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Abstract—A wide range of emerging real-time services (e.g.
VoIP, video conferencing, video-on-demand) require different
levels of Quality of Services (QoS) guarantees over wireless
networks. Scheduling algorithms play a key role in meeting
these QoS requirements. A distinction of QoS guarantees is
made between deterministic and statistical guarantees. Most
of research in this area have been focused on deterministic
delay bounds and the statistical bounds of differentiated
real-time services are not well known. This paper provides
the mathematical analysis of the statistical delay bounds of
different levels of Constant Bit Rate (CBR) traffic under First
Come First Served with static priority (P-FCFS) scheduling.
The mathematical results are supported by the simulation
studies. The statistical delay bounds are also compared with
the deterministic delay bounds of several popular rate-based
scheduling algorithms. It is observed that the deterministic
bounds of the scheduling algorithms are much larger than the
statistical bounds and are overly conservative in the design and
analysis of efficient QoS support in wireless access systems.

I. INTRODUCTION

In recent years, there have been increasing demands for
delivering a wide range of real-time multimedia applica-
tions (e.g. VoIP, video conferencing, video-on-demand) in
broadband wireless access networks. IEEE 802.16 standard
for broadband wireless access systems [18] provide fixed-
wireless access for individual homes and business offices
through the base station instead of cable and DSL in wired
networks. This creates great flexibility and convenience as
well as challenges for the design and analysis of such
networks. Multimedia communications require certain level
of Quality of Services (QoS) guarantees and individual
applications also have very diverse QoS requirements. It
requires the wireless access networks to support real-time
multimedia applications with different QoS guarantees.

QoS performance is characterized by a set of parameters
in any packet-switched network, namely end-to-end delay,
delay variation (i.e. jitter) and packet loss rate [1], [2], [3].
Unlike non-real-time services, quality of real-time services
is mainly reflected by their delay behaviors, namely, delay
and delay variation. A distinction in QoS performance
guarantees is made between deterministic guarantees and
statistical guarantees [15]. In the deterministic case, guaran-
tees provide a bound on the performance of all packets from

a session. In other words, deterministic delay guarantees
promise that no packet would be delayed more than D
time units on an end-to-end basis. The value D is defined
as the Deterministic Delay Bound (DDB). On the other
hand, statistical guarantees promise that no more than a
specified fraction, α, of packets would experience delay
more than D(α) time units. D(α) is defined as the Statistical
Delay Bound (SDB). As the fraction α becomes smaller,
the statistical delay bound increases. In the special case of
α = 0, the statistical delay bound reaches the maximum
value and is equal to the deterministic delay bound. That is,
D(α) = D.

Similarly, delay variation is defined as the difference
between the best and worst case expectation of variable
delays (i.e. mainly queueing delays). In statistical case, the
best case is equal to zero and the worst case is a value
likely to be exceeded with a probability less than α(for
example 10−9). It should be noted that, when the occasional
exceptions are rare enough (e.g. α = 10−9), though the
SDB may still be much smaller than DDB, the distinction
between statistical guarantees and deterministic guarantees
is negligible for most real-time services. Consequently, the
QoS offered by statistical guarantees will be as good as
those offered by deterministic guarantees for these real-
time services. In general, the deterministic delay bound is
much larger than the statistical delay bound and thus it is
overly conservative. A statistical delay bound is sufficient
for almost all real-time services.

Scheduling algorithms play a key role in satisfying these
QoS requirements. In the past twenty years, a significant
volume of research has been published in literature on
scheduling algorithms such as Packet-by-packet Generalized
Processor Sharing (PGPS) [4], Self-Clocked Fair Queue-
ing (SCFQ) [5], Latency-Rate (LR) Server [6], Start-
time Fair Queueing (SFQ) [7], Wireless Packet Scheduling
(WPS) [8] and Energy Efficient Weighted Fair Queueing
(E2 WFQ) [9]. However, these research were basically
focused on the deterministic delay bounds. The statistical
delay bounds of scheduling algorithms meeting different
QoS requirements have not been adequately studied.

In this paper, we examine the access delay of CBR real-



time traffic in wireless access systems (e.g. IEEE 802.16).
Future backbone networks have very high bandwidth and
the delay experienced is very low. On the other hand, the
access networks have relatively limited speed and the delay
experienced by CBR traffic is very large. Therefore the
analysis and design of the wireless access systems to support
the QoS of real-time services is very important.

IEEE 802.16 standard for Broadband wireless access
systems are designed to support a wide range of applications
(data, video and audio) with different QoS requirements.
IEEE 802.16 defines four types of service flows, namely
Unsolicited Grant Service (UGS), real-time Polling Service
(rtPS), non-real-time Polling Service (nrtPS) and Best effort
service (BE). There are two types of service flows for
real-time services, i.e. UGS supports CBR traffic including
VoIP streams while rtPS supports real-time VBR flows such
as MPEG video [13], [14]. IEEE 802.16 standard left the
scheduling algorithm for the uplink and downlink scheduling
algorithm undefined. Wongthavarawat and Ganz in [17]
proposed a combination of strict priority scheduling, Earliest
Deadline First [19] and WFQ [4]. The CBR real-time traffic,
(UGS) has preemptive priority over other type of flows. In
this paper, we are concerned with real-time CBR traffic and
we assume there are different levels of QoS requirements
within CBR traffic. For example, the emergence and remote
medical CBR services should have higher QoS requirements
than normal VoIP chats. We analyse the delay for different
service levels of CBR traffic by solving class-based nD/D/1
queue.

The superposition of independent streams with periodic
arrival patterns has been modelled by nD/D/1 queue in
several past works [10], [11], [12], [16]. The problem of
traffic delay analysis can be solved by finding the waiting
time distribution of nD/D/1 Queue. Our study is different
from the cited research as we differentiate CBR streams by
priorities and analyse the delay for nD/D/1 queue with arbi-
trary number of service priorities in IEEE 802.16 broadband
access networks.

The rest of this paper is organised as follows. In Sec-
tion II, a discrete-time P-FCFS queueing system model with
Constant Bit Rate (CBR) inputs is defined and illustrated.
In Section III, we analyse the model in general cases
that there are arbitrary number of priority levels and there
are arbitrary number of traffic sources at individual levels.
The queueing delay distribution for each service level is
derived. In Section IV, we provide the delay distributions of
different priority classes obtained by mathematical analysis.
Section V concludes the paper.

II. DISCRETE-TIME PRIORITY QUEUEING MODEL

The nD/D/1 model with several priority levels analyzed
here has the following characteristics: (a) independent pe-
riodic sources with same period; (b) deterministic ser-

vice/transmission time; (c) with priority levels; (d) discrete-
time queueing system, or say slotted server.

As illustrated in Figure 1, we assume that there are totally
N active real-time sources which are classified into K
priority levels. For each priority level x (1 ≤ x ≤ K), the
number of sources is Nx. Each source generates fix length
cells periodically with same period T . To keep the system
stable, period T has to be greater than the total number of
sources N .

The discrete-time model assumes slotted transmission on
the path. The time axis is divided into fixed length slots and
the transmission is restricted to start at a slot boundary. As
a result of this restriction, each packet has to wait at least
until the start of the next time slot.

The discrete-time model assumes slotted transmission on the path. The time axis is divided into fixed length 
slots and the transmission is restricted to start at a slot boundary. As a result of this restriction, each packet has to 
wait at least until the start of the next time slot. 

Fig. 1. Priority queueing model

Without loss of generality, time slot and cell length are assumed to be unity. Then the service time of each 
packet is also equal to unit time. In a P-FCFS queue, packets with higher priorities will be served first and those 
with lower priority will wait until all the higher priority packets have been served. The packets with the same 
priority will be served in First-Come-First-Served principles. Thus, the delay experienced by a packet is equal to 
the number of packets found in the same and higher priority queues at the arrival time and packets with higher 
priority that have arrived between the arrival time and transmission time plus the remaining transmission time of 
the packet in service. Note that the packets from the lower priorities do not affect the delay experienced by a 
packet from higher priorities.

3  Mathematical Analysis
Let the source tested, say , be the tagged source and all other sources be background sources. Suppose that the 
priority of the tagged source is  . Because the sources with lower priorities than the tagged 
source do not affect the delay of the tagged source, we only consider the sources with the same or higher 
priorities than the tagged one. Let  be the total number of sources with higher priorities than the tagged one. 
Thus,

 (1)

Let the waiting time/queueing delay experienced by the packet from the tagged source  be the interval 
from the beginning of the first slot since the packet arrives to that of the slot at which it starts to be served. Note 
that the residual slot period until the start of the next time slot is omitted and the delay is always an integer. In 
general this simplification does not effect our results. In what follows, we calculate the probability when the 
queueing delay  is equal to , namely,  ( ).

Consider a period of time  from  to  and separate this interval into three sub-intervals. 
Suppose the arrival time of the tagged source i is uniformly distributed within the th time slot . The 
arrivals of background sources are independent and uniformly distributed in the interval . The 
numbers of sources arriving on the sub-intervals are defined as follows (See Figure 2). 
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Figure 1. Priority queueing model

Without loss of generality, time slot and cell length are
assumed to be unity. Then the service time of each packet
is also equal to unit time. In a P-FCFS queue, packets with
higher priorities will be served first and those with lower
priority will wait until all the higher priority packets have
been served. The packets with the same priority will be
served in FCFS principles. Thus, the delay experienced by a
packet is equal to the number of packets found in the same
and higher priority queues at the arrival time and packets
with higher priority that have arrived between the arrival
time and transmission time plus the remaining transmission
time of the packet in service. Note that the packets from
the lower priorities do not affect the delay experienced by a
packet from higher priorities.

III. MATHEMATICAL ANALYSIS

Let the source tested, say i, be the tagged source and
all other sources be background sources. Suppose that the
priority of the tagged source is x (x = 1, 2, · · · ,K). Because
the sources with lower priorities than the tagged source do
not affect the delay of the tagged source, we only consider
the sources with the same or higher priorities than the tagged
one. Let NH be the total number of sources with higher
priorities than the tagged one. Thus,

NH = N1 + · · ·+ Nx−1 (1)

Let the waiting time/queueing delay experienced by the
packet from the tagged source qi be the interval from the



beginning of the first slot since the packet arrives to that of
the slot at which it starts to be served. Note that the residual
slot period until the start of the next time slot is omitted and
the delay is always an integer. In general this simplification
does not effect our results. In what follows, we calculate
the probability when the queueing delay qi is equal to d,
namely, Pr{qi = d}(d ≥ 0).

Consider a period of time T from t + d− T to t + d and
separate this interval into three sub-intervals. Suppose the
arrival time of the tagged source i is uniformly distributed
within the tth time slot ([t−1, t]). The arrivals of background
sources are independent and uniformly distributed in the
interval [t + d− T, t + d]. The numbers of sources arriving
on the sub-intervals are defined as follows (See Figure 2).
• nH is the number of sources with higher priorities than

arriving during (t, t + d];
• nx is the number of sources with priority x arriving

during (t, t + d];
• n

′

H is the number of sources with higher priorities
arriving during (t− 1, t];

• n
′

x is is the number of sources with the same priority
arriving during (t− 1, t];

• Aτ is the number of background sources with higher
priorities arriving during the t + τ th time slot;

• n”
H is the number of sources with higher priorities

arriving during (t+d−T, t−1], n”
H = NH −nH −n

′

H

• n”
x is the number of sources with the same priority

arriving during (t + d− T, t− 1], n”
x = Nx −nx −n

′

x.

•  is the number of sources with priority  arriving during ;

•  is the number of sources with higher priorities arriving during ;

•  is the number of sources with the same priority arriving during ;

•  is number of background sources with higher priorities arriving during the th time slot;

•  is the number of sources with higher priorities arriving during , 

; 

•  is the number of sources with the same priority arriving during , .

Fig. 2. The numbers of sources arriving in a period of time

 is defined as the total length of packets waiting in higher priority sub-queues and packets in sub-queue  
ahead of tagged packet at the end of th time slot. When the queueing delay  is equal to , the server will keep 
busy till . The probability distribution of queueing delay for tagged source i can be obtained as shown in [2].
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Figure 2. The numbers of sources arriving in a period of time

Qt is defined as the total length of packets waiting in
higher priority sub-queues and packets in sub-queue x ahead
of tagged packet at the end of tth time slot. When the
queueing delay qi is equal to d, the server will keep busy
till t + d. Thus, the following two necessary and sufficient
conditions must be satisfied.

Qt+d = max(Qt+d−1 − 1, 0) + Ad = 0 (2)
and Qt+τ > 0 for all τ = 0, 1, · · · , d− 1 (3)

From [3],

Qt+τ = max(Qt+τ−1 − 1, 0) + Aτ

= Qt+τ−1 − 1 + Aτ (4)

By iteration on τ , Qt+τ is equal to

Qt+τ

= Qt + A1 + A2 + · · ·+ Aτ−1 + Aτ − τ (5)
= Qt + A(t, t + τ)− τ (6)

where A(t, t+τ ) represents the total number of arrivals with
higher priorities in the interval [t, t + τ ]. Then (2) and (3)
are equivalent to

Qt = d− nH (7)
and A(t, t + τ) > τ −Qt for all τ = 0, 1, · · · , d− 1 (8)

respectively. Thus, the probability of queueing delay is

Pr{qi = d}
=Pr{Qt+τ > 0, τ = 0, 1, · · · , d− 1, Qt+d = 0}
=Pr{A(t, t + τ) > τ −Qt, Qt = d− nH}

d−1∑
nH=0

Nx−1∑
nx=0

NH−nH∑
n

′
H=0

Pr{A(t, t + τ) > τ −Qt, Qt = d− nH |

AH(t, t + d) = nH , Ax(t, t + d) = nx, AH(t− 1, t) = n
′

H}
· Pr{AH(t, t + d) = nH , Ax(t, t + d) = nx, AH(t, t + d) = n

′

H}.
For the convenience of expression, in the following discus-
sion, the term Pr{A(t, t+τ) > τ−Qt, Qt = d−nH} is used
to represent Pr{A(t, t+τ) > τ−Qt, Qt = d−nH |AH(t, t+
d) = nH , Ax(t, t+d) = nx, AH(t− 1, t) = n

′

H} Moreover,
AH(t, t + d), Ax(t, t + d), and Ax(t− 1, t) are independent
random variables and (8) can be written

Pr{qi = d}

=

d−1X
nH=0

Nx−1X
nx=0

NH−nHX
n

′
H

=0

Pr{A(t, t + τ) > τ − Qt, Qt = d − nH}

· Pr{AH(t, t + d) = nH}Pr{Ax(t, t + d) = nx}Pr{AH(t − 1, t) = n
′
H}.

=

d−1X
nH=0

Nx−1X
nx=0

NH−nHX
n

′
H

=0

Pr{A(t, t + τ) > τ − Qt|Qt = d − nH} · Pr{Qt = d − nH}

· Pr{AH(t, t + d) = nH} · Pr{Ax(t, t + d) = nx} · Pr{AH(t − 1, t) = n
′
H}

Let τ = d− τ
′
. Then,

AH(t, t + d) = nH −
τ

′∑
j=1

Ad−j > d− τ
′
− d + nH

which leads to

τ
′∑

j=1

Ad−j < τ
′

τ
′
= 1, 2, · · · , d. (9)

By the Ballot Theorem 4 in [12],

Pr{
τ

′∑
j=1

Ad−j < τ
′
, τ

′
= 1, 2, · · · , d} = 1− nH

d
. (10)



Substituting (11) int (9),

Pr{qi = d}

=
d−1∑

nH=0

Nx−1∑
nx=0

NH−nH∑
n

′
H=0

Pr{Qt = d− nH}Pr{AH(t, t + d) = nH}

· Pr{Ax(t, t + d) = nx}Pr{AH(t− 1, t) = n
′

H}.
The next step is the evaluation of each term in (12) sepa-
rately. The last three terms in (12) can be easily obtained
from the Probability Mass Function(pmf) of Binomial ran-
dom variables [17]. That is,

Pr{AH(t, t + d) = nH} =

„
NH

nH

« „
d

T

«nH
„

1 − d

T

«NH−nH

Pr{Ax(t, t + d) = nx} =

„
Nx − 1

nx

« „
d

T

«nx
„

1 − d

T

«Nx−nx−1

Pr{AH(t − 1, t) = n
′
H} =

„
NH − nH

n
′
H

« „
1

T − d

«n
′
H

„
1 − 1

T − d

«NH−n
′
H−nH

In the following, the second term in (12) is calculated.
Firstly, define Y as the rank of the tagged source i within
the n

′

x sources. Then

Qt = max(Qt−1 − 1, 0) + Y − 1 + n
′

H . (11)

For convenience of expression, let L = max(Qt−1 − 1, 0).
Thus,

Pr{Qt = d− nH} = Pr{L + Y + n
′

H − 1 = d− nH}

=
Nx−nx∑
n′

x=1

Pr{Y = d− nH − n
′

H − L + 1|Ax(t− 1, t) = n
′

x}Pr{Ax(t− 1, t) = n
′

x}

=
∑
n′

x

∑
l

Pr{Y = d− nH − n
′

H − L + 1|L = l, Ax(t− 1, t) = n
′

x}Pr{L = l}

·Pr{Ax(t− 1, t) = n
′

x}. (12)

Making use of the result shown in Appendix E of [10], the
probability of the rank Y = y among n

′

x sources is simply
the reciprocal of n

′

x. That is

Pr{Y = d−nH−n
′

H−L+1|L = l, Ax(t−1, t) = n
′

x} =
1
n′

x
(13)

Thus

Pr{Qt = d− nH}

=
∑
n′

x

∑
l

1
n′

x

Pr{L = l}Pr{Ax(t− 1, t) = n
′

x}.

Note that L = d − nH − n
′

H − Y + 1 and 1 ≤ Y ≤ n
′

x.
If set m = d− nH − n

′

H , then,

max(m− n
′

x + 1, 0) ≤ l ≤ m.

Thus,

m− n
′

x + 1 ≤ l ≤ m when 1 ≤ n
′

x < m + 1
0 ≤ l ≤ m when m + 1 ≤ n

′

x ≤ Nx − nx.(14)

Equation (19) becomes

Pr{Qt = d− nH} =
m∑

n′
x=1

Pr{Ax(t− 1, t) = n
′

x}
m∑

l=m−n′
x+1

Pr{L = l}

+
Nx−nx∑

jx=m+1

1
n′

x

Pr{L = l}Pr{Ax(t− 1, t) = n
′

x}.

Noting that

b∑
l=a

Pr{L = l} = Pr{L > a− 1} − Pr{L > b} (15)

Applying (22) in (21) and combining the same terms, (21)
becomes

Pr{Qt = d− nH} =
m∑

n′
x=1

1
n′

x

Pr{Ax(t− 1, t) = n
′

x}Pr{L > m− n
′

x}

+
Nx−nx∑

jx=m+1

1
n′

x

Pr{Ax(t− 1, t) = n
′

x}

−
Nx−nx∑
nx=1

1
n′

x

Pr{Ax(t− 1, t) = n
′

x}Pr{L > m}.

As shown in Appendix, the following can be obtained.

Pr{Qt = d− nH} =
T − d

Nx − nx
(T − d)−(Nx−nx)(T − d− 1)−n”

H
Nx−nx∑
n′

x=1

(
Nx − nx

n
′

x

)
#Ω≤m

[
T − d− 1, n”

x+H

]
−

m∑
n′

x=1

(
Nx − nx

n
′

x

)
#Ω≤m−n′

[
T − d− 1, n”

x+H

](16)

where m = d − nH − n
′

H , n”
x+H = n”

x + n”
H = NH +

Nx − nH − n
′

H − nx − n
′

x, and

#Ω≤c[a, b] = (a−b+c+1)
c∑

j=0

(
b
j

)
(−1−c+j)j(a+c−j+1)b−j−1.

(17)
Substituting (13), (14), (15) and (24) into (12), and canceling
the like terms gives

Pr{qi = d} = T−(NH+Nx)+1 [U(d, NH , Nx)− V (d, NH , Nx)]
(18)

where U(d, NH , Nx) and V (d, NH , Nx) represent

U(d, NH , Nx) =
∑
nH

∑
nx

∑
n

′
H

Ψ
Nx−nx∑
n′

x=1

(
Nx − nx

n
′

x

)
#Ω≤m[T − d− 1, n

′′

x+H ]

V (d, NH , Nx) =
∑
nH

∑
nx

∑
nH

Ψ
m∑

n′
x=1

(
Nx − nx

n
′

x

)
#Ω≤m−n′

nx
[T − d− 1, n

′′

x+H ]



and

Ψ =
dnH+nx−1

Nx − nx
(d− nH)

(
NH

nH + n
′

H

) (
Nx − 1

nx

) (
nH + nH′

nH

)
In addition, it is known that

Pr{qi > d} = 1−
d∑

j=0

Pr{qj = nx} (19)

Substituting (26) into (27), the tail distribution of queue-
ing delay will be obtained.

IV. NUMERICAL RESULTS

A. Mathematical Results

Based on the analysis in Section III, logarithmic functions
of the tail distributions of the queueing system at a load
of 0.8, LogPr{qi > d}, are calculated and plotted in
Figure 3 using Mathematica. In Figure 3, the period is
equal to T = 50 and there are 41 background sources (i.e.
N = 41). The sources are classified into four priorities
and each priority has an equal number of sources (ex-
cluding the tagged source) in the queueing model, namely,
N

′

x = (N − 1)/4, x ∈ [1, 4]. From Figure 3, it can be seen
that delays are differentiated by their priorities and when
the priority becomes lower, the delays become significantly
larger.

For comparison, the tail distributions for the queueing
delay of a queue with distinct priorities and a queue without
priority are also plotted in Figure 4 and Figure 5 [15].
Figure 4 shows the delay distributions of sources of several
priority levels when each source has a distinct priority level.
The delay distribution of sources with similar priorities are
very close to each other. For example, the delay difference
between priority 9, 10 and 11, are negligible. Comparing
Figure ?? with Figure 4, the gap between any different
priority level is obvious. Thus, it is not necessary for every
single source to have a distinct priority and three or four
classes is enough for providing differentiated services.

Further, the tail distribution is

(3)

4  Numerical Results

4.1  Simulation Results

Besides mathematical analysis, the queueing system discussed in the previous sections was implemented and 
analyzed in simulations using OPNET. The parameters in the simulation were the same with those used in the 
mathematical calculations. The results shows that the delay distributions from mathematical analysis and 
simulation are identical. 

The tail distributions with different numbers of sources are shown in Figure 3. Comparisons of Figure 3 (a), 
(b), (c) and (d) show that as the number of sources increases, the delay for each class increases. However, the 
increases in delay become slower as the number of sources increases, especially for higher priorities. Thus, the 
delay is statistically bounded even in the core network with a large number of competing sources. 
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Figure 4. Delay distributions of nD/D/1 queue with distinct priori-
ties(T=50,N=41)

For comparison, the delay distributions of a queueing system without any priority is given in Figure 4. 
Comparing the curves in Figure 3 with the curve of  and  case in Figure 4, the first two higher 
priorities have better performance than the one without priority. The third priority has a slightly worse 
performance than the one without priority. The fourth priority has obvious worse performance than the one 
without priority. Thus, priority queueing can provide individual sources with a desirable QoS according to 
different requirements. The network resources can be efficiently utilized.

Fig. 4. Delay distributions of nD/D/1 queue without differentiated services

4.2  Comparison with Deterministic Delay Bounds

This section compares the statistical delay bounds with the deterministic delay bounds (i.e. queueing latencies) of 
several rate-based scheduling algorithms. In this example, we use the same scenario as defined in the first 
example of Section 4.1 which results are shown in Figure 3. In Figure 3, the statistical delay bound of a session 
with priority level 4 (the lowest priority) when  is equal to  time slots. 

The deterministic delay bounds of several scheduling algorithms are given in Table 1. In Table 1,  denotes 
the number of sessions sharing the outgoing link,  and  denote the maximum packet length and allocated rate 
for session ,  denotes the maximum packet length for all sessions except session ,  denotes the outgoing 
link capacity. For comparison, we assume  time slot = 1 second. We also assume that the bandwidth of the 
outgoing link , the packet lengths , the number of sessions , and the allocated 
rate . 

Table 1.The deterministic delay bounds of several scheduling algorithms
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Figure 5. Delay distributions of nD/D/1 queue without differentiated
services

The delay distributions of a queueing system without
any priority is given in Figure 5. Comparing the curves
in Figure 3 with the curve of T = 50 and N = 41
case in Figure 5, the first two higher priorities have better
performance than the one without priority. The third priority
has a slightly worse performance than the one without
priority. The fourth priority has obvious worse performance
than the one without priority. Thus, priority queueing can
provide individual sources with a desirable QoS according
to their requirements. The network resources are efficiently
and scientifically used.

B. Comparison with Deterministic Delay Bounds

This section compares the statistical delay bounds with
the deterministic delay bounds (i.e. queueing latencies) of
several rate-based scheduling algorithms. In this example,
we use the same scenario as defined in the first example
of Section IV-A which results are shown in Figure 3. In
Figure 3, the statistical delay bound of a session with priority
level 4 (the lowest priority) when LogPr[qi > d] = −3 is
equal to 22 time slots.

The deterministic delay bounds of several scheduling
algorithms are given in Table I. In Table I, N denotes
the number of sessions sharing the outgoing link Li, and
ρi denote the maximum packet length and allocated rate



for session i, Lmax denotes the maximum packet length
for all sessions except session i, r denotes the outgoing
link capacity. For comparison, we assume 1 time slot = 1
second. We also assume that the bandwidth of the outgoing
link r = 1kb/s, the packet lengths Li = Lmax = 1kb,
the number of sessions N = 41, and the allocated rate
ρi = r/N = 0.024kb/s.

Table I
THE DELAY BOUNDS OF SCHEDULING ALGORITHMS

Scheduling Queueing Deterministic
Algorithm Latency Delay Bound

WFQ [4] Li
ρi
− Li

r
+ Lmax

r
41s

SCFQ [5] Li
ρi
− Li

r
+ (N − 1)Lmax

r
80s

SFQ [7] (N − 1)Lmax
r

40s

As shown in Table I, the deterministic queueing delay is
much larger than the statistical delay bounds. The statistical
delay guarantees do not care about a small fraction of
packets (e.g. one in a million packets) which experience the
delay exceed the bounds. The real-time services generally
can tolerate a small number of packet losses, therefore
statistical delay guarantees are sufficient and suitable for
these applications.

V. CONCLUSION

In this paper, we analyse the statistical access delay
of different classes of real-time CBR services in wireless
networks. Numerical results from mathematical studies are
provided. The results also show that the performance can be
effectively differentiated by P-FCFS scheduling algorithm.
The deterministic delay bounds/latencies are generally much
larger than the statistical delay bounds. As real-time services
generally tolerate a small number of packet losses, the
statistical delay guarantees are sufficient and thus more
important for real-time services. The analysis not only
can provide accurate QoS performance for multiple-class
real-time services but also can be used to design efficient
admission control and upstream scheduling mechanisms in
wireless access systems.
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