈
(∗)
〉
the statistical average of

(∗); and Dr the diffusion coefficient. f (φ), A and F are the fluid parameters

which are defined as functions of the volume fraction φ and the aspect ratio ar

of the suspended fibres as follows (Fan et al., 1999).

f (φ) =
φ
(
2− φ/φm

)

2
(
1− φ/φm

)2 , A =
a2r

ln 2ar − 1.5
, F =

3a2r
ln 2ar − 0.5

, (5.4)

where φm is the maximum volume packing and empirically determined as a linear

function of the aspect ratio by Kitano et al. (1981) as
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φm = 0.53− 0.013ar, 5 < ar < 30. (5.5)

The evolution of fibres’ orientation in non-dilute suspensions is captured by the

Folgar-Tucker equation as follows (Folgar and Tucker, 1984).

DP

Dt
= L ·P− L : PPP+ (I−PP) · F(b) (t) , (5.6)

where D
Dt
(·) is the material time derivative of (·); and I the identity tensor. L is

the effective velocity gradient tensor and given by

L = (∇u)T − ζD with ζ =
2

a2r + 1
. (5.7)

It should be noted that the fibres’ interaction is considered as random collisions

by the Brownian force F(b) (t) with the properties:

〈F(b) (t)〉 = 0,

〈F(b) (t+ s)F(b) (t)〉 = 2Drδ(s)I,

where δ(s) is the Dirac delta function; Dr = Ciγ̇ the diffusion coefficient (Folgar

and Tucker, 1984), γ̇ =
√
2 (D : D) the general strain rate; and Ci the interaction

coefficient. In this research, for simplicity, Ci is chosen as a constant as done in

Fan et al. (1999); Lu et al. (2006).

By introducing Q (x, t) = QP (x, t), Eq. (5.6) is transformed into (Phan-Thien

and Fan, 1999)
∂Q

∂t
+ u · ∇Q = L ·Q +QF(b)(t), (5.8)

where Q is the modulus of Q and the Brownian force can be written in relation

to the Wiener process W as follows.

F(b)(t) =
√
2Ciγ̇

dW

dt
. (5.9)
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Substituting Eq. (5.9) into Eq. (5.8) yields

∂Q

∂t
+ u · ∇Q = L ·Q+

√
2Ciγ̇Q

dW

dt
. (5.10)

The second- and fourth-order orientation tensors, 〈PP〉 and 〈PPPP〉, can now

be defined by

〈PP〉 = 1

Nf

Nf∑

i=1

Qi

Qi

Qi

Qi

, (5.11)

〈PPPP〉 = 1

Nf

Nf∑

i=1

Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

, (5.12)

where Nf is the number of fibre configuration fields.

5.3 Macro-micro governing equations in the cylin-

drical coordinates (r, z)

5.3.1 Axisymmetric vorticity-stream function formulation

with DAVSS technique

For 2-D problems considered in this chapter, the axisymmetric vorticity-stream

function formulation in the cylindrical coordinates (r, z) is used for several nu-

merical benefits: (i) the pressure disappears in the equation of motion; and (ii)

the continuity equation is automatically satisfied. The relations between velocity

(ur, uz), vorticity ω, and stream function Ψ are given by

ω =
1

2

(
∂uz
∂r

− ∂ur
∂z

)
, (5.13)

uz =
1

r

∂Ψ

∂r
, ur = −1

r

∂Ψ

∂z
. (5.14)

After some mathematical manipulations, the stream function and vorticity trans-

port equations can be derived from Eqs. (5.1)-(5.2) as follows.
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1

r

∂2Ψ

∂z2
+

1

r

∂2Ψ

∂r2
− 1

r2
∂Ψ

∂r
= 2ω. (5.15)

Re

(
∂ω

∂t
+ uz

∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω

)
=

(
∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− 1

r2
ω

)
+

1

2

(
∂2τ rzf
∂r2

−
∂2τ zrf
∂z2

+
∂2τ zzf
∂r∂z

−
∂2τ rrf
∂z∂r

+
1

r

∂τ rzf
∂r

− 1

r

∂τ rrf
∂z

− 1

r2
τ rzf

)
,

(5.16)

where τ zzf , τ zrf , τ rzf and τ rrf are the components of the fibre stress tensor τf .

The introduction of the DAVSS technique into Eq. (5.16) yields (Nguyen et al.,

2015a)

Re

(
∂ω

∂t
+ uz

∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω

)
− ηa

(
∂2ω

∂z2
+
∂2ω

∂r2

)
=

− (ηa − 1)

(
∂2ω

∂z2
+
∂2ω

∂r2

)
+

(
1

r

∂ω

∂r
− 1

r2
ω

)

+
1

2

(
∂2τ rzf
∂r2

−
∂2τ zrf
∂z2

+
∂2τ zzf
∂r∂z

−
∂2τ rrf
∂z∂r

+
1

r

∂τ rzf
∂r

− 1

r

∂τ rrf
∂z

− 1

r2
τ rzf

)
,

(5.17)

where ηa is the adaptive viscosity and defined by (Lu et al., 2006)

ηa = Af(φ) +
1 +

√
(1/2)τf : τf

1 +
√

(1/2)G : G
, (5.18)

where G = ∇u+ (∇u)T is twice the strain rate tensor.

5.3.2 Evolution equation for fibre configurations in 2-D

axisymmetric coordinates

The effective velocity gradient L is developed in 2-D axisymmetric coordinate

(z, r) as follows.

L =




(1− ζ)∂uz
∂z

∂uz
∂r

− ζ
2
(∂uz
∂r

+ ∂ur
∂z

)

∂ur
∂z

− ζ
2
(∂uz
∂r

+ ∂ur
∂z

) (1− ζ)∂ur
∂r


 (5.19)
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With the use of Eq. (5.19), the evolution equation (5.10) is expressed in z- and

r-directions as

∂Qz

∂t
+ uz

∂Qz

∂z
+ ur

∂Qz

∂r
= (1− ζ)

∂uz
∂z

Qz

+

[
∂uz
∂r

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qr +

√
2Ciγ̇QdWz,

(5.20a)

∂Qr

∂t
+ uz

∂Qr

∂z
+ ur

∂Qr

∂r
= (1− ζ)

∂ur
∂r

Qr+
[
∂ur
∂z

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qz +

√
2Ciγ̇QdWr.

(5.20b)

Developing the fibre stress tensor in Eq. (5.3) in the coordinates (z, r) yields

τ zzf = f(φ)A

[
∂uz
∂z

〈PzPzPzPz〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPzPzPr〉+

∂ur
∂r

〈PzPzPrPr〉
]
+ 2f(φ)DrF 〈PzPz〉 ,

(5.21a)

τ rrf = f(φ)A

[
∂uz
∂z

〈PzPzPrPr〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPrPrPr〉+

∂ur
∂r

〈PrPrPrPr〉
]
+ 2f(φ)DrF 〈PrPr〉 ,

(5.21b)

τ zrf = τ rzf = f(φ)A

[
∂uz
∂z

〈PzPzPzPr〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPzPrPr〉+

∂ur
∂r

〈PzPrPrPr〉
]
+ 2f(φ)DrF 〈PzPr〉 .

(5.21c)

5.4 Numerical method for non-dilute fibre sus-

pension flows

5.4.1 A coupled macro-micro multiscale system

Collecting the macro-micro governing equations and the stress formula, as de-

scribed above, yields a multiscale system in 2-D axisymmetric coordinates as
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follows.
1

r

∂2Ψ

∂z2
+

1

r

∂2Ψ

∂r2
− 1

r2
∂Ψ

∂r
= 2ω, (5.22a)

Re

(
∂ω

∂t
+ uz

∂ω

∂z
+ ur

∂ω

∂r
− ur

r
ω

)
− ηa

(
∂2ω

∂z2
+
∂2ω

∂r2

)
= − (ηa − 1)

(
∂2ω

∂z2
+
∂2ω

∂r2

)
+

(
1

r

∂ω

∂r
− 1

r2
ω

)
+

1

2

(
∂2τ rzf
∂r2

−
∂2τ zrf
∂z2

+
∂2τ zzf
∂r∂z

−
∂2τ rrf
∂z∂r

+
1

r

∂τ rzf
∂r

− 1

r

∂τ rrf
∂z

− 1

r2
τ rzf

)
,

(5.22b)

∂Qz

∂t
+ uz

∂Qz

∂z
+ ur

∂Qz

∂r
= (1− ζ)

∂uz
∂z

Qz

+

[
∂uz
∂r

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qr +

√
2Ciγ̇QdWz,

(5.23a)

∂Qr

∂t
+ uz

∂Qr

∂z
+ ur

∂Qr

∂r
= (1− ζ)

∂ur
∂r

Qr

+

[
∂ur
∂z

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qz +

√
2Ciγ̇QdWr.

(5.23b)

τ zzf = f(φ)A

[
∂uz
∂z

〈PzPzPzPz〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPzPzPr〉

+
∂ur
∂r

〈PzPzPrPr〉
]
+ 2f(φ)DrF 〈PzPz〉 ,

(5.24a)

τ rrf = f(φ)A

[
∂uz
∂z

〈PzPzPrPr〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPrPrPr〉

+
∂ur
∂r

〈PrPrPrPr〉
]
+ 2f(φ)DrF 〈PrPr〉 ,

(5.24b)

τ zrf = τ rzf = f(φ)A

[
∂uz
∂z

〈PzPzPzPr〉+
(
∂uz
∂r

+
∂ur
∂z

)
〈PzPzPrPr〉

+
∂ur
∂r

〈PzPrPrPr〉
]
+ 2f(φ)DrF 〈PzPr〉 .

(5.24c)

5.4.2 Numerical procedure

The IRBF-DAVSS-BCF based multiscale method, which is presented in Chapter

4 (Nguyen et al., 2015a), is applied to solve the equation system (5.22)-(5.24).

The vorticity transport equation (5.22b) is temporally discretised using the semi-
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implicit scheme as follows.

ωn+1 − ∆t

Re
ηa

(
∂2ωn+1

∂z2
+
∂2ωn+1

∂r2

)
= ωn − ∆t

Re
(ηa − 1)

(
∂2ωn

∂z2
+

∂2ωn

∂r2

)
+

∆t

Re

(
1

r

∂ωn

∂r
− 1

r2
ωn
)
−∆t

(
unz
∂ωn

∂z
− unr

∂ωn

∂r
+
unr
r
ωn
)

+
∆t

2Re

(
∂2(τ rzf )n

∂r2
−
∂2(τ zrf )n

∂z2
+
∂2(τ zzf )n

∂r∂z
−
∂2(τ rrf )n

∂z∂r
+

1

r

∂(τ rzf )n

∂r

−1

r

∂(τ rrf )n

∂z
− 1

r2
(τ rzf )n

)
,

(5.25)

The evolution equations (5.23a,b) are explicitly discretised by the Euler-Maruyama

method as

Qn+1
z = Qn

z −
(
uz
∂Qn

z

∂z
+ ur

∂Qn
z

∂r

)
∆t + (1− ζ)

∂uz
∂z

Qn
z∆t

+

[
∂uz
∂r

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qn
r∆t +

√
2Ciγ̇∆tQW

n
z ,

(5.26a)

Qn+1
r = Qn

r −
(
uz
∂Qn

r

∂z
+ ur

∂Qn
r

∂r

)
∆t + (1− ζ)

∂ur
∂r

Qn
r∆t

+

[
∂ur
∂z

− ζ

2

(
∂uz
∂r

+
∂ur
∂z

)]
Qn
z∆t+

√
2Ciγ̇∆tQW

n
r ,

(5.26b)

where superscripts (n + 1) and n denote the two successive time steps at tn+1 =

(n+ 1)∆t and tn = n∆t, respectively; ∆t the time step size.

At each time step, the 1D-IRBF method is used to approximate not only the

vorticity/stream function equations but also the first and second derivatives of

the field variables including the fibre stresses at collocation points. Details can

be found in Nguyen et al. (2015a).

The simulation algorithm can be outlined as follows.

• Calculate the fibre stresses at a time step tn+1 from the fibre configuration

fields at step tn (the initial ones for the first step) using Eqs. (5.24a,b,c),

and then approximate the derivatives of stresses using the 1D-IRBF scheme;

• Solve Eqs. (5.25) and (5.22a) for the vorticity and stream function, respec-
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tively. Then, calculate the velocity of the current step using Eq. (5.14);

• Calculate the effective velocity gradient L using Eq. (5.19);

• Solve Eqs. (5.26a,b) for the fibre configuration fields Q’s using the Euler-

Maruyama method;

• Calculate the fibre stress tensor at step tn+1 use Eqs. (5.24a,b,c);

• The routine is repeated until either the desired time or the convergence

measure (CM) for the velocity, which is evaluated by Eq. (2.54), is reached.

5.5 Numerical examples

This section is to present the simulation of three challenging non-dilute fibre

suspension flows using the present simulation method: (i) flow through a circular

tube; (ii) flows through 4:1 axisymmetric contraction; and (iii) flows through

1:4 axisymmetric expansion for a range of fibre parameters and several Reynolds

numbers. The fibre parameters for cases ranging from semi-dilute to concentrated

suspensions are presented in Table 5.1.

Besides bulk properties of a flow, the orientation of fibres in the flow is also

considered. At a position in the flow, the fibres’ orientation is illustrated by an

ellipse’s geometry with three cases (Fig. 5.1): (i) a circle/circular ellipse, (ii) an

ellipse or (iii) a straight line as presented in Nguyen et al. (2015a). Based on

the grid convergence study in the work just cited, the finest discretisations are

adapted for the present work.

5.5.1 Flow through a circular tube

The flow through a circular tube of non-dilute fibre suspensions is first inves-

tigated. Then, the velocity profile as well as the vorticity and stream function

at the outlet will be used as the boundary conditions at the inlet of the fibre

suspension flow through an axisymmetric contraction presented in Section 5.5.2.
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Table 5.1: Fibre suspension flow through a circular tube. States of fibre sus-
pension fluids: dilute (φa2r < 1), semi-dilute (1 ≤ φa2r < ar) and concentrated
(φa2r ≥ ar). ar: the aspect ratio of fibre, φ: the volume fraction, and (·)∗: the
value of (·) associated with ar = 20.

ar φ φa2r State of fibre suspension
10 0.01 1 semi-dilute
10 0.02 2 semi-dilute
10 0.05 5 semi-dilute
10 0.08 8 semi-dilute
10 0.10 10 concentrated
10 0.12 12 concentrated
10 0.15 15 concentrated
10 0.18 18 concentrated
10 0.20 20 concentrated
20 0.01 4 semi-dilute
20 0.02 8∗ semi-dilute
20 0.05 20∗ concentrated
20 0.08 32 concentrated
20 0.10 40 concentrated

Figure 5.1: Orientation of fibres: a) Circle: the isotropic fibres’ direction; b)
Ellipse: the major axis is the predominant direction of fibres and c) Straight line:
all fibres completely align with the line. This figure is from Chapter 4.

The geometry of the flow through a circular tube is described in Fig. 5.2 where

L = 10 and R = 0.5 are the length and radius of the tube, respectively. Unless

otherwise stated, we present the results with Re = 0 and Nf = 1000. A non-

uniform grid described in Fig. 5.3 is used with ∆z1 = 0.05, ∀z ∈ [0, 9.9] and ∆z2 =

0.01, ∀z ∈ [9.9, 10]; ∆r1 = 0.01, ∀r ∈ [0, 0.1]; and ∆r2 = 0.05, ∀r ∈ [0.1, 0.5].

The choice of ∆t is discussed shortly. Experiences show that finer meshes near
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Figure 5.2: Non-dilute fibre suspension flow through a circular tube: the geome-
try.

the outlet and the centreline are necessary for higher solution accuracy at these

regions.

z
0 1 2 3 4 5 6 7 8 9 10

r

0

0.5

Figure 5.3: Non-dilute fibre suspension flow through a circular tube: the non-
uniform Cartesian grid discretisation.

The boundary conditions of this problem are given as follows.

• At the inlet OB: Newtonian parabolic velocity profile is applied, i.e. uz =

umax

(
1−

(
r
R

)2)
and ur = 0, where umax = 1.5 is the maximum value of

the velocity profile. For the fibre configuration field, a set of Nf fibres is

randomly generated and assigned at each collocation point;

• On the wall BC: non-slip boundary condition is used, i.e. uz = 0 and

ur = 0;

• At the outlet DC: flow out condition is used, i.e. ∂uz
∂z

= 0 and ur = 0;

• On the centreline OD: the symmetric boundary condition is set up, i.e.

∂uz
∂r

= 0 and ur = 0.

Together with the non-uniform grid described in Fig. 5.3, the stability of the

present method is investigated with a range of time steps ∆t = {0.01, 0.005, 0.002, 0.001}.
For each value of ∆t, the simulation is carried out with a set of values of the fibre

parameters φa2r = {5, 10, 15, 20, 40}. The convergence measures of the velocity
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field (CM(u)) at t = 10 for the range of time steps are presented in Table 5.2.

Symbol ‘X’ means a divergence measure. The study shows that the simulation

is always convergent with CM(u) < 1.5E − 4 using ∆t = 0.001 over the range

of fibre parameters. Thus, ∆t = 0.001 is chosen as the time step for the present

method to simulate this problem.

Table 5.2: Fibre suspension flow through a circular tube: A study for the stability
of the present method with respect to time step size using the non-uniform grid
described in Fig. 5.3. Convergence measures of the velocity field (CM(u)) at
t = 10 for different ∆t’s and fibre parameters (φa2r). ‘X’ means a divergence
measure.

φa2r
∆t 5 10 15 20 40

0.010 6.93E-4 1.12E-3 X X X
0.005 6.90E-5 1.21E-4 3.86E-3 X X
0.002 8.11E-5 1.51E-4 1.07E-3 X X
0.001 1.85E-5 4.78E-5 1.33E-4 2.58E-4 1.31E-4

The non-dilute fibre suspension flow is simulated for a range of φa2r in order to

investigate the role of fibre parameters in the dynamic behaviours of the flow. A

discussion of the obtained results and a comparison with others are as follows.

• Fig. 5.4 describes the distribution of the axial velocity uz along the centre-

line of the tube for a range of φa2r ∈ {1, 5, 8, 10, 15, 20} whose correspond-

ing volume fractions (φ) and aspect ratios (ar) are given in Table 5.1. An

undershoot is observed in all cases of φa2r at positions near the entrance

(z ∈ (0.41, 0.74)). Furthermore, the undershoot is more pronounced with

increasing φa2r.

The appearance of undershoots reflects the effect of the isotropic configu-

ration of fibres at the inlet. The isotropy of fibre configurations resists the

development of the velocity (uz) at the region near the inlet. The velocity

then increases towards the outlet with a gradual decrease of the isotropy of

fibres’ orientation.

Results in Fig. 5.4 also show that the uz velocity on the centreline at the

steady state reduces as φ and/or ar increases. It is very interesting to

note that the velocity reaches a steady state relatively quickly (at z ≈ 4
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Figure 5.4: Non-dilute fibre suspension flow through a circular tube: the uz
velocity profile along the centreline of flows with φa2r ∈ {1, 5, 10, 15, 20}.

downstream) in contrast to the dilute fibre suspension flow where the flow

is not well developed until much further downstream as reported in Chapter

4, Fig. 4.16 (at z ≈ 10).

• Fig. 5.5 depicts the effect of φ and ar on the axial velocity profile (uz) at

several sections (z ∈ {0, 0.5, 1, 2, 4, 10}) with φa2r = 1 (semi-dilute) (figure

(a)), φa2r = 10 (concentrated) (figure (b)) and φa2r = 20 (concentrated)

(figure (c)). Numerical experiments show that the velocity profile becomes

more plug-like with increasing φ and/or ar. The outlet velocity profile of

flows for a range of φa2r = {1, 5, 10, 15, 20} presented in Fig. 5.6 also shows

that the velocity profiles are more plug-like for higher values of ar and/or

φ.

• Fig. 5.7 presents the streamlines for the Newtonian flow (figure (a)), semi-

dilute fibre suspension flow with φa2r = 5 (figure (b)) and concentrated

fibre suspension flow with φa2r = 20 (figure (c)). The results show that

the streamlines for the fibre suspension flows are significantly different from
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those for the Newtonian flow in the region near the inlet. Indeed, the

streamlines for the fibre suspension are convex while they are straight lines

along the channel wall for the Newtonian flow. Furthermore, the streamlines

are more convex with increasing of φa2r.

• The contour of the fibre shear stress and the first normal stress difference

for the semi-dilute (φa2r = 5) and concentrated suspension (φa2r = 20) flows

are presented in Figs. 5.8 and 5.9, respectively. Numerical experiments

show that the fibre stresses increase with higher values of φa2r. For exam-

ple, the shear stress covers [−7, 0] for the semi-dilute fibre suspension flow

and [−22, 0] for the concentrated one. In addition, the shear stress is zero

(minimum value) at the centreline and reach maximum value on the wall

(Fig. 5.8 - figure (a)) or near the wall (see Fig. 5.8 - figure (b)). Both the

first normal stress difference and the shear stress settle down to the steady

state downstream from the inlet where the transient behaviour is apparent.

• Finally, the influence of φa2r on the convergence measure (CM) for the

velocity, stream function and vorticity are reported in Fig. 5.10. Results

show a significant influence of φa2r on the convergence of the method, where
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Figure 5.5: Non-dilute fibre suspension flow through a circular tube: the effect
of fibre parameters on the velocity profile along the fibre direction with φa2r = 1
(figure (a)); φa2r = 10 (figure (b)); and φa2r = 20 (figure (c)).
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the CM generally degenerates with increasing level of fibre concentration

and/or aspect ratio.
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Figure 5.6: Non-dilute fibre suspension flow through a circular tube: the velocity
profiles at the outlet of the channel for flows with φa2r ∈ {1, 5, 10, 15, 20}.
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Figure 5.7: Non-dilute fibre suspension flow through a circular tube: the stream-
lines for the cases of Newtonian fluid (figure (a)), fibre suspensions with φa2r = 5
(figure (b)) and φa2r = 20 (figure (c)) in the domain z ∈ [0, 4].
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Figure 5.8: Non-dilute fibre suspension flow through a circular tube: the contour
of the extra shear stress (τ zre ) for the flows with φa2r = 5 (figure (a)) and φa2r = 20
(figure (b)) in the domain z ∈ [0, 4].
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Figure 5.9: Non-dilute fibre suspension flow through a circular tube: the contour
of the first normal stress difference (τ zze − τ rre ) for the flows with φa2r = 5 (figure
(a)) and φa2r = 20 (figure (b)) in the domain z ∈ [0, 4].
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Figure 5.10: Non-dilute fibre suspension flow through a circular tube: the conver-
gence measure for velocity (figure (a)), stream function (figure (b)) and vorticity
(figure (c)) of flows with φa2r ∈ {1, 5, 10, 15, 20}.
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5.5.2 The 4:1 axisymmetric contraction flows

A schematic geometry of the 4:1 axisymmetric contraction flow is presented in

Fig. 5.11 where LU and RU are the length and radius of the upstream tube,

respectively; LD and RD the length and radius of the downstream tube; and Lv

the length of the salient vortex. The contraction ratio (β) and the dimensionless

vortex length (L∗
v) are given by

β =
RU

RD
, L∗

v =
Lv
2RU

. (5.27)

The boundary conditions for this problem are as follows.

Figure 5.11: A schematic geometry for the axisymmetric contraction flow.

• At the inlet OA: the velocity, the stream function and the vorticity are taken

from the values at the outlet of the circular Poiseuille flows investigated in

the previous section. In addition, ∂Ψ
∂z

= 0 is also assigned;

• At the outlet DE: flow-out conditions are defined as ∂uz
∂z

= 0, ur = 0;

∂Ψ
∂z

= 0; and ∂ω
∂z

= 0;

• On the walls AB, CD and BC: non-slip boundary condition is set up for the

velocity, i.e. uz = 0 and ur = 0. The corresponding boundary conditions

for the stream function and the vorticity are determined by
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– On the wall AB: Ψ = 0, ∂Ψ
∂r

= 0; ω = ωw1 ;

– On the wall BC: Ψ = 0, ∂Ψ
∂z

= 0; ω = ωw2,

– On the wall CD: Ψ = 0, ∂Ψ
∂r

= 0; ω = ωw3;

where ωw1, ωw2 and ωw3 are determined and updated using Eq. (5.22a)

with the known stream function at each time step;

• On the centreline OE: symmetric boundary condition for the velocity, i.e.

∂uz
∂r

= 0 and ur = 0; The corresponding boundary conditions for the stream

function and vorticity are Ψ = Ψc,
∂Ψ
∂r

= 0 and ω = 0 where Ψc is determined

by Eq. (5.14).
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Figure 5.12: A non-uniform Cartesian grid for the 4:1 axisymmetric contraction
flow.

The non-uniform grid designed in Nguyen et al. (2015a) is used for the simulation

of this problem as follows. ∆z1 = 0.05 ∀z ∈ [0, 0.5]
⋃
[4, 7]

⋃
[10.5, 11]; ∆z2 = 0.1

∀z ∈ [0.5, 4]
⋃
[7, 10.5]; ∆r1 = 0.01 ∀r ∈ [0, 0.1]; and ∆r2 = 0.025 ∀r ∈ [0.1, 1].

The simulation is carried out using Nf = 1000 and the time step size ∆t = 1E−3.

However, in several cases of highly concentrated suspensions, a finer time step is

used at the initial time for the numerical stability of the method. Unless otherwise

stated, the simulation is carried out for the 4:1 contraction flow with LU = 6,

RU = 1, LD = 5 and RD = 0.25 and Re = 0.

Firstly, the impact of the fibre aspect ratio (ar) and volume fraction (φ) on the

flow pattern and fibres’ orientation is investigated. A discussion of the present

results and a comparison with those by Lu et al. (2006) using the BCF-finite

element method are described next.
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• Fig. 5.13 presents the effect of the fibre parameters (φ, ar) on the vortex

length (L∗
v) for two cases of fibre suspension as follows.

– ar = 10 with a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20};

– ar = 20 with a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10}.

Numerical experiments show that the vortex length is more pronounced

with increasing φ or/and ar. This trend was also reported in Lu et al.

(2006) but larger vortices are observed in the present results.

φ
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Figure 5.13: The 4:1 axisymmetric contraction flows of non-dilute fibre suspen-
sions: the effect of fibre parameters on the vortex length (L∗

v) with ar = 10 and
a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20}; and ar = 20 and
a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10}.

• Fig. 5.14 describes the effect of fibre parameters on the shape and length

of the vortex at the salient corner for a range of φa2r ∈ {1, 5, 10, 15, 20}.
The salient vortex’s size is more pronounced with increasing of φa2r as pre-

sented in the figure. In addition, the present numerical results also depict

that, unlike the Newtonian flow where the vortex boundary is concave, it

is slightly convex for fibre suspension flows as reported in Lipscomb et al.

(1988); Chiba et al. (1990); Lu et al. (2006).



5.5. Numerical examples 188

4.5 5 5.5 6 6.5
0

0.5

1

φa2r = 5

(a)

4.5 5 5.5 6 6.5
0

0.5

1

φa2r = 10

(b)

4.5 5 5.5 6 6.5
0

0.5

1

φa2r = 15

(c)

4.5 5 5.5 6 6.5
0

0.5

1

φa2r = 20

(d)

Figure 5.14: The 4:1 axisymmetric contraction flows of non-dilute fibre suspen-
sions: the effect of φa2r on the salient corner vortex size for φa2r = {5, 10, 15, 20}.
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• The influence of φa2r on the orientation of fibres around the abrupt contrac-

tion is reported in Fig. 5.15 by a blue ellipse/line/circle (see Fig. 5.1) at a

position whereas the black dashed lines are for the streamlines for four cases

of φa2r ∈ {5, 10, 15, 20}. Several notable points are discussed as follows.

– Fibres distribution in the main area of the flow tends to be less anisotropic

with increasing φa2r. Fig. 5.15 shows that the region dominated by

anisotropic fibres distribution is gradually shrinking from Fig. 5.15(a)

(φa2r = 5: semi-dilute) to Fig. 5.15(d) (φa2r = 20: concentrated). This

is caused by the random interaction between fibres in a non-dilute

suspension. This interaction, which is stronger with increasing φa2r,

reduces the influence of the flow velocity on the fibres’ orientation.

– The fibres distribution is more isotropic towards the centre of the vor-

tex.

The effect of Re on the vortex size is also studied by the present method for

φa2r = 12. Numerical experiments show that the length of vortex slightly reduces

with increasing Re as presented in Fig. 5.16 for a range of Re ∈ {0, 1, 2, 5}. This
observation is similar to one in dilute fibre suspension flows (Nguyen et al., 2015a;

Abdul-Karem et al., 1993).
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Figure 5.15: The 4:1 axisymmetric contraction flows of non-dilute fibre suspen-
sions: the orientation of fibres around the contraction area for φa2r {5, 10, 15, 20}.
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Figure 5.16: The 4:1 axisymmetric contraction flows of non-dilute fibre sus-
pensions: the effect of Reynolds number (Re) on the salient corner vortex for
φa2r = 12.
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5.5.3 The 1:4 axisymmetric expansion flow

Figure 5.17: A schematic geometry for the 1:4 axisymmetric expansion flow.

A schematic geometry of the 1:4 axisymmetric expansion flow is presented in Fig.

5.17 where LU = 6 and RU = 0.25 are the length and radius of the upstream

tube, respectively; LD = 4 and RD = 1 the length and radius of the downstream

tube; and Lv the vortex length. The expansion ratio (β) and the dimensionless

vortex length (L∗
v) are similarly defined as in Eq. (5.27) but for the expansion

flow. The problem was studied by Lu et al. (2006) using the BCF – finite element

method.

The boundary conditions of this problem are given as follows.

• At the inlet OA: the velocity, the stream function and the vorticity are

taken from the values at the outlet of the axisymmetric contraction flow

investigated in Section 5.5.2. ∂Ψ
∂z

= 0;

• At the outlet DE: the velocity, the stream function and the vorticity at

the inlet of the axisymmetric contraction problem are used as the Dirichlet

boundary conditions of this problem. ∂Ψ
∂z

= 0;

• On the walls AB, CD and BC: non-slip boundary condition is set up for

the velocity: uz = 0 and ur = 0. Hence, the corresponding boundary

conditions for the stream function and the vorticity on the walls are given

as follows.
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– On the wall AB: Ψ = 0, ∂Ψ
∂r

= 0; and ω = ωw1;

– On the wall BC: Ψ = 0, ∂Ψ
∂z

= 0; ω = ωw2;

– On the wall CD: Ψ = 0, ∂Ψ
∂r

= 0; and ω = ωw3 ;

where ωw1, ωw2 and ωw3 are determined using Eq. (5.22a) with the

known stream function at each time step;

• On the centreline OE: the symmetric boundary condition of the velocity is

applied, i.e. ∂uz
∂r

= 0 and ur = 0. The corresponding boundary conditions

for the stream function and the vorticity are given by Ψ = Ψc,
∂Ψ
∂r

= 0

and ω = 0 where Ψc is determined by Eq. (5.14) using the inlet boundary

condition of the velocity.
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Figure 5.18: A non-uniform Cartesian grid for the 1:4 axisymmetric expansion
flow.

A non-uniform Cartesian grid used to simulate the flow. Finer grids in regions

near the outlet and inlet and around the abrupt expansion and the centreline are

necessary to produce accurate solutions. A detailed Cartesian grid is designed

as follows: ∆z1 = 0.05 ∀z ∈ [5, 7]; ∆z2 = 0.1 ∀z ∈ [0, 5]
⋃

[7, 10]; ∆r1 = 0.01

∀r ∈ [0, 0.1]; and ∆r2 = 0.025 ∀r ∈ [0.1, 1]. A schematic non-uniform grid is

described in Fig. 5.18. As in the contraction flow problem, the time step size

∆t = 1E−3 is used in the simulation, however, a smaller time step is used at

the initial time for the simulation of flows of highly concentrated suspensions. A

discussion of the present results and a comparison with those by Lu et al. (2006)

and others are as follows.
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Fig. 5.19 presents the effect of fibre parameters (φ, ar) on the vortex length (L∗
v)

of the 1:4 expansion flow for the following two cases of fibre suspensions:

• ar = 10 with a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20};

• ar = 20 with a range of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10}.

The present results are in very good agreement with those by Lu et al. (2006).

Indeed, in the contraction flows, the vortex length is more pronounced with in-

creasing φ and/or ar (Fig. 5.13), while it changes insignificantly in the expansion

flows (L∗
v ≈ 0.175 . . . 0.27) (Fig. 5.19). In addition, the vortex lengths in the

expansion flows are smaller than those in the contraction flows with the same

fibre parameters. However, while the vortex length is nearly unchanged, a small

lip vortex appears near the re-entrant corner with a sufficiently large value of φa2r

as seen in Fig. 5.20 for a range of φa2r ∈ {5, 10, 15, 20}. This is notable because

lip vortex has been reported only for the Newtonian and viscoelastic expansion

flows with high expansion ratio and Weissenberg number (Baloch et al., 1995,

1996) but not in any report on fibre suspension flows.
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Figure 5.19: The 1:4 axisymmetric expansion flows of non-dilute fibre suspensions:
the effect of fibre parameters on the vortex length (L∗

v) for ar = 10 and a range
of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20}; and ar = 20 and a range
of φ ∈ {0.01, 0.02, 0.05, 0.08, 0.10}.
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Figure 5.20: The 1:4 axisymmetric expansion flows of non-dilute fibre suspensions:
the effect of φr2a on the salient vortex pattern for φa2r ∈ {5, 10, 15, 20}. A lip vortex
appears for higher values of φa2r .
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Fig. 5.21 presents the orientation of fibres together with streamlines (black dashed

lines) around the expansion area for a range of φa2r ∈ {5, 10, 15, 20}. Numerical

experiments show that most fibres, except ones on the centreline, tend to align

with the flow direction in the upstream region whereas fibres’ direction becomes

more random along the streamline in the downstream region. As a result, fibres

are not tangential to streamlines near the vortex boundary, which is in contrast

to the observation in the contraction flow. These observations are in very good

agreement with those by several experimental and numerical studies (Abdul-

Karem et al., 1993; Chiba and Nakamura, 1998; Verweyst and Tucker, 2002).

The present numerical experiments also show that inertia has a strong influence

on the vortex size as evidenced by the fast growing vortex with increasing Re ∈
{0, 1, 2, 5} as seen in Fig. 5.22 and reported in experimental works by Abdul-

Karem et al. (1993); Townsend and Walters (1994). In addition, the boundary is

convex for the creeping flow (Re = 0) but becomes more and more concave for

the flows at higher Re.

A simulation of the 1:2 expansion flow of non-dilute fibre suspensions with the

fibre’s aspect ratio ar = 10 and volume fraction φ = 0.15 using a range of the

numbers of fibre configuration fields Nf ∈ {500, 1000, 2000} is also carried out in

order to compare the results of fibre stress with those by Lu et al. (2006). The

profiles of shear stress (τ zrf ), normal stresses (τ zzf and τ rrf ) and the first normal

stress difference (τ rrf − τ zzf ) at the location (z, r) = (5.75, 0.5) are presented in

Fig. 5.23. The present numerical experiments indicate that while τ rrf and τ zrf ,

about 10 (Fig. 5.23(a)) and 57 (Fig. 5.23(c)) for Nf = 1000, respectively, are in

good agreement with those by Lu et al. (2006), τ zzf and τ rrf −τ zzf reported in Figs.

5.23(b) and 5.23(d) are smaller than those of the same authors. Furthermore, the

smoothness of fibre stresses, especially τ zzf , is enhanced with increasing number

of fibre configuration fields as described in the figure.
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Figure 5.21: The 1:4 axisymmetric expansion flows of non-dilute fibre suspensions:
the fibre orientation distribution around the expansion area for ar = 10 and
φ ∈ {0.05, 0.10, 0.15, 0.20}.
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Figure 5.22: The 1:4 axisymmetric expansion flows of non-dilute fibre suspensions:
the effect of the Reynolds number on the salient corner vortex for ar = 10 and
φ = 0.12.
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Figure 5.23: The 1:2 axisymmetric expansion flows of non-dilute fibre suspensions
for ar = 10 and φ = 0.15: the evolution of fibre stresses including shear stress
(τ zrf ), normal stresses (τ zzf and τ rrf ) and the first normal stress difference (τ rrf −τ zzf )
at position z = 5.75 and r = 0.5.
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5.6 Conclusions

The multiscale simulation method based on the fusion of high-order IRBF ap-

proximation, BCF idea and DAVSS technique for dilute fibre suspensions by

Nguyen et al. (2015a) is further developed for non-dilute fibre suspensions in this

chapter. The work is to simulate semi-dilute and concentrated fibre suspension

flows where the evolution of fibre configurations governed by the Folgar-Tucker

equation are determined using the BCF method and the fibre stress is approxi-

mated by the Phan-Thien–Graham model. The efficiency of the present method

for the simulation of non-dilute fibre suspension flows is based on both the stabil-

ity of the stochastic process and the accuracy of the method. As an illustration

of the method, the Poiseuille flow through a circular tube and two challenging

flows; the 4:1 axisymmetric contraction and 1:4 axisymmetric expansion flows

are examined for a range of fibre parameters from semi-dilute to concentrated

regimes. Results by the present method are in very good agreement with those

by Lu et al. (2006). In addition, several dynamic behaviours of fluid flows from

the present numerical experiments including the fibres’ orientation are similar to

experimental observations reported by Abdul-Karem et al. (1993); Baloch and

Webster (1995); Verweyst and Tucker (2002). Finally, the present work discovers

the existence of a lip vortex in the 1:4 expansion flows of more concentrated fibre

suspensions.



Chapter 6

A numerical solution based on

the Fokker-Planck equation for

dilute polymer solutions using

high-order RBF methods

As an alternative to the BCF-based approach discussed in previous chapters,

this chapter presents a numerical method for the Fokker-Planck equation (FPE)

based mesoscopic modelling of dilute polymer solutions using radial basis func-

tion (RBF) approaches (Nguyen et al., 2014). The stress is determined by the

solution of an FPE while the velocity field is locally calculated via the solution of

conservation partial differential equations (PDEs) (Bird et al., 1987a; Chauviere

and Lozinski, 2004b). The FPE and PDEs are approximated separately by two

different IRBF methods. Indeed, the time implicit discretisation of both FPE

and PDEs is carried out using collocation methods where the high-order RBF

approximants improve significantly the accuracy of the numerical solutions and

the convergence rate (Ottinger, 1996; Hulsen et al., 1997). As an illustration of

the method, the evolution of a start-up planar Couette flow is studied for the

Hookean and finitely extensible nonlinear elastic (FENE) dumbbell models.
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6.1 Introduction

For polymer flow calculation, mesoscopic multiscale approaches are recently re-

garded as more realistic than the closed-form counterparts but the computational

involved requires much more work (Bird et al., 1987a; Ottinger, 1996). These

methods can be mathematically expressed in two equivalent forms (i) stochas-

tic differential equations (SDE) or (ii) the deterministic Fokker-Planck equations

(FPE) (Bird et al., 1987a; Chauviere and Lozinski, 2004b; Ottinger, 1996). Since

the SDE-based approaches usually yield noisy numerical approximation (Chau-

viere and Lozinski, 2004b; Ottinger, 1996; Tran-Canh and Tran-Cong, 2004) and

require large computation time, the simulation of the flow of polymer liquids us-

ing of the FPE has attracted significant attention in spite of their computational

complexity. Recently, radial basis function networks (RBFNs) are recognised as a

potentially powerful tool in numerical analysis. The application of RBFNs for the

numerical discretisation of differential equations has received a great deal of at-

tention over the past two decades (Fasshauer, 2007). More recently, an alternative

approach based on the integrated RBF (IRBF) expressions for the interpolation

of functions and the solution of differential equations was proposed (Mai-Duy

and Tran-Cong, 2001). It was found that the IRBF approach outperforms the

differentiated RBFs (DRBFs) approach regarding accuracy and convergence rate

over a wide range of the RBF width. In this work, we introduce the IRBF-based

numerical method for the FPE-based mesoscopic models for viscoelastic flow cal-

culations. The method is used to numerically discretise not only the macro-scale

conservation equations but also the FPE for the distribution of probability den-

sity of polymer molecules. The present method yields a higher accuracy of the

approximate solutions by avoiding the deterioration of accuracy caused by differ-

entiation, and reducing noises in the approximation processes.
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6.2 The FPE-based simulation method for some

non-Newtonian fluids

Consider the complete system of equations consisting of momentum and mass

conservation at the macroscopic scale, the FPE for the distribution of dumbbells

(or end-to-end vector r) and the coupling equation (Kramers formula) for stress

in dimensionless form as follows (Chauviere and Lozinski, 2004b; Tran et al.,

2012b).

Re
∂u

∂t
+Re (u · ∇u)− (1− ε)∆u+∇p = ∇ · τp, (6.1)

∇ · u = 0, (6.2)

∂ψ

∂t
(t,x, r) + u(t,x) · ∇ψ(t,x, r) = −∇r ·

[(
∇u (t,x) · r

− 1

2We
F (r)

)
ψ (t,x, r)

]
+

1

2We
∆rψ (t,x, r) ,

(6.3)

τp(t,x) =
ǫ

We

(∫ (
r⊗ F(r)ψ(t,x, r)

)
dr− Id

)
, (6.4)

where u is the velocity; p the pressure arisen due to the incompressibility con-

straint; τp the polymer-contributed stress; ψ(t,x, r) the probability density func-

tion of dumbbells r; Re = ρUL
ηo

the Reynolds number with ρ the density; We =

λHU
L

Weissenberg number; ηp = ndkBTλH the viscosity associated with the poly-

mers; λH = ζ/4H the relaxation time of the polymer chains with H and ζ a

spring constant and the friction coefficient between the dumbbell and the sol-

vent, repectively; ηs the viscosity of solvent; ηo (ηo = ηs + ηp) the total viscosity

of the solution; nd dumbbell density; kB Boltzmann constant; T the absolute

temperature; and ε = ηp
ηo
.

L =
√

kBT
H

is the characteristic length; U the characteristic velocity; and b non-

dimensional parameter related to the maximal polymer length (Ottinger, 1996;

Tran et al., 2009, 2011). F is the dumbbell internal force and given in dimension-

less form for the Hookean and FENE dumbbell models, respectively as follows.

F(r) = r, F(r) =
r

1− ‖r‖2
b

(6.5)
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In this research, the Gaussian-IRBF (G-IRBF) based scheme is employed for

solving the FPE (Eq. (6.3)) and then determining the probability density function

ψ (t,x, r) of r, which is used to calculate the polymer stress via the Kramers

formula (Eq. (6.4)). The discretisation of the macro-scale governing equations

(Eq. (6.1)-(6.2)) is carried out using an MQ-IRBF method. These two processes

are serially performed and connected together via the coupling equation in which

the field variables solutions obtained by one process is considered as the known

in the other.

6.3 Solving the FPE based multiscale model with

an IRBF method

Recently, Tran et al. (2012b) solved the FPE using the IRBFN approach. Since

mathematically, the FPE is a second-order parabolic partial differential equation

(Risken, 1989), the IRBF based computational techniques are described for the

numerical solution of parabolic PDEs, i.e. the numerical solutions of both PDEs

(6.1)-(6.2), and FPE (6.3). Consider a parabolic differential equation together

with its initial and boundary conditions as follows.

∂u

∂t
+ Lu = f, (x, t) ∈ Ω× [0, T ], (6.6)

u = g, (x, t) ∈ Ω× {0}, (6.7)

Bu = h, (x, t) ∈ ∂Ω× [0, T ], (6.8)

where Ω and ∂Ω are a bounded domain and its boundary, respectively; T a final

time; L a differential operator; B an operator expressing a boundary condition;

and f , g and h known functions.

Assume that the time interval [0, T ] is partitioned into Nt equal subintervals

[tn, tn+1] of length ∆t = T/Nt with t0 = 0 and tNt
= T . In fully discrete schemes,

Eq. (6.6) is discretised with respect to both time and space variables. The

discretisation in time is accomplished by a time-stepping scheme, followed by the

spatial discretisation based on the 1D-IRBFN method.
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Figure 6.1: Start-up planar Couette flow problem: the bottom plate moves with a
constant velocity V = 1, the top plate is fixed; no slip boundary conditions apply
at the fluid-solid interfaces. The collocation point distribution is only schematic.

Applying the θ-scheme to Eq. (6.6) yields

un+1 − un

∆t
+ θLun+1 + (1− θ)Lun = f, , (6.9)

where tn+1 = tn +∆t, un+1 = u(x, tn+1). Eq. (6.9) together with the constraints

Eqs. (6.7)-(6.8) at a time tn+1 are then spatially discretised using the 1D-IRBF

approach described in Section 2.5.1. The obtained solution is the values of the

field variable at the grid points.

6.4 Numerical example

The present method is verified with the simulation of the start-up planar Couette

flow using Hookean and FENE dumbbell model fluids. This problem was earlier

studied by Le Bris and Lelievre (2009); Laso and Ottinger (1993) and Tran et al.

(2011) for the Hookean and FENE dumbbell models. The problem is defined in

Fig. 6.1. For time t < 0, the fluid is at rest. At t = 0, the lower plate starts to

move with a constant velocity V = 1.

From the characteristics of the start up Couette flow of a dumbbell model fluid,
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the system of macro-micro equations (6.1)-(6.3) is rewritten as follows.

Re
∂u

∂t
(t, y)− (1− ε)

∂2u

∂y2
(t, y) =

∂τp
∂y

(t, y), (6.10)

∂ψ

∂t
(t, y,X, Y ) = − ∂

∂X

[(
∂u

∂y
(t, y)Y − 1

2We
F (X, Y )

)
ψ(t, y,X, Y )

]
+

∂

∂Y

(
1

2We
Y ψ(t, y,X, Y )

)
+

1

2We

(
∂2

∂X2
+

∂2

∂Y 2

)
ψ(t, y,X, Y ),

(6.11)

where u and τp are the x-component of the velocity and the shear stress of the flow,

respectively; (X , Y ) the components of the end-to-end vector r of a dumbbell at

a location y.

6.4.1 Start-up planar Couette flow with the Hookean dumb-

bell model

The fluid parameters of the flow include Weissenberg numberWe = 0.5, Reynolds

number Re = 0.1 and the ratio ε = 0.9 as done in Laso and Ottinger (1993);

Le Bris and Lelievre (2009), and Tran et al. (2011) using different BCF based

methods. In this research, the discretisation of Eqs. (6.10)-(6.11) are carried out

through two interlaced processes of different scale as follows.

Discretisation of the FPE in configuration space

Let φ be a new function defined as φ = ψ/ψeq where ψeq (X, Y ) is the equilibrium

solution of Eq. (6.11) for u = 0 and given by

ψeq (X, Y ) =
1

2π
exp

(
−X

2 + Y 2

2

)
.

The FPE (6.11) with F (X, Y ) = r for the Hookean dumbbell model is rewritten

as

ψeq
∂φ

∂t
(t, X, Y ) = − ∂

∂X

(
∂u

∂y
Y ψeqφ

)
+

1

2We

∂

∂Y

(
ψeq

∂φ

∂X

)
+

1

2We

∂

∂Y

(
ψeq

∂φ

∂Y

)
,

(6.12)
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with φ (0, X, Y ) = 1. The time discretisation of the FPE (6.12) using the semi

implicit method yields

ψeq
φn+1 − φn

∆t
= − ∂

∂X

(
∂u

∂y
Y ψeqφ

n

)
+

1

2We

∂

∂X

(
ψeq

∂φn+1

∂X

)
+

1

2We

∂

∂Y

(
ψeq

∂φn+1

∂Y

)
.

(6.13)

It is noted that ∂ψeq

∂i
= −iψeq, i = {X, Y }. Developing Eq. (6.13) yields

γ

(
∂2φn+1

∂X2
+
∂2φn+1

∂Y 2

)
− γ

(
X
∂φn+1

∂X
+ Y

∂φn+1

∂Y

)
− φn+1 =

X
∂un

∂y

∂φn

∂X
∆t +

(
XY

∂un

∂y
∆t + 1

)
φn,

(6.14)

where γ = ∆t
2We

. Using a uniform Cartesian grid of 25× 25 collocation points for

a bounded configuration domain (bi-periodic domain in the configuration space).

This corresponds to 625 dumbbells (ri, i = 1, · · · , 625) selected in the bounded

configuration domain (Fig. 6.2).

Eq. (6.14) is dicretised using the 1D-RBFN scheme as presented in Section 2.5.1

and the ψ values at grid points are then calculated as above ψ = φψeq.

The stress τp is determined using Eq. (6.4). The stresses (τp)i,j at the time ti and

collocation points yj are employed in the RHS of Eq. (6.15) for the discretisation

of the macro process as described in the next section.

Discretisation of the macroscopic equation

Applying the full implicit method for time discretisation of the macroscopic gov-

erning equation (6.10) yields

Re
un+1 − un

∆t
− (1− ε)

∂2un+1

∂y2
=
∂(τnp )

∂y
,

or

−α∂
2un+1

∂y2
+ βun+1 =

∂(τnp )

∂y
+ βun, (6.15)
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Figure 6.2: Start-up planar Couette flow using a Hookean dumbbell model fluid:
Discretisation of a 2-D bounded domain (bi-periodic domain) of the micro con-
figuration space {X, Y } developed at a location point yj of the Couette flow
problem. The collocation point distribution is only schematic.

where ∆t is uniform time step; β = Re/∆t; α = 1 − ε; and un+1 = u(y, tn+1)

with u0 = u(y, 0). The time discrete equation (6.15) is then spatially discretised

(see Section 2.5.1) using Ny uniform collocation points. T is the final time when

the flow has reached its steady state.

The macroscopic governing equation (6.15) together with initial and boundary

conditions are similarly solved using the 1D-IRBFs collocation method in which

(τp)n,j are known at the time tn and obtained from the micro-scale process.

Results and discussion

Using a time step of ∆t = 0.01 for both macro and micro processes, a coarse

spatial discretisation ∆y = 0.05 (Ny = 21), the solution obtained by the present

method is in very good agreement with ones using the IRBF-BCF multiscale

method with a similar discretisation for the macro-scale component and 1000

dumbbells for the micro configuration space by Tran et al. (2011). Several obser-

vations are presented as follows.

Fig. 6.3 depicts evolutions of the velocity at four locations y ∈ {0.2, 0.4, 0.6, 0.8}.
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Figure 6.3: Start-up planar Couette flow using a Hookean dumbbell model fluid:
the parameters of the problem are number of dumbbells N = 625, number of
collocation points Ny = 21, ∆t = 0.01, Weissenberg Number We = 0.5, Reynolds
number Re = 0.1 and the ratio ε = 0.9. The evolution of the velocity at locations
y ∈ {0.2, 0.4, 0.6, 0.8} in comparison with the results of the IRBF-BCF multiscale
method by Tran et al. (2011).

The results show a very small difference between the present results and those

obtained from the IRBF-BCF method in the unsteady period of the flow.

Fig. 6.4 presents the shear stress at four locations y ∈ {0.2, 0.4, 0.6, 0.8}. The

results show a significant decrease of noise in the approximation of the stress in

comparison with the results by the BCF based method as presented in Fig. 6.5.

Using a coarser distribution of collocation points (Ny = 15, ∆t = 0.01) and

(Ny = 17,∆t = 0.01), numerical experiments depict that the present method is

able to produce a very high degree of accuracy using a relatively coarse grid.
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Figure 6.4: Start-up planar Couette flow using a Hookean dumbbell model fluid:
the parameters are shown in Fig. 6.1 and the caption of Fig. 6.3. The evolution
of shear stress at the locations y ∈ {0.2, 0.4, 0.6, 0.8}.
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Figure 6.5: Start-up planar Couette flow using a Hookean dumbbell model fluid:
the parameters are shown in Fig. 6.1 and the caption of Fig. 6.3. The evolution of
shear stress at the locations y ∈ {0.2, 0.4, 0.6, 0.8} in comparison with the results
of the IRBF-BCF multiscale method by Tran et al. (2011).
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Figure 6.6: a) Start-up planar Couette flow problem using the FENE dumbbell
model; b) Discretisation of a 2-D bounded domain of the micro configuration
space X, Y developed at a location point yj: the collocation point distribution is
only schematic..

6.4.2 Start-up planar Couette flow with the FENE dumb-

bell model

The FENE fluid model is considered with the Weissenberg number We = 49.62,

Reynolds number Re = 1.2757, the ratio ǫ = 0.9479 and b = 50 as done in Tran

et al. (2009) and Laso and Ottinger (1993).

Following manipulation as done in Section 6.4.1, time discretisation of the FPE

(6.12) for the FENE model yields

γ

(
∂2φn+1

∂X2
+
∂2φn+1

∂Y 2

)
− γ

(
X
∂φn+1

∂X
+ Y

∂φn+1

∂Y

)
− φn+1 =

X
∂un

∂y

∂φn

∂X
∆t +

(
XF

∂un

∂y
∆t + 1

)
φn

(6.16)

where F = r

1− ‖r‖2

b

is for the FENE dumbbell model (Eq. (6.5)) and r2 = X2+Y 2.

Other parameters was presented before.

At a collocation point, using a grid of Nm collocation points for a bounded cir-

cular domain of radii r =
√
b (Fig. 6.6,b). The vectors ri, (ri, i = 1, · · · , Nm)

correspond to Nm dumbbells. The initial condition and boundary condition of
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Figure 6.7: Start-up planar Couette flow using FENE dumbbell model fluid: the
evolution of velocity at locations y ∈ {0.2, 0.4, 0.6, 0.8}.

the density function: (φ(0, r) = 1) and φ(t, r) = 0 (‖r‖ =
√
b).

Following the numerical procedure as presented in Section 6.4.1. Using a time step

of ∆t = 0.01 for both macro and micro processes, a coarse spatial discretisation

∆y = 0.05 (Ny = 21) for macro-domain and a grid of Nm = 341 collocation points

(301 internal points and 40 boundary points) for the configuration domain, the

solution obtained by the present method is in good agreement with those by Tran

et al. (2011) using the IRBF-BCF approach with a similar discretisation for the

macro-scale component and 1000 dumbbells for the micro configuration space.

Several observations and typical comparison with others are presented as follows.

Fig. 6.7 depicts evolutions of the velocity and at four locations y ∈ {0.2, 0.4, 0.6, 0.8}
and Fig. 6.8 shows the shear stress at the locations y ∈ {0.4, 0.6, 0.8} by the

present method. Generally, results are in very good agreement with those by

Tran et al. (2011). However, observations show that the evolution of stress ap-

proximated by the present method is smoother than those by Tran et al. (2011)

using the BCF based scheme with the same parameters.
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Figure 6.8: Start-up planar Couette flow using FENE dumbbell model fluid: the
evolution of shear stress at locations y ∈ {0.4, 0.6, 0.8}.

6.5 Conclusions

This chapter reports the use of the 1D-IRBF method to firstly simulate a macro-

micro multiscale model of dilute polymer solutions governed by the Fokker-Planck

equations and the mass and momentum conservation equations. All governing

equations are discretised using the 1D-IRBF collocation method. Although the

method requires further investigation, it has several advantages (i) improvement

of the approximation accuracy owing to the avoidance of the reduction in con-

vergence rate caused by differentiation; and (ii) significant reduction of noise in

the approximation in comparison with the stochastic macro-micro methods via

the use of integration as a smoothing operator to construct the approximants.



Chapter 7

Conclusions

This chapter concludes the thesis with a brief summary of the main contributions

and achievements of our present research project as well as some suggestions for

future works and extensions.

7.1 Research achievements and contributions

Key contributions and achievements of this research project are summarised as

follows.

7.1.1 Research contributions

The main contribution of this research project focuses on the further development

of IRBF-BCF based multiscale methods for the simulation of complex fluid flows

including dilute polymer solution, polymer melt and fibre suspension flows. The

contribution is summarised as follows.

• The improvement of the 1D-IRBF-BCF based CG method for the simula-

tion of polymer liquids. For the dilute polymer solutions, the method is

investigated through the simulation of complex polymer solutions modelled

by the bead spring chains with the presence of the mechanical interactions in
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polymer chains such as the finitely extensible nonlinear elastic spring force,

the hydrodynamic interaction and the excluded volume effects. For poly-

mer melt systems where the stability of numerical methods is a challenge

in the simulation, the method efficiency is demonstrated by the successful

simulation of polymer melts described by the classical reptation models.

These allow the present method to effectively simulate models which are

realistic in comparison with experimental results.

• The development of a new multiscale simulation technique based on the

fusion of the 1D-IRBFN method, the BCF idea and the DAVSS technique

for the simulation of dilute and non-dilute fibre suspensions with a range

of φa2r = 1 ÷ 40. Numerical experiments confirm the method efficiency

evidenced by (i) the enhanced convergence rate of the solution; (ii) the im-

proved stability of the simulation; and (iii) the avoidance of costly meshing

processes; only simple Cartesian grids are required to discretise equations.

7.1.2 Research achievements

Details of achievement can be summarised as follows.

A successful enhancement of the 1D-IRBFN-BCF based CG method

for the simulation of dilute polymer solutions using the complex non-

linear BSC model

This achievement has been introduced in Chapter 2. Macro conservation equa-

tions are temporally discretised with the Crank-Nicolson semi-implicit scheme

whereas the Euler explicit is for the SDE. The 1D-IRBFN method is used not

only to solve the macro conservation equations but also to approximate the vari-

ables and their derivatives (the shear stress and the first normal stress) obtained

from the evolution equation for configuration fields. These lead to a significant

improvement in the convergence rate and the stability of the method. In addi-

tion, the present method efficiently simulate dilute polymer solutions modelled by

complex bead-spring chains with the presence of the nonlinear interaction forces
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(FENE, HI and EV effects) between beads in the same polymer chain. Thus, the

method possesses a capability for the simulation of realistic models of polymers.

A successful simulation of polymer melt systems modelled by the rep-

tation theory using the 1D-IRBFN-BCF multiscale method

This achievement has been presented in Chapter 3. The present CG method

has been applied to successfully simulate polymer melt systems described by

reptation models including the DE, CB, RR and DR models. Although the

stability of numerical methods is always a challenge in the simulation, results by

the present multiscale method for the simulation of the start-up planar Couette

flow, and the flow past a cylinder in a channel show a very good agreement with

those published in the literature. In addition, the simulation of polymer melts

with different reptation models allows to investigate the role of several physical

interactions of polymers by considering parameters which are introduced in the

models.

A successful development of the IRBF-BCF-DAVSS multiscale scheme

for the simulation of fibre suspensions

This achievement has been presented in Chapter 4 and Chapter 5 for dilute and

non-dilute fibre suspensions, respectively. A new multiscale simulation technique

based on the fusion of the 1D-IRBF scheme, the BCF idea and the DAVSS tech-

nique has been developed to simulate fibre suspensions in complex flows. In

this new approach, the macro differential equations are written in the vorticity-

stream function formulation. The resulting vorticity transport equation is then

integrated with the DAVSS technique to enhance the stability of the 1D-IRBF

approximation method. For the micro procedure while the evolution of fibre con-

figurations is captured by the Jeffery equation for dilute fibre suspensions, the

Folgar-Tucker equation is used for non-dilute fibre suspensions. The Lipscomb

and the Phan-Thien–Graham models are used to determined the fibre stress ten-

sor for the dilute and non-dilute suspensions, respectively. The efficiency of the
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present method based on the improved convergence rate and accuracy, and the en-

hanced stability of the simulation, evidenced by results as stated in these chapters.

As an illustration, the stability and accuracy of the method have been verified

with several numerical examples including challenging problems such as the 4:1

and 4.5:1 axisymmetric contraction and the 1:4 expansion flows. The obtained

results are in very good agreement with ones in the literature. In particular, our

numerical experiments discover several interesting dynamic behaviours of fibre

solutions flows, for example, the secondary vortex in the 4:1 axisymmetric con-

traction flow or the lip vortex in the 1:4 axisymmetric expansion flow for the

highly concentrated fibre suspension (Chapter 5).

An initial success in the simulation of polymer solutions governed by

the FPE using the 1D-IRBF scheme

This achievement has been presented in Chapter 6. The conservation equation

and the FPE are temporally discretised using a θ method. At a time step, both

of them are then spatially discretised using the 1D-IRBF collocation method.

While the MQ-IRBF is used for the conservation equations, the G-IRBF is for

the FPE. Although more investigations are necessary, the initial results show that

the method benefits (i) the enhanced numerical stability in solving the FPE, and

(ii) the increased convergence rate of the method.

7.2 Possible future works

Several possible future works include

• A development of parallel algorithms for both macro and micro procedures

based on Domain Decomposition method. The algorithm as expected will

help reduce the computational time as well as further improve the stability

of the present method.

• A further development of the 1D-IRBFN-based method for the solution of
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both the deterministic and stochastic evolution equations of coarse-grained

models, especially for the FPE based macro-micro multiscale approach.

• An application of the present multiscale simulation scheme in simulating

several real problems in the biology and/or food security.



Appendix A

Radial Basis Functions

A.1 Some well known RBFs

The following are several commonly used RBFs.

• Gaussian-RBF

gj(r, bj) = gj(‖x− cj‖, aj) = exp

(
− r2

(aj)2

)
, (A.1)

• Multiquadrics RBF (MQ-RBF)

gj(r, aj) = gj(‖x− cj‖, aj) =
√
r2 + (aj)2, (A.2)

• Inverse multiquadrics RBF (IMQ-RBF)

gj(r, aj) = gj(‖x− cj‖, aj) =
1√

r2 + (aj)2
, (A.3)

• Thin-plate splines RBF (TPS-RBF)

gj(r) = gj(‖x− cj‖) = r2s log(r), s = 1, 2, ..., (A.4)
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• Compact support RBF (CS-RBF)

gj(r) = gj(‖x− cj‖) = (1− r)l+p(r), l = 1, 2, ..., (A.5)

where x is the field points, cj and aj the centre and width of RBF at the jth

node, s the order of TPS-RBF, and p(r) is a polynomial of Wendland CS-RBF

(Wendland, 1995, 1998). While the MQ-RBF, TPS-RBF and CS-RBF exhibit a

global response, i.e. they increase monotonically with increasing distance from

the centre, the Gaussian-RBF and IMQ-RBF have a local response (localised

function) (Haykin, 1998; Beatson and Light, 1997). RBFs are multivariate as

a function of x ∈ Rd, but univariate as a function of r, which should be a

tremendous computational advantage if the space dimension is large.

A.2 MQ-RBFs from integration process

For the 1D-IRBF scheme used in this research project, the one-dimensional MQ-

RBF has been chosen for the approximate process of the original function and its

derivatives and written as

G
[2]
j = gj (x) =

√
(x− cj)2 + a2j , (A.6)

The new basis functions obtained from integrating the MQ-RBF are as follows.

G
[1]
j (x) =

∫
G

[2]
j (x) dx

=
r

2
A+

(ai)
2

2
B,

(A.7)
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G
[0]
j (x) =

∫
G

[1]
j (x) dx

=

(
r2

6
− (ai)

2

3

)
A+

(ai)
2r

2
B,

(A.8)

where r = x− ci, A =
√
r2 + (ai)2, and B = ln(r + A).
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Tensor products

B.1 Dyadic products

B.1.1 In 2-D space

Let a = {a1, a2}T , b = {b1, b2}T , c = {c1, c2}T and d = {d1, d2}T be vectors in

2D space. The dyadic product of two vectors a and a denoted as ab or a⊗ b is

a second-order tensor and defined as follows.

ab =





a1

a2









b1

b2





=



a1b1 a1b2

a2b1 a2b2


 (B.1)

The dyadic product of four vectors abcd is a fourth-order tensor and given by

abcd =





a1

a2









b1

b2









c1

c2









d1

d2





=



a1b1 a1b2

a2b1 a2b2






c1d1 c1d2

c2d1 c2d2




=




a1b1c1d1 a1b1c1d2

a1b1c2d1 a1b1c2d2

a1b2c1d1 a1b2c1d2

a1b2c2d1 a1b2c2d2

a2b1c1d1 a2b1c1d2

a2b1c2d1 a2b1c2d2

a2b2c1d1 a2b2c1d2

a2b2c2d1 a2b2c2d2




(B.2)
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It is worth noting that the double dot product is only between tensors whose

order is two or higher. The double dot product of two second-order tensors is

a scalar whereas the product between the second and fourth-order tensors is a

second-order tensor.

B.1.2 In 3-D space

Let a = {a1, a2, a3}T , b = {b1, b2, b3}T , c = {c1, c2, c3}T and d = {d1, d2, d3}T be

vectors in 3-D space, the dyadic products ab and abcd are written, respectively

as follows.

ab =




a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3




(B.3)



B.1. Dyadic products 224

abcd =




a1b1c1d1 a1b1c1d2 a1b1c1d3

a1b1c2d1 a1b1c2d2 a1b1c2d3

a1b1c3d1 a1b1c3d2 a1b1c3d3

a1b2c1d1 a1b2c1d2 a1b2c1d3

a1b2c2d1 a1b2c2d2 a1b2c2d3

a1b2c3d1 a1b2c3d2 a1b2c3d3

a2b1c1d1 a2b1c1d2 a2b1c1d3

a2b1c2d1 a2b1c2d2 a2b1c2d3

a2b1c3d1 a2b1c3d2 a2b1c3d3

a2b2c1d1 a2b2c1d2 a2b2c1d3

a2b2c2d1 a2b2c2d2 a2b2c2d3

a2b2c3d1 a2b2c3d2 a2b2c3d3

a3b1c1d1 a3b1c1d2 a3b1c1d3

a3b1c2d1 a3b1c2d2 a3b1c2d3

a3b1c3d1 a3b1c3d2 a3b1c3d3

a3b2c1d1 a3b2c1d2 a3b2c1d3

a3b2c2d1 a3b2c2d2 a3b2c2d3

a3b2c3d1 a3b2c3d2 a3b2c3d3

a1b3c1d1 a1b3c1d2 a1b3c1d3

a1b3c2d1 a1b3c2d2 a1b3c2d3

a1b3c3d1 a1b3c3d2 a1b3c3d3

a2b3c1d1 a2b3c1d2 a2b3c1d3

a2b3c2d1 a2b3c2d2 a2b3c2d3

a2b3c3d1 a2b3c3d2 a2b3c3d3

a3b3c1d1 a3b3c1d2 a3b3c1d3

a3b3c2d1 a3b3c2d2 a3b3c2d3

a3b3c3d1 a3b3c3d2 a3b3c3d3




(B.4)
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B.2 Double dot product

Consider two second-order tensors A and B and a fourth-order tensor Ω. The

products A : B and Ω : A are explicitly written in 2D and 3D spaces as follows.

B.2.1 In 2-D space

A : B = A11B11 + A12B12 + A21B21 + A22B22, (B.5)

E = Ω : A =



E11 E12

E21 E22


 , (B.6)

where the components of the tensor E are defined by

E11 = Ω1111A11 + Ω1112A21 + Ω1121A12 + Ω1122A22,

E12 = Ω1211A11 + Ω1212A21 + Ω1221A12 + Ω1222A22,

E21 = Ω2111A11 + Ω2112A21 + Ω2121A12 + Ω2122A22,

E22 = Ω2211A11 + Ω2212A21 + Ω2221A12 + Ω2222A22.

B.2.2 In 3-D space

A : B = A11B11 + A12B12 + A13B13 + A21B21+

A22B22 + A23B23 + A31B31 + A32B32 + A33B33,
(B.7)

E = Ω : A =




E11 E12 E13

E21 E22 E23

E31 E32 E33



, (B.8)



B.2. Double dot product 226

where the components of the tensor E are defined by

E11 =Ω1111A11 + Ω1112A21 + Ω1113A31 + Ω1121A12+

Ω1122A22 + Ω1123A32 + Ω1131A13 + Ω1132A23 + Ω1133A33,

E12 =Ω1211A11 + Ω1212A21 + Ω1213A31 + Ω1221A12+

Ω1222A22 + Ω1223A32 + Ω1231A13 + Ω1232A23 + Ω1233A33,

E13 =Ω1311A11 + Ω1312A21 + Ω1313A31 + Ω1321A12+

Ω1322A22 + Ω1323A32 + Ω1331A13 + Ω1332A23 + Ω1333A33

E21 =Ω2111A11 + Ω2112A21 + Ω2113A31 + Ω2121A12+

Ω2122A22 + Ω2123A32 + Ω2131A13 + Ω2132A23 + Ω2133A33,

E22 =Ω2211A11 + Ω2212A21 + Ω2213A31 + Ω2221A12+

Ω2222A22 + Ω2223A32 + Ω2231A13 + Ω2232A23 + Ω2233A33,

E23 =Ω2311A11 + Ω2312A21 + Ω2313A31 + Ω2321A12+

Ω2322A22 + Ω2323A32 + Ω2331A13 + Ω2332A23 + Ω2333A33,

E31 =Ω3111A11 + Ω3112A21 + Ω3113A31 + Ω3121A12+

Ω3122A22 + Ω3123A32 + Ω3131A13 + Ω3132A23 + Ω3133A33,

E32 =Ω3211A11 + Ω3212A21 + Ω3213A31 + Ω3221A12+

Ω3222A22 + Ω3223A32 + Ω3231A13 + Ω3232A23 + Ω3233A33,

E33 =Ω3311A11 + Ω3312A21 + Ω3313A31 + Ω3321A12+

Ω3322A22 + Ω3323A32 + Ω3331A13 + Ω3332A23 + Ω3333A33.
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