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Arclengh continuation method are usal to condud a detailed branchimg study of standig wave
solutiors for fluids in a rectangula containey using deph and creg acceleratia as control
parametersAt eat deph the applicabé acceleratia range extend betwee zero ard one ard a
numbe of multiple solution structure are uncoveredAn intimate connectim is establishd between
thee structurs and the phenomeno of harmonc resonance. © 199 American Institute of

Physics [S1070-663(99)02305-3

I. INTRODUCTION

Resonane is a phenomeno coinciding with zero divi-
sors in perturbatiom solution coefficients and can be inter-
pretad as acritical respone of the linear patt of a systen to
the forcing terms from the nonlinea part In the contex of
wate waves resonane is associaté with a specift energy
sharig mechanimm betwe@& certan interactig wave
components, causimy the growth of some modes at the ex-
pen®e of others A key manifestatio of resonane is the
occurrene of multiple solutiors and associaté bifurcation
behavior which is the main focus of this pape for the case
of standiry gravity waves.

Wate wave resonane behavio has receivel consider-
able attention in a variety of flow configurations For finite
dept capillary—gravity waves resonane is associateé with
critical wave numbes at which a normd perturbatio solu-
tion breals down? The critical wave numbes are deph de-
pendemn and multiple solutiors are possibe at or nea these
resonah values In a numerica study of steag gravity—
capillary waves on infinitely deep water, Chen ard Saffmari
linked nonuniquenesto a resonane mechanismand pro-
ducal correspondig bifurcation diagrans illustrating mul-
tiple solution behavior Tolard and Jone$ reinforcel this
work via an integrd equatio formulation demonstratig an
array of possibé primary ard seconday bifurcation behav-
ior. More recently Okamob and ShojP useal a Levi-Civita
capillary—gravity wave formulation with spectré collocation
to study resonane ard bifurcation behavia associaté with
specific wave mode interactions. Nonphysical self-
intersectig waves were included in the computel solutions,
providing essentibbrand links betwea physica portions.
Relatel work by Astor? computel actua paths of bifurcation
points originating from modk interactian points confirming a
substantibincreag in complexity as surfa@ tensim is re-
duced or gravity becoms dominant Pure gravity waves,
which cannd be obtainel as the continuows limit of
capillaly—gravity waves for vanishirg surfa® tension were
considerd by Chen ard Saffmarf using an integrodifferen-
tial equatian formulation Nonuniguenesbehavia was also
observd for sufficiently large waveheights.

Previots studies of standimy finite-deph gravity waves
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offer littl e insight into the realns of multiple solution behav-
ior. Vanden-Broek and Schwart? usel a series truncation
method expandiry the surfa@ elevation ard velocity poten-
tial, to produe frequeng—steepnes curves for small-
amplitude waves Their computel resuls indicated the exis-
tene of two different standig waves with the same
frequeng at certan depths but the matte was not pursued
beyord this stage Tadjbakh& ard Keller® provided a
uniguenes condition for standirg waves defining critical
deptts at which the linear frequeng of sorre harmonc is an
integrd multiple of the fundamenthfrequency In a subse-
quen perturbation solution to third order nonunigueness
was not explored Consideraly} more light was thrown onto
the phenomenn by Concust® who considerd standing
capillaiy—gravity waves Concts gave amodified uniqueness
condition defining critical deptts that were shown to gener-
ate zem denominatas in the perturbatiom solution coeffi-
cients or resonanceNea the® resonahdeptts it was em-
phasizé tha smal nonzep denominatos would produce
very large solution contributiors from particula harmonics,
afact with crucid implicatiors on the validity of the pertur-
bation solutions While nat specificaly addressig sud im-
plications Vanden-Broeck! was able to construt a pertur-
bation solution valid at the first critical depth clearly
demonstratig multiple solutions Comparisos with com-
puted resuls at neighborimg depths using the schene in Ref.
8 identified Vanden-Broecls two solutiors as membes of
distind solution families.

In alater study!? Concts examinel the uniquenes con-
dition without surfa@ tension ard showel tha the corre-
spondirg excludel deptts formed a denumeralyl infinite set
that is densey distributed on (0,). At ary deph there are
infinitely mary resonahor nea resonanterms in afull per-
turbation expansionwhich mears tha high-orde ternms of
comparal® magnitue to the low-orde terms will be lost in
the truncation Modificatiors to the perturbatiom solution
mug be mack to accoun for this.

In this numericé study a suitabk continuatiaon procedure
is coupla to a semi-Lagrangia bounday integral/Rung—
Kutta discretizatio of the hydrodyname equatiors to permit
a comprehensig exploration of the depth-cresacceleration,
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(d,A;), paramete space At ary depth solutiors to the re-

sulting nonlinea systen of equatios are continual in A,

using pseudoarclengt continuation'® a proces developed
specificaly to handk singula brand points For branching
diagran purposescomputa frequeng is chose as the rep-
resentatie standirg wave property and this is plotted
agains A for arange of depths Detailed diagrans are gen-
erated uncoverirg a richnes of bifurcation behavio that
clearly signifies harmonc resonance Resonah depths as
predictel from the uniquenes conditiors describé earlier,
are found to occupy uppe bound of deph ranges in which

the resonan activity persiss in the branchirg diagrams.

Il. CALCULATIO N OF FINITE DEPTH STANDING
WAVES

A. Governin g equation s and boundar y integral
formulation

The inviscid, incompressiblgpotentia flow is bounded
aboe by a free surface laterally by paralld verticd walls
ard below by a horizonta solid surface Laplaces equation
holds in the fluid for the velocity potential ¢,

V2¢(x,y,1)=0, 1)

while kinematt ard dynamt conditions,

¢y: Mt dx7xs 2

$=—39°—gn, &)

whet q is the fluid velocity magnitua and g is the accel-
eratin due to gravity, apply on the free surfae y= 7(x,t).

Lengths and times are mace dimensionles with respet to

L/27 and yL/(2wg), respectively, wherd is the wave-
length Solid bounday conditions,

¢x=0, (4)
apply on the verticd walls at x=0 and 7 while
d’y:Ou 5)

holds on the horizontad lower bounday y= —d. Finally, the
zeo mean height condition,

_ 2w
n(t)=f0 7(X,t)dx=0, (6)

is also imposed servirg as an additiond mas conservation
measure.

The free surfa@ can be representé as an infinite, peri-
odic vortex she¢ separatig two fluids * with the uppe fluid
of zemw density Imposirg symmety abou x=0 gives mo-
tion betwea two verticd walls separaté by haf a wave-
length ard reflectirg the she¢ abou y= —d satisfies the
horizontd bounday condition giving the complex potential
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f(z,t) = @d(X,y, 1) +ih(X,y,1)
i .
=== f_ma(l {log[z—Z(j,1)]

—log[z—Z(j )+ 2id]}d],

wher a(j,t) is the vortex strengh per unit parametej, t is
time, and z is a field point off the free surface Z(j,t) isa
materid point on the free surfa@ and overbas denot the
complex conjugate Imposirg periodicity, with spatiad period
N ard differentiatirg gives the complex velocity field

q(z,t)y=u—iv
i N
:_Efo a(],t)
z—2(j 1) z—7(j,t)+2id\]
e e

)

where u ard v are the horizonta and verticd velocity com-
ponents Moving z onto the free surfae then gives the sin-
gular integrd equation

ap(k,it) 1 1 (N
7] :Ea(k’t)—'—ﬂfo a(j,nx
9Z(k,t) (Z(k,t)—Z(j ,t))
5 | 2

—cot

zZ(k,t)—2z(j,ty+2id\]]
5 dj,

for the vortex strengh a(k,t) at surfae point Z(k,t). After
solving this the free surfa® velocities [U(k,t),V(k,t)] can
be calculatel from (7) and materid surfae points Z(k,t)
=X(k,t) +iY(k,t) then move accordimg to

éx(k’t)—u kit 8

ot - ( ’ )1 ( )

aY(k,t) CVikt ©
(9t - ( ’ )1

while the correspondig velocity potentid evolves according
to

dep(k,t)
at

1
=—Y(k,t)+ E[Uz(k,t)+V2(k,t)]. (10)

B. Discretizatio n and numerica | solution

After choosimg a spatid discretizatim N, the discrete
integrd equati to be solved for the vortex strengtls a,
becomes
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for k=0,...N/2, which is a diagonaly dominan linear sys-
tem of equationsPrimes refer to differentiation with respect
to the surfa@ parametej, which is implemente spectrally.
The discree surfae velocity is then given by the summation

- ag | Kak 2a{<
W2z am\(zp? 7

i Z-Z
> a; co

_E]‘:o,j;&k 2
. N/2—-1 — .
i Z+Z; Zy+Z;+2id
+ 121 aj| cot| —— | —cot| ————
N/2 - .
| Zk_Zj+2|d
+Ej§=)0 3 cot| =——5——|, k=0,..N/2,
(12

which is atrapeziun evaluatim of (7) with appropria¢ sin-
gularity treatment* Substitution of the discree velocities in

(8), (9), ard (10) then complete the semidiscred equation
system Thisis atwo-parameterimplicit nonlinea systen of

ODEs,

du_

T =f(u,A;,d),

(13

where u contairs the discree surfae coordinats ard poten-
tials (X;,Y;,¢;), and A; istheinitial downwad acceleration
at the left wall,

_aV(00)
< oat

an identifying paramete closel relatel to wave steepness.

All time integration is carried out with an explicit fourth-
orde Runge—Kutta scheme.

C. Standin g wave solutions , continuatio n in
parameters

Standig waves are time-periodc solutiors of the semi-
discree equationssatisfyirg the bounday value problem,
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du
—=f(u,A.,d), 0<t<T
dt
u(0)=u(T),

wher T is the unknown period By integratirg the ODE
systen in time through one periad or pat thered and then
applying appropria¢ periodicity conditiors the boundary
value problem is recas as asysten of nonlinea equations.
Shootirg method se& solutiors of this nonlinea systen by
iterative procedurs and will be useal throughout.

The actua solutiors being sough here represeninitial
(t=0) wave profiles with ze velocity tha repea them-
selves one periad later, for given parametes A, ard d. Tak-
ing surfa@ velocity potentials¢,(0)=0 and using spatial
symmety with N surfa@ points pe wavelengh leaves N
+ 2 unknowrs to be found,

V= [Xl(o)l e !XN/Zfl(O)vYO(O)r e 1YN/2(O)1T1a]1

where« is the surface deviation from antisymmetry dnat
the quarter-periodThis is an extra variabk specialy intro-
ducdl to facilitate enforcemenof the zer mean heigh con-
dition (6) at t=0, which is numericaly evaluaté with the
trapezium rule,

_ N IX
7(0)= 2, Y(k0)—-(k0)=0.
k=1 ]

A secoml equation comes from enforcirg the prescribe crest
acceleratia via differencirg in time,

A ~ V(0,At)—-V(0,0)
c At :
while the remainirg N equatiors are definal by integratirg in
time through a quarter-perid and imposirg the conditions

X (Ti)= 2T Bsine™i i=1..N2—1
i( )_WJ+ SIHWJ, j=1,..N/2—1,
Y(TI4)= Yy i(TI4), j=0,..N/A—1

di(TI14) =—dnps2-j(TIA +a, j=0,..N/4.

Use of the extra variable « in the last line essentially
amouns to addirg atime-dependenfunction to the velocity
potential ¢, which has no effect on the flow dynamics. The
parameteB controk the surfa@ X coordinaé spacim at T/4,
providing minor grid adjustmerg when neede for extreme
waves with A, close to 1.

Assembliry the equatios produce a parametrizd non-
linear system,

a(v,Ac ,d)=0,

to be solved acros the physicd range of creg accelerations,
0<A.<1, for various depths This demand anonlinea sys-
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tem solve in conjunction with a continuation procedue to
cove the A, range a eadh depth Pseudoarclength
continuatiort® is extremey effective for this purpose being
readily capabé of handlirg the various singula points likely
to be encounteredfor example turning points and bifurca-
tion points To briefly descrile the techniquehold d constant
and conside a parametrizatio of the solution [v(s),A(S)],
whet s is the arclengh along the solution curve implicitly
defined by normalizirg the tangen vector,

W= V()| 2+ A(8)[2=1.

Given a solution point w; =[v(sj),Ac(sj)]T a s=s; the new
solution w;,, a sj;=s;+As satisfies the augmentd sys-
tem,

_ g(Wj 1) _
G(wjq1)= (W 1—w) W, — As =0, (14
which says that w; . ; lieson ahyperplae distart As from w;
and normd to the tange vecta w;, hene the “pseudoarc-
length” property Tangem vectos w;=[V(s;),A(s;)]" can
be approximatd by secants,

excep a the first step when a previows solution w;_; is
unavailable In this ca® the linear system,

ag v a9

WA A
obtainel by differentiatirg g v(s),A.(s) ]=0 with respetto
s, is solvad for V/A., from which a normalizel tangen is
easiy constructed To switch solution branchs simply re-

quires a sufficiently large incremen As in (14), which is
solved with Newton-type methods.

D. Integral invariants

As afinal ched on the computel results integrd invari-
anst for the motion can be calculatel as the wave evolves
through one period The invarians are expressd in terms of
quantities on the free surfacé* and include totd energy,

1 (N
EJO {6 DX (,0DVI,D=Y'(1,DU(],1)]

+Y3(j, X' (j,0)}dj,

the averag volume flux acros the surface which is zero,

1N , , . .
ZL [V(J,OX'(j,)=U([,H)Y"(j,1)]dj =0,

mean surfa® elevation,
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N U
o= | Yd.oxdndi-o

which is alo zerg and the differene betwea the horizontal
avera@ momentun componeh ard the momentun of the
undisturbe shea flow,

1 (N S
EL Y(j,t)¢'(j,t)dj.

If variatiors in ary of the® quantities becone too large dur-
ing one period then a spatid grid refinement N, will be
required.

Ill. NUMERICAL RESULTS
A. Frequenc y curve s and branchin g behavior

The computel resuls are convenienty viewed as fre-
queng curves in which the calculatel standirg wave fre-
quencyw is plotted against initial crest accelerati@g for a
given depth For a spatid discretizatio N= 64, Fig. 1 gives
a series of computel frequeny curves alongsia the corre-
spondiry resuls from Ref. 15, revealirg consideral# dis-
crepancies At ead dept the computel frequencis from
Ref. 15 are lower than those given her ard the discrepancy
increass with A., while the overal disagreemenbecomes
more pronounced at smalle depths This is due to a neglect
of the ze mean heigh condition (6) in Ref. 15, and serves
to illustrate the numericd importane of this condition par-
ticularly at smalle depths The resuls in Ref. 15 were vali-
dated agains those of Vanden-Broek and Schwart? for the
single deph of d=3.0, almog half a wavelength which is
considerd large in a hydrodynamis context At this depth
the discrepang shoutl be smal acros awide portion of the
A. range accordirg to the observe behavio in Fig. 1. In
addition the arclengh continuation methal usel here per-
mits a wide exploration of the paramete space capturing
some critical nonlinea phenomea nat observe in Ref. 15.

The obviows outstandig featue of the plots in Fig. 1
occus at deph d=0.562 in which multiple solution
branche with turning points appeay producirg up to three
standirg wawve solutiors with given initial creg acceleration
A . Intheleft brand of this plot, w increases from the linear
fundamenthvalue w,= tarh d before the turn occurs while
the right brandh turns twice, with a consideral# gap between
the branche whetre solutiors were not found This behavior
is not isolated ard is closel associaté with the phenom-
enan of harmonc resonanceA study of neighborirg depths
will now provide more insight into the natue of this connec-
tion.

Additiond frequeng curves for selecte depths in the
neighborhod of d=0.562 scalal by their respectie linear
fundamenth values wy, are given in Fig. 2, illustrating a
persistenh pair of opposimg turning points from the left and
right branchesAs dept increassin the given range the gap
betwee the turning points passs through aloca maximum
before shrinking toward zerq while the entire structue shifts

toward the w axis. Figure 3 summarizes this behavior by
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plotting the location of both (left and right) turning points  the® resonahdepths at which nonuniquenesshout occur,

agains depth revealirg the shape of acorrespondig “hole” are availabk from the formula®
in the (d,A;,w) solution surface. The “beginning” of this
hole marks the birth of the resonane in the linear regime Jntarhnd=mytarhd, m=1,2,..., n=23,.., (15

(A.—0) and coincides with a critical deph at which the
turning points coalese on the w axis. Analytic predictions of which states that the frequeng of the nth spatid harmonc is
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FIG. 3. The uppe plot gives computel locatiors of the left and right turning points in a deph range boundel abowe by the (3,5 resonahdepth This view

looks down on the (d,A. ,w) solution surface, revealing the resonance “hole.” The lower plot indicates the strength of the resonance, in terms of gap size

betwee the turning point pairs and its dependeneon A, as measurd at the left turn. A linear portion confirms nea seconl orde dependene for A,

<0.3.

an integrd multiple, m, of the fundamenthfrequency In this
case the appropriate resonant depth is d
=0.62323542680.. for (m,n)=(3,5, correspondig to a
resonab interaction betwea the fundamenthard fifth har-
monic, with the frequeng of the latter being three times that
of the fundamental.

At the othe end of the hole d~0.53 the turning points
coalese again with further deph reductiors yielding “up-
per’ ard “lower’’ branche in the frequeny curves as
shown in Fig. 4. The plot progressethrough severa depths
in this neighborhoodshowirg the turning points just before
the hole closes and what appeas as apar of rotated turning
points just after. Geometrically this is clarified by returning
to Fig. 3 and picturing the hole outline as a rim over which
the solution surfae folds. Sectiors normd to the page par-
allel to the A, axis yield opposimy turning point pairs in the
hole ard upper/lowe brand pairs below the hole, as seen
for d=0.5311 in Fig. 4. The actua size of the A; gep be-
tween the turning points is in sone seng ameasue of the
strengh of the resonanceard this is plotted agains$ crest
acceleratia (at the left turning point) in Fig. 3. A linear
portion of the plot with approximag slope 1.9 indicates near-
second-ordebehavia in this respect.

Concug® gave amodified versia of the nonuniqueness
condition (15) for standig capillaly—gravity waves and
showal tha the resultirg critical deptts produce zero de-
nominatos in the perturbatio solution coefficients resulting
in so-callel harmont resonanceAs aresonahdeph is ap-
proachedsmal nonzepo denominatas produe large coeffi-

cienss for particula harmonicsincreasig their relative con-
tribution to the overal solution With regad to the previous
results it will be shown tha the fifth harmonc inded fits
this category however it is interestimg to note that the asso-
ciated near-resonarbehavia is only observe at deptts be-
low the predictel critical depth Near-resonarbehaviou can
be studiel analyticaly using detunirg parameters® a con-
cept employel by Robertd’ to explore the links between
nonuniquenesand resonane in the perturbation study of a
modd wave equation In this study up to three solutiors were
found nea resonane points supportirg a generdconclusion
tha resonane induces multiple solutions as witnessé in
Figures 1 ard 2. Furthe work by Concud? showel tha the
sa of resonahdepths satisfyirg (15), is densey distributed
on (0,) ard that for ary fluid deph there are infinitely many
resonahor nea resonahterms in a perturbatio expansion.
High orde terms of comparal# magnitue to the low order
terms mug necessanl be omitted from the truncatel series,
castirg doult on the validity of the procedure Due to its
finite spatid resolution the numericé schene unde consid-
eration here would also be subjed to a similar phenomenon.

B. The (3,5) resonance

An obviouws link has alread been establishd between
the observd branchiry behavia and the (3,5 resonanceTo
confirm thes integer parametes ard further substantiad the
connectio requires a close examinatiam of the computed
results First, spectré plots of the surfae profiles indicae a
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fith harmonc presene in varying amouns along the
branchs of Fig. 2, from nore to almog totd dominance,
reflectirg the near-resonancharacte of the solutions As a
typicd exampé conside the plot for d=0.57, from which
representatie surfae profiles are given in Fig. 5, alorg with
correspondig spatid spectain Fig. 6. On the lower left and
uppe right branche the solutiors are essentialf pure funda-
menta] while thoe on the uppe left and lower right
branche are more oscillatory, due to the presene of the fifth
harmoni¢ indicating the resonat interaction betwea these
modes Oscillation is considerabt more pronouncd in the
uppe left profile, which contairs a shap locd maximum
nea the left wall ard a broal locd minimum nea the right
wall, features noticeaby absemn from the lower right profile.
The turning points signify a transition betwee resonahand
nonresonansolutiors in eat case and contributiors from
the resonah harmone¢ increag along the resonah branch
sectiors away from thes points giving more oscillatory pro-
files and amplifying the locd maximun see in Fig. 5.
Anothe importart featue of the frequeng curves in
Fig. 2 is the locd minimum appearig in the right-hand
brand as the resonahdept is approachedfor d=0.60 and
0.61 Graphically the frequencis at thes locd minima ap-
pea to coincide with the linea fundamenthfrequencyw,
while the correspondig surfa@ profiles are almog purely
fifth harmoni¢ as shown in Fig. 7 for d=0.60 However,
time integration of thee waves over the computel period
shows tha this value is nat in fact the minimad wave period,
but approximatef three times this minimum, as the plot of
y(Ot) in Fig. 7 shows Alternatively, the actud frequeny is
approximatey} three times the computel valug which is still
perfecty computationall valid since awave with period T/3

al has periods of 2T/3,T,.... A linea fundamenthsolu-
tion from the left-hard brand a smal creg acceleratia is
alo includd in Fig. 7 to illustrate the frequeng relationship
betwea the two solutions.

More preci® confirmation of the resonah frequency
multiple m= 3 is achievel by using the locd minimum fre-
queng solutiors from Fig. 2 to compue new solutiors at
one-thid the origind computel period then brand tracing
from thes bad to the w axis. This reveals entire families of
pure fifth harmonicswith the frequeng ratio w/ wy converg-
ing to the value 3 on the w axis as the resonant depth
approachedBrand sectiors for deptls d=0.6Q 0.61, 0.62,
ard 0.623 are shown in Fig. 8 to demonstrag this conver-
gence.

Moving a fina step close to the (3,5 resonah depth,
Fig. 9 zoons in on the smal A; (linean behavio a d
=0.623 wherr the gap betweea the turning points is ap-
proximatey 5x10 * in the vicinity of A,=0.009 This
strongy suggest convergene to a transcriticé bifurcation®
in the linear limit as the predictal resonah dept is ap-
proachedIt could be sad tha the resonane grows from this
transcriticd bifurcation which “unfolds’’ with nonlinearity
to give apair of turning points tha mowve in the (A.,)
plare with depth-dependénseparation The resonane re-
mairs active acros arang of decreasig deptrs until the
turning points coalese agan at the nonlinea end of the
“hole’’ in Fig. 3, with d~0.531.

is

C. Other resonances

Furthe reductiors in deph see the emergene of a new
family of turning point structure belongirg to the (4,8) reso-

Copyright ©2001. All Rights Reserved.
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FIG. 5. Computel standirg wave sur-
face profiles from the uppe left, upper
right, lower left, and lower right
branche for d=0.57 in Fig. 2. Reso-
nart solutiors containirg a significant
02 fifth harmon€ componehoccu in the

2 3
0.4 .
015 uppe left and lower right branches.
’ Lower left 0.3 Lower right
0.1
0.2
0.05
0.1
0
0
-0.05
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1 2 3

0

0.3 05
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0.3

> 01 0.2

0 0.1

0

-0.1 ~0.1

0 1

o
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N
w

nance, which has an associated critical depth d The branchirg behavia of the (4,8 resonane is essen-
=0.5901023.... Figure 10 gives frequeng curves for se- tially a scal@ replica of that from the (3,5 resonancewith
lected deptls in this vicinity, indicating similar behavia to ~ smalle gaps betwea the turning points and a narrowe ac-
tha observe for the (3,5 resonanceAt d=0.%4 the (3,5  tive deph range as illustrated in the comparisa of Fig. 12.
resonane is still active and nearirg the end of its life, while Correspondig solution profiles also exhibit similar behavior
the locd minimum in the centrd brand is a pure eighth  along the brancheswith resonah solutiors occupyirg the
harmonc with frequeny four times the linear fundamental uppe left and lower right segmentsSampé (4,8 resonant

value as shown in Fig. 11. solution profiles at d=0.5 are shown in Fig. 13, displaying
8 12
10+ Upper right
5 Upper left
8
4 6
4
2
2 +
0 0
0 5 10 15 0 5 10 15 FIG. 6. Spectrmn plots of the surface

profiles given in Fig. 5, showirg afifth
harmont presene in the resonah so-
lutions of the uppe left ard lower right

° 10 branches.
4 8
Lower left Lower right
3 6
2 4
! 2
0 0
0 5 10 15 0 5 10 15

Copyright ©2001. All Rights Reserved.



Phys. Fluids, Vol. 11, No. 5, May 1999

D. H. Smith and A. J. Roberts 1059

FIG. 7. Computel initial profile y(x,0)
and time history y(0,t) for linear (solid
line) and nea fifth harmonc (dashed
line) solutiors at d=0.6Q The time

0.05 / \ /

history plot indicates afrequeng ratio
, of approximatet 3, representig be-
havia nea the (3,5 resonance.

more oscillatoy behavio away from the turning points due
to the growth of the eighth harmonc contribution Propor-
tionally, this contributian is noticeaby smalle than the fifth
harmone contributiors to the (3,5 resonah solutions con-
firming relative weaknes of the (4,8) resonance Local
maxima are alo preseh nea the left wall for uppe left

brant solutions as sea in the (3,5 resonanceand a log
plot of the turning point ggp dependene confirms preserva-
tion of near-second-ordéehavia in A..

Turning point structure producel by the (3,5 and (4,8
resonancerepresehone of two possibé unfolding configu-
ratiors for transcritica bifurcations!® The questim now

308 T T T T T T T T T
3.06 -
soal T T, . -

T, FIG. 8. Computel pure fifth harmonic
=T R brand sections showirg convergence
3 3.02+ freee, . e, T to the frequeng ratio m=3 for linear
3 e e waves (A.—0) as the (3,5 resonant
S L T e, d=0.60 deph is approachedThe® curves are
= S e d=0.61 0 e derived from the locd minima in Fig.
@ ) te., d=0.62 : - X
T Trreeall,, IR 2, where the computel standirg wave

........ periods are approximate} three times
"""" . . the minimd period and the spatial
. structue is neary pure fifth harmonic.
2.981 4
d=0.623
2,96 ) .
2'94 i 1 1 1 1 1 1 | Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
Crest Acceleration
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FIG. 9. The computel frequeng curve for d=0.623 showirg the approab to atranscritica bifurcation in the linear regime A.— 0, as deph tends to the (3,5

resonahdepth.

arises as to whethe the alternative configuration essentially
a “rotated” turning point pair, can alo occu in the fre-
gueny curves as a manifestatio of resonanceln the re-
maining calculatiors sone additiond resonance at smaller
deptts will be considered displayirg a secomn resonant
branchig structure which clearly coincides with this de-
scription.

Figure 14 gives aseries of frequenyg brand sectiors at
deptts approachig the predictel (4,6) resonah deph d
=0.3858... In ead plot, uppe and lower branche emanate

maik the (5,9) resonancewith predicte critica deph d
=0.3759... As shown in Fig. 15, thete are three branches
presem with fundamental sixth harmoni¢ and ninth har-
monic contributions The lower brand stars on the o axis
with pure fundamenth solutiors before breakirg right to
give resonah ninth harmont solutions including a pure
ninth harmonc at the locd minimum with frequeng five
times the linear fundamentalA centra brand contairs reso-
nart ninth harmonc solutiors at the left and sixth harmonics
on the right, separatd by a fundamenthsectio in the de-

from the w axis and converge toward each other, reaching dlection vicinity. The uppe brand stars with sixth harmonic

minimum separatia before diverging The resultirg struc-
ture is a “rotated” turning point pair which persiss with a
shrinking separatia ggp as the deph becoms critical, fi-
nally approachig a transcriticd bifurcation in the linear re-
gime In terms of sixth harmone contributiors to the solu-
tion profiles the turning points signify an exchangeAs A,
increass the uppe brand progressivel losss its sixth har-
monic componentbecomiry pure fundamenthafter the turn,
while the lower brand is initially pure fundamentbhbefore
turning to gain a sixth harmonc component This varies in
size alorg the branch and d= 0.38 includes the familiar loop
structue with locad minumum of an almog pure sixth har-
monic at four times the linear fundamenthfrequency Apart
from the orientation of the turning points the behavia ob-
servel here is similar to tha for the previows resonances,
originating from a collision betwea fundamenthard sixth
harmonc solution branches.

Reducig the deph to 0.36 shifts the (4,6) resonant
structue to the right and enlarge the approab gap between
the brancheswhile an additiond similar structue emergsto

resonah solutiors before steepenig to becone pure funda-
menta) as for d=0.38 Surfae profiles at various locations
on thes branchs are shown in Fig. 16, displayirg sixth and
ninth harmonc contributions The familiar locd maximum
nea the left wall is still presemn in solutiors of the left
branches.

This complicatel triad of branches with simultaneous
(4,6) and (5,9 resonanhactivity is unlike anythirg observed
for the (3,5 ard (4,8 resonancesPossibé reasos for this
include the large critical deptts for the latter resonanceand
the large difference betwea the critical values.

IV. SUMMARY AND CONCLUSIONS

A numericd paramete study has reveale characteristic
signature of harmont resonane in the frequency-cresac-
celeratio branchirg diagrans for finite-deph standirg grav-
ity waves Fou differert resonance hawe been recorded,
with ead producirg a locd frequeng minimum of an al-
mog pure nth harmonc at m times the linear fundamental
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0.74 d=0.54 . (3.5) C
0.73| . Loesse 0=0.52 '
...... .+ ° d=0.50
0.72 .
. FIG. 10. Computel frequeng curves
g, < at selectd deptts in the neighborhood
§ 0.71 (4.8) ] cif the (4,9 re_sonant depth, d
3 =0.5491023.... Similar behavio to
E tha observe for the (3,5 resonance
occurs althoudh on a smalle scale.
0.7 1 Note tha both resonanceare active at
d=0.54.
0.69 b
0.68 i
0 67 | 1 1 | 1 1 1 1 1
o 0.1 0.2 0.3 04 0.5 0.6 0.7 08 0.9 1

Crest Acceleration AC

frequeng nea the predictel (m,n) resonahdepth The most
prominer observe signatue was generatd by the (3,5 gess the formation of a transcriticd bifurcation for linear
resonancewhich produce apersistetpai of turning points  waves with a sufficienty smal creg acceleration Separa-
in the (A;,w) plane throughout a depth interval boundedtion gaps betwea the turning points depemnl on depth as
abowe by the predictal (3,5 resonahdepth Asthisdephis  does the actua location of the turning point pair in the

approaché from below, numerica evidene strongly sug-
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o
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~0.03 1 1 I 1 1 1
0
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FIG. 11. Computd initial profiles y(x,0), and time history, y(0,t), for linear fundamentba(A.~0.01) ard pure eighth harmonc solutiors at d=0.54 The
pure eighth harmone coincides with the locd minimum frequeng in the centra brand for d=0.54 Fig. 10.
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10" ¢ T T T
[ |
I
|
|
I
|
107 ! =
r |
I
!
| FIG. 12. The turning point gg size
° | behavia for the (3,5 ard (4,8 reso-
N | nances showirg a large active depth
%10-2__ ' ] range for the (3,5 resonancealong
> : with bigge' gap sizes The dashe lines
<« : ] indicake predicta resonah deptts in
| ead case whetre the turning points ap-
| pea to merge into a transcritica bifur-
| cation in the linear regime.
I
107k | :
!
|
| : !
* * (35 : !
+ +  (48) | :
10-4 1 1 1 i 1 I 1 |
0.5 0.52 0.54 0.56 0.58 0.6 0.62
Depth

(A, w) plane. The overall effect of the resonance is to pro-dept range Thes factors along with smalle solution con-
duee a “hole’’ in the (d,A;,w) solution surface, whose tributionsfrom the eighth harmont make the (4,8) resonance
width achieves amaximum value at sorre point in the reso-  weake than the (3,5 in severa ways However an impor-
nart deph interval. tart observe propery comma to both resonancg is the
The turning point behavia of the (3,5 resonaneis es- nea secow orde dependeneof the turning point ggo width
sentialy duplicatel on a smallg scak for the (4,8 reso- on creg accelerationThe othe two resonancg considered,
nance with smalle turning point gaps and asmalle resonant  the (4,6) ard (5,9), producel a slightly differernt signature,

\ — A=-0.33 \ — A=-085
' \
05F ' - - A=-043 . 05} - - - A=-075 .
\ ¢ \' [}
| ‘= A=-053 \ = A=-0.65

FIG. 13. Computel resonah solution
profiles from the left and right
branche of Fig. 10 at d=0.50 with
the mean levd shifted for clarity. Rela-
tive contributiors of the eighh har-
monic increag awagy from the turning
points to give more oscillatosy profiles.
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FIG. 14. A series of frequeng curves at deptts approachig the (4,6) resonahdeph d=0.3858... Unlike the (3,5 and (4,8) resonahbranchimg structures,
the turning point pairs are now rotated reflectirg the alternative unfolding configuratia for a transcritica bifurcation.

comprisirg “rotated” turning point pairs The® also move  were observe for thes resonanceswho< critical deptts are
in the (A.,w) plane with variable separation and representnat only smalle but also considerab} close than thos of

an alternative unfolding configuratia for the branche of a  the (3,5 and (4,8) resonances.
transcritica bifurcation Some complex branchimg patterns In all four case the turning point structure appeard to
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FIG. 16. Computel resonah solution
profiles at d=0.36 correspondig to
the marked points on the branche of
Fig. 15 The mean levd has been
shifted for clarity.
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grow from atranscritic bifurcation in the linear regime at a
predictal resonah depth Nonlineariy corrups the bifurca-
tion to produ@ turning point pairs tha “move’ in the
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