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A B S T R A C T

An accurate photovoltaic (PV) generation forecasting is important for grid scheduling and dispatching.
However, ultra-short-term PV generation forecasting is rather challenging because weather conditions may
change significantly in a short time period largely due to the dynamics and movement of clouds above a
solar PV farm. For monitoring clouds above the solar PV farm, ground-based whole-sky cameras (Sky-Imagers)
have been installed. This paper develops a novel cloud image-based ultra-short-term forecasting framework.
Within the framework, an integration of the Vision Transformer (ViT) model and the Gated Recurrent Unit
(GRU) encoder is designed for the high-dimensional latent feature analysis. A Multi-Layer Perception (MLP)
is employed to generate the one-step-ahead PV generation forecasting. Numeric experiments are conducted
using real-world solar PV datasets. The results show that the proposed framework and algorithms can achieve
higher accuracy compared to several baseline methods for ultra-short-term PV generation forecasting.
1. Introduction

With the growing integration of solar photovoltaic (PV) plants into
electricity networks, it is necessary to provide an accurate prediction
of PV generation in a short time horizon for network scheduling and
dispatching. Over the past two decades, a variety of PV generation
forecasts have been proposed [1,2]. Since PV generation in a very
short time period (in minutes) can be affected by many factors such
as sunshine, wind, and cloud coverage [3], PV generation forecasting
is still a challenging task [4].

PV generation is largely dependent on solar irradiance. Thus, the
prediction of PV generation can be relatively accurate during sunny
days due to the consistent irradiance. In contrast, the prediction of PV
generation may not achieve desirable accuracy during overcast, rainy
or cloudy days because of considerable fluctuations and irregularities
of solar irradiance during these days.

Though the Numerical Weather Prediction (NWP) can facilitate
PV generation forecasting over the medium and long-term time hori-
zon [5], it is not applicable to the ultra-short-term forecasting (minutes
horizon) [6] due to the fluctuation of local weather conditions at
the PV plant in a short time period [7]. Satellite images can provide
cloud information; however, they do not contain detailed local cloud
distribution above the PV plant. In recent times, the installation of
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sky-imagers at numerous PV plants has become prevalent. They use
ground-based cameras to capture local sky images and can reflect
the real-time weather conditions above the PV plant. Sky images can
be incorporated into PV generation forecasts to improve prediction
accuracy over the ultra-short-term horizon. Therefore, it is necessary
to construct a sophisticated machine learning model to understand and
reveal the information embedded in the sky images and utilize this
information together with historic PV generation data to provide an
accurate ultra-short-term PV generation forecasting [8]. Various PV
forecasts are summarized below.

1.1. PV generation forecasting using historic PV output data

Other than the inherent randomness, the PV generation time series
also exhibits seasonal variations and cyclical fluctuations [9]. Attempts
have been made to use statistical methods or machine learning methods
to construct PV generation forecasts. In [10], the focus was on outlier
detection by using a weighted Gaussian Process Regression (GPR),
however, the effectiveness of this approach heavily relies on the avail-
ability of high-precision real-time weather data. In [11] an Extreme
Learning Machine (ELM) algorithm was adopted. The solar irradiance
was also measured and used to compensate for the inaccuracy caused
038-092X/© 2023 The Authors. Published by Elsevier Ltd on behalf of Internation
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by the weather conditions provided by the NWP. Then the model
was optimized by both the particle swarm optimization algorithm and
the ELM. Similarly, [12] uses the NWP data and a machine learning
regression algorithm to improve day-ahead solar irradiance forecasting.
Consequently, these two methods exhibit substantial computational
complexity and necessitate a significant amount of historical data and
accurate NWP information.

Recently, deep learning techniques have been adopted for PV gen-
eration prediction. In [13], a multi-layer feed-forward artificial neural
network was implemented, the PV plant’s geographic information and
the power generation of the neighbouring PV panels of the target PV
panel were used to infer the cloud distribution, which was then used
to predict the PV generation of the target PV panel. In [14], the Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convo-
lutional Neural Network (CNN)-LSTM were implemented for multiple
forecast horizons. To improve the data quality of the historic PV
generation dataset, in [15] a wavelet packet decomposition was applied
to split the PV generation time series into several subsets at different
time-frequency scales. These subsets were then fed into four indepen-
dent LSTM models. [16] utilized the transformer-based structure to
do the one-hour ahead PV prediction, the historical PV generation
data and NWP data are fed into the model as input. Nevertheless,
most of the above methods may lack the capability of capturing the
irregular fluctuations of PV generations in the ultra-short-term horizon
accurately. Numeric data-based methods, as demonstrated in previ-
ous studies [10,11,13], necessitate a substantial amount of additional
data and involve significant computational complexity. Furthermore,
some of the methods above are primarily applicable to longer forecast
horizons, which is due to the lack of real-time weather information.
As an easily accessible real-time weather information source, cloud
images have been effectively employed to enhance the accuracy of PV
generation forecasts.

1.2. Image-based analysis and forecasting

Both satellite and sky images can provide information regarding the
local weather conditions. In addition, an image sequence may reveal
hidden spatio-temporal relations, which could be used to infer future
local weather conditions.

1.2.1. Satellite image-based analysis and forecasting
A satellite covers a wide observation area and can provide high-

resolution images of clouds above the solar farm. Numerous solar
irradiance and PV generation forecasts using satellite images have been
developed. [17] employed a combination of traditional methods, such
as the optical flow algorithm and LSTM to catch the hidden spatial
features in satellite images. However, traditional physical models may
struggle to accurately capture the intricate and complex flow conditions
of clouds. In [18] the irradiance estimated from satellite images was
fed into a deep neural network (DNN) with convolutional layers to
predict the future global horizontal irradiance (GHI) directly. In [19]
the spatio-temporal correlations between the target PV plants and its
adjacent PV plants were considered, and the PV data from neighbour-
ing plants was utilized to improve the forecasting accuracy of the
target PV plant. However, in a satellite image, only a small portion
might be of interest for solar irradiance forecast. In [20], an algorithm
based on the attention mechanism (AM) was proposed to determine
the regions of interest in images. An encoder–decoder structure was
then used for estimating irradiance. In [21] the authors analysed both
spatial and temporal features of satellite images with a hybrid model
of three-dimensional (3D)-CNN and LSTM. The ground GHI records
were mixed with a one-dimensional (1D)-CNN to extract the high-
dimension feature. 28 An LSTM was applied to estimate the next hidden
state, which is used for fusion and generating the prediction. [18–21]
all deal with the hours ahead forecast horizon, primarily due to the
limited resolution of satellite images they rely upon. For PV generation
2

fluctuation and dispatch forecasts in the minutes ahead horizon, the
aforementioned methods provide limited assistance. In [22], the region
of interest mechanism was implemented first. Then the U-Net (a variant
of the CNN for image segmentation) was used to extract features
from the satellite images, which were then combined with NWP data
and historical PV generation data. Finally, these data were fed into
an encoder–decoder structure based on LSTM with AM. The method
proposed in [22] attained better performance because of the inclusion
of more exogenous information. However, the small size of the region
encompassing a solar farm in comparison to satellite images often leads
to an inefficient utilization of storage resources. In [23] the authors
focused on various forecast horizons and both sky images and satellite
images were utilized. The statistical methods were implemented to
predict GHI and direct normal irradiance. Despite the utilization of sky
cameras, the effectiveness of the method remains limited when dealing
with forecast horizons shorter than 30 min.

1.2.2. Sky image-based analysis and forecasting
The stochastic and non-linear nature of weather conditions has more

influence on the performance of ultra-short-term forecasts. In the study
by [24], ResNet was used to predict PV generation in the upcoming five
to ten minutes. The temporal features of sky images were represented
as stacked red channels. On the other hand, in [25], mathematical
methods were utilized to extract spatial features and fed them into
an LSTM model. However, the absence of spatial or temporal feature
analysis significantly hinders the methods’ ability to achieve high levels
of accuracy in PV generation prediction. Considering both of them, [26]
designed two CNN-based structures to handle the sequences of sky
images, the first model conducted a two-dimensional (2D) convolution
on stacked sky images (the model is denoted as SCNN), while a 3D-
CNN directly conducted 3D convolution on the sky image sequence.
The result showed that convolutional operation did not perform well
over channels and the 2D convolutional structure was better than the
3D structure. This implies that the traditional CNN structure may not be
able to provide approximate temporal information. In [3], the authors
considered both spatial and temporal features. A CNN and a residual
structure from ResNet were used to avoid the vanishing gradients. The
consecutive two-time step sky images were fed into the convolutional
module separately to learn the rate of change between sky images. A
double route structure was designed to catch the spatio-temporal fea-
tures of sky images. The spatial feature from sky images, the temporal
feature from historical data, and the exogenous data were integrated to
predict PV generation. In [27] the authors used GHI data-based LSTM
and sky image-based CNN auto-encoder (AE) to make predictions with
both spatial and temporal dimensions. The extracted image feature
was fused with the compressed historical GHI. The method proposed
in [28] was also implemented with 2-D and 3-D CNN-AE structures.
In the case of [3,27,28], CNN is applied for spatial feature extraction.
However, the local vision limitation of CNN in shallow layers restricts
its ability of PV forecasting, there is still potential for enhancing the
model’s capability to handle spatial features. Similar to the approach
employed in [17], traditional methods are utilized on sky images in
advance of the neural network component in [29]. Still, traditional
physical models cannot achieve a significant improvement than CNN-
based models. In [30] both the spatial and temporal features of the
sky images were considered. PhyDNet and ConvLSTM were used in
parallel. PhyDNet focused on the physical dynamics of the residual
factors in the sky images. Then, the extracted features were mixed and
sent into a CNN decoder for future sky image prediction, and an MLP
decoder was used for future solar irradiance forecasting. The image
generation-based method contains over-detailed hidden features within
the inner layer, potentially affecting the performance of the model. A
Vision Transformer (ViT)-based framework was employed in [31], and
the NWP data, estimated clear sky irradiance and sky images are fed
into the model. However, the exogenous data are directly combined
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Fig. 1. Overall structure of the proposed PV forecasting framework.
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ith the embedded sky images, which may cause overshadowing or ne-
lecting the relatively limited exogenous information. Additionally, this
ramework includes two consecutive self-attention transformer-based
tructures for both spatial and temporal features. This may potentially
ead to some extents of ambiguities in the time flow. The authors in
32] utilized transformer-based structure on the PV generation data and
he extracted optical flow maps to perform the 10 to 30 min ahead of
ulti-step forecasting. The attention mechanism facilitates achieving

he desired performance. However, this study heavily relies on the
igh-resolution historical PV generation series but does not sufficiently
tilize the hidden features extracted from the sky images due to the
elatively lower resolutions of the sky images.

However, most of the above deep learning models utilize historical
V generation data to capture the temporal features, which may not
ontain sufficient information regarding solar irradiance fluctuation
n the ultra-short period. On the other hand, in the existing models
sing sky images, a temporal-specialized deep learning mechanism
as not been established to catch hidden features related to spatial
eature flow within sequences of sky images. Moreover, the commonly
sed spatial feature extraction model could be improved. This paper
ddresses the above two issues in a unified framework. The temporal-
pecialized mechanism is researched and implemented in our model,
nd a high-performance spatial feature extraction mechanism is also
ncluded.

.3. Contributions

This paper aims to achieve a high accuracy in ultra-short-term PV
eneration forecasting. We have made the following contributions.

1. A sky image-based spatio-temporal PV forecasting framework
is proposed. By integrating a GRU-based structure following
static spatial analysis, our proposed framework enables accurate
capture of the temporal flow information inherent in sequential
sky images. This capability facilitates improved forecasting of PV
generation 2110 fluctuations.

2. A novel spatial feature processing module is proposed for sky
image spatial analysis. The combined CNN and ViT structure is
designed to help the model catch the global vision of sky images
for static spatial features.

3. A double-model structure is built to handle the sky images and
exogenous information separately. The independent processing
of exogenous information allows for a more stable estimation of
clear-sky irradiance compared to using historical PV generation
data. This approach helps prevent the occurrence of outliers and
enhances the reliability of the estimated clear-sky irradiance in
3

our forecasting framework.
2. Problem formulation

In the proposed PV generation forecasting framework, we utilize sky
images (SIs) 𝐼𝐻 with timestamps 𝐻 = {ℎ− 𝑙, ℎ− 𝑙+1,… , ℎ} as the main
input, where 𝑙 is the length of input SI sequence. The same timestamps
are adopted for the following data: (1) PV generation 𝐺𝐻 ; (2) the time
of a day 𝑇𝐻 , which is used to indicate a rough value of PV generation
at that time in a clear day as a reference; and (3) numerical weather
prediction 𝑊𝐷, where the subscript 𝐷 denotes the one-day interval.

Over the forecast horizon 𝛥, the prediction (output) 𝑃ℎ+𝛥 is gener-
ted from the forecasting model. The whole proposed framework could
e represented as a nonlinear mapping function from the input data to
he predicted PV output, which is denoted as 𝑀 . Thus, the problem can
e formulated as:

̂ℎ+𝛥 = 𝑀(𝐼𝐻 , 𝐺𝐻 , 𝑇𝐻 ,𝑊𝐷) (1)

3. Methodology

3.1. Overall structure

The overall structure of the framework is shown in Fig. 1. The
sky image sequence 𝐼𝐻 and PV generation data 𝐺𝐻 are processed
separately. Since the sky image sequence comprises both spatial and
temporal features, a single-feature neural network is not sufficient for
extracting the hidden features embedded in the image. Therefore, in
the sky image processing route, a model combining a convolutional
layer, a ViT encoder and a GRU encoder is implemented. A second
GRU model is implemented for extracting the hidden features from
the PV generation data. The features extracted from the sky images
are treated as fundamental information, while the features extracted
from the PV generation data are treated as extra information. 21 Then,
these two features are element-wise added as the mixture information.
Finally, a residual linear model is used to handle the mixture of hidden
information and generate the final estimation of the PV generation over
the time horizon.

3.2. Spatial feature processing module

In ultra-short-term PV generation forecasting, cloud 28 dynamic
is the most significant influencing factor. The clouds may suddenly
block the direct sunlight on the PV panels or move away from the sky
above the PV panels. This can lead to a rapid increase or decrease in
solar irradiance. The sky image series can capture such solar irradiance
changes. Thus, in the first step, we adopt ViT to extract the hidden
spatial features from the sky images. Compared to the traditional
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Fig. 2. ViT-based embedding structure.

cloud detection methods and CNN-based models, ViT can attain better
performance.

ViT [33] splits the original image into numerous small image bucks
and focuses on the most important part subsequently extracting useful
hidden features with its self-attention mechanism. Compared to the
CNN-based sky image processing structures, the above approach in ViT
makes the capture of the global information from the images in the
shallow layers better [34]. In the PV generation forecasting task, the
global information obtained from the entire sky image series over a
certain time period could better represent the weather trends. Thus,
ViT-based structures are more suitable for sky image processing than
CNN-based structures. Moreover, PV generation forecasting is a fixed-
length regression task, which is different from the natural language
processing task. Thus, in the encoder–decoder mechanism of the vanilla
transformer structure, the decoder is not required and only the encoder
is required for feature extraction. Additionally, [35] shows the con-
volutional layer at the early stage could improve the robustness and
converge speed of the transformer model. Thus, a convolutional layer
is combined before the ViT model to improve its performance.

In the spatial feature encoder (Fig. 2), the transformer layer is
built based on the ViT-based structure. Because the vanilla transformer
model receives a one-dimensional image sequence as the input, the
input sky image 𝐼 ∈ 𝑅𝐻×𝑊 ×𝐶 is firstly split and flattened to a 2D array
𝐼𝐴 ∈ 𝑅𝑁×(𝑃𝐻×𝑃𝑊 ×𝐶). 𝐻 is the height of the input image, 𝑊 is its width,
𝐶 is the number of channels, 𝑃𝐻 and 𝑃𝑊 refer to the height and width
of a patch, and 𝑁 is the number of split patches. After patch embedding,
the vectors are concatenated with a ‘class’ vector similar to the ‘class’
token in [36], which represents the compressed status of patches and
avoids the preference for specific patches. The position embedding 𝐸𝑝
is added with all the patch vectors to contain the positional information
of the patches in the original image and their relativity.

Then, the patch vectors are sent into a vanilla transformer encoder.
The structure of the transformer encoder and the MLP is shown in
Fig. 3. 𝐿 is the number of encoder layers, all the ‘Norm’ blocks are
Layernorm as proposed in [38], and the residual connections are im-
plemented twice in one block to avoid the gradient vanishing problem.
The spatial features in static sky images will be extracted. This module
could be formulated as:

𝐹𝑠 = 𝑉 (𝐼𝐻 ; 𝜃𝑣) (2)

where 𝐹𝑠 is the hidden spatial features, 𝑉 denotes the ViT-based spatial
feature processing module, and 𝜃𝑣 is the parameters of this module.
The high-dimensional spatial features are extracted by the above non-
linear mapping model and used in the temporal analysis. The spatial
features are expressed in the form of matrices, which consist of the
4

Fig. 3. The structure of the transformer encoder and MLP head [37].

weighted values of the influential regions (e.g., sun, cloud-covered
areas) within the sky images. These matrices represent the fundamental
characteristics extracted from the sky images, including the relative
position of the sun, cloud distribution, irradiance intensity, and other
environmental information. The core of this module is a multi-head
self-attention structure [37] as shown in Fig. 4.

The above attention mechanism is designed for the transformer-
based structure and 28 is known as ‘‘Scaled Dot-Product Attention’’.
It calculates a query and a set of key–value pairs to a weighted output.
The weighted values are from the corresponding index between the
query and its key. With the trainable and strongly correlated weights,
the basic attention structure is used for capturing the latent relation-
ship between the query and the key–value pairs. This self-attention
mechanism generates the query, key, and value vectors using the same
input. It can successfully extract both the independent hidden features
and internal latent correlation from the different segments belonging to
one input. Accordingly, the query matrix Q, the key matrix K, and the
value matrix V are calculated by multiplying the embedded input with
the weight matrix obtained during the training process. The attention
mechanism can be formulated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (3)

where 𝑑𝑘 refers to the dimension of the key vectors. Then, the multi-
head attention is applied to the transformer structure. Thus the model
can use multiple attention heads to capture various aspects of the input
with one head corresponding to one aspect. The attention vectors from
different heads are then concatenated and mapped to the final output.
The formula of this mechanism can be represented as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1(𝑄,𝐾, 𝑉 ),

..., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ(𝑄,𝐾, 𝑉 ))
(4)

where 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 is the output of attention head 𝑖. After that, a ‘class’
vector completes the information exchange through the attention pro-
cess. The vector will be selected to represent all the hidden features
in all the attention spaces. Through an MLP, 𝐹𝑠 will be generated from
the ‘class’ vector as an array with the required dimensions. Fig. 5 shows
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Fig. 4. The multi-head self-attention structure [37].

he attention maps of a sky image sequence (10-minute interval), 1112
1 which serves as the comprehensive summation of all heads across
ll layers within the entirety of the framework. These attention maps
re generated through the computation of the average weight derived
rom all heads. They could represent the regions that the whole spatial
eature processing module will be interested in. In Fig. 5, the essential
nfluential areas (highlighted in warmer colours) for PV generation,
uch as the sun and nearby clouds, will be assigned higher weights
uring feature extraction, it can be observed that the highlighted areas
low as the clouds and sun move. Thus, the majority of the spatial
eature matrices 𝐹𝑠 will encompass weighted values corresponding to

these highlighted areas.

3.3. Temporal feature processing module

Using the spatial feature processing module presented in the pre-
vious section, the hidden high-dimensional features such as cloud
distribution and sunlight strength are extracted from the static sky
images. However, these hidden static features could only consist of
the instant status of the weather. The temporal features should also be
included for completing the forecasting task.

Considering the consecutive temporal distribution in the sky images,
hidden temporal features exist between the extracted spatial feature
vectors. Since recurrent neural networks (RNNs) (e.g. GRU and LSTM)
can capture context within consecutive time series, we implement a
GRU structure encoder to extract and compress the features from the
time series. Even though the self-attention layers can be used for
temporal feature extraction, the RNNs are more appropriate for this
task. This is because both the spatial–temporal features and the PV
generation data are one-directional. So, the one-directional GRU could
effectively capture the temporal relationships along the same time flow
direction. The characteristics at one timestamp will influence the char-
acteristics of the subsequent timestamps. The closer the two data points
(along the time stamps), the stronger the correlation exists. However,
in the self-attention layers, the embedding mechanism is employed to
allocate the distances between data points. It cannot follow the specific
time flow direction effectively as the GRU could do. Therefore, the
5

computational complexity of self-attention layers is higher than that
of the GRU. Compared to the LSTM structure [39], the GRU structure
requires fewer parameters but can achieve similar performance. In the
temporal processing module, the extracted spatial feature sequences
and PV historical generation sequences are fed into two separate GRU
models. The structure of GRU is shown in Fig. 6.

The GRU model could be formulated as:
𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
̂ 𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

𝑡 = 𝑧𝑡 ⊙ ℎ̂𝑡 + (1 − 𝑧𝑡)⊙ ℎ𝑡−1

(5)

here 𝑥𝑡 and ℎ𝑡 are the input and output vectors at time step 𝑡
espectively. 𝑧𝑡 and 𝑟𝑡 are the update and reset gates vectors. ℎ̂𝑡 is the
urrent memory content. 𝑊 and 𝑈 are the parameter matrices, 𝑏 is the
ias vector. 𝜎 is the sigmoid function, and ⊙ is the Hadamard product.

GRU is a variant of the basic recurrent neural networks [40]. It
voids the gradient vanishing problem and incorporates the gate op-
rating mechanisms to preserve long-term memories while preventing
hort-term memories from covering long-term memories. The update
ate 𝑧 is used to decide which part of the previous hidden states should
e kept to the next step while the reset gate 𝑟 is used to determine
hich part of the previous hidden states should be discarded. The useful

nformation from the last step 𝑟𝑡⊙ℎ𝑡−1 will be added with the weighted
urrent input and constrained between 0 to 1 by a 𝑡𝑎𝑛ℎ function. This
alculation result is the current memory content ℎ̂𝑡. Finally, the update
ate vector will be element-wise multiplied with the current memory
ontent as 𝑧𝑡 ⊙ ℎ̂𝑡, the previous hidden state will be element-wise
ultiplied with 1−𝑧𝑡 as (1−𝑧𝑡)⊙ℎ𝑡−1. The above two parts are summed

ogether to generate the output vector ℎ𝑡.
By recurrently feeding the extracted spatial features of SIs from

he previous spatial feature processing module to the time dimension,
he final GRU cell can generate the encoded vector ℎ𝑓𝑖𝑛𝑎𝑙. For the
patial feature input, its corresponding output contains both the spatial
eatures and temporal features that are extracted by two consecutive
patial and temporal specialized analysis modules.

In Fig. 7, the input spatial feature series 𝐹 𝑖𝑛
𝑠 and historical PV

eneration time series 𝐺𝑖𝑛
ℎ of window 𝑛 to GRU encoders are denoted

s:
𝑖𝑛
𝑠 = (𝐹 𝑡−𝑖−𝑛+1

𝑠 , 𝐹 𝑡−𝑖−𝑛+2
𝑠 ,… , 𝐹 𝑡−𝑖

𝑠 )

𝐺𝑖𝑛
ℎ = (𝐺𝑡−𝑖−𝑛+1

ℎ , 𝐺𝑡−𝑖−𝑛+2
ℎ ,… , 𝐺𝑡−𝑖

ℎ )
(6)

here 𝑡 is the target prediction timestamp, 𝑖 is the prediction interval,
nd 𝑛 is the length of the input series.

As shown in Fig. 7, 28 the spatio-temporal features 𝐹𝑠𝑡 are generated
by the GRU Encoder One with the extracted spatial features fed in. The
spatio-temporal features are represented as matrices. They will be high-
dimensional data that include the sun’s trajectory, cloud velocity and
direction, cloud deformation and other hidden dynamic spatial features
inherent in sky images. At the same time, the historical PV generation
data 𝐺ℎ is fed into the GRU Encoder Two to generate the time series-
based auxiliary PV generation feature 𝐹𝑔 . Through the whole temporal
module we can have:
𝐹𝑠𝑡 = 𝐺𝑅𝑈1(𝐹 𝑖𝑛

𝑠 )

𝐹𝑔 = 𝐺𝑅𝑈2(𝐺𝑖𝑛
ℎ )

(7)

3.4. PV generation prediction module

The decoding and prediction processing after the temporal feature
processing is also shown in Fig. 7, where 𝑛 is the number of time steps
for each input, and ’FC Layer’ means the linear fully connected layer.

After going through the temporal processing module, the hidden
spatio-temporal features are all extracted and they are the conclusive
expression of the input SIs. To locate the precise weather situation, nu-
meric exogenous data is concatenated with the spatio-temporal features

from the sky images. The relative time 𝐸𝑡𝑖𝑚𝑒, rainfall 𝐸𝑟, solar irradiance
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Fig. 5. The attention maps on a cloudy sky image series (10-minute interval, from left to right in chronological order).
Fig. 6. Default GRU structure.

Fig. 7. Temporal processing and PV generation prediction structure.

𝐸𝑠, and temperature records 𝐸𝑡𝑒𝑚𝑝 are min–max scaled to [0, 1]. The
combination of the exogenous data 𝐹𝑒 and feature-wise scaling for each
exogenous feature 𝑓𝑒 are:

𝐹𝑒 = [𝐸𝑡𝑖𝑚𝑒, 𝐸𝑟, 𝐸𝑠, 𝐸𝑡𝑒𝑚𝑝]

𝑓𝑚𝑖𝑛𝑚𝑎𝑥
𝑒 =

𝑓𝑒 − 𝑚𝑖𝑛(𝑓𝑒)
𝑚𝑎𝑥(𝑓𝑒) − 𝑚𝑖𝑛(𝑓𝑒)

(8)

𝐹𝑒 will be concatenated with 𝐹𝑠𝑡. The numeric 𝐹𝑒 represents the
standard solar irradiance similar to the clear-sky model, which could
help the model locate the rough range of the PV generation.

Then, two fully connected layers are set to compress the vectors
to the output dimension. In order to compare the performance of
sky image-based forecasts with and without using the historical PV
generation data, an individually trained GRU module is used to extract
the PV generation feature. After all, the exogenous and spatio-temporal
combined feature vectors are added for the final prediction 𝑃 .
6

𝑡

Fig. 8. Sample sky images of one hour at noon on January 23, 2020.

4. Dataset and experiments

4.1. Datasets

The data regarding PV generation and sky images were acquired
from a solar farm situated at The University of Queensland’s Gatton
campus in Australia, possessing a peak capacity of 3.275 MW. Two
MOBITIX hemispheric cameras (Q25) have been installed to take real-
time images of the sky above the solar farm. The sky image has
2408 × 1536 pixels and RGB channels and the time resolution of the
images is 10 s. PV generation data is with a resolution of one minute. In
the following case studies, the dataset was selected for the time period
from January 23rd, 2020 to May 6th, 2020. The total size of the sky
images is 61.9 GB. The sample sky images in one hour are shown in
Fig. 8 (10-minute interval). Based on the historical irradiance record of
the solar farm in this paper, it is observed that the number of days
with irradiance levels exceeding the average account for 50.96% of
the total days, while those with irradiance levels below the average
constitute 49.04% of the total days. 23 Moreover, the variance of the
difference between the real data and the clear-sky estimate model is
also considered, which could represent the strength of fluctuation. The
percentage of days with higher fluctuations than the average is 49.51%,
which is close to the number of days with milder fluctuations. This
implies the dataset is not dominated by any single specific weather
condition. So, the trained model has the capability to generalize well
across different weather conditions. Part of the dataset, which includes
the sky images and PV generation data, has been published in [41].

The weather datasets are collected from the Bureau of Meteorol-
ogy, Australia. The weather station is located in the solar farm. The
weather data consists of rainfall, solar irradiance, and temperature.
The resolution of the numeric weather data is one day. The weather
data is based on the Australian Community Climate and Earth-System
Simulator (ACCESS) weather model and collected weather station data
which are both provided by the Bureau of Meteorology[42].
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Table 1
Parameters of the training stage.

Hyper-parameter Configuration

Batch size 8
Learning rate 0.00001
Epochs 40
Early stop epoch 4
Length of inputs (mins) 5
Length of output (min) 1
Transformer dropout ratio 0.1
Embedding dropout ratio 0.1

4.2. Pre-processing

Since the raw sky images are with over-high resolution and contain
unneeded wrapping, they are cropped to 1500 × 1500 at centroid
and resized to 258 × 258 to fit the convolution layer before the ViT-
based model. For the baseline method, the sky images were resized to
256 × 256 to fit the original input size of the model. Then, the RGB
values from [0, 255] were scaled to [0, 1] and normalized to avoid the
gradient vanishing problem.The standardization is implemented on the
pixel values to reduce the impact of noise and outliers. The pixel values
𝑃𝑖 were normalized with the mean 𝑃𝑚𝑒𝑎𝑛 and standard deviation 𝑃𝑠𝑡𝑑 of
he entire sky image dataset:

𝑛𝑜𝑟𝑚 =
𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛

𝑃𝑠𝑡𝑑
(9)

The various ranges of the PV generation data and weather data are
both rescaled to [0, 1] by a min–max scaling:

𝑁𝑚𝑖𝑛𝑚𝑎𝑥 =
𝑁𝑖 −𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥 −𝑁𝑚𝑖𝑛
(10)

here 𝑁𝑖 is the numeric data of a time series, 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the
inimum and maximum values of the time series.

.3. Experiment setting

Experiments are conducted on the high-performance computing
HPC) GPU nodes. Each HPC node contains two Intel Xeon Gold 6132
PUs, four NVIDIA SXM2 V100 Accelerator Units, and 384 GB of RAM.
ll the models including the baseline methods were developed with
yTorch 1.9.1 and Python 3.8.11. The whole dataset was randomly
plit into three parts: a training set, a validation set, and a testing set.
he ratio of the three datasets is 6:2:2. To avoid over-fitting, only the
raining set was used for training, the validation set was fed into the
odel after each training epoch to track the immediate performance

f the model, and the testing stage was run separately. Furthermore,
he dropout is implemented on the transformer model and embedding
tage to prevent our model and embedding result from overfitting on
he training set. For the SI input 𝐼𝐻 , the chosen time length is 5 min.
o save the computational resource, the resolution of input sky images

s reduced and tested. (The comparison of different resolutions will
e shown in section 4.5) 20-second interval is chosen to be the input
esolution, this implies that there are 15 images with this interval fed in
s one input. The parameters of the training stage are shown in Table 1.

The hyper-parameters are tuned across preliminary experiments.
onsidering the high GPU memory consumption of the ViT-based struc-
ure, we set our training and testing batch size to eight to avoid
ut-of-memory problems. With sufficient training data and epochs, our
nitial learning rate was set to 0.00001 to prevent over-fast convergence
uring the training stage and ensure optimal model generation. The
ransformer and embedding dropout ratio are both set to 0.1 to avoid
verfitting and preserve the most learned information at the training
tage. Furthermore, to avoid overfitting and save computational re-
ources at the same time, the training procedure is designed to stop
ither upon observing a deterioration or only a marginal improvement
7

Table 2
Structural parameters of our model.

Parameter Configuration

Convolution layer

Number of kernels 3
Kernel size 3×3

ViT module

Patch size 16×16
Dimensions of embedded vector 1024
Number of heads 4
Dimensions of head 64
Transformer layers 4
Dimensions of MLP 2048
Dimensions of the output layer 256

GRU module

GRU encoder 1 hidden state 256
GRU encoder 1 layers 4
FC layer after GRU encoder 1 (4×256, 256)
FC layer after concatenate (256+4, 1)
GRU encoder 2 hidden state 2
GRU encoder 2 layers 4
FC layer after GRU encoder 2 (2×4, 1)

of validation loss for four consecutive epochs. The structural parameters
of our model are shown in Table 2.

Through extensive preliminary experiments using smaller training
sets and different model parameters, we have identified the optimal
hyper-parameters in Table 2. These parameters can ensure the best
performance over the sky image dataset and avoid unnecessary struc-
ture redundancies, such as overlarge transformers and redundant GRU
layers.

To reduce the computational resource consumption, the Adam al-
gorithm [43] is used as the optimizer of our model, which could
automatically adjust the learning rate. For the regression task, the Mean
Square Error (MSE) loss is chosen as the loss function to optimize the
model output.

4.4. Baseline methods and evaluation metrics

4.4.1. Baseline methods
Four baseline methods were implemented: ResNet [3], SCNN [26],

ConvLSTM [30] and the smart persistence model. The smart persistence
model assumes the relative PV generation, which is the ratio of the PV
generation to the estimated clear sky PV generation, stays constant. In
this algorithm, the relative PV generation 𝐺𝑡∕𝐸𝑡 at the current time
step 𝑡 is used as the predicted PV generation 𝐺𝑡+1∕𝐸𝑡+1 at the next time
step. The estimated clear sky PV generation 𝐸𝑡 comes from the Ineichen
and Perez clear sky model [44]. The set of baseline models comprises
traditional mathematical methods, spatial-based methods, and spatio-
temporal hybrid methods. Our model is compared with these four
baseline models to demonstrate the advantages in the spatial feature
extraction and spatio-temporal feature learning ability of our structure
over the traditional temporal-considered CNN model.

4.4.2. Evaluation metrics
The performance of all the models was evaluated with four metrics:

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
R-squared (𝑅2):

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (11)

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (12)

2 = 1 −
𝑆𝑆𝑟𝑒𝑠 = 1 −

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

∑𝑁 2
(13)
𝑆𝑆𝑡𝑜𝑡 𝑖=1(𝑦𝑖 − 𝑦𝑖)
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Table 3
MAE compared to the persistence model.

Forecast horizon/% 5 mins 10 mins 15 mins Average

SCNN −10.63 −3.89 8.85 −1.89
ResNet −31.16 −13.53 −1.31 −15.34
ConvLSTM −28.74 −10.00 0.60 −12.71
Our model without historical PV data 37.74 42.29 37.53 39.19
Our model with historical PV data 38.32 40.63 37.38 38.78
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Fig. 9. Comparison of error metrics on different time horizons.

where 𝑦𝑖 is the ground truth, 𝑦𝑖 is the prediction, and 𝑦𝑖 is the mean
of 𝑦𝑖. Many papers use normalized RMSE (nRMSE) as the metric for
comparison. In our case, the predicted PV generation value is min–max
scaled between 0 to 1, thus, the RMSE value is equivalent to the nRMSE.

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

= 𝑅𝑀𝑆𝐸 (14)

2515The Forecast Skills (FS) was computed to indicate the improve-
ment of the model from the baseline model:

𝐹𝑆 = 1 − 𝑅𝑀𝑆𝐸
𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(15)

4.5. Experiment results

Two versions of our model, i.e. the sky-image-based forecast with
and without using the historical PV generation data are tested. Such
an arrangement is for the comparison of the effect of the historical PV
generation data on the performance of our sky-image-based forecasting
model. All four baseline models and our two models are trained on the
same randomly split training set with different forecast horizons. The
deep learning models were all trained on the GPU for the accelerated
computation, the smart persistence model was implemented on the
CPU. The ResNet is the ResNet50 version, and the ConvLSTM has
two layers. Our model with historical PV generation receives both sky
images and PV generation data as input, the ResNet, ConvLSTM, and
SCNN, and our model without historical PV generation receive only
the sky images as input, and the persistence model only requires the
historical PV generation data as input.
8

h

Fig. 10. Comparison of R-square and FS metrics on different time horizons.

.5.1. Evaluation on the testing set
2510 2530Firstly, the models are evaluated on the whole testing set.

omparisons are made with four different metrics on the 5-minute, 10-
inute, and 15-minute forecast horizons. For easier comparison, MAE

nd RMSE are shown in Fig. 9 while 𝑅2 and Forecast Skill are shown
n Fig. 10.

It can be seen from Fig. 9 that both our two models perform better
han the baseline models for the 5-minute, 10-minute, and 15-minute
ime horizon. With the increase of the forecast time horizon, the error
f the persistence model obviously increases. 25 The higher MAE and
ower RMSE of the CNN-based baseline models represent that although
he CNN-based models do not follow the regular PV generation curve as
tably as the persistence model, they have a small number of significant
rrors, especially during periods of fluctuations.

The MAE values of our models are consistently lower than that of
ll the baseline models. As presented in Table 3, all the CNN-based
aseline models perform even worse than the persistence model in the
- and 10-minute horizon. In contrast, our models (with and without
sing historic PV generation data) consistently perform better than the
ersistence model (37 ∼ 42% improvement in performance). Moreover,
or the 15-minute forecast horizon, our two models achieve around 37%
mprovements. Our model with historical data performs best in the 5-
inute forecast horizon. Our model without historical data performs

etter in the 10-minute and 15-minute horizons.
The RMSE-based Forecast Skills (Eq. (15)) scores are shown in

ig. 10. The higher FS score indicates the model achieves a higher
mprovement with respect to the persistence model. It is observed in
ig. 10 that all five deep-learning models have positive FS scores.
pecifically, for the 5-minute forecast horizon, our two models ex-
ibit the most significant improvement compared to the other baseline
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Fig. 11. Comparison of MAE and RMSE under different weather conditions.
models. Moreover, our model with historical PV data shows similar
performance compared to our model without using historical PV data.

In Fig. 10, the 𝑅2 scores are also presented. A higher 𝑅2 score
indicates the model is better fitted to the mapping between the input
and output. It can be seen that the three deep learning models, which
use the sky images as input, all achieve higher 𝑅2 scores with respect to
that of the persistence model. This implies the sky images contain rich
information with respect to PV generation and can help to improve the
forecasting accuracy of PV generation. Moreover, our models perform
better than the other baseline models on all three forecast horizons.
Therefore, our models could fit the correlation between the input and
future PV generation better.

Across the experiments on the complete testing set, though the per-
formance of our models may vary with different forecast horizons, they
consistently outperform all baseline models in terms of MAE, RMSE,
and 𝑅2. PV generation prediction of solar farms is used for the dispatch
operation by the grid operator. However, a significant outlier in the
prediction could cause difficulties in dispatch. Among the four metrics
utilized in this section, RMSE demonstrates the highest sensitivity to
outliers. The lowest RMSE values of our models imply that our models
could minimize the possibility of the occurrence of significant outliers,
thereby enhancing the reliability of the PV generation predictions.

4.5.2. Evaluation under different weather conditions
Solar irradiance significantly varies under different weather condi-

tions. The easier predicted sunny data could lead to an over-reliable
result of the persistent model. It is thus necessary to verify the perfor-
mance of PV generation forecasts under different weather conditions.
The above trained models are tested on four types of days including
sunny, cloudy, overcast and rainy days. The results are shown in
Fig. 11.

From Fig. 11, we can see that on the sunny day, the persistence
model exhibits good performance for the 5-minute forecast horizon.
This is because the change of irradiance is insignificant during 5 5-
minute period on a sunny day. For the 10-minute and 15-minute
horizons, the SCNN model has the worst performance. The reason could
be that on the sunny day, the complexity of sky images affects their
performance which relies on spatial information. However, our two
models both perform well in 10-minute and 15-minute horizons.

On the cloudy day, the average MAE and RMSE values are higher
than that of the other weather conditions. The cloudy weather condi-
tion leads to large fluctuations in PV generation; in turn it can affect
the performance of PV output prediction. 2710 With the considerable
fluctuation of solar irradiance, the persistence model could not make
a meaningful prediction. Benefiting from the spatial feature analysis
on sky images, the three baseline deep-learning models achieve better
performance than the persistence model. By incorporating the detailed
spatio-temporal feature analysis, our models have outstanding improve-
ments over all the baseline models and achieve the lowest errors. In this
condition, the historical data has almost no effect on the accuracy of
9

forecasts. This indicates the main information source is the sky images
and the exogenous data, our spatio-temporal oriented structure could
catch both types of information well.

The overcast day is similar to the cloudy day. Even under the high
randomness of weather, our models still can provide the desired PV
output prediction (i.e. the lowest MAE and RMSE in Fig. 11). However,
because of the lower average solar irradiance on the overcast day,
the distinction between our models and the baseline models is not as
significant as observed on the cloudy day.

As depicted in Fig. 11, it is evident that none of the models exhibits
satisfactory performance on the rainy day. This is because all sky
image-based models are highly dependent on the explainable phe-
nomenon of clouds. However, the sky images could not interpret the
sky conditions with the extremely complicated formation and move-
ment of rainy clouds. Moreover, the raindrops could also affect the
operation of the optical sky-imagers.

The comparison between our model of 5-minute, 10-minute, and
15-minute forecast horizons, the CNN-based baseline models of the 5-
minute forecast horizon, and the ground truth is shown in Fig. 12. From
the figure, we can see that the baseline models can roughly recognize
the peak and off-peak, but they cannot accurately catch the magnitude
of the changes. In contrast, on the 5-minute and 10-minute horizons,
our model can precisely capture the trends of drops and rises in PV
generation, which fluctuates rapidly in the short time period. This
implies our models can help the grid operators to properly plan the
dispatch in the ultra-short term.

4.5.3. Saliency map comparison
The above results provided a comprehensive verification of the

models’ performance. However, the comparison only using the metrics
does not clearly present how the ViT-based structure can enhance the
spatial feature extraction process. Thus, the saliency maps are utilized
to visualize the ‘attention’ of CNN-based models, which are heat maps
that could catch the highest concern areas within the models. The
saliency maps are generated by computing the gradient of the pixels
of one sample sky image to its output [45]. The saliency maps of the
CNN-based models are shown in Fig. 13. From Fig. 13, we can see that
the three CNN-based models have various concern patterns. The ResNet
pays attention to most of the cloud pixels and focuses on the nearest
cloud area to the sun, but the sun is ignored. Moreover, it pays more
attention to every pixel than other models, which is limited by the local
vision of standard CNN, it ignores the less essential pixels of the whole
sky image. In contrast, the SCNN pays the most attention to the sun area
but only pays slight attention to the surrounding area. The ConvLSTM
also focus more on the cloud areas, but mainly on the edge area, which
may be affected by its mixed CNN and RNN structure. Viewing the
‘attention’ heat map of our ViT-based model Fig. 5, it can be seen that
our model pays attention to both the sun and cloud pixels, which are
the most influential factors affecting PV generation. This implies that
the self-attention mechanism makes a considerable contribution to the
model’s comprehensive understanding of sky images.
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Fig. 12. Comparison of predictions and ground truth.
Fig. 13. Comparison of Saliency Maps.
Table 4
Performance comparison of the model with different configurations (input intervals, random seed, with/without exogenous weather data, non-standardized/ standardized PV
generation data, GRU-/Transformer-based temporal module).

Forecast horizon 5 mins 10 mins 15 mins

MAE RMSE MAE RMSE MAE RMSE

Image Exogenous PV Seed Temporal
Interval (s) Data Data Changed∗ Module

20 ✓ × no GRU 0.0389 0.0701 0.0466 0.0770 0.0569 0.0881
60 ✓ × no GRU 0.0513 0.0843 0.0526 0.0838 0.0553 0.0848
20 × × no GRU 0.0447 0.0779 0.0465 0.0778 0.0584 0.0913
20 ✓ × yes GRU 0.0440 0.0748 0.0464 0.0757 0.0428 0.0723
20 ✓ × no Trans∗∗∗∗ 0.0544 0.0875 0.0634 0.0946 0.0616 0.0930

20 ✓ Norm∗∗ no GRU 0.0386 0.0698 0.0480 0.0781 0.0549 0.0846
20 ✓ Std∗∗∗ no GRU 0.0386 0.0698 0.0479 0.0781 0.0567 0.0881

∗ The random seed for the initialized state of the model.
∗∗ Normalized-only: Refer to Eq. (10).
∗∗∗ Standardized: Refer to Eq. (9).
∗∗∗∗ Transformer-based.
4.5.4. Comparison of different settings and inputs
1215 1312.5 2410To demonstrate the enhancement achieved by

our proposed model, we conducted experiments using various input
configurations, and the comparative results for all these configurations
are presented in Table 4.

To highlight the impact of the exogenous weather data, the model
with only the sky images as input is trained and compared. Table 4
shows that in the 5-minute forecast horizon, the exogenous could bring
a notable improvement. In the 10-minute and 15-minute horizons, the
effectiveness of exogenous data becomes insignificant, but it could still
contribute to error reduction. Overall, the exogenous could enhance the
forecasting results, especially in the 5-minute forecast horizon.

In Table 4, we can see that the change of random seed will slightly
affect the performance of our model. In the 5-minute forecast hori-
zon, both the MAE and RMSE exhibit marginal increases compared to
the default seed. However, in the 10-minute and 15-minute forecast
horizons, the performance of the model is slightly improved. Overall,
10
although the training and validation datasets from different seeds can
have a minor impact on our models’ performance, both the models from
default and changed random seeds could provide high-accuracy fore-
cast results. Furthermore, both the models from default and changed
random seeds attain desirable performance and outperform all baseline
models. The random split of the training set would not significantly
affect the stability and reliability of our models.

12 To compare the difference between the one-directional GRU and
the self-attention structure for the temporal module, we have trained
the Transformer-based temporal module. In Table 4 we can see the
performance of the Transformer-based structure is worse than all the
GRU-based structures. Also, the execution time for the two modules
was compared using 20 data points. The GRU block spends 0.261 s in
computation, and the transformer-based block spends 0.364 s, which
leads to a higher computational burden.

To enhance the influence of the historical PV generation data in the

input, the standardized PV data (Eq. (9)) instead of the normalized-only
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PV data (Eq. (10)) is adopted in the input along with sky images and
weather data. However, the result (Table 4) shows that PV generation
data after standardization operation does not lead to any improvement
of the model’s performance.

In the proposed framework, instead of using the historical PV data
as the only support information, we used the exogenous data to help
constrain the forecasting output in an estimated range, which could
play a similar role as the historical PV data. Moreover, our spatio-
temporal structure can precisely capture the sufficient temporal fea-
tures of PV generation, which historical PV data typically provide, thus,
the standardized historical PV generation is not compulsory required
for the model as input.

5. Conclusion

This paper proposed a vision transformer-based ultra-short-term PV
generation forecasting framework that focuses on extracting and utiliz-
ing spatial and temporal features embedded in sky images. The original
sky image sequences are fed into the ViT to obtain the static spatial
features and then analysed by the GRU model. On the other hand, the
time stamps and environmental information (rainfall, solar irradiance
and temperature records) are compressed, scaled and concatenated
with the spatio-temporal features obtained from the ViT and GRU
models. The fused data is finally used in a fully connected layer decoder
to predict PV generation. Additionally, the historical PV generation
data is set as an optional input for comparison purposes. Our model
outperforms the baseline models and existing deep learning models
under different weather conditions for different time horizons. In future
work, we will explore the following potential research directions that
are limited by current models: (1) Multi-step PV generation forecasting.
(2) Precise PV forecasting under rainy conditions. (3) Probabilistic PV
forecasting combined with load forecasting for dispatch. (4) Day-block
shuffle model on an all-weather condition and full-year-long sky image
dataset.
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