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Abstract

Many engineering and scientific applications necessitate the estimation of statistics

of various functionals on stochastic processes. In Chapter 2, Norros et al’s Girsanov

theorem for fBm is reviewed and extended to allow for non-unit volatility. We then

prove that using method of images to solve the Fokker-Plank/Kolmogorov equation

with a Dirac delta initial condition and a Dirichlet boundary condition to evaluate the

first passage density, does not work in the case of fBm.

Chapter 3 provides generalisation of both the theorem of Ramer which finds a for-

mula for the Radon-Nikodym derivative of a transformed Gaussian measure and of the

Girsanov theorem. A P -measurable derivative of a P -measurable function is defined

and then shown to coincide with the stochastic derivative, under certain assumptions,

which in turn coincides with the Malliavin derivative when both are defined. In Chap-

ter 4 consistent quasi-invariant stochastic flows are defined. When such a flow trans-

forms a certain functional consistently a simple formula exists for the density of that

functional. This is then used to derive the last exit distribution of Brownian motion.

In Chapter 5 a link between the probability density function of an approximation of the

supremum of fBm with drift and the Generalised Gamma distribution is established.

Finally the self-similarity induced on the distributions of the sup and the first passage

functionals on fBm with linear drift are shown to imply the existence of transport

equations on the family of these densities as the drift varies.
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Chapter 1

Introduction

The aim of this research is to develop methods for analysis of probability distribu-

tions of the functionals on Gaussian Self similar processes amenable. However, for the

reader’s convenience, in this chapter we review the main properties of various mathe-

matical objects related to this research.

We begin by providing motivation behind the use of fractional Brownian motion and

how it used for modeling Anomalous diffusion. The functionals being studied in this

research are then defined and the reasons which motivate their study are provided.

We then review the Fokker-Plank/Kolmogorov equations theory related to Markovian

processes and how it is used to study the probability distribution of the first passage

functional.

The development of measure theory by Lebesgue (Lebesgue 1904) enabled proba-

bility theory to be given rigorous foundations, which was achieved by Kolmogorov

(Kolmogorov 1950). Understanding probability as a measure has had a profound and

ongoing influence on both theoretical and applied probability.

Radon-Nikodym derivatives tell how it is possible to change from one probability mea-

sure to another. We next review a few such results, defined over Abstract Wiener space

in order to provide enough context and contrast for P -measurable derivatives, which

are defined in section 3.2.2. A generalisation of the Girsanov theorem for fBm from

(Norros et al. 1999), which makes it usable for non-standard fBm is also provided.
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As the reproducing kernel Hilbert space associated with fBm considered as a vector

space of functions (and not taking account of its Hilbert space structure and its norm)

has a representation as the fractional space I
H+ 1

2
0+

(
L[0,T ]

)
of certain class of functions,

some standard results from fractional calculus are recalled to be used in the verification

of a second generalisation of the Girsanov theorem for fBm later.

As part of this research, in Section 4.3 a quasi invariant flow with additional constraints

is used to find a new proof of the probability distribution of the last exit of a Brownian

motion process. We present a brief literature review on this subject next, which is

followed by a review of the theory of probability densities of functionals on Brownian

motion.

1.1 Standard and Anomalous diffusion processes

The concept of diffusion is widely used in physical sciences, economics and finance.

However, in each case, the object (e.g., atom, price, etc.) that is undergoing diffusion

is spreading out from a point or location at which there is a higher concentration of

that object. The mathematical modeling of diffusion has a long history with many

different formulations including, models based on conservation laws, random walks

and central limit theorem, Brownian motion and stochastic differential equations, and

models based on Chapman-Kolmogorov and Fokker-Planck equations. A fundamental

result common to the different approaches is that the mean square displacement of a

diffusing particle scales linearly with time. However there have been numerous exper-

imental measurements in which the mean square displacement of diffusing particles

scales as a non linear law in time.

These processes are known to exhibit anomalous diffusion. Unlike typical diffusion,

anomalous diffusion is described by a power law (Ben-Avraham and Havlin 2000).

When an anomalous-type diffusion process is discovered, the challenge faced by the

scientific community is to understand the underlying mechanism which causes it. There

are a number of frameworks which give rise to anomalous diffusion which are be-

ing studied within the physics community. These include Continuous Time Random

Walk (CTRW) (Masoliver et al. 2003), diffusion in disordered media (Havlin and Ben-
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Avraham 1987) and fractional Brownian motion.

1.2 Fractional Brownian motion

The following definition is taken from (Lamperti 2012)

Definition 1.2.1. A stochastic process {X(t) : t ∈ T} is defined as a collection of ran-

dom variables defined on a common probability space (Ω,F ,P), where Ω is a sample

space, F is a σ-algebra, and P is a probability measure, and the random variables,

indexed by some set T , all take values in the same mathematical space S, which must

be measurable with respect to some σ-algebra Σ.

Fractional Brownian motion was first introduced by Kolmogorov in 1940 in (Kol-

mogorov 1940), within a Hilbert space framework, where it was called the Wiener

Helix. It was further studied by Yaglom in (Yaglom 1955). The name fractional Brow-

nian motion has been coined by Mandelbrot and Van Ness, who in 1968 provided

in (Mandelbrot and Ness 1968) a stochastic integral representation of this process in

terms of a standard Brownian motion. The following definition of fractional Brownian

motion can be found in (Biagini et al. 2008a).

Definition 1.2.2. Let Hurst index H be a constant belonging to (0,1). A standard

fractional Brownian motion (fBm)
(
BH (t)

)
t≥0 is a continuous and centered Gaussian

process, which starts at zero, has expectation zero for all t ∈ [0,T ] with the covariance

function

E
[
BH (t)BH (s)

]
=

1
2
(
t2H + s2H− | t− s |2H) .

For H = 1
2 , fBm is then a standard Brownian motion process. By Definition 1.2.2 we

obtain that a standard (fBm)
(
BH (t)

)
t≥0 process has the following properties:

• BH (0) = 0 and E
[
BH (t)

]
= 0 ∀ t ≥ 0.

• BH has homogeneous increments, i.e., BH (t + s)−BH (s) has the same law of

BH (t) for s, t ≥ 0.



1.3 Functionals 4

• BH is a Gaussian process and E
[
BH (t)2

]
= t2H , t ≥ 0 ∀ H ∈ (0,1).

The existence of fBm follows from the general existence theorem of centered Gaus-

sian processes with given covariance functions (Rogers and Williams 1994, Nourdin

2012). It is also noteworthy that the situation with continuity of fBm trajectories is

more involved, as in we can consider a continuous modification of fBm which ex-

ists according to Kolmogorov continuity theorem which guarantees that a stochastic

process that satisfies certain constraints on the moments of its increments will have a

continuous version (Stroock and Varadhan 2007).

1.3 Functionals

The term functional refers to a real-valued function defined on vector space. When

the paths of a stochastic process are used to model processes of practical importance,

functionals will often represent quantities of economic or social interest, such as costs,

resource consumption, service delays, and so on. Therefore it is of great interest to

be able to determine the probability distribution of functionals. Currently there is no

general method for tackling the problem of determining the distribution of a given

functional defined on an abstract Wiener space.

A large class of functionals is defined in terms of a boundary which takes the same gen-

eral form as a path, i.e. it is a real-valued function of time. Given a specific boundary,

e.g. b(t), the first-passage functional before time T > 0 is defined as:

Definition 1.3.1.

Tb(ψ)
.
= inf [{t : (ψ(t)< b(t)∧b(0)< ψ(0))∨ (ψ(t)> b(t)∧b(0)> ψ(0))}∪{T}] .

depending on the initial condition under which the stochastic process started. The

past supremum and the past infimum will denoted as supt≤T ψt and inft≤T ψt . These

functionals are mutually related and have been extensively studied, both in general

and in special cases, as highlighted in the sequel. The last-exit functional relative to a

continuous boundary function b for a fixed t > 0, is defined as
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Definition 1.3.2.

τb(ψ)
.
= inf [{sup{t : ψ(t)≥ b(t)}}∪{T}] .

The methods of this research are, in principle, applicable to all of them. We focus

especially, however, on the first passage, supremum and the last-exit functionals, where

the boundary is linear.

1.3.1 First Passage, Infimum and Supremum connections

Let Tb be the first time that the process ψ(t) touches the barrier b, such that ψ(0)> b(0)

i.e. the first passage time to a lower barrier. The distributions of the first passage time

and the minimum are strongly connected, indeed the event {Tb > T} is the same as the

event {inft≤T ψ(t)> b(t)}. We can thus write down the distribution of Tb

P
(

inf
t≤T

[ψ(t)−b(t)]≤ 0
)
= P(Tb ≤ T ) . (1.1)

Similarly the law of the past supremum supt≤T ψ(t) of a continuous stochastic process

before a deterministic time T > 0 also presents some major interest in stochastic mod-

eling, such as queuing and risk theories, as it is related to the law of the first passage

time Tb above any level b when b(0)> ψ(0), through the relation

P
(

sup
t≤T

[ψ(t)−b(t)]≥ 0
)
= P(Tb ≤ T ) . (1.2)

1.3.2 An example of Applications

Since the traffic for core and metropolitan Internet links is an aggregations of flows

from many users and many of these users transmit their data independently, it can be

assumed to follow a Gaussian process by the central limit theorem (Zukerman et al.

2003). Also, the long range dependence (LRD) characteristics of the Internet traffic

has been well established (Leland et al. 1994, Arlitt and Williamson 1997, Williams

et al. 2005). Thus, a Gaussian LRD process, the fractional Bownian motion (fBm),

has been considered as the model of choice for heavily multiplexed internet traffic and
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its accuracy has been validated by various publications including (Norros 1995, Chen

et al. 2013). Although a queue fed by fBm input has been considered as a funda-

mentally important model for Internet queueing performance analysis (Norros 1995,

W. Willinger and Wilson 1997, Dijkerman and Mazumdar 1994, Hüsler and Piterbarg

1999, Duffield and O’Connell 1995, Chen et al. 2013, 2015), no explicit accurate re-

sults for the mean, variance, third central moment and skewness for the occupancy, Q,

of an fBm queue, are available.

1.3.2.1 Applications of the supremum functional

Let X (t) denote an arithmetic fractional Brownian process with drift µ, with SDE

dX (t) = µdt +σdBH (t) , X(0) = 0

where BH is an fBm with H ∈ [0,1]. There are various motivations for studying the

probability distribution of supt∈[0,T ]X(t). Fractional Brownian motion has been widely

accepted as an accurate model of Internet traffic in parts of networks where there is sig-

nificant aggregation (Leland et al. 1994, Norros 1995, W. Willinger and Wilson 1997,

Taqqu et al. 1997). Other applications include studying pursuit problems (Bramson

and Griffeath 1991, Li and Shao 2001), in study of extremes and level sets (Azaïs

and Wschebor 2009). Hüsler and Piterbarg (Hüsler and Piterbarg 1999, Theorem 1,

Equation (9)) (with α = 2H, β = 1) have shown that

P
(

sup
t>0

X (t)> x
)
∼Cx

2H2−3H+1
H e

(
− x2−2H (1−H)2H−2|µ|2H

2H2H σ2

)
(1.3)

for some C > 0 (which is given explicitly in (Hüsler and Piterbarg 1999)), in the sense

that the ratio of the two sides of (1.3) tends to 1 as x→∞. A variety of results related to

tail asymptotics, extreme value theorems, laws of iterated logarithm etc are related to a

set of certain constants known as Pickands’ constants(Pickands 1969b,a). In particular,

the formula for C given in (Hüsler and Piterbarg 1999) is expressed in terms of a

Pickands’ constant.

According to (Mandjes 2007, Proposition 5.6.2), which is credited to be from (Debicki

and Rolski 1999, Theorem 4.3) if Q denotes the stationary contents of an fBm queue,

P(Q > x)

x2H−3+1/H exp
(
−1

2

( x
1−H

)2−2H ( µ
H

)2H
) → α(H)√

2πβ(H)
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as x→ ∞, in which

α(H) =
H2H
√

π

2(1−H)/2H
√

H

(
H

µ(1−H)

)H−1( 1
1−H

)(2−H)/H

and

β(H) =

(
µ(1−H)

H

)H 1
1−H

where Hx denotes the Pickands’ constant. Even in the case of µ = 0, only bounds

are known, to the best of our knowledge, for the tail probability of the supremum of

fractional Brownian motion (Molchan 1999, Aurzada et al. 2011).

1.3.2.2 Applications of the first passage functional

There are also several other motivation for the study of the first passage functional

other than its own importance, such as its relation to Burgers equation with random

initial data (She et al. 1992, Bertoin 1998). Other applications include studying pursuit

problems (Bramson and Griffeath 1991, Li and Shao 2001), in study of extremes and

level sets (Azaïs and Wschebor 2009). Also in the field of Gaussian processes a variety

of results related to tail asymptotics, extreme value theorems, laws of iterated logarithm

etc are related to a set of certain constants known as Pickands’ constants(Qualls and

Watanabe 1972, Dȩbicki 2002, 2006, Dȩbicki and Kisowski 2008, Arendarczyk and

Dȩbicki 2012, Albin 1994, Darling 1983).

Unfortunately little is known about the first passage probability of a fractional Brow-

nian motion process. Martingale methods and Fokker-Plank boundary value problem

approaches do not appear to have been successful in the case H 6= 0.5 so far.

Michna (Michna 1999) provided a method of simulation of ruin probability over in-

finite horizon for fractional Brownian motion with H > 1
2 . Guérin et.el (Guérin et al.

2016) have recently introduced an analytical approach to calculate, in the limit of a

large confining volume, the mean first-passage time of a Gaussian non-Markovian ran-

dom walker to a target, though this still just leads to approximation in case of fBm. The

hitting time of a level has also been studied by Decreusefond and Nualart in (Decreuse-

fond and Nualart 2008). They obtained an upper bound for the Laplace transform of

the hitting time.
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The first passage time density of fractional Brownian motion confined to a two-dimensional

open wedge domain with absorbing boundaries has also been shown to satisfy

PΩ (t)≈ t−1+π
(2H−2)

2Ω

in the limit as t → ∞, where Ω is the wedge angle, in (Jeon et al. 2011). Prakasa Rao

(Rao 2013) has obtain some maximal inequalities for a centered fractional Brownian

motion with H ∈
(1

2 ,1
)

and with a polynomial drift g(·) by studying the asymptotic

behaviour of the tail distribution function

P
(

sup
0<t<T

(
BH

t +g(t)
)
> a
)

as T → ∞ for fixed a and as a→ ∞ for fixed T . Molchan (Molchan 1999), has shown

T H−1 exp
[
−β
√

logT
]
≤ P(τ1 > T )≤ T H−1 exp

[
β
√

logT
]

for some constant β as T goes to infinity. These bounds have been improved by Au-

rzada (Aurzada et al. 2011) to

T H−1 (logT )−α1 ≤ P(τ1 > T )≤ T H−1 (logT )α2 (1.4)

for some constants α1 > 1
2H and α2 > 2

H − 1, for large enough T . In the physics

literature, these results are often used in the sense ≈ T H−1, disregarding the other

factors.

For further background information and links to existing literature, we refer the reader

to (Li et al. 2004).

As part of this research, for the first time, a link has been discovered between the prob-

ability distribution of Supremum of fBm with drift (fBm queue size distribution) and

the Generalized Gamma distribution (Stacy 1962) (a special case of the Amoroso dis-

tribution (Amoroso 1925)) which leads to very accurate closed-form approximations

for these important statistics. The approximations have also been validated by simu-

lation results in (Chen et al. 2015). Some simplified expressions are also provided for

these results in certain cases when the Hurst parameter takes certain special values.
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1.4 Fokker-Plank/Kolmogorov equations

The theory of Fokker-Plank/Kolmogorov equations, which are second order elliptic

and parabolic equations for measures, goes back to Kolmogorov’s works (Kolmogoroff

1931) along with a number of earlier works in the physics literature by Fokker, Smolu-

chowski, Planck and Chapman (Fokker 1914, Planck 1917). In the recent years several

important monographs have also appeared (Bogachev et al. 2015, Risken 1996). One

of the main objects here is the elliptic operator of the form

LA,b f = Tr
(
AD2 f

)
+ 〈b,∇ f 〉, f ∈C0

∞ (Ω) ,

where A=
(
ai j
)

is a mapping on a domain Ω⊂Rd with values in the space of nonnega-

tive symmetric linear operators on Rd and b = (bi) is a vector field on Ω. In coordinate

form, LA,b is given by the expression

LA,b f =
d

∑
i, j=1

ai j∂xi∂x j f +
d

∑
i=1

bi∂xi f .

From this operator we can define the adjoint LA,b
∗ via the duality relation∫

Ω

(
LA,b f

)
dµ =

∫
Ω

f d
(
LA,b

∗µ
)
∀ f ∈C0

∞ (Ω) ,

and µ∈M
(
Rd), the space of locally finite (possibly signed) Borel measures. The weak

elliptic equation is associated with operator LA,b as

LA,b
∗µ = 0, (1.5)

for Borel measures on Ω, furthermore we say µ solves (1.5) if∫
Ω

LA,b f dµ = 0 ∀ f ∈C0
∞ (Ω) , (1.6)

where we assume that bi,ai j ∈ Lloc
1 (µ), the class of locally integrable functions. It is

noteworthy that this is the same as saying that (1.5) holds in the sense of distributions,

where we recall that any µ ∈M
(
Rd) gives rise to a distribution in the natural way.

Similarly, one can consider parabolic operators and parabolic Fokker-Planck Kolmogorov

equations for measures on Ω× (0,T ) of the type

∂tµ = LA,b
∗µ, (1.7)
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also in the sense of distributions (with A,b possibly time-dependent). Hence, the study

of these equations reduces to studying partial differential equations in the distributional

setting, as shown in (Evans 2010, Gilbarg and Trudinger 2015, Friedman 2008, Re-

nardy and Rogers 2006). However it is crucial that a priori Fokker-Planck-Kolmogorov

equations are equations for measures, not for rough distributions (Bogachev et al.

2015). This becomes relevant when the coefficients are singular or degenerate and,

in particular, in the infinite-dimensional case, where no Lebesgue measure exists. The

theory of these equations for measures is now a rapidly growing area with connections

to many other areas of mathematics such as real analysis, partial differential equations

and stochastic analysis.

1.4.1 Probabilistic Motivation

For exposition of the semi-group of operators generated by the transition function of a

Markov process, we recommend the reader to (Kallenberg 2006, Revuz and Yor 2013).

For further details concerning the semi-group theory from a more functional analysis

point of view, please see (Phillips and Hille 1957, Yosida 1995). Knowledge of the

infinitesimal generator enables one to derive important characteristics of the initial

process; the classification of Markov processes amounts to the description of their

corresponding infinitesimal generators (Sarymsakov 1954, Gikhman and Skorokhod

2015). For semi-groups of transformations associated to parabolic partial differential

equations, see (Feller 1952).

Suppose that ξ = (ξ(x, t))t≥0 is a diffusion process in Rd governed by the stochastic

differential equation

dξ(x, t) = b(ξ(x, t))dt +σ(ξ(x, t))dWt , ξ0 = x0. (1.8)

The generator of the transition semigroup {Tt}t≥0 has the form LA,b, where A= σσ∗/2.

The matrix A in the operator LA,b is known as the diffusion matrix or diffusion co-

efficient and the vector field b is called the drift coefficient or just drift. Denote

by P(x, t)(B) the probability that ξ moves from point x ∈ Rd to a measurable set

B ∈ B
(
Rd) (the Borel measurable sets in Rd) in time t ≥ 0. Hence, P(x, t)(·) is a

probability measure on
(
Rd,B

)
and (x, t) 7→ P(x, t)(·) is the so-called transition prob-

ability function. The transition probabilities of ξ satisfy the corresponding parabolic
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equation (1.7)(Friedman 2012). If the transition function satisfies certain locality con-

ditions, then we say ξ is a Markovian diffusion, more details are presented in (Øksendal

2003, Stroock 2008). A probability measure µ is called invariant (Bogachev et al. 2001,

Von Neumann 1941) for {Tt}t≥0 if the following identity holds:∫
Rd

Tt f dµ =
∫
Rd

f dµ ∀ f ∈Cb

(
Rd
)
. (1.9)

Any invariant probability measure µ of ξ (if such exists) satisfies (1.5). Measures sat-

isfying (1.5) are called infinitesimally invariant, as this equation has deep connections

with invariance with respect to the corresponding semigroups(Bogachev et al. 2015).

Also, if there is an invariant probability measure µ, then {Tt}t≥0 extends to L1 (µ) and

is strongly continuous. Denoting L to be the corresponding generator with domain

D(L). Then (1.9) is equivalent to the equality∫
Rd

L f dµ = 0 ∀ f ∈ D(L) .

Under some reasonable assumptions on A and b, the generator of the semigroup asso-

ciated with the diffusion governed by the indicated stochastic equation coincides with

LA,b on C∞
0
(
Rd), but the invariance of the measure in the sense of (1.9) is not the same

as (1.6), and the class C0
∞
(
Rd) may be much smaller than D(L) (Bogachev et al.

2015, Stroock and Varadhan 2007).

A diffusion SDE, can be used to define a deterministic function of space and time in

two fundamentally different ways. First by considering the expected value of some

function, as a function of the initial position and time. Secondly by considering the

probability of being in a certain state at a given time, given the knowledge of the initial

state and time (Øksendal 2003). Thus when studying the first scenario, one explores

the mathematical ideas of the backward Kolmogorov equation and the Feynman-Kac

formula. When studying the latter viewpoint, which is in fact dual to the first view-

point, the evolving probability density solves a different PDE, the forward Kolmogorov

equation, which is actually the adjoint of the backward Kolmogorov equation.

The link between partial differential equations, boundary value problems and stochas-

tic processes and stochastic analysis has already been well established over the past

century. Dynkin’s formula (Øksendal 2003) and Feynman-Kac formula (Klebaner

2005) are just of some the prominent results which highlight this interplay for dif-

fusion processes.
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1.4.2 Boundary Conditions

It is of interest to consider how and when a diffusion process crosses a barrier. Proba-

bilistically, thinking about barriers means considering exit times. On the PDE side this

leads us to consider boundary value problems for the backward and forward Fokker-

Plank/Kolmogorov equations.

We now briefly summarize some of the common types of boundary conditions for the

Fokker-Plank/Kolmogorov equations. Let us denote a Brownian motion beginning at

x0.

dXt = dWt , X0 = x0.

We know that the transition density p(x, t) satisfies the Fokker-Plank/Kolmogorov

equation (
−∂t +

1
2

∂xx
2
)

p = 0.

1. Natural boundary conditions: This is the condition that p(x, t) 7→ 0 as x 7→ ∞ or

x 7→ −∞. With the decay to zero being sufficiently fast to ensure the normaliza-

tion integral is ∫
∞

−∞

P(x, t)dx = 1.

2. Absorbing boundary conditions: Now, suppose that we restrict the process Xt to

a region [L,U ]. We say Xt has an absorbing boundary condition at L, if, when

Xt hits L, it stays there forever, which is modeled using the Dirichlet boundary

condition p(L, t) = 0.

In case of processes associated with diffusion, absorbing boundary conditions

are used to study first passage, supremum and infimum of probability densities

corresponding to these processes.

3. Reflecting boundary conditions: Likewise, we say that Xt has a reflecting bound-

ary condition at L, if, when Xt hits L, it is instantaneously reflected back into the

region [L,U ], which is modeled as the Neumann boundary condition ∂x(L, t) = 0.
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1.4.3 Fractional Brownian motion

The Fokker-Plank/Kolmogorov equations are now well known for Fractional Brownian

motion dependent processes as shown by subsequent lemma. Although the traditional

techniques associated with studying first passage time density via the initial boundary

value problems for Markovian processes are not applicable, as is shown in chapter 2.

This is, due to the non-Markovian nature of the underlying processes.

The derivation of the Kolmogorov Forward Equation formula for fractional Brownian

motion can be found in (Zeng et al. 2012). It should be noted this result was provided

without any restrictions on the range of Hurst parameter H. Even though the original

proof relies on fractional Itô formula proven for H ≥ 1
2 in (Duncan et al. 2000), the

result has since been extended by modifying the fractional white noise approach (Hu

and Øksendal 2003) to cover the range 0 < H < 1 in (Bender 2003). Similar equations

have also been considered in (Baudoin and Coutin 2007, Hahn and Umarov 2011).

Lemma 1.4.1. (Kolmogorov Forward Equation formula for fBm). The Kolmogorov

Forward Equation, also known as the Fokker-Plank equation associated with a nonlin-

ear fractional Brownian motion driven SDE of the form

dX (t) = f (X(t), t)dt +g(X(t), t)dBH (t) (1.10)

where f (x(t), t) and g(x(t), t) are real-valued functions, not equal to 0 possessing the

indicated derivatives and BH (t) is a standard fBm with Hurst parameter H is

∂p(x, t)
∂t

= −∂( f (x(t), t) p(x, t))
∂x

+
∂2 (g(x(t), t) p(x, t)

∫ t
0 g(x(s),s)φ(s, t)ds

)
∂x2 (1.11)

where

φ(s, t) = H (2H−1) |s− t|2H−2.

We do not investigate the details of how the integral in the SDE 1.10 is defined. Several

alternatives are considered, for example, in (Mishura 2008) and (Biagini et al. 2008a).



1.5 Derivatives associated with Stochastic processes 14

1.5 Derivatives associated with Stochastic processes

1.5.1 Radon-Nikodym derivatives of transformations

In the theory of stochastic processes, the influence of measure theory can be seen in

the use of the term random function, instead of stochastic process, as in the books

(Yaglom 2004, Lifshits 1995), for example. The concept that the study of stochastic

processes is “really” the study of measures on spaces of functions entails difficulties

as well as opportunities. In particular, it can be shown (Kuo 1975) that there is no

rotationally or translationally invariant measure with bounded values on bounded sets,

and positive values on open sets, on any infinite dimensional normed vector space,

and hence the concept of probability density is no longer applicable. This challenge

is potentially addressed by adopting Gaussian measures as the “standard measure” on

function spaces.

The Cameron-Martin theorem(Cameron and Martin 1944) provides a partial substitute

for the concept of a density in that it provides a “likelihood ratio” between two differ-

ent Gaussian measures which differ by a shift from the Cameron-Martin space (also

termed the space of measurable shifts), which is the space of vectors, a shift by which

gives rise to a well-defined non-zero Radon-Nikodym derivative.

This result was extended by Girsanov(Girsanov 1960) to enable comparison of ar-

bitrary Ito measures, i.e. measures constructed by a stochastic differential equation

driven by Brownian motion. Extensions of the Girsanov theorem to processes defined

by stochastic differential equations based on fractional Brownian motion, have also

been developed in (Norros et al. 1999, Decreusefond 2000, 2003, Mishura 2008, Bi-

agini et al. 2008b).

These results may naturally be applied when the two measures being compared are the

same, but the mapping (the stochastic differential equation) is non-trivial, and in this

case the result compares, in a sense, the same measure at two locations. The Radon-

Nikodym derivative formula given by these theorems is a local result in the sense that

if the shift was replaced by a different function identical to the shift in a neighour-

hood of a certain point, the Radon-Nikodym between the two measures would be the



1.5 Derivatives associated with Stochastic processes 15

same, at this point. However, since the Radon-Nikodym derivative incorporates in an

appropriate way the dilation or concentration effected by the transformation at each

location, the Radon-Nikodym derivative can’t be isolated from the choice of transfor-

mation linking the two measures.

A different extension of the Cameron-Martin theorem, to the situation where the trans-

formation between measures is affine, was considered in (Segal 1958) and (Feldman

1958), and to the general nonlinear case in (Ramer 1974) and (Cruzeiro 1983b). The

resulting formula in the first three cases takes the form of a product of two terms, one

basically the same as the Cameron-Martin formula, and the other term is effectively

the Jacobian of the nonlinear transformation.

Since a Jacobian is defined in terms of the derivative of the transformation (in this

case the Fréchet derivative is appropriate), Ramer observed that the result can still

hold when the traditional definition of Jacobian fails. He replaced the Jacobian by

an expression partially induced, by continuity, from the action of the mapping on the

Cameron-Martin space of the measure.

Even with this relaxation in the definition of the Jacobian, it appears to be very difficult

to find non-trivial examples where Ramer’s formula for the Radon-Nikodym derivative

can be evaluated, so it is appropriate to consider additional, or alternative ways in

which the definition of Jacobian, or derivative of a transformation, can be generalised

and made easier to apply.

A Malliavin derivative of a transformation between measure spaces may exist when the

traditional Frechét derivative does not. One of the objectives of the Malliavin derivative

is to evaluate a derivative which can’t be evaluated by conventional means. Note: it is

not the derivative of a path that concerns us here, but the derivative of a transformation

of paths. The conventional derivative to be used here is the Frechét derivative. But the

limits in the Frechét derivative either can’t be evaluated, or at least are very difficult to

evaluate.

This situation can be tackled in many ways. More assumptions, look for transforma-

tions where it can be evaluated, etc. The Malliavin approach is to change the definition

of what a derivative is, and how convergence in the definition, to this derivative, takes

place.
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The P -measurable derivative introduced in Subsection 3.2.2 takes exactly the same

form as a Frechét derivative, namely it is still a linear operator on the space of paths,

but the limits required in its definition are weaker than conventional limits. This is

achieved by using a limit in P -measure in the definition of the derivative.

The concept of limits in P -measure, where P is some measure or finitely additive set

function, has a long history, going back to the start of measure theory, and continuing

to this day. In this research P will always refer to the standard Gauss measure (Kuo

1975), which, despite the name, is a finitely additive set function, and not, in general,

a measure. The key highlights of the theory of finitely additive set functions (P say),

the P -measurable functions, and integration of P -measurable functions with respect to

the measure P , including the appropriate Radon-Nikodym theorem, are presented in

(Dunford and Schwartz 1957).

Once the step of using P -measurable functions uniformly in the theory is taken, the

Ramer theorem takes exactly the same form as the corresponding Jacobian theorem

which would apply if the spaces were all finite-dimensional. The proof of this theorem

is also dramatically simpler than in (Ramer 1974).

In (Cruzeiro 1983b), the context was not Gaussian measure spaces in general but the

specific case of the space C[0,1] with the Wiener measure. In place of a non-linear

transformation, Cruzeiro considers a vector field, which defines a flow on the Wiener

space. The Radon-Nikodym derivative is now expressed more directly as an integral

involving the divergence of the vector field.

In the present research not only the Jacobian, but the formula for the Radon-Nikodym

derivative itself is found on the Cameron-Martin space, first, and then the result on

the path space is induced by continuity from its value on Cameron-Martin space. This

allows us to avoid highly restrictive conditions on the class of non-linear mappings to

which the theory can apply.

In particular, it is not assumed that the mapping differs from the identity by a function

whose derivative exists and is a Hilbert-Schmidt class operator. Another way to express

this generalisation is that we can now define a transformation of paths which uses a

different basis for the transformed path than for the original path. This has been found

to be a crucial technique in applications.
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The idea that it may be more useful to obtain the Radon-Nikodykm derivative on the

Cameron-Martin space also motivates the authors of (Bagchi and Mazumdar 1993),

where the application in mind is to generalise the concept of stochastic process (or

random function) to include white noise, which is not a well-defined random function

in the conventional sense. The role of measures, in the Cameron-Martin space, is taken

by finitely additive set functions, and while there is no probability measure for white

noise on the whole path space, the identity mapping can be interpreted as a white noise

random function defined on the Cameron-Martin space.

There is scope for a theorem which generalises both the Girsanov theorem and the

Ramer theorem. We present such a generalisation of the Girsanov theorem for fBm

in this research, which is not limited to changes in linear drift only in theorem 3.2.3.

Although our goal is primarily to make the Ramer theorem easier to apply, by identi-

fying a different type of regularity condition on the function, f , which makes it easy to

identify functions to which it can be applied, and easy to evaluate the Radon-Nikodym

derivative formula. The key new regularity condition on f which is adopted is P -

measurability.

A simple form of the Ramer theorem is shown to apply to the transformation applying

on a Hilbert space equipped with an additive set function. Except for needing the

theory of P -measurable functions, the proof of this result is quite simple.

Also, it is shown that a Radon-Nikodym derivative between finitely additive measures

on the Cameron-Martin space of a Gaussian measure can be uniquely extended to

the original space and provides a Radon-Nikodym derivative there. Using this exten-

sion theorem, the Ramer theorem on H can be readily used to derive Radon-Nikodym

derivatives between a Gaussian measure and its transformation by a P -measurable

function between spaces.

In Section 3.1 the abstract Wiener space approach to defining Gaussian measures is

reviewed, and in Section 3.2 the theory of finitely additive set functions, and, denoting

a specific additive set function by P , the theory of P -measurable functions, as devel-

oped in (Dunford and Schwartz 1957), is reviewed. Theorem 3.2.4 proves that any

P -measurable function on H, the Cameron-Martin space, has a unique P-measurable

(where P is the corresponding measure on Ω) extension to the space Ω.
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1.5.2 The Girsanov Theorem

Although more general versions of Girsanov formula for fractional Brownian motion

are known (Decreusefond et al. 1999, Mishura and Valkeila 2001), in this research we

consider Norros et al’s version of Girsanov formula for fractional Brownian motion. A

proof of the following Girsanov formula for fractional Brownian motion can be found

in (Norros et al. 1999), where the term the fundamental martingale is also coined for

the process Mt .

Proposition 1.5.1. (The Girsanov formula for fBm). Let BH (t) denote fractional Brow-

nian motion with mean 0 and variance t2H , for all H ∈ (0,1) defined on (Ω,F ,P). Let

a be a scalar. Define a new probability measure Q on (Ω,F ) via the Radon Nikodym

derivative with respect to P

dQ
dP

= exp
{

µMT −
1
2

µ2〈M,M〉T
}

(1.12)

where

MT =
1

2HΓ
(3

2 −H
)

Γ
(
H + 1

2

) ∫ T

0
(s(T − s))

1
2−H dBs

H . (1.13)

The process MT is a martingale with independent increments, zero mean and variance

function c2T 2−2H where

c =

√
Γ
(3

2 −H
)

2H (2−2H)Γ
(
H + 1

2

)
Γ(2−2H)

. (1.14)

Then the process defined, for all t ∈ [0,T ], by BH (t)+µt is the standard Q-fractional

Brownian motion on [0,T ]. In other words, under probability measure Q, BH (t) re-

stricted to t ∈ [0,T ] is distributed as an arithmetic fractional Brownian motion with

drift µ.

It’s noteworthy that using the variance of Mt , (1.12) can also be re-written as

dQ
dP

= exp
{

µMT −
1
2

µ2c2T 2−2H
}
. (1.15)

We now present a corollary of theorem 1.5.1 from our current research which makes it

easier to apply to a wider range of parameters.
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Corollary 1.5.1. Let X (t) = bBH (t) be an arithmetic fractional Brownian motion with

volatility b, for all H ∈ (0,1) defined on (Ω,F ,P). Let a be a scalar. Define a new

probability measure Q on (Ω,F ) via the Radon Nikodym derivative with respect to P

dQ
dP

= exp
{

a
b

MT −
1
2

a2

b2 c2T 2−2H
}
. (1.16)

Then the process defined, for all t ∈ [0,T ], by Z (t) = X (t)+ at is an arithmetic Q-

fractional Brownian motion process on [0,T ] with volatility b. In other words, under

probability measure Q, X (t) restricted to t ∈ [0,T ] is distributed as an arithmetic

fractional Brownian motion with drift a and volatility b.

Proof. The change of measure (1.15) turns the process dBH (t) into the process dBH (t)+

µdt. Therefore, if we use this weight function, on the process X (t) we get dX (t) =

b
(
dBH (t)+µdt

)
. This becomes the process Z (t) if

µ =
a
b
.

Therefore, the likelihood ratio between X (t) and Z (t) is as claimed.

1.5.3 Derivatives on Abstract Wiener Space

In measure theory, abstract Wiener space is used to construct a strictly positive and

locally finite measure on an infinite-dimensional vector space. A more formal presen-

tation of this concept can be found in section 3.1. The following two definitions and

the subsequent proposition can be found in (Di Nunno et al. 2009). Let X be a Banach

space that is, a complete, normed vector space over R. The set of all bounded linear

functionals is called the dual of X and is denoted by X∗. Let U be an open subset of a

Banach space X and let f be a function from U into R.

Definition 1.5.1. We say that f has a directional derivative (or Gateaux derivative)

Dy f (x) at x ∈U in the direction y ∈ X if

Dy f (x) :=
d
dε

[ f (x+ εy)]
ε=0 ∈ R (1.17)

exists.
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Definition 1.5.2. We say that f is Fréchet-differentiable at x ∈ U, if there exists a

bounded linear map A : X 7→ R, that is, A ∈ X∗, such that

lim
h→0;h∈X

| f (x+h)− f (x)−A(h) |
‖h‖

= 0. (1.18)

We write

f ′ (x) = A ∈ X∗, (1.19)

for the Fréchet derivative of f at x.

Proposition 1.5.2. If f is Fréchet differentiable at x ∈U ⊂ X, then f has a directional

derivative at x in all directions y ∈ X and

Dy f (x) = 〈 f ′ (x) ,y〉 ∈ R. (1.20)

Conversely, if f has a directional derivative at all x ∈U in all directions y ∈ X and the

linear map

y 7→ Dy f (x) , y ∈ X (1.21)

is continuous ∀x ∈U, then there exists an element ∇ f (x) in X∗ such that

Dy f (x) = 〈∇ f (x) ,y〉. (1.22)

If this map x 7→ ∇ f (x) ∈ X∗ is continuous on U, then f is Fréchet differentiable and

f ′ (x) = ∇ f (x) . (1.23)

1.5.3.1 Gross-Sobolev derivative

Let W =C0 ([0,1] ,R) be the classical Wiener space equipped with Wiener measure µ.

In order to do Sobolev type analysis on W , so that it can be applied to random vari-

ables encountered in applications, a differentiation operator has been constructed. As

Fréchet derivative has been found to be unsatisfactory (Üstünel 2006), since many fre-

quently encountered Wiener functionals (Wiener integrals or the solutions of stochastic

differential equations with smooth coefficients) are not even continuous with respect

to the Fréchet norm of W . Therefor, what is required is to define a derivative on the

Lp (µ)-spaces of random variables. In order to be able to do so the following property
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is necessary: if F,G ∈ Lp (µ), and if F = G µ- a.s., it is natural to ask that their deriva-

tives are also equal a.s. For this, the only way is to choose y in a specific subspace of

W , namely the Cameron-Martin space H:

H = {h : [0,1] 7→ R/h(t) =
∫ t

0
ĥ(s)ds, |h|H 2 =

∫ 1

0
|ĥ(s) |2ds}. (1.24)

We now briefly sketch the construction of this derivative, for more details please see

(Üstünel 2010). Let S (Rn) denote the space of infinitely differentiable, rapidly de-

creasing functions on Rn. If F : W 7→ R is a function of the following type (called

cylindrical ):

F (x) = f (Wt1 (x) , · · · ,Wtn (x)) , f ∈ S (Rn) , (1.25)

we define, for y ∈ H, the directional derivative as

DyF(x) =
d
dε

[F (x+ εy)]
ε=0 . (1.26)

Since Wt (x+ y) =Wt (x)+ y(t), we obtain

DyF(x) =
n

∑
i=1

∂i f (Wt1 (x) , · · · ,Wtn (x))y(ti) , (1.27)

in particular

DyWt(x) = y(t) =
∫ t

0
ĥ(s)ds =

∫ t

0
1[0,t] (s) ĥ(s)ds. (1.28)

If we denote by Ut the element of H defined as Ut (s)=
∫ s

0 1[0,t] (r)dr, we have DyWt (x)=

〈Ut ,y〉H . Looking at the linear map y 7→ DyF(x) we see that it defines a random el-

ement with values in H∗, since we have identified H with H∗, D(F) is an H-valued

random variable. It can be shown that D is a closable operator on any Lp (µ) (p > 1)

and it can be extended to larger classes of Wiener functionals than the cylindrical ones,

as defined below.

Definition 1.5.3. F ∈ Domp (D) if and only if there exists a sequence (Fn;n ∈ N) of

cylindrical functions such that Fn 7→ F in Lp (µ) and (DFn) is Cauchy in Lp (µ,H).

Then, for any F ∈ Domp (D), we define

D(F) = lim
n→∞

D(Fn) . (1.29)

The extended operator D is known as Gross-Sobolev derivative.
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1.5.3.2 Stochastic derivative

The definitions and theory in the current and next subsection are much more compre-

hensively presented in (Di Nunno et al. 2009).

Definition 1.5.4. Let F : W 7→ R be a random variable, choose g ∈ L2 ([0,T ]), and

consider

γ(t) =
∫ t

0
g(s)ds ∈W. (1.30)

Then we can define the directional derivative of F similar to (1.26).

Definition 1.5.5. Assume that F : W 7→R has a directional derivative in all directions

γ of the form γ ∈ H in the strong sense, that is,

DγF (ω) := lim
ε→0

F (ω+ εγ)−F (ω)

ε
(1.31)

exists in L2 (P). Assume in addition that there exists ψ(t,ω) ∈ L2 (P×λ) such that

DγF (ω) =
∫ T

0
ψ(t,ω)g(t)dt, ∀γ ∈ H. (1.32)

Then we say that F is differentiable and we set

DtF (ω) := ψ(t,ω) . (1.33)

We call D.F ∈ L2 (P×λ) the stochastic derivative of F. The set of all differentiable

random variables is denoted bu D1,2.

1.5.3.3 Malliavin derivative

One of the main tools of modern stochastic analysis is Malliavin calculus. In a nut-

shell, this is a theory providing a way of differentiating random variables defined on

a Gaussian probability space (typically Wiener space) with respect to the underlying

noise. Malliavin calculus, a differential calculus in Wiener space is named after Paul

Malliavin. His seminal work (Malliavin 1978), led to a proof that Hörmander’s condi-

tion implies the existence and smoothness of a density for the solution of a stochastic

differential equation. Hörmander’s original proof was based on the theory of partial

differential equations.
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This new approach proved to be extremely successful and soon a number of authors

studied variants and simplifications of the original proof (Bismut 1981b,c, Kusuoka

and Stroock 1984, 1985, Norris 1986).

Even now, more than three decades after Malliavin’s original work, his techniques

prove to be sufficiently flexible to obtain related results for a number of extensions

of the original problem, including for example SDEs with jumps (Takeuchi 2002,

Ishikawa and Kunita 2006, Cass 2009, Takeuchi 2010), infinite-dimensional systems(Ocone

1988, Baudoin et al. 2005, Mattingly and Pardoux 2006), and SDEs driven by Gaus-

sian processes other than Brownian motion(Baudoin and Hairer 2007, Cass and Friz

2010, Hairer et al. 2011, Cass et al. 2015).

Let P denote the family of all random variables F : Ω 7→ R of the form

F = φ(θ1, · · · ,θn) , (1.34)

where φ(x1, · · · ,xn) = ∑α aαxα, with xα = x1
α · · ·xn

α and α = (α1, · · · ,αn) , is a poly-

nomial and θi =
∫ T

0 fi (t)dW (t) for some fi ∈ L2 ([0,T ]) , i = 1, · · · ,n. Such random

variables are called Wiener polynomials. It should be noted that P is dense in L2 (P).

Let F = φ(θ1, · · · ,θn) ∈ P. Then F ∈D1,2 and

DtF =
n

∑
i=1

∂φ

∂θi
(θ1, · · · ,θn) . fi (t) . (1.35)

We now introduce the norm || · ||1,2 on D1,2:

||F ||21,2 := ||F ||2L2(P)+ ||DtF ||2L2(P×λ), F ∈D1,2. (1.36)

Unfortunately, as it is not clear if D1,2 is closed under this norm, hence one works

instead with the following family.

Definition 1.5.6. We define D1,2 to be the closure of the family P with respect to the

norm || · ||1,2.

Thus D1,2 consists of all F ∈ L2 (P) such that there exists Fn ∈ P with the property that

Fn → F in L2 (P) as n→ ∞ and {DtFn}∞
n=1 is convergent in L2 (P×λ). If this is the

case, it is tempting to define

DtF = lim
n→∞

DtFn. (1.37)
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It can be shown that this defines DtF uniquely, by considering the difference Hn =

Fn−Gn, the operator Dt is closable, that is if the sequence {Hn}∞
n=1 ⊂ P is such that

Hn 7→ 0 in L2 (P) as n 7→ ∞ and {DtHn}∞
n=1 converges in L2 (P×λ) as n 7→ ∞ , then

limn→∞ DtHn = 0.

Definition 1.5.7. Let F ∈ D1,2, so that there exists {Fn}∞
n=1 ⊂ P such that Fn→ F in

L2(P) and {DtFn}∞
n=1 is convergent in L2 (P×λ). Then we define

DtF = lim
n→∞

DtFn in L2 (P×λ) (1.38)

and

DγF =
∫ T

0
DtF ·g(t)dt ∀ γ(t) =

∫ t

0
g(s)ds ∈ H, (1.39)

with g ∈ L2 ([0,T ]). DtF is called the Malliavin derivative of F.

It has also been shown in (Di Nunno et al. 2009) that if F ∈ D1,2 ∩D1,2, then the

two derivatives coincide. More precisely, suppose that {Fn}∞
n=1 ⊂ P has the properties

Fn→ F in L2 (P) and {DtFn}∞
n=1 converges in L2 (P×λ). Then DtF = limn→∞ DtFn in

L2 (P×λ). Hence

DtF = DtF ∀ F ∈D1,2∩D1,2. (1.40)

1.6 Fractional calculus on an interval

We briefly recall the main features of the classical theory of fractional calculus by

following (Biagini et al. 2008a, Zähle 1999). For a complete treatment of this subject,

we refer to (Samko et al. 1993, Oldham and Spanier 1974).

Definition 1.6.1. Let f be a deterministic real-valued function that belongs to L1(a,b),

where (a,b) is a finite interval of R. The fractional Riemann Liouville integrals of order

α > 0 are determined at almost every x ∈ (a,b) and defined as the

(i) Left-sided version:

Iα
a+ f (x) :=

1
Γ(α)

∫ x

a
(x− y)α−1 f (y)dy.
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(ii) Right-sided version:

Iα

b− f (x) :=
1

Γ(α)

∫ b

x
(y− x)α−1 f (y)dy.

For α = n ∈ N one obtains the n-order integrals

In
a+ f (x) :=

∫ x

a

∫ xn−1

a
· · ·

∫ x2

a
f (x1)dx1dx2 · · ·dxn

and

In
b− f (x) :=

∫ b

x

∫ b

xn−1

· · ·
∫ b

x2

f (x1)dx1dx2 · · ·dxn.

Definition 1.6.2. Consider α < 1. We define fractional Liouville derivatives as

Dα
a+ f :=

d
dx

I1−α
a+ f

and

Dα

b− f :=
d
dx

I1−α

b− f

if the right-hand sides are well-defined (or determined). For any f ∈ L1 (a,b) one

obtains

Dα
a+Iα

a+ f = f , Dα

b−Iα

b− f = f .

The fractional derivative of the function xp (Oldham and Spanier 1974, §2.9):

dq

dxq xp =
Γ(p+1)xp−q

Γ(p−q+1)
. (1.41)

1.7 Flows and probability theory

Flows have been extensively studied in dynamical systems and in Ergodic theory (Am-

brose 1941, Lind 1975). The original motivation behind the idea of a flow was rooted

in classical mechanics, where given a set of all possible states of a given dynamical

system in the phase space, the flow map is the law of motion which prescribes that if

the system is at some initial state now then how it will evolve to another state after

a unit of time. As the theory of dynamical systems splits into subfields which differ

by the structure which one imposes on the state space and into Ergodic theory, several
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kinds of flows have been studied such as continuous flow, measurable flow, special flow

etc. The idea of a vector flow, that is, the flow determined by a vector field, occurs in

the areas of differential topology, Riemannian geometry and Lie groups. Similarly in

recent years the relationship between stochastic differential equations and stochastic

flows of diffeomorphisms has also been extensively explored (Watanabe 1983, Malli-

avin 1978, Kunita and Ghosh 1986, Ikeda and Watanabe 2014, Elworthy 1978, Bismut

1981a).

A quasi-invariant measure µ with respect to a transformation T , from a measure space

X to itself, is a measure which remains equivalent to the transformed measure, µ ◦
T−1 ≈ µ. A flow (for example from a vector field) which generates maps transforming

the underlying measure into a family of mutually absolutely continuous transformed

measures, is referred to as a quasi-invariant flow. The existence of quasi-invariant

flow of measurable maps associated to a vector field with Sobolev regularity was first

studied by Cruzeiro (Cruzeiro 1983b). As there is no analogue of Lebesgue measure

in the infinite-dimensional case, standard Gaussian measure, has been used to get the

extension of these results to the infinite dimensional Wiener space in (Bogachev and

Mayer-Wolf 1999, Peters 1996, Ambrosio and Figalli 2009, Üstünel and Zakai 2013,

Fang and Luo 2010).

Flows of quasi-invariant measurable maps corresponding to vector fields associated

with transport equations, with different flavors of regularity and divergence conditions

have also been studied for ordinary differential equations in (DiPerna and Lions 1989)

and on Wiener space in (Fang and Luo 2010) respectively. By generalizing the results

of Ambrosio (Ambrosio 2008, Ambrosio and Figalli 2009) on the existence, unique-

ness and stability of regular Lagrangian flows of ordinary differential equations to

Stratonovich stochastic differential equations with bounded variation drift coefficients,

an explicit solution to the corresponding stochastic transport equation in terms of the

stochastic flow was constructed in (Li and Luo 2012).

There is also an extensive literature on nonlinear transformations of Gaussian mea-

sures(Ramer 1974, Bogachev 1998, Cruzeiro 1983a). The transport property of Gaus-

sian measures under a shift and along with the dichotomy between absolute conti-

nuity and singularity of the transported measure was established by Cameron-Martin

(Cameron and Martin 1944). Much of this literature either treats general nonlinear



1.8 Some known densities 27

transformations close to the identity (Ramer 1974, Kuo 1971) or transformations gen-

erated by non smooth vector fields, with values in the Cameron-Martin spaces along

with an additional exponential integrability assumption of the divergence, of the cor-

responding vector field (Cruzeiro 1983b).

In contrast to studying quasi invariant flows based on vector fields, we study quasi

invariant flows with two additional consistency constraints, as explained in section 4.1.

1.8 Some known densities

Before proceeding we provide a short list of known probability density formulas for

functionals of Brownian motion. The proofs of the next two propositions can be found

in (Primozic 2011).

Proposition 1.8.1. Let the arithmetic Brownian motion process X (t) be defined by the

following standard Brownian motion W (t) driven SDE

dX (t) = adt +bdW (t) .

with initial value X0. Let τ = inf(u|X(u)≤ B) denote the first passage time for the

barrier X0 < B. Then the first passage time τ is distributed as Inverse Gaussian Distri-

bution

τ∼ IG

(
B−X0

a
,
(B−X0)

2

b2

)
, (1.42)

and for t > 0 the pdf of τ is

f (t) =

√
(B−X0)2

2πb2t3 exp

[
−(at−B+X0)

2

2b2t

]
. (1.43)

Proposition 1.8.2. Let the process S (t) denote geometric Brownian motion, which is

a solution to the following

dS (t) = µS (t)dt +σS (t)dW (t) .

where W (t) denotes the standard Brownian motion process. Let the expected first

passage time ρ = inf(u|S(u)≤ L) for the barrier L. If the conditions L < S(0) and µ <
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σ2

2 are satisfied, the first passage time ρ is distributed as Inverse Gaussian Distribution

ρ∼ IG

(
logL− logS(0)

µ− σ2

2

,
(logL− logS(0))2

σ2

)
,

with the probability density function

f (t) =
(log(S(0))− log(L))√

2πσx3/2
exp

[
−
(
2log(L)−2log(S(0))+ x

(
σ2−2µ

))2

8σ2x

]
.

1.8.1 Supremum and Infimum Results

Proposition 1.8.3. Let the arithmetic Brownian motion process Y (t) be defined by the

following Brownian motion driven SDE

dY (t) = αdt +βdB(t) , t ≥ 0.

For y≥ 0, the formula for the probability and the density of the maximum of arithmetic

Brownian motion are

P
(

sup
s≤t

Y (s)≤ y
)

= N
(

y−αt
β
√

t

)
− exp

[
2αy
β2

]
N
(
−y−αt

β
√

t

)
=

1
2

erfc
(
−y+αt

β
√

2t

)
− 1

2
exp
[

2αy
β2

]
erfc

(
y+αt
β
√

2t

)
. (1.44)

and

h(y, t) =

√
2

πtβ2 exp
[
−(y−αt)2

2β2t

]
− 2α

β2 exp
[

2αy
β2

]
N
[
−αt− y

β
√

t

]

=

√
2

πtβ2 exp
[
−(y−αt)2

2β2t

]
− α

β2 exp
[

2αy
β2

]
erfc

[
αt + y
β
√

2t

]
, (1.45)

where the cumulative distribution N is the integral of the standard normal distribution

and erfc denotes the complementary error function.

These results are presented in (Shreve 2004, Musiela and Rutkowski 1997).
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Proposition 1.8.4. Let the arithmetic Brownian motion process Y (t) be defined as in

proposition 1.8.3. For y ≥ 0, the formula for the probability and the density of the

minimum of arithmetic Brownian motion are

P
(

inf
s≤t

Ys ≥ y
)

= N
(
−y+αt

β
√

t

)
− exp

[
2αy
β2

]
N
(

y+αt
β
√

t

)
h(y, t) =

√
2

πtβ2 exp

[
−(y−αt)2

2β2t

]
+

α

β2 exp
[

2αy
β2

]
erfc

[
−αt− y

β
√

2t

]
.

This result can be seen in (Conze 1991, Musiela and Rutkowski 1997).



Chapter 2

First Passage Problems

Systems where resource availability approaches a critical threshold are common to

many engineering and scientific applications and often require the estimation of first

passage time statistics of a stochastic process. In case of Brownian motion, one of the

approaches entails modeling such systems using the associated Fokker-Planck equa-

tion subject to a Dirac Delta initial condition and an absorbing barrier, generally mod-

eled as a Dirichlet boundary condition.

The method of images is a technique used for solving differential equations, in which

the domain of the desired function is extended by an addition of its mirror image with

respect to a symmetry hyperplane, to automatically satisfy certain types of boundary

conditions. (Cheng et al. 1989, Jackson 1975). This technique presents an attractive

strategy to solve an initial boundary value problem composed of a parabolic partial

differential equation, with a Dirichlet boundary condition. A successful application

of it, to find the distribution of the first passage of Brownian motion can be found in

(Molini et al. 2011).

The primary objective of this chapter is to show that the method of images fails to yield

the correct first passage density for fBm, when this initial boundary value problem is

generalised by replacing Fokker-Plank/Kolmogorov equation with the one for fBm.

The chapter begins with a short literature review on Pickands constant and some addi-

tional preliminary results needed for the proof. We further proceed with recalling the
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equivalent problem formulation in the Brownian motion case and how it can be solved

using method of images. The chapter concludes with the main proof.

2.1 Pickands Constant

James Pickands III (Pickands 1969b,a) found that asymptotic behavior of the proba-

bility

P

[
sup

t∈[0,T ]
[X (t)]> x

]
= HBα/2

T x
2
α Ψ(x)(1+o(1)) , x→ ∞, (2.1)

where X (t) is a continuous stationary Gaussian process with expected value EX (t) =

0, covariance function E(X (t + s)X (s)) = 1−|t|α + o
(
|t|α
)

with 0 < α ≤ 2, Ψ(u) is

the tail distribution of standard normal law and HBα/2
is a positive and finite constant,

which in the literature has come to be known as the Pickands constant and was defined

as

HBα/2
= lim

T→∞

Esupt∈[0,T ]

[
exp
[√

2Bα/2 (t)−Var
(
Bα/2 (t)

)]]
T

. (2.2)

The Pickands constants play a very important role in the exact asymptotes of ex-

treme values for Gaussian Processes(Qualls and Watanabe 1972, Dȩbicki 2002, 2006,

Dȩbicki and Kisowski 2008, Arendarczyk and Dȩbicki 2012, Albin 1994, Darling

1983) and in variants of Iterated Logarithmic laws for Gaussian processes(Shao 1992,

Qualls and Watanabe 1972). Dȩbicki (Dȩbicki 2002) has defined the so-called gener-

alized Pickands constants by

Hη = lim
T→∞

Hη(T )

T
= lim

T→∞

E supt∈[0,T ]

[
exp
[√

2η(t)−σ2
η (t)

]]
T

(2.3)

where η(T ) is a centered Gaussian process with stationary increments and variance

function σ2
η (t). Dongsheng (Dongsheng 2007) has shown under some spectral con-

ditions, the extended class of generalized Pickands constants for a class of centered

Gaussian processes with stationary increments are well defined.

Pickands original proof was based on the "double sum method", but was rather compli-

catedly presented as a lemma mixed in with evaluation of upcrossing probabilities for

Gaussian stationary processes in (Pickands 1969b, Michna 1999). This method was
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used to find the asymptotic distribution of a Gaussian process with a unique point of

maximum variance (2.1)(Piterbarg 1996), and since then has been further extended in

(Michna 2009, Dieker 2005).

Unfortunately even for the Fractional Brownian motion case, the exact values of Hη

where η = 2H are unknown except for two special cases, when Hurst index values are
1
2 and 1 for which the corresponding Hη values are 1 and 1√

π
respectively. Shao (Shao

1996) and Dȩbicki (Dȩbicki and Kisowski 2008) have proved lower and upper bounds.

2.2 Preliminary results

Proposition 2.2.1. The free-space fundamental solution (Green’s function) of the 1D

advection-diffusion equation

∂φ

∂t
= f (t)

∂φ

∂x
+g(t)

∂2φ

∂x2 , (2.4)

where the drift f (t) and diffusivity g(t) are functions of t only and not x, with initial

condition δ(x) is given by

φ(x, t) =
1√

4π
∫ t

0 g(s) ds
exp

[
−
[
x+

∫ t
0 f (s) ds

]2
4
∫ t

0 g(s)ds

]

provided that
∫

f dt,
∫

gdt exist.

Proof. Let us make a Galilean transformation to eliminate the first term in the right-

hand side

z = x+
∫ t

0
f (s)ds, τ = t.

After that Eq. (2.4) reads:
∂φ

∂τ
= g(τ)

∂2φ

∂z2 . (2.5)

Denote the Fourier transform with respect to z, for each fixed t of f (z, t) by

φ̂(ξ,τ) = F{ f (z,τ)}= 1√
2π

∫
∞

−∞

f (z)eizξ dz.
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On applying the Fourier transform to both sides of equation (2.5), we get

∂φ̂(ξ,τ)

∂τ
=−g(τ)ξ

2
φ̂(ξ,τ) .

Upon rearranging and integrating we get

φ̂(ξ,τ) =C (ξ)exp
[
−ξ

2
∫

τ

0
g(s)ds

]
.

Since

φ̂(ξ,0) = F{δ(z)}= 1√
2π

,

we further obtain

φ̂(ξ,τ) =
1√
2π

exp
[
−ξ

2
∫

τ

0
g(s)ds

]
.

The inversion formula now gives the solution as

φ(z,τ) =
1√

4π
∫

τ

0 g(s)ds
exp
[
− z2

4
∫

τ

0 g(s)ds

]
and in terms of the original variables

φ(x, t) =
1√

4π
∫ t

0 g(s)ds
exp

[
−
(
x+

∫ t
0 f (s)ds

)2

4
∫ t

0 g(s)ds

]
.

We conclude this section with a theorem from Dȩbicki. For a proof, please see (Dȩbicki

2006).

Theorem 2.2.1. HBα/2
is continuous for α∈ (0,2], where Bα/2 is a fractional Brownian

motion with Hurst parameter α/2.

2.3 Initial Boundary value problems for first-passage

2.3.1 Stochastic processes in bounded domain

The main difference of the stochastic process in a bounded domain from the case of

stochastic process in Rd is the influence of the boundary.
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2.3.2 Brownian motion case

For a Brownian motion-driven process of the form

dx(t) = µ(t)dt +σdB(t) , x(0) = x0 (2.6)

where B is standard Brownian motion and µ is some time dependent function. The

corresponding form of the Fokker Plank equation based on 2.6 is

∂p(x, t)
∂t

=−µ(t)
∂p(x, t)

∂x
+

1
2

σ
2 ∂2 p(x, t)

∂x2 (2.7)

where p(x, t) is the conditional density. To obtain the probability density function for

the first passage time (Molini et al. 2011), we first solve (2.7) with the initial condition:

and boundary value condition:

p(x,0) = δ(x− x0) ; p(∞, t) = p(k, t) = 0 (t > 0); (2.8)

where x = x0 is the starting point of the diffusive process, containing the initial con-

centration of the distribution. Upon enforcing the above boundary conditions, p(x, t)

reduces to a defective probability density function. For such a system, once p(x, t) is

known, the survival probability S (t) is defined as the probability of the process trajec-

tories not absorbed before time t, i.e.

S (t) =
∫ k

−∞

p(x, t) dx (2.9)

and the first passage time density function f (t) is given by (Risken 2012, Cox and

Miller 1977)

f (t) =−dS (t)
dt

. (2.10)

2.3.3 Failure of method of images for fBm

We now provide an original proof to show that the previous initial boundary value

problem with the Dirchlet boundary condition does not yield the correct first passage

density when the underlying driving process is fractional Brownian motion.

Theorem 2.3.1. The Fokker Plank Kolmogorov equation for Fractional Brownian mo-

tion driven processes, along with the initial and boundary conditions (2.8), is not a

correct formulation to study the first passage density for processes.
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Proof. Suppose that the Fokker Plank Kolmogorov equation for Fractional Brown-

ian motion driven processes, along with the initial and boundary conditions (2.8) is a

valid problem formulation to study first passage probability density and consider the

stochastic differential equation of the form

dX (t) = µt2H−1dt +σdBH (t) , X(0) = x0 (2.11)

where BH is an fractional Brownian motion with H ∈ (0,1] with the upper barrier

b > x0 ≥ 0. The solution of the equation (2.11) is

X (t) = x0 +
µ

2H
t2H +σBH (t) .

The Kolmogorov Forward equation corresponding to equation (2.11) based on Lemma

1.4.1 is
∂p(x, t)

∂t
=−µt2H−1 ∂p(x, t)

∂x
+Hσ

2t2H−1 ∂2 p(x, t)
∂x2 . (2.12)

In order to obtain the survival probability function, where x = x0 represents the starting

point of the diffusive process, containing the initial concentration of the distribution

and b is a positive upper barrier, such that b > x0. We must solve (2.12) with the

following initial

p(x,0) = δ(x− x0) (2.13)

and boundary value conditions

p(∞, t) = p(b, t) = 0. (t > 0) (2.14)

The free-space fundamental solution (Green’s function) of the equation (2.12) is

φ(x, t) =
1√

2πσtH
exp

[
−
[
x− µ

2H t2H]2
2σ2t2H

]
,

hence, given initial condition (2.13) the normalized solution for an unrestricted pro-

cess, starting from x0 can be obtained as

φx0 (x, t) =
1√

2πσtH
exp

[
−
[
x− µ

2H t2H− x0
]2

2σ2t2H

]
.

To solve this problem with the method of images, the barrier at b is replaced by a mirror

source located at a generic point x = m, with m > b such that the solutions of equation

(2.12) emanating from the original and mirror sources exactly cancel each other at the
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position of the barrier at each instant of time (Redner 2001). This implies the initial

conditions in (2.13) must now be changed to

p(x,0) = δ(x− x0)− exp(−η)δ(x−m) ,

where η determines the strength of the mirror image source. Due to the linearity of the

equation (2.12), a solution of this PDE is provided by

p(x, t) = φx0 (x, t)− exp(−η)φm (x, t) , (2.15)

where η determines the strength of the mirror image source and m > b is the location

of this source. The condition (2.14) requires for x = b, p(x, t) = 0 for all t > 0, which

yields [
x− µ

2H t2H− x0
]2

2σ2t2H = η+

[
x− µ

2H t2H−m
]2

2σ2t2H

⇔
[
x− µ

2H
t2H− x0

]2
= 2ησ

2t2H +
[
x− µ

2H
t2H−m

]2
. (2.16)

Upon substituting x = b and t = 0, we get

[b− x0]
2 = [b−m]2

upon recalling m > b, we see that m = 2b−x0. Upon re-substituting the value of m and

x = bin equation (2.16), we obtain η = µ(x0−b)
Hσ2 . With these choices of m and η, (2.15)

gives the solution of the PDE which meets the boundary conditions as

p(x, t) =
1√

2πσtH
exp

[
−
[
x− x0− µ

2H t2H]2
2σ2t2H

]

− 1√
2πσtH

exp

[
−µ(x0−b)

Hσ2 −
[
x+ x0− µ

2H t2H−2b
]2

2σ2t2H

]
.

(2.17)

Under the condition b > x0, the survival probability S (t) as defined in (2.9) gives

S(t) =
∫ b

−∞

p(x, t) dx (2.18)

=
1
2

erfc
[
−2bH +2x0H +µt2H

2
√

2HσtH

]
− 1

2
exp
[

µ(b− x0)

Hσ2

]
erfc

[
2bH−2x0H +µt2H

2
√

2HσtH

]
= N

[
2bH−2x0H−µt2H

2HσtH

]
− exp

[
µ(b− x0)

Hσ2

]
N
[
−2bH +2x0H−µt2H

2HσtH

]
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where erfc(z) denotes the complementary error function. By substituting equation

(2.19) in equation (2.10), we get the first passage time density for t > 0 as

fX (b, t) =

√
2
π

H (b− x0)

σtH+1 exp

[
−
(
2x0H−2bH +µt2H)2

8H2σ2t2H

]
. (2.19)

Using the first passage density in equation (2.19), the probability of the supremum can

now be obtained as

P
(

sup
s≤t

Xs ≤ b
)

=
∫

∞

t
fX (s) ds (2.20)

=

√
2
π

H (b− x0)

σ

∫
∞

t
s−H−1 exp

[
−
(
2x0H−2bH +µs2H)2

8H2σ2s2H

]
ds

=
1
2

erfc
[

2x0H−2bH +µt2H

2
√

2HσtH

]
− 1

2
exp
[

µ(b− x0)

Hσ2

]
erfc

[
2bH−2x0H +µt2H

2
√

2HσtH

]
= N

[
−2x0H +2bH−µt2H

2HσtH

]
− exp

[
µ(b− x0)

Hσ2

]
N
[
−2bH +2x0H−µt2H

2HσtH

]
.

Upon differentiating we obtain the probability density function of the maximum as

gX (b, t) =

√
2

πσ2t2H exp

[
−
(
2H (x0−b)+µt2H)2

8H2σ2t2H

]
(2.21)

− µ
2Hσ2 exp

[
µ(b− x0)

Hσ2

]
erfc

[
2H (b− x0)+µt2H

2
√

2HσtH

]
.

It can be easily seen that for H = 1/2, the stochastic differential equation (2.11) reduces

to the following arithmetic Brownian motion stochastic differential equation

dX (t) = µdt +σdB(t) , X(0) = x0 > 0, t ≥ 0

and accordingly the probability density function (2.19) reduces to the well known prob-

ability density function of the first passage through the upper barrier b for arithmetic

Brownian motion, such that x0 < b as shown in proposition 1.8.1. Similarly for x0 = 0,

the distribution and the density functions of the maximum in equation (2.20) and (2.22)

reduce to equations (1.44), (1.45) respectively, but these solutions are not valid for

H 6= 1
2 as shown next. Based on the definition of the Pickands’ constant (2.2), let us
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consider the following fractional brownian motion driven stochastic differential equa-

tion

dZ (t) =
√

2dBH (t)−2Ht2H−1dt, Z(0) = z0 = 0, t ≥ 0 (2.22)

which has the solution

Z (t) = z0 +
√

2BH (t)− t2H . (2.23)

It should be noted that for σ =
√

2, µ = −2H and x0 = 0, the SDE in equation (2.11)

reduces to (2.22). Using equation(2.22), we get the density function of the supremum

of Z (t) as

gZ (t) =
e−b

2
erfc

[
b

2tH −
tH

2

]
+

1√
πt2H

exp

[
−
(
b+ t2H)2

4t2H

]
(2.24)

We now proceed to compute the expectation

E
[
esupZ(t)

]
=

∫
∞

0
ezgZ dz

=
∫

∞

0

1
2

erfc
[

b
2tH −

tH

2

]
+

1√
πt2H

exp
[
−1

4
t−2H (b− t2H)2

]
db

= erfc
[
−tH

2

]
+

t2H

2
erfc

[
−tH

2

]
+

tH
√

π
exp
[
−t2H

4

]
.

We now proceed to compute the limit (2.3)

lim
t→∞

E
[
esupZ(t)

]
t

= lim
t→∞

1
t

(
erfc

[
−tH

2

]
+

t2H

2
erfc

[
−tH

2

]
+

tH
√

π
exp
[
−t2H

4

])
= lim

t→∞

(
Ht2H−1 erfc

[
−tH

2

]
+

Ht3H−1

2
√

π
exp
[
−t2H

4

])

For H = 1
2 , this reduces to 1, which matches the known value but, for H > 1

2 we get

∞ which will suggest that Pickands’ constant is a discontinuous function of H and

yields the desired contradiction with theorem (2.2.1). Hence the initial boundary value

problem for finding first passage density corresponding to Brownian motion does not

extend to fractional Brownian motion case by a simple replacement of the correspond-

ing Fokker Plank Kolmogorov equation.



Chapter 3

Radon-Nikodym derivatives associated
with transformations

In this chapter the theorem of Ramer which finds a formula for the Radon-Nikodym

derivative of a transformed Gaussian measure relative to the untransformed measure,

is generalised by relaxing the requirements on the transformation, by stating these re-

quirements entirely in terms of the action of the transformation on the Cameron-Martin

space. The Radon-Nikodym derivative itself is first expressed on the Cameron-Martin

space which is equipped with a finitely additive set-function, rather than a measure.

This requires exploration and development of the concept of P -measurable functions.

Its form on the space where the Gaussian process is defined is inferred by continuity

from the Cameron-Martin space.

The P -measurable derivative of a P -measurable function is defined and shown to coin-

cide with the stochastic derivative, under certain assumptions which in turn coincides

with the Malliavin derivative when they are both defined. The main theorem’s results,

expresses the Radon-Nikodym derivative as a Jacobian of the P -measurable derivative

× the classical Cameron-Martin theorem. We also provide a generalised version of the

Girsanov theorem for fractional Brownian motion which is not restricted to changes of

linear drift only and show that it matches the one in (Norros et al. 1999) when H ≥ 1
2 .
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3.1 Abstract Wiener Space

The theory of Wiener spaces and of the reproducing kernel Hilbert spaces is reviewed

following (Kuo 1975), (Bogachev 1998, Section 3.9), (Lifshits 1995, Section 9) and

(Addie et al. 2002). Suppose Ω is a Banach space, with norm ‖·‖Ω, H ⊆Ω is a Hilbert

space, with norm | · |H , H is dense in Ω, in the norm of Ω and the norms satisfy a bound

‖x‖Ω < c|x|H for all x ∈ H, for some c > 0. The embedding of H in Ω is denoted by

ι : H→Ω.

Definition 3.1.1. Let A be Banach space and A∗ be its topological dual space. A

cylinder set in A takes the form S = {a ∈ A : (θ1(a), . . .θn(a)) ∈ B}, where θ1, . . . ,

θn ∈ A∗ and B is a Borel set in Rn.

The collection of all cylinder sets of A, is called the cylinder algebra associated with

A, and denoted by CA.

Proposition 3.1.1. The cylinder algebra CA of a Banach space A satisfies :

• A ∈ CA.

• ∀S ∈ CA⇒ Sc ∈ CA.

• ∀S1,S2 ∈ CA⇒ S1∩S2 ∈ CA.

A measure, P, can be defined on the Banach space, Ω by first defining the value of this

measure on the cylinder algebra, C , which is a subalgebra of the Borel sets of Ω. Since

H ⊆ Ω, Ω∗ ⊆ H∗ = H. On the cylinder set, S = θ−1(F), where θ = (θ1, . . . ,θn)
′ and

θ1, . . . , θn are orthonormal, as elements of H∗, set

P(S) =
1

(2π)n/2

∫
F

e−
1
2 ∑

n
k=1 x2

k dx1 . . .dxn. (3.1)

Any cylinder set can be represented by a set of orthonormal coordinates and the value

of P(S) will be the same for each such choice. The additive set-function P can in some

cases be extended to a measure on the σ-algebra generated from C by taking limits of

sequences of cylinder sets. In particular, this is true in a Banach space whose norm is

measurable, as will be defined in Definition 3.1.3 (Kuo 1975, Theorem 4.1).
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The cylinder sets, CH , on H, are also those sets S, which take the same form as S in

Definition 3.1.1, but in this context θ is a linear mapping from H rather than from Ω.

An additive set-function, P , on CH , can then be defined by (3.1). This set-function

cannot be extended to a σ-additive function (a measure) on the σ-algebra generated

from CH , as is shown in (Kuo 1975, Proposition 4.1).

Definition 3.1.2. The additive set-function P defined on CH is termed the standard

Gauss measure on H (Kuo 1975).

The cylinder sets (both C and CH) form an algebra, but not a σ-algebra. Whereas

the measure P can be extended to the smallest σ-algebra containing C (the Borel σ-

algebra), this is not the case for P ; P is not a measure. (The established term “standard

Gauss measure” is therefore a unusual choice of name for P .)

Definition 3.1.3. A norm, ‖ · ‖, defined on the Hilbert space H, is said to be measur-

able (Kuo 1975, p59) if for any ε > 0, there exists a projection, Πε : H → H, onto a

finite-dimensional subspace of H such that for every finite-dimensional projection, Π,

orthogonal to Πε,

P ({x : ‖Π(x)‖> ε})< ε. (3.2)

For the case of separable Hilbert space H, Sazanov’s theorem (Sazonov 1958) gives

the necessary and sufficient conditions for a functional χ(ψ), ψ ∈ H, to be the charac-

teristic functional of some probability distribution of H.

Definition 3.1.4. A triple (H,Ω, ι) in which H ⊆ Ω, with H a Hilbert space and Ω a

Banach space equipped with a measure, P, and ι : H→Ω is the canonical injection (a

vector space homomorphism) is said to be an abstract Wiener space (Kuo 1975, p68)

if H is dense in Ω and the norm ‖ · ‖Ω, restricted to H, is measurable.

Measurability of ‖ · ‖Ω implies ‖ · ‖Ω is bounded by c| · |H for some constant c (Kuo

1975, Lemma 4.2); in particular, if (H,Ω, ι) is an abstract Wiener space then the mea-

sure P may be defined on Ω as described at the start of this section.

Definition 3.1.5. As well as denoting the inner product in H, we shall use 〈x,y〉 to

denote the action of a continuous linear functional in Ω∗ on a vector in Ω. Kuo (Kuo

1975, Lemma 4.7) shows that if θh : Ω→ R is the map x 7→< h,x >, which is well-

defined for h ∈Ω∗, then θh ∈ L2(Ω,P) and whenever it is defined |θh|2 = |h|H , and so
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the map h 7→ θh can be extended by continuity to the whole of H∗. This defines 〈x,y〉
when x∈H and y∈Ω in the sense that y here is random, and the map is defined almost

everywhere with respect the measure P for y on Ω.

Definition 3.1.6. A sequence of orthogonal projections, {Πk}∞
k=1, is said to converge to

the identity on H if Π j ◦Πk = Πmin( j,k), j, k > 0 and for all ψ ∈H, |Πk(ψ)−ψ|H → 0,

as k→ ∞.

Remark 3.1.1. If Π is a projection onto a finite-dimensional subspace S 6 H, and if

e1, . . . , en is an orthonormal basis for S,

Π(ψ) =
n

∑
k=1
〈ek,ψ〉H ek.

We can therefore define a projection Π̃ : Ω→ S by

Π̃(ψ) =
n

∑
k=1
〈ek,ψ〉H ek.

We shall refer to Π̃ as the extension of Π to Ω.

It may seem that some sequences of projections converging to the identity may play a

specific role, but the following proposition shows that any such sequence is as good as

another.

Proposition 3.1.2. If ‖ ·‖ is a measurable norm and {Πk} is a sequence of orthogonal

projections converging to the identity in H, then ∀ε > 0, ∃n0 > 0, such that for any

projection Π⊥Πn0

P ({ψ : ‖Π(ψ)‖> ε})< ε. (3.3)

Proof. Choose ε > 0. Since ‖ · ‖ is P -measurable, ∃Πε/2, projecting onto a finite-

dimensional subspace S, such that for all Π⊥Πε/2, (3.3) holds, with ε/2 in place of ε.

Suppose ‖ · ‖< c| · |H . We can find Sε/2 ⊆ S and n1 > 0 such that for n > n1,

P
(
{ψ : Πε/2(ψ) /∈ Sε/2}

)
< ε/2

and

P
(
{ψ :

∣∣Πε/2(ψ)−Πn ◦Πε/2(ψ)
∣∣> εc−1/2∧Πε/2(ψ) ∈ Sε/2}

)
< ε/2.

Pick n0 = n1.
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3.1.1 Radon-Nikodym Derivatives

In this chapter we make use of the Radon-Nikodym derivative of one Gaussian proba-

bility measure relative to another, which exists when one measure is equivalent to the

other in the sense that a set has non-zero measure according to one measure if and only

if it has a non-zero measure relative to the other.

Definition 3.1.7. Suppose (H.Ω, ι) is an abstract Wiener space. Define σρ : Ω→Ω as

the shift, ψ 7→ ψ+ρ, on Ω, for ρ ∈Ω.

The Cameron-Martin theorem (Cameron and Martin 1944) states that the Radon-Nikodym

derivative dP◦σρ

dP (ψ) is well-defined and non-zero if and only if ρ ∈ H and

dP◦σρ

dP
(ψ) = exp

(
−1

2
|ρ|2H−〈ρ,ψ〉H

)
, ρ ∈ H. (3.4)

The set of all Gaussian measures on a vector space is closed under affine transfor-

mations of the vector space, and it is logical therefore to consider Radon-Nikodym

derivatives of a Gaussian measure relative to its transformation by an affine transfor-

mation. Another way to interpret a Radon-Nikodym derivative is as a way to compare

of one part of the Gaussian measure with another, although it is important to be aware

that the comparison cannot be isolated from influence from the transformation which

makes the connection between one place and another.

If f : Ω−→Ω is a measurable function defined on Ω, and µ is a measure on Ω, µ◦ f−1

is also a measure on Ω and if the measure µ is equivalent to µ◦ f−1, there is a Radon-

Nikodym derivative of one measure relative to the other.

3.1.2 Paths

We now consider a special case of abstract Wiener space where Ω is a space of paths,

where a path is defined as a continuous function from R to R.

Denote by v the variance function v(t) = EX2
t , t ∈ (−∞,∞). Fractional Brownian mo-

tion is characterised by the fact that v(t) = t2H , for some 0 < H < 1 and that Xt has
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stationary increments. Observe that in this case

lim
t→∞

v(t)
tα

= 0 (3.5)

for some α < 2. The covariance function of X is denoted by Γ(s, t) = EXsXt , which, in

the fBm case,

=
1
2
(v(s)+ v(t)− v(s− t))

=
s2H + t2H−|s− t|2H

2
. (3.6)

Definition 3.1.8. The smallest centered extension U [c], of a set U is

U [c] = {x : x ∈U ∨−x ∈U} .

The following lemma is known as Anderson’s inequality (Lifshits 1995, Theorem

11.9).

Lemma 3.1.1. If U ⊆Ω is a Borel set and h ∈ H, then P(U [c]+h)≤ P(U [c]).

Define a norm on paths as follows:

Definition 3.1.9.
‖ψ‖= sup

{∣∣∣∣ ψ(t)
1+ |t|

∣∣∣∣ : t ∈ R
}

(3.7)

and let Ω = {ψ : R→ R such that ‖ψ‖< ∞}. In future this norm will generally be

denoted by ‖ψ‖Ω for greater clarity.

Proposition 3.1.3. The norm ‖ · ‖Ω is measurable on H.

Proof. This proof follows the outline of the proof in (Kuo 1975, p91) which applies to

the standard abstract Wiener space, (i,C′[0,1],C([0,1])). For each n > 0, define

‖ψ‖n = sup

{∣∣∣∣∣ ψ(t j)

1+
∣∣t j
∣∣
∣∣∣∣∣ : t j =

j
2n , j =−n2n,1−n2n, . . . ,n2n

}
. (3.8)

Clearly ‖ · ‖n is a measurable semi-norm in H and

lim
n→∞
‖ψ‖n = ‖ψ‖Ω (3.9)
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for each ψ ∈ H. Now let us apply Theorem 4 of (Gross 1962), which concludes that,

subject to three conditions, the limit norm, ‖ · ‖Ω is measurable.

Condition (1) of (Gross 1962, Theorem 4) is that

lim
P→I
‖Pψ‖n = hn (3.10)

exists, where P denotes an orthogonal projection in the space H. It is clear that this con-

dition holds. Condition (2) of (Gross 1962, Theorem 4) is that limn→∞ hn = h exists, for

all ψ, which is also clearly true in the present instance. Define Aε = {ψ : ‖ψ‖Ω ≤ ε}.
Condition (3) of Theorem 4 of (Gross 1962) is that

P(Aε)> 0 (3.11)

for all ε> 0. Since H is separable and dense in Ω, for any ε> 0, there exists a countable

set D⊆H such that Ω =
⋃

Dε

⋃
ψ∈D (Aε−ψ), where Dε = {ψD : ψD = ψ ∈ Aε,} hence

for some ψ ∈ D, P(Aε−ψ) > 0. Hence, by Lemma 3.1.1, (3.11) holds for arbitrary

ε > 0.

Since all three conditions of (Gross 1962, Theorem 4) hold, we conclude that ‖ · ‖Ω is

measurable.

Proposition 3.1.4. The space H may be identified with the closure of the linear space

generated by the paths fs : t 7→Γ(s, t) where Γ is the autocovariance of the fBm process.

The inner product of this space is characterised by the equation

〈ψ,Γ(t, ·)〉= ψ(t). (3.12)

for all ψ ∈ H, and the norm of fs as defined above is therefore
√

Γ(s,s).

Proof. Proposition 3.1.3 showed that ‖ · ‖Ω is a measurable norm. We have to show

that the (3.12) choice for H leads to the paths in Ω to have covariance Γ. In order for

any system of coordinates, θ1, · · · ,θn to be orthonormal, it must take the form of the

linear operator (matrix):G−1/2 where G = (Γ(ti, t j))i=1,...,n, j=1,...,n, and t1, ..., tn is a set

of n times. Let us denote the mapping from θ coordinates to x coordinates, by Θ. Thus,

the mapping from x coordinates to θ coordinates is Θ−1 = G1/2.

The x-coordinates have covariance I, in the probability measure assigned to them

by (3.1). It therefore follows that the covariance of Xt1, ...,Xtn , ie the covariance of
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Θ−1(Xt1, ...,Xtn)
′, is

(E(XtiXt j))i, j=1,...,n = G1/2(E(xix j))i, j=1,...,nG1/2 = G1/2IG1/2 = G,

as required.

The inner product definition generalizes to the reproducing kernel property:

〈Γ(t, ·), f 〉H = f (t), f ∈ H. (3.13)

H is a subset of Ω since, by the Cauchy-Schwarz inequality,

‖ f‖Ω ≤ ‖ f‖H · sup
t∈ℜ

‖Γ(t, ·)‖H

1+ |t|
,

where the last supremum is finite by (3.5). Thus, the Hilbert topology of H is finer than

that induced by Ω. On the other hand, one can show that the space H is an everywhere

dense subset of the support of P (see (Bahadur and Zabell 1979)). It follows that each

ψ ∈ H can be extended to a linear functional on Ω and (3.13) generalises to

〈Γ(t, ·), f 〉H = f (t), f ∈Ω. (3.14)

Applying this equation a second time, with s in place of t, and equating covariances of

the left-hand sides with covariances of the right-hand sides we find

Cov(〈Γ(t, ·),X〉H ,〈Γ(t, ·),X〉H) = Cov(X(t),X(s)) = Γ(t,s).

and therefore, since the space H is generated by the elements of the form Γ(t, ·),

Cov(〈ψ1, f 〉H ,〈ψ2, f 〉H) = 〈ψ1,ψ2〉H . (3.15)

The space H coincides with the space of measurable shifts (Lifshits 1995, Kuo 1975),

also referred to as the Cameron-Martin space of the the process X , i.e. the space of

paths with the property that translation by this path transforms the probability measure

into one which has finite, non-zero Radon-Nikodym derivative almost everywhere rel-

ative to the original measure(Bogachev and Mayer-Wolf 1999).



3.1 Abstract Wiener Space 47
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Figure 3.1: The most likely path passing through x = t at t = 4 and some random paths

which are close to having this property. In this example, H = 0.72.

3.1.3 Most likely functions

The path φt ∈ H(t) = {ψ ∈ H : φ(t) = t} is defined to be the unique path in this set

with minimal value of |φ|H . An example of a most-likely path is shown in Figure 3.1,

together with four random paths which have the property that they nearly pass through

the line x = t at t = t.

Proposition 3.1.5. These conditions determine that

φt : s 7→
(

t
Γ(t, t)

)
Γ(t,s) (3.16)

which, in the fBm case,

=
t1−2H

2

(
s2H + t2H−|s− t|2H

)
. (3.17)

Proof. The set H(t) is not a subspace, but H(t) = H[t]+φt in which H[t] is the sub-

space of H for which the path value at t is zero. The problem of finding the element

of H(t) with minimal H-norm can be solved by first finding the element ψ ∈ H[t] for

which |ψ−φt |H is minimal. If we call this minimizing element ψ̂, the solution of the

original problem will be φ̂t = ψ̂+φt .
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According to the Projection theorem of Hilbert spaces (Luenberger 1969, §3.3), the

element ψ̂t ∈ H[t] for which |ψ−φt |H is minimal is the unique ψ̂t ∈ H[t] with the

property φt− ψ̂t ⊥ H[t]. But φt ⊥ H[t], so ψ̂t = 0. Hence φ̂t = φt .

Definition 3.1.10. The path φt will be referred to as the most likely path passing

through t at time t.

Definition 3.1.11. The normalisation of the path φt , considered as a vector in H, will

denoted by φ̂t , i.e. φ̂t = tH−1φt , t ≥ 0.

Definition 3.1.12. The fBm similarity on H (or Ω) is the mapping, defined for all

δ > 0,

κδ : H → H (Ω→Ω)

ψ 7→ ψ
′

where

ψ
′ = δ

H
ψ(t/δ), t > 0.

Remark 3.1.2. Notice that φt(t) = t,

‖φt‖H = t1−H , (3.18)

〈φs,ψ〉H = s1−2H
ψ(s), (3.19)

〈φs,φt〉H = (ts)1−2H
Γ(s, t)

which, in the fBm case,

=
1
2
(ts)1−2H (t2H + s2H−|s− t|2H) (3.20)〈

φ̂s, φ̂t

〉
H

= (ts)−H
Γ(s, t)

=
1
2
(ts)−H (t2H + s2H−|s− t|2H) (3.21)

‖φs−φt‖2 = t2−2H + s2−2H− t1−2Hs− s1−2Ht +(st)1−2H |s− t|2H (3.22)

= (t− s)
(
t1−2H− s1−2H)+(ts)1−2H |t− s|2H (3.23)

similarly
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〈φs,φt−φs〉 =
(ts)1−2H

2
(
t2H + s2H−|s− t|2H)− s2−2H

=
(ts)1−2H

2
(
t2H + s2H−2st2H−1−|s− t|2H)

= O
(
|s− t|2H) (3.24)

〈φ̂s, φ̂t− φ̂s〉 =
(ts)−H

2
(
t2H + s2H−|s− t|2H)−1

=
(ts)−H

2

((
tH− sH)2−|s− t|2H

)
= O

(
|s− t|2H) (3.25)

and

κδ(φt) = δ
H−1

φδt ; (3.26)

also, φt ∈ H, the Cameron-Martin space, for any t > 0.

Definition 3.1.13. A linear combination of most-likely paths is referred to as a simple

path. If the locations of the most-likely paths are t1, . . . , tn, the simple path will be

termed a simple path with corners at t1, . . . , tn.

In the Brownian motion case, for example, a simple path with corners at t1, . . . , tn will

take the form of a connected series of straight lines starting at the origin, finishing as a

horizontal line, and with the locations of change in slope at t1, . . . , tn.

3.2 Additive set functions and P -measurability

In this section we review and extend the theory of finitely additive set functions (infor-

mally referred to as finitely additive measures), the functions measurable with respect

to these set functions, and integration of functions with respect to the set functions

(Dunford and Schwartz 1957). The finitely additive set function we have in mind is

usually P , as in Definition 3.1.2.

The outer measure corresponding to P , on H, is denoted by P ∗ (Dunford and Schwartz

1957):

P ∗(A) = inf{P (B) : A⊆ B,B ∈ CH}
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The outer measure is defined on the power set of H. It is not necessarily additive.

Classical measures are required to be σ-additive, however there is a well-developed

theory for finitely additive set-functions (Dunford and Schwartz 1957, Volume 1, II.2,

p101) and further development and use of the theory of finitely additive set-functions

is also proposed in (Bagchi and Mazumdar 1993) for applications in signal process-

ing. A definition of the Radon-Nikodym derivative between additive set-functions is

given in (Dunford and Schwartz 1957); a different definition is proposed in (Bagchi

and Mazumdar 1993). We use the definition in (Dunford and Schwartz 1957); this

definition is directly analogous to the usual definition for measures whereas the one

in (Bagchi and Mazumdar 1993) includes a uniformity condition which has not been

found to be necessary in the applications under consideration in this research, and

therefore has not be adopted.

In the paper of (Kallianpur and Karandikar 1985), quite a different problem area,

namely filtering, prediction, and estimation of a stochastic process subject to obser-

vations with white noise is studied. Their approach diverges from the one in this re-

search and in (Dunford and Schwartz 1957) at an early point, even though both works

use finitely additive measures. (Dunford and Schwartz 1957) use the concept of P -

measurabilty to define the functions that can be integrated with respect to the underly-

ing measure, but in (Kallianpur and Karandikar 1985) a new type of measurability is

introduced, which although fulfills the same role, ie it defines the functions that can be

integrated, the key idea where it differs is to require an additional condition, but not

one which depends on P . As a consequence this also requires a different concept of

Radon-Nikodym derivative. The reason Kandikar and Kallianpur felt the need to de-

velop a theory somewhat divergent from the existing theory, as presented in (Dunford

and Schwartz 1957), may be because of the particular needs of the application area.

Aside from the fact that the application domains are different, the paper of Kandikar

and Kallianpur also differs from this research as it focuses on strictly white noise,

rather than more general Gaussian processes, including fBm. Also the signal process,

which is being estimated, is assumed to have its own distinct probability measure,

usually independent from that of the noise process.

A key step in developing theories which use finitely additive measures is to develop

a theory of integration (and hence expectation), for some class of functions on the
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measure space. As Kallianpur and Kandikar acknowledge, this was already achieved,

in a reasonably complete way, including a Radon-Nikodym theorem, and this theory is

presented rigorously in Dunford and Schwartz. In the research this theory of Dunford

and Schwartz is taken as an appropriate basis for further work, and developed where

necessary.

In this remainder of this section, the ground is prepared for the extension of Ramer’s

theorem as follows:

• The theory of finitely additive meaures and P -measurable functions is reviewed.

• It is shown that every P -measurable functional on H induces a certain, uniquely

defined, conventionally measurable functional on Ω ( Theorem 3.2.4).

3.2.1 P -measurable functions

Definition 3.2.1. Suppose X is a normed space, with norm ‖ · ‖X . A simple function

(Ω,C )→ X is a finite linear combination of indicator functions where each indicator

function comes from C ; if the space X is R we shall refer to the function as a simple

functional. Simple functions and functionals on (H,CH) are defined similarly.

Definition 3.2.2. If f : H → X is a function, and P is an additive set-function on H,

the | · |P -norm of f is defined by

| f |P = inf{ε+P ∗ ({ψ : ‖ f (ψ)‖X > ε})} . (3.27)

A function f : H → X is said to be P -measurable if there exist simple functions φk :

(H,CH)→ X, k = 1, . . . , such that | f − φk|P → 0 as k→ ∞. A set U ⊆ H is termed

P -measurable if its indicator functional is P -measurable. The set of P -measurable

functions from H to X to X is denoted by M (H,X), M (H,X ,P ), or M (H,X ,P ,‖ ·‖),
when it is necessary to indicate the measure, or the norm. Unless otherwise indicated,

the P -measurable norm will be adopted on all these spaces. The subspace of linear

functions from H to X is denoted by L(H,X), etc.

In the special case X = H, this space will be denoted simply by M , and the norm | · |P
will be denoted, also, by | · |M . Since the space in which the norm operates is M , this
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notation should not be confusing, and in future we shall encounter a context where

having a second notation for this norm will be convenient.

Similarly, if f : Ω→ X is a function, and P is an additive set function on (Ω,C ), where

C is an algebra of subsets of Ω, its | · |P-norm is defined by

| f |P = inf{ε+P∗ ({ψ : ‖ f (ψ)‖X > ε})} . (3.28)

A function f : Ω→ X is said to be (C ,P)-measurable if there exist simple functions

φk : (Ω,C )→H, k = 1, . . . , such that | f −φk|P→ 0. The set of P-measurable functions

on Ω is denoted by M (Ω,X), M (Ω,X ,P), or M (Ω,X ,P,‖ ·‖), when it is necessary to

indicate the measure, or the norm.

Proposition 3.2.1. A set A⊆ H is P -measurable if and only if for any ε > 0, ∃C ∈ CH

with P ∗ (A∆C)< ε.

Proof. Suppose ∀ε > 0, ∃C ∈ CH with P ∗ (A∆C) < ε and let ε ∈ (0,1). Define φε =

χC. This is a simple function with |χA−φε|P < 2ε; since ε > 0 is arbitrary, χA is

P -measurable, and hence A is P -measurable.

Now suppose A is P -measurable, i.e. χA is P -measurable, and choose 0 < ε < 0.5,

simple φε, with |χA−φε|P < ε. Set C = {ψ : |φε(ψ)| ≥ 0.5}. Since χC only takes values

either 0 or 1, and ε< 0.5, {ψ : |χC(ψ)−χA(ψ)|> ε}⊆ {ψ : |φε(ψ)−χA(ψ)|> ε}, from

which it follows that |χA−χC|P ≤ |φε−χC|P .

Remark 3.2.1. The norm | · |P on P -measurable functionals is not homogeneous. Also,

it is not the case that | f |P = 0⇒ f = 0. Replacing | · |P by a homogeneous norm is

unnecessary since it is not used as the norm of a Banach space.

Definition 3.2.3. Adding the sets whose difference from a set in CH has outer measure

less than ε, for every ε > 0, is termed completing the algebra with respect to the set-

function P . If an algebra of sets already contains all these sets it is termed P -complete.

Remark 3.2.2. The completion of an algebra is also an algebra.

The following definition is essentially the same as Definition III.2.9 from (Dunford

and Schwartz 1957).
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Definition 3.2.4. A function g is termed P -simple if there are n P -measurable sets (i.e.

sets in the completion of the algebra on which P is defined), G1, . . . , Gn and n real

numbers g1, . . . , gn such that g(ψ) = gk, ψ ∈ Gk, and = 0 otherwise.

Definition 3.2.5. If (G,CG,P ) and (H,CH ,Q ) are sets with algebras of subsets CG

and CH and with additive set-functions, P and Q , their Cartesian product is defined as

(G×H,CG×CH ,P ×Q ), where for A ∈ CG, B ∈ CH , P ×Q (A×B) = P (A)×Q (B),

P ×Q is extended to the algebra generated from these sets by additivity, and to CG×
CH by P ×Q completion.

The Cartesian product cylinder algebra CG×H is defined to be the smallest algebra

which contains the sets of the form A×B, for all A ∈ CG and B ∈ CH .

Remark 3.2.3. If G and H are Hilbert spaces, with cylinder measures, the cross-

product cylinder algebra can also be defined as the cylinder algebra of the direct sum

Hilbert space, G⊕H. Note that R becomes a Hilbert space by adopting the conven-

tional product as the scalar product. This way to define the Cartesian product of two

cylinder algebras is equivalent to Definition 3.2.5 whenever it applies.

Example 3.2.1.. When P is a measure

If P is a measure, the definition of the | · |P norm definition is still applicable, because it

is an additive set-function, and if the whole space has finite P-measure, all measurable

functionals are also P-measurable, and conversely.

Definition 3.2.6. A sequence {θk}∞
k=0 of P -measurable functions H → X is said to

converge in P -measure to the P -measurable function θ if |θk−θ|P → 0. A sequence

of measurable functions {θk}∞
k=0 Ω→ X is said to converge in P-measure to the P -

measurable function θ if for any ε > 0, ∃N > 0, ∀k > N, P(|θk−θ|P > ε)< ε.

Lemma 3.2.1. If f is a P -measurable functional, and ε > 0, there exists A ∈ CH such

that P (H \A)< ε and f is bounded on A.

Proof. Simple functions are bounded, and for any ε > 0, we can find a simple function

φ such that |φ− f |P < ε/2, so P ∗ ({ψ : | f (ψ)−φ(ψ)|> ε/2}) < ε/2, which implies

that there exists A ∈ CH such that P (H \A)< ε and f is bounded on A.
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The integral,
∫

f dP , of a P -measurable functional, f , with respect to the additive set

function P , is defined in (Dunford and Schwartz 1957, Volume 1, II.2, p101) as the

limit of the natural definition of the integral (the sum, over the finite number of sets

from CH which occur in the definition of the simple functional) which applies when f

is simple, applied to each of the simple functionals in a sequence which converges, in

| · |P -norm, to f . If U is a P -measurable set, and f is a P -measurable functional, the

integral
∫

U f (ψ)P (dψ) is defined as
∫

χU(ψ) f (ψ)P (dψ).

Lemma 3.2.2. Suppose S ⊆ H is a finite-dimensional subspace, ΠS is the projection

onto S, and {Πn}∞
n=1 is a sequence of finite-dimensional orthogonal projections in

H, with Πn projecting onto Sn, converging strongly to I. For any B a Borel set in

Π
−1
S (B(S)) and any ε > 0, ∃n > 0, and an open set On ∈ Π−1

n (T (Sn)) such that

P(B4On)< ε.

Proof. For simplicity, let us assume S is one-dimensional, spanned by the unit vector

v. Generalization of this case will be obvious. Let G denote the class of Borel sets

in S, like B, for which the desired conclusion holds. Consider the set Ba,b = {u :

〈u,v〉H ∈ (a,b)}, with a,b ∈ [−∞,∞] and a < b. Since {Πk}∞
k=1 converges strongly to

the identity, for any ε > 0, ∃n > 0, |Πn(v)− v|H < ε. It is therefore clear that Ba,b ∈ G
for all a, b ∈ [−∞,∞]. It is also clear that G is an algebra, i.e. it contains the finite

unions, complements, and intersections of any collection of sets in G .

Now suppose {Bk}∞
k=0 is an increasing sequence of sets in G and B =

⋃
k Bk. Choose

K > 0 such that P(B\BK)< ε/2 and then choose n > 0 such that Sn contains a Borel

set Õn ∈ T (Sn) such that if On = Π−1
n (Õn), P(On4BK) < ε/2. This choice satisfies

the requirement which shows that B ∈ G . A similar argument shows that a decreasing

sequence of sets in G is also in G . It follows that G is monotone and therefore contains

all the Borel sets in S.

Proposition 3.2.2. If f is a P -measurable functional and {Πk} is a sequence of pro-

jections converging strongly to the identity on H, and fk : ψ 7→ f (Πk(ψ)), then fk→ f

in P -measure.

Proof. This follows from the Lemma 3.2.2 directly when f is the characteristic func-

tional of a cylinder set. Additivity of limits implies that it holds for simple functionals,



3.2 Additive set functions and P -measurability 55

and since any P -measurable functional can be approximated arbitrarily well by simple

functionals, the result must therefore hold for arbitrary P -measurable functionals.

Definition 3.2.7. Given positive additive set-functions P and Q defined on (H,ΣP),

(H,ΣQ) respectively, we say P is continuous with respect to Q (Dunford and Schwartz

1957, II.4.12) and write P ≤ Q if ΣQ ⊆ ΣP and

lim
Q (A)→0

P (A) = 0.

If Pα, α ∈ A is a collection of additive set functions, defined on (H,ΣPα
), α ∈ A ,

respectively, we say Pα ≤ Q uniformly if ΣQ ⊆ ΣPα
, α ∈ A , and for all ε > 0, ∃δ > 0

such that Q (A)< δ⇒∀α ∈ A ,Pα(A)< ε.

Remark 3.2.4. In (Dunford and Schwartz 1957) it is assumed that ΣQ = ΣP.

Proposition 3.2.3.

P ≤ Q =⇒ ( f Q -measurable⇒ f P -measurable) .

Proof. Choose ε > 0. We need to find simple g such that |g− f |P < ε. By P ≤ Q we

can find δ > 0 such that Q (A)< δ⇒ P (A)< ε. Choose simple g such that |g− f |Q <

min(δ,ε). This g also meets the requirement |g− f |P < ε.

Proposition 3.2.4. Suppose f : (G,P )→ H and T : (G,P )→ G is P -measurable.

Then

f P ◦T−1-measurable⇒ f ◦T P -measurable.

Proof. Suppose f is P ◦T−1-measurable and choose ε > 0 and P ◦T−1-simple g with

| f −g|P◦T−1 < ε. Then g◦T is P -simple and | f ◦T −g◦T |P = | f −g|P◦T−1 < ε.

Definition 3.2.8. Let Bn denote a set of measurable sets which generates the Borel sets

of Rn, for each n > 0. E.g. the collection of cross-products of open finite intervals, or

closed finite intervals, or of semi-infinite closed or open intervals.

Now let Bn denote the set of sets of the form Π−1(S), S ∈ Bn, for some n > 0, for any Π

which is an orthogonal projection from H to Rn. The collection of indicator functions

of sets in Bn will also be denoted by Bn.
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Example 3.2.2.. A continuous functional which is not P -measurable

In the context of an abstract Wiener space (H,Ω, ι) the functional η : ψ 7→ |ψ|H is not

P -measurable. See (Kuo 1975, Remark after Definition 4.4). The mapping ψ 7→ |ψ|Ω
is, however, P -measurable. A norm which is P -measurable is referred to in (Kuo 1975)

as measurable, and the same terminology is used here, but it can now be understood

that this is a shorthand for saying that this norm is P -measurable.

The following result is a restatement of Lemmas III.2.11 and III.2.12 from (Dunford

and Schwartz 1957), in the present context, together with some related results. It plays

the role of a Portmanteau theorem for P -measurability. The most notable absence from

this theorem is a single rule for composition of P -measurable functions. Instead, we

have (ii) and (iii). Of these, the latter is the more general, but it still includes an incon-

venient condition which is an inevitable consequence of the fact that P -measurability

of a function f is a condition relative to the spaces of measurable sets in the domain

and range of f and also the additive set function P .

Theorem 3.2.1. If G, H, K, . . . , are sets, each equipped with an algebra of sets and

an additive set-function P , Q , R , (like the Gauss measure),

(i) if { fk} is a P -convergent sequence of P -measurable transformations : G→ H,

its limit is P -measurable;

(ii) if f : G→ H is scalar-valued and P -measurable and g : H→ K is scalar-valued

and continuous, g◦ f is P -measurable;

(iii) if f : G→H is P -measurable, g : H→K is Q -measurable and P ◦ f−1≤Q , then

g◦ f is P -measurable and for all ε > 0, ∃δ > 0 such that |g|Q < δ⇒|g◦ f |P < ε;

(iv) if g,gk : (G,P )→ H, k > 0, are P -measurable, gk→ g in P -measure as k→ ∞,

and f : H → K is P -measurable P ◦ f−1 ≤ P , then g ◦ f is P -measurable and

gk ◦ f → g◦ f in P -measure;

(v) assuming P is the standard Gauss measure on (G, | · |G), if f , fk : (G,P )→ (G, | ·
|), k > 0, are P -measurable, P ◦ f−1

k ≤ P uniformly in k, fk→ f in P -measure as

k→ ∞, and g : G→ H is P -measurable then g◦ f is P -measurable and g◦ fk→
g ◦ f in P -measure; if g ∈ Bn for some n > 0, the requirement of uniformity on

P ◦ f−1
k ≤ P is not needed;
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(vi) if f1 : G→ H1 and f2 : G→ H2 are P -measurable transformations, f : ψ 7→
( f1(ψ), f2(ψ)) is a P -measurable transformation (adopting the Cartesian-product

cylinder algebra as the cylinder algebra on H1⊕H2);

(vii) if H is a vector space, with the scalar field R, equipped with a finitely additive

set function P , the operation + : H2→H and the scalar multiplication operation

× : R×H→ H are P -measurable transformations;

(viii) if f1 : G→ H and f2 : G→ H are P -measurable functionals then so are f1 + f2

and (when H is scalar) f1× f2. Also, if, instead, f2 : G→K where K is the scalar

field of H, f1× f2 is P -measurable.

Proof. (i) See (Dunford and Schwartz 1957, Lemma III.2.11).

(ii) See (Dunford and Schwartz 1957, Lemma III.2.12).

(iii) Choose ε > 0 and simple g̃ : H→ K, such that |g̃−g|Q < ε/2. Suppose

g̃ =
J

∑
j=1

g jχB j ,

where B j ∈ CH . Since P ◦ f−1 ≤ Q ,

∃C j ∈ CG, with P
(
C j∆ f−1(B j)

)
< ε/(2J). It follows that defining the function

h̃ =
J

∑
j=1

g jχC j

we find
∣∣∣h̃−g◦ f

∣∣∣ < ε. Since ε > 0 is arbitrary, this shows that g ◦ f is P -

measurable.

Now choose ε > 0 and δ1 > 0 so that Q (A) < δ1 ⇒ P (A) < ε and set δ =

min(δ1,ε). If |g|Q < δ, Q ∗ ({ψ : g(ψ)> ε})< δ1, hence

P ◦ f−1 ({ψ : g(ψ)> ε}) = P ({ψ : g◦ f (ψ)> ε}) < ε (3.29)

so |g◦ f |P < ε, as required.

(iv) Apply Theorem 3.2.1 (iii) to show that g ◦ f and gk ◦ f are P -measurable, then

apply the second part of (iii) to f and g− gk to show that gk ◦ f → g ◦ f in P -

measure.
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(v) Suppose g ∈ Bn,i.e. it is zero except on V = Π−1(W ), for a multidimensional

interval W ∈Rn, say, where it takes the value g0. Then by Proposition 3.2.3, V is

also P ◦ f−1
k -measurable, and by Proposition 3.2.4, g◦ fk is P -measurable; in fact,

g◦ fk is the indicator function χ f−1
k (V ) which shows that f−1

k (V ) is P -measurable.

Likewise, g◦ f is the indicator function of f−1(V ). Choose ε > 0. Since P is the

standard Gaussian measure, ∃δ > 0, such that if U ′ = {ψ ∈ V ∧∃ψ′ /∈ V ∧ |ψ−
ψ′| < δ}, P (U ′) < ε/2. Now | f − fk|P → 0, so choose K > 0 so that for k > K,

| f − fk|P < ε′ = min(ε/2,δ). It follows that ∀k > K∃Uk ∈ CH with P (Uk) < ε′

such that ψ /∈Uk⇒| f (ψ)− fk(ψ)|< ε′. Now for k >K and ψ∈ f−1
k (V )∆ f−1(V )

either: (a) | f (ψ)− fk(ψ)| ≥ ε′, (b) ψ ∈ V ∧∃ψ′ /∈ V ∧ |ψ−ψ′| < ε′, or (c) ψ /∈
V ∧ ∃ψ′ ∈ V ∧ |ψ−ψ′| < ε′. Thus, f−1

k (V )∆ f−1(V ) ⊆ Uk ∪U ′, k > K. and

therefore P ∗
(

f−1
k (V )∆ f−1(V )

)
< ε. This shows that f−1(V ) is P -measurable

and g◦ fk→ g◦ f in P -measure.

If (v) is true for g of this form it is also true for linear combinations of such g, i.e.

simple g, and also, by (iv) (using uniformity of P ◦ f−1
k ≤ P ), for P -measurable

g.

(vi) Based on Definition 3.2.5 CH×H contains the set H×H and CR×H contains the set

R×H and both are closed in-regards to complements and finite set unions. Since

the inverse image of complement of a set is equal to complement of inverse image

of it and the inverse image of finite union of subsets of H×H or R×H are equal

to union of their inverse images and because the vector space H is closed under

vector addition and scalar multiplication which makes the operation + : H2→H

and × : R×H → H, bijective set functions, +−1 (CH×H) = ×−1 (CR×H) = CH

and by definition 3.2.2 + and × are P -measurable transformations.

(vii) Let {φ{ j}
k } be a sequence of simple functions converging to f j in P -measure,

j = 1, 2. Set φk : x 7→
〈

φ
{1}
k (x),φ{2}k (x)

〉
. Then {φk} is a sequence of simple

functions converging to f in P -measure.

(viii) Let φ be the continuous mapping from H2→ H, defined by φ(ζ1,ζ2) = ζ1 +ζ2.

Let f1 and f2 be P -measurable transformations on G, and let F(g)= 〈 f1(g), f2(g)〉,
then F : G→ H2 and by (vii) F is a P -measurable transformation. Since φ is

continuous and φ ◦F(g) = f1(g)+ f2(g), hence we conclude φ ◦F : G→ H is

a P -measurable transformation. See also (Dunford and Schwartz 1957, Lemma

III.2.8 and Lemma III.2.12).
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Remark 3.2.5. Combining Property (vii) with Property (iii), and using the measurable

mapping + : R×R→ R, for example, shows that if f : H→ R and g : H→ R are P -

measurable then the mapping ψ 7→ f (ψ)+g(ψ) is P -measurable.

As with classical measurability, it is likely that virtually all the functions which are

relevant in a given context (in the sense that we wish to investigate their properties and

apply certain manipulations) are P -measurable. However, as Example 3.2.2 shows,

non-P -measurable functions do exist and not all the operations which are applicable

to P -measurable functions can be employed with them. Consequently, although it is

expected that all functions which need to be P -measurable will be, it remains necessary

to prove this in each case. Theorem 3.2.1 will assist in many cases, but, as the example

application in Section 3.3 shows, there remain cases of P -measurable functions whose

P -measurability cannot be demonstrated in this way.

3.2.2 The P -measurable Derivative

In this subsection we define the derivative of a P -measurable transformation which

operates on a space of P -measurable functions. The P -measurable functions will all

be assumed to be defined on a Hilbert space H with additive set function P defined

on the cylinder algebra. H is also assumed to be equipped with a measurable norm,

denoted by ‖ · ‖. The codomain of these functions is assumed to be a normed vector

space, X (adopting the same broad concept of norm as applies to the norm on H, i.e

we do not assume X is a Banach space.) The two special cases X = R and X = H are

of most interest.

Since a P -measurable function does not have a unique well-defined value at each loca-

tion of its domain, the limit which usually occurs, as a central feature, in the definition

of a derivative can’t be a point-wise limit. It is natural, given that functions under con-

sideration are P -measurable, to adopt P -measurable limits instead of point-wise ones.

Switching to P -measurable limits is much more than a technical device however.

Since P -measurable limits are defined in terms of underlying finite-dimensional sub-

spaces, the P -measurable limit has similar applicability to the stochastic derivative, as
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defined in (Di Nunno et al. 2009, A.2). This connection is explored further in Propo-

sition 3.2.7, below. The stochastic derivative is shown in (Di Nunno et al. 2009) to

coincide with the Malliavin derivative under certain assumptions. For applicability,

we need a derivative which is well-defined under weak assumptions. The assumptions

for the stochastic derivative to be well-defined are not as weak as either the Malliavin

derivative or the P -measurable derivative. On the other hand, the definition of the

stochastic derivative is simpler than the Malliavin derivative, which helps make it clear

how it serves the same role as a Frechèt derivative would, if it were defined. Thus, the

stochastic derivative also motivates the Malliavin derivative. The P -measurable deriva-

tive is more clearly modelled on the Frechét derivative, so motivating it in this way is

not necessary. However, the fact that it also coincides with the stochastic derivative

makes it clear that it is applicable in the same contexts as the Malliavin derivative.

The next proposition shows that P -measurable transformations are, in a sense, approx-

imately finite-dimensional.

Proposition 3.2.5. T : H→H is P -measurable if for any sequence of projections {Πk}
with Πk → I , strongly, and any sequence of projections {Θk} with Θk → I strongly,

Θk ◦T ◦Πk is P -measurable for all k > 0, and |T −Θk ◦T ◦Πk|P → 0.

Conversely, if T : H → H is P -measurable, for all pairs of sequences of projections

{Πk} with Πk→ I and {Θk} with Θk→ I strongly, |T −Θk ◦T ◦Πk|P → 0.

Proof. The if part follows because any P -measurable limit of P -measurable functions

is P -measurable. For the converse, suppose T is P -measurable and suppose |T −
T`|P < 1/`, ` > 0, where T` is simple. Suppose, to be specific, that

T` =
M`

∑
j=1

h jχS j .

By Lemma 3.2.2, for sufficiently large k > 0,

|T`−Θk ◦T` ◦Πk|P < 1/`,

and hence

|T −Θk ◦T ◦Πk|P < 2/`,

which concludes the proof.
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Definition 3.2.9. Suppose T : (H,P )→ (X , | · |) is P -measurable, DξT : H→M (H,X)

is defined by

DξT : ψ 7→
(

h 7→ T (ψ+ξh)−T (ψ)
ξ

)
, (3.30)

ξ > 0, V : H→ L(H,X), and

DξT →V (3.31)

in P -measure, as ξ→ 0. Then DψT .
=V is termed the P -measurable derivative of T .

This definition, is illustrated in Section 3.3. In some cases the following proposition

may provide an easier way to find the P -measurable derivative.

Proposition 3.2.6. Suppose Tk → T in P -measure and the defining limits for DψTk

exist uniformly over k > 0.

Then, if limk→∞ DψTk exists (as a P -measurable function with convergence in P -

measure), DψT exists and DψTk→DψT in P -measure, and conversely, if DψT exists,

DψTk→DψT in P -measure.

Proof. Uniformity justifies interchanging the order of the limits. More formally, choose

ε > 0 and E > 0 such that the defining limits for DψTk have been reached with error

less than ε for all ξ < E, for all k > 0.

Suppose also |DψTk−V |P < ε for all k > K. Therefore for ξ < E∣∣DξTk−V
∣∣
P <

∣∣DψTk−DψTk
∣∣
P +

∣∣DψTk−V
∣∣
P

< 2ε.

Choose a specific ξ. Then, for sufficiently large K1 > 0, for all k > K1,∣∣DξT −DξTk
∣∣
P < ε,

Hence, for k > max(K,K1),
∣∣DξT −V

∣∣
P < 3ε. Since ε is arbitrary, DψT =V .

For the converse, suppose instead, that DξT exists. In particular, suppose that for all

ξ < E, the | · |P -norm of the difference between the LHS and RHS at (3.31) is less than

ε.
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Choose E1 > 0 such that for all ξ < E1,
∣∣DξTk−DψTk

∣∣
P < ε. Then, for some ξ <

min(E,E1), we can choose K > 0 such that for k > K,
∣∣DξTk−DξT

∣∣
P < ε and hence∣∣DψTk−DξT

∣∣
P < 2ε and hence

∣∣DψTk−Dψ

∣∣
P < 3ε. Since ε > 0 is arbitrary, DψTk→

DψT in P -measure.

The next proposition shows that on C([0,T ]), the stochastic derivative and the P -

measurable derivative are essentially the same, on H, where H in this context is the

Cameron-Martin space associated with C([0,T ]).

Proposition 3.2.7. If F : C([0,T ])→ R is P -measurable and has a stochastic deriva-

tive, DtF, in the sense defined in (Di Nunno et al. 2009, A.2), then it also has a

P -measurable derivative, DψT F, and the mapping ω 7→
{

γ 7→
∫ T

0 DtF(ω)γ′(t)dt
}
=

DψT F in P -measure on H.

Proof. Since t 7→ DtF(ω) ∈ L2([0,T ]), for almost all ω, the mapping

γ 7→
∫ T

0
DtF(ω)γ′(t)dt

can be regarded as a linear functional on H, and hence, we can define a continuous

mapping, U : H → L(H,R) by ω 7→
{

γ 7→
∫ T

0 DtF(ω)γ′(t)dt
}

. This shows that DtF

(the stochastic derivative) and V (the P -measurable derivative) have the same form,

i.e. fundamentally both are a mapping from H to H ′. (We can ignore the fact that U is

defined on the whole of Ω, not just on H.)

It remains to show that whenever the stochastic derivative is defined, the P -measurable

derivative is defined, and that they are equal, in P -measure, i.e. ∃U ⇒U = V in P -

measure.

By Definition A.10 of (Di Nunno et al. 2009), DtF is well-defined only if

DγF = lim
ξ→0

F(ω+ξγ)−F(ω)

ξ
(A.12)

exists and is in L2(P) for almost all ω ∈Ω.
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Since F is P -measurable, so is DξF , for all ξ > 0. Suppose (3.31) is not the case, with

V in Definition 3.2.9 =U . Then ∃δ > 0, ∀ξ > 0, ∃Aδ,ξ ∈ C (H) with P (Aδ,ξ)> δ and∣∣∣∣{γ 7→ F(ω+ξγ)−F(ω)

ξ

}
−U(ω)

∣∣∣∣
P
> δ

on Aδ,ξ. Hence, for some Bδ,ξ ∈ C (H), with P (Bδ,ξ)> δ,∣∣∣∣F(ω+ξγ)−F(ω)

ξ
−U(ω)γ

∣∣∣∣> δ

for all γ ∈ Bδ,ξ. Thus,

∫ ∣∣∣∣F(ω+ξγ)−F(ω)

ξ
−U(ω)γ

∣∣∣∣2 P(dω)> δ
3.

This contradicts (A.12).

3.2.3 The Radon-Nikodym Derivative

In the remainder of this section P and Q denote positive additive set functions on

(H,CH), and G, H, and K denote Hilbert spaces equipped with a measurable norm and

an algebra of subsets.

Definition 3.2.10. If P ≤ Q are additive set functions on an algebra of subsets CH of

a space H, and U ∈ CH , we write
dP
dQ

= ρ

on U if ρ is Q -measurable and for all simple Q -measurable functionals f on H,∫
U

f (x)P (dx) =
∫

U
f (x)ρ(x)Q (dx). (3.32)

Note: by Proposition 3.2.3, whenever f is Q -measurable it is also P -measurable, so

the integral on the left of (3.32) is well defined.

Theorem IV.9.14 from (Dunford and Schwartz 1957) implies that whenever P ≤ Q ,
dP
dQ , as in Definition 3.2.10, exists. Dunford and Schwartz attribute this result to

Bochner and describe it as a generalization of the Radon-Nikodym theorem, and also,

in the index, as the Radon-Nikodym theorem for bounded additive set functions.
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The definition of Radon-Nikodym derivative given here differs from that in (Bagchi

and Mazumdar 1993) in that the defining condition is simply for (3.32) to hold, for

all P -measurable functions f , whereas in (Bagchi and Mazumdar 1993) the condi-

tion includes an additional requirement of uniform convergence over all sequences of

finite-dimensional approximations to this integral. Another difference in the approach

of (Bagchi and Mazumdar 1993) is the concept of physical random variables, which

sometimes serve in place of P -measurable functions. It follows from Lemma 3.2.2 be-

low, that real-valued physical random variables are precisely the same as P -measurable

functionals. This is not necessarily true in the more general case of H ′-valued physical

random variables, however, which are involved in the applications which motivate the

work in (Bagchi and Mazumdar 1993).

When (3.32) holds for all simple P -measurable functions, f , it holds when f is any P -

measurable function. Furthermore, it is sufficient for (3.32) to hold for an even more

limited class of P -measurable functions to ensure this, as the next proposition shows.

Proposition 3.2.8. For (3.32) to be true for all P -measurable functions it is sufficient

if it is true for all f ∈ Bn (as in Definition 3.2.8), for all n > 0.

Proof. Suppose (3.32) is true for all f ∈ Bn. Select a specific projection Π : H →
Rn and let Fn denote the class of Borel sets, F ⊆ Rn for which (3.32) is true for the

indicator function of Π−1(F). Thus Bn ⊆ Fn. By the linearity of the integral in (3.32),

Fn must form an algebra. By the assumption that P ◦Π−1, and Q ◦Π−1 are measures,

Fn must be a σ-algebra, and hence includes all Borel sets.

Now suppose g is an arbitrary P -measurable function. There is therefore a simple

function, f , which differs from g in | · |P -norm by less than ε, for any ε > 0. Thus

(3.32) holds with g in place of f to accuracy ε for any ε > 0, and hence must hold

exactly, which also shows that the right-hand integral is well-defined, i.e. f (x)ρ(x) is

Q -measurable.

Remark 3.2.6. A further refinement of this proposition which could be developed is

that it is sufficient for (3.32) holds for all indicator functions of the form stated in the

proposition but where Π, instead of being an arbitrary orthogonal projection, is an

orthogonal projection in a sequence which converges strongly to the identity.
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The case where Q = P ◦ T−1 for some P -measurable transformation T is more im-

portant than any other, in the rest of this research, so let us take time to interpret the

preceding definition in this context.

Proposition 3.2.9. Given an additive set-function P on the algebra of sets (H,CH), a

P -measurable mapping T : H→ (H, | · |Ω), and P -measurable U ⊆H, if there exists a

P -measurable function ρ with the property that for all simple P -measurable functions,

f , of the form set out in Proposition 3.2.8,∫
U

f (T (x))P (dx) =
∫

T (U)
f (x)ρ(x)P (dx) (3.33)

then P ◦T−1 ≤ P and
dP ◦T−1

dP
= ρ

on U.

Proof. The integrals in (3.33) reduce to those in Definition 3.2.10 by means of the

substitution rule for integration with respect to an additive set function (Dunford and

Schwartz 1957). Using these integrals we can show P ◦T−1 ≤ P .

3.2.4 Ramer’s theorem in H

Definition 3.2.11. The determinant DetT of a linear operator on T : G→H is defined

as limk→∞ DetMk, where Mk is a matrix representation of the operator Θk ◦ T ◦Πk,

which uses an orthonormal bases for both the domain and range, when this limit ex-

ists and is consistent for all sequences {(Πk,Θk)}∞
k=1 of pairs of finite-dimensional

projections, with dimΠkG = dimΘkH, k ≥ 1, converging to the identity in G and H.

For example, Det I = 1. In more generality, if T can be represented in the form

A 0 . . . . . . 0

0 1 0 . . .
...

... . . . . . . . . . ...

0 . . . 0 1 0

0 . . . . . . 0 1


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for some finite-dimensional square matrix A, in some pair of orthonormal bases {ek},
{ fk}, then DetT = DetA.

Definition 3.2.12. If S ⊆ H, [S] denotes the smallest subspace of H which contains S.

For example, [φt : t ≥ 1] is the smallest subspace containing {φt : t ≥ 1}.

Remark 3.2.7. Definition 3.2.11 includes the Fredholm determinant; however, it also

includes operators, even when G = H, which are not Hilbert-Schmidt, or of the form

I +A where A is Hilbert-Schmidt. For example, the fBm isometry, κδ, has determinant

1 for all δ > 0, even though when δ 6= 1 it has no eigenvalues, and is not Hilbert-

Schmidt, and neither is I−κδ. For an example where G 6= H, consider κδ : [φt : t ≥
1]→ [φt : t ≥ δ], for which Detκδ = 1.

Theorem 3.2.2. If T : (H,P )→ H is P -measurable, with P -measurable inverse, P ◦
T−1 ≤ P , and T : (H,P ) has a well-defined P -measurable derivative, DψT , with well-

defined, P -measurable and non-zero, determinant, DetDψT , on H, then the Radon-

Nikodym derivative induced on (H,P ) is

dP ◦T
dP

(ψ) = ρ(ψ) =
∣∣DetDψT

∣∣exp
(
−1

2
|T ψ−ψ|2H−〈T ψ−ψ,ψ〉

)
. (3.34)

Proof. Notice that the result is identical to the Jacobian theorem for transformation of

a Gaussian density on Rn, except for the dimension of H.

The condition P ◦ T−1 ≤ P is required because it is a precondition for the Radon-

Nikodym derivative to be defined.

By Proposition 3.2.9, it is sufficient to show (3.33) (with U =H) for all B∈CH . Choose

B ∈ CH , and ε > 0 and let us show∣∣∣∣∫ χB(T (x))P (dx)−
∫

B
ρ(x)P (dx)

∣∣∣∣< ε. (3.35)

Note that for the left-hand integral in (3.35) to be well-defined it is necessary that χB◦T

is P -measurable, which is justified by Theorem 3.2.1, Part (iii), which also requires the

condition P ◦T−1 ≤ P .

Let {Πn} be a sequence of projections converging to the identity on H. Since T is

P -measurable, by Proposition 3.2.5, ∃n1 > n0 such that ∀n > n1,

|Πn ◦T ◦Πn−T |P < ε/3.



3.2 Additive set functions and P -measurability 67

Set Tn = Πn ◦T ◦Πn,

ρ̃n(ψ) = Det
(
DψTn

)
exp
(
−
∣∣DψTnψ−ψ

∣∣2
H−

1
2
〈Tnψ−ψ,ψ〉

)
,

and

ρn(ψ) = Det
(
DψTn

)
exp
(
−|T ψ−ψ|2H−

1
2
〈T ψ−ψ,ψ〉

)
.

Since DetDψT is well-defined, DetDψTn = Det
(
Πn ◦DψT ◦Πn

)
→ DetDψT in P -

measure and so ∃n2 > 0 such that ∀n > n2,

|ρ(ψ)−ρn (ψ)|P < ε/3.

Since Tn → T in P -measure, ∃n3 > 0 such that |Tn−T |P < ε/3, ∀n > n3, and also

∃n4 > n3 such that |ρn− ρ̃n|P < ε/3 for all n > n4. Also, by Theorem 3.2.1, Part (iv),

∃n5 > 0 such that ∀n> n5, |
∫

χB ◦T (x)−
∫

χB ◦Tn(x)|P < ε/3. For n>max(n1,n2,n4,n5),

therefore,∣∣∣∣∫ χB(T (x))P (dx)−
∫

B
ρ(x)P (dx)

∣∣∣∣= ∣∣∣∣∫ χB(T (x))P (dx)

−
∫

χB(Tn(x))P (dx)+
∫

χB(Tn(x))P (dx)−
∫

B
ρ̃n(x)P (dx)

+
∫

B
ρ̃n(x)P (dx)−

∫
B

ρn(x)P (dx)+
∫

B
ρn(x)P (dx)−

∫
B

ρ(x)P (dx)
∣∣∣∣

≤ ε/3+0+ ε/3+ ε/3 = ε.

Since ε > 0 is arbitrarily small, (3.33) holds, with f = χB, and since B is any set ∈ CH ,

(3.38) is true.

Proposition 3.2.10. Suppose
{

µp
}

p∈R, µp : H → H, is a family of P -measurable in-

vertible transformations on H with

dP ◦µp

dP
= θp, (3.36)

p∈R and {πk} is a sequence of P -measurable functionals converging to a P -measurable

functional π such that,

(a) setting θπk : ψ 7→ θπk(ψ)(ψ) and θπ : ψ 7→ θπ(ψ)(ψ), θπk → θπ in P -measure;

(b) and, setting µπk : ψ 7→ µπk(ψ)(ψ) and µπ : ψ 7→ µπ(ψ)(ψ), µπk is invertible for all

k > 0, µπ is invertible, and µπk → µπ in P -measure.
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Then
dP ◦µπ

dP
= θπ. (3.37)

Proof. First, note that
dP ◦µπk

dP
= θπk

because πk is a linear combination of functionals which are constant, and we can use

(3.36) for each of these constant functionals.

Suppose V ∈ Bn. Then∫
V (µπ(ψ))P (dψ) = lim

k→∞

∫
V (µπk(ψ))P (dψ),

by Theorem 3.2.1 Part (v), noting that P ◦µ−1
p ≤ P follows from (3.36),

= lim
k→∞

∫
V (ψ)θπk(ψ)P (dψ)

=
∫

V (ψ)θπ(ψ)P (dψ)

Since V ∈ Bn and n are arbitrary, (3.37) holds.

3.2.5 Girsanov Form

Results of type which describe how the dynamics of stochastic processes change when

the original measure is changed to an equivalent probability measure have been stud-

ied by many including Cameron and Martin in the 1940s and by Girsanov in 1960

(Girsanov 1960). The first Girsanov-type theorem for fBm was obtained by (Molchan

1969) in 1960s. More recently Norros et al (Norros et al. 1999) proved such a result

for fractional Brownian motion by finding an integral transformation which changes

the original centered fBm process to a process with independent increments. Using

the recent advances in the white noise machinery as described in (Biagini et al. 2008a,

Section 3.1) the proof of the Benth-Gjessing version of the Girsanov formula (Holden

et al. 1996, Corollary 2.10.5), can be verified and shown to apply in the fractional case.

By further generalising the fractional white noise framework in which processes with

all indices can be considered under the same probability measure, the Girsanov theo-

rem for fBm valid for every Hurst index H ∈ (0,1) has also been obtained in (Elliott

and Van der Hoek 2003, Section 5).
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The Girsanov theorem can be viewed as a special case and, in some respects, a gen-

eralisation of the Cameron-Martin theorem. In particular, there is a way of expressing

the Girsanov theorem which is attractive to many researchers, which can be applied

in the more general context of this research. There is an excellent discussion on the

relationship between the Ramer and the Girsanov formulas in (Zakai et al. 1992). Us-

ing characterization of quasinilpotent Hilbert-Schmidt operators they show that these

two are identical if the Frechèt derivative is nuclear (trace class) and in that case, the

Jacobian is just 1.

Theorem 3.2.3. If T : (H,P )→ H is P -measurable, with P -measurable inverse, P ◦
T−1 ≤ P , and T : (H,P ) has a well-defined P -measurable derivative, DψT , with well-

defined, P -measurable and non-zero, determinant, DetDψT , on H, and we define a

P -measurable measure Pa on H by

dPa

dP
(ψ) =

∣∣DetDψT
∣∣−1 exp

(
−1

2
|T ψ−ψ|2H + 〈T ψ−ψ,ψ〉

)
. (3.38)

Then the distribution of ψ with respect to Pa is the same as the distribution of T (ψ)

with respect to P .

Remark 3.2.8. The expression “the distribution of ψ with respect to Pa” really means:

Pa. Therefore, restating the theorem more formally, it is: Pa (as defined by (3.38)) is

the probability measure of T (ψ).

Proof. Let B ∈ CH . Then

P (T (ψ) ∈ B) = P ◦T−1 (B) ,

which, by Theorem 3.2.2 applied with T−1 in place of T ,

= Pa(B).

Let us now verify that the Theorem 3.2.3 reduces to the Norros et el’s formula from

(Norros et al. 1999) when appropriate substitutions are made. Consider the case,

namely T : ψ 7→ ψ′ where

ψ
′(s) = ψ(s)+ms,
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for s≤ t, for some constant t. In order to be able to apply Theorem 3.2.3 we assume H

is the Hilbert space of paths on [0, t] rather than on [0,∞). Defining Pa as in Theorem

3.2.3, (3.38) becomes

dPa

dP
(ψ) =

∣∣DetDψT
∣∣−1 exp

(
−1

2
|T ψ−ψ|2H + 〈T ψ−ψ,ψ〉

)
.

There are three separate terms here which need to be evaluated:

(i)
∣∣DetDψT

∣∣−1,

(ii) |T ψ−ψ|2H = |µ|2H , where µ : s 7→ ms, and

(iii) 〈T ψ−ψ,ψ〉= 〈µ,ψ〉H .

The P -measurable derivative of T is I, so the first term is 1. To evaluate the second

term we need to find |µ|H . According to (Biagini et al. 2008b), |µ|H = |µ̃|L2(0,t) where

µ̃ is the unique function such that

µ(t) =
∫ t

0
KH(t,s)µ̃(s)ds (3.39)

in which

KH(t,s) = cHs
1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du,

where

cH =

√
H (2H−1)

β
(
2−2H,H− 1

2

)
=

√
H (2H−1)Γ

(3
2 −H

)
Γ(2−2H)Γ(H− 1

2)

=

√
H (2H−1)Γ

(3
2 −H

)
(H− 1

2)

Γ(2−2H)Γ(H + 1
2)

=

(
H− 1

2

)
cN

where cN =

(
2HΓ(3/2−H)

Γ(H+ 1
2)Γ(2−2H)

) 1
2

is the constant cH of (Norros et al. 1999). Using the

fractional integral of order α, denoted by Iα
0+, and the fractional derivative of order α,



3.2 Additive set functions and P -measurability 71

denoted by Dα
0+, if φ is differentiable, (3.39), with φ in place of µ, implies

dφ

dt
= cHt

1
2−H

∫ t

0
sH− 1

2 (t− s)H− 3
2 φ̃(s)ds

= cHtH− 1
2 Γ(H− 1

2
)I

H− 1
2

0+ t
1
2−H

φ̃(t)

so

φ̃(t) =
tH− 1

2

cNΓ(H + 1
2)

D
H− 1

2
0+ t

1
2−H dφ

dt
. (3.40)

To evaluate this fractional integral when φ is a power of t we use (1.41). For φ = µ,

where µ(t) = mt, (3.40) reduces to

µ̃(t) =
mt

1
2−H

cNΓ(H + 1
2)

Γ(3
2 −H)

Γ(2−2H)

=
mt

1
2−H

Γ(H + 1
2)

Γ(3
2 −H)

Γ(2−2H)

(
Γ
(
H + 1

2

)
Γ(2−2H)

2HΓ(3/2−H)

) 1
2

= mt
1
2−H

(
Γ(3/2−H)

2HΓ
(
H + 1

2

)
Γ(2−2H)

) 1
2

= c1t
1
2−H (3.41)

in which

c1 = m

(
Γ(3/2−H)

2HΓ
(
H + 1

2

)
Γ(2−2H)

) 1
2

, (3.42)

so

|µ̃|2 =
m2Γ(3/2−H)

2H (2−2H)Γ
(
H + 1

2

)
Γ(2−2H)

T 2−2H .

For the third term we must evaluate

〈µ,ψ〉H = 〈µ̃, ψ̃〉L2(0,t)

which, using (3.40) and (3.41),
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=
c1

cNΓ
(
H + 1

2

) ∫ T

0
t

1
2−HtH− 1

2 D
H− 1

2
0+ t

1
2−HD1

0+ψ(t)dt

=
c1

cNΓ
(
H + 1

2

) ∫ T

0
D

H− 1
2

0+ t
1
2−HD1

0+ψ(t)dt

=
c1

cNΓ
(
H + 1

2

)I
3
2−H
0+ t

1
2−HD1

0+ψ(t)

=
c1

cNΓ
(
H + 1

2

)
Γ(3/2−H)

∫ t

0
(t− s)

3
2−H−1 s

1
2−Hdψ(s)

=
m

2HΓ
(
H + 1

2

)
Γ(3/2−H)

∫ t

0
(t− s)

3
2−H−1 s

1
2−Hdψ(s).

Putting all the terms together we obtain

dPa

dP
(ψ) = exp

 mI
3
2−H
0+ t

1
2−HD1

0+ψ(t)

2HΓ
(
H + 1

2

)
Γ(3/2−H)

− 1
2

m2c2
1

(2−2H)
T 2−2H


where the first term in the power of the exponents, matches the corresponding first

term of (1.15). It should be observed that Mt is defined as a fractional integral in (1.13)

and the fractional derivative part of the first term, namely D1
0+ψ(t) corresponds to the

dBs
H in (1.13). Similarly a little algebra shows the second terms in the power of the

exponents exactly match as well.

3.2.6 Measurable extensions

In this subsection we present the idea of lifting maps with respect to P measure. The

class of integrands and thus the Radon Nikodym derivative can be enlarged using this

approach. The idea is to use a canonical injection from the Hilbert space H to the

Banach space Ω and then ask for what class of functions do the limits make sense.

These ideas have a similar motivation as Segal (Segal 1956) and Gross’ (Gross 1962,

1960) work. The notion of lifting with respect to finitely additive measure has also

been utilized in (Kallianpur and Karandikar 1985).

Lemma 3.2.3. If f is a simple function on (H,CH) the defining sum can be extended

to define a simple function on (Ω,C ), and hence also on (Ω,B).

Proof. Suppose f (ψ) = ∑k akχAk(ψ) where Ak = Π
−1
Sk
(Bk), for subspaces Sk 6 H and
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Borel sets Bk ⊆ Sk. Define a new function f̃ = ∑k akχÃk
(ψ), where Ãk = Π̃

−1
k (Bk) in

which Π̃k is the extension of Πk to Ω (See Remark 3.1.1).

Lemma 3.2.4. If f is a CH-simple function for which the CH-sets are defined in terms

of subspaces Z1, . . . , Zn 6 H, setting Z to be the smallest subspace containing
⋃

k Zk,

and supposing Z is of dimension N, and Ψ : RN → Z is the map from orthonormal

coordinates to elements in H,∫
H

f (ψ)P (dψ) =
∫

U
f (Ψ(θ1, . . . ,θN))(2π)−N/2 e−

1
2 |Ψ(θ1,...,θN)|2H dθ1 . . .dθN . (3.43)

Proof. This follows from the fact that P is the measure generated by the construction

based on (3.1), and the identity |Ψ(θ1, . . . ,θN)|2H = ∑
n
k=1 θ2

k , where the orthonormal

coordinates are denoted by θk here and xk in (3.1).

The following lemma shows that it is correct to interpret P-measurable on (Ω,C ) as

stronger than the requirement of measurability, and hence we can regard functions

which are P-measurable on (Ω,C ) as also measurable on Ω in the conventional sense.

Lemma 3.2.5. If f is P-measurable on (Ω,C ) in the sense of Definition 3.2.2 (so f

is an equivalence class of functions on Ω), then one of the elements of f , f̃ say, is a

measurable function on Ω.

Proof. Suppose {φk}, a sequence of simple functions, converges in P-measure to f .

Set f (ψ) = liminfk φk(ψ). Measurability of this limit is shown in (Malliavin 1995,

Corollary 2.6.2). By Lemma 3.2.1, P(
{

ψ : f (ψ) = ∞
}
) = 0. Now define

f̃ (ψ) =

 f (ψ), f (ψ)< ∞,

0, otherwise.

Since {φk} converges in P-measure, for any ε > 0, we can find n > 0 such that for all

k > n, |φk−φn|P < ε and hence | f̃ −φn|P < ε, which shows that f̃ ∈ f .

The following theorem provides a very general way to construct P-measurable func-

tions on Ω with desired characteristics – the function is defined on an increasing se-

quence of finite-dimensional subspaces of H. It is therefore an excellent tool for con-

structing the nonlinear mappings on path spaces needed in applications.
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Theorem 3.2.4. Every bounded P -measurable function, f , on H has a unique (up to

| · |P-norm) extension to a (C ,P)-measurable function, f̃ , on Ω with the property that if

{φk} is a sequence of simple functions converging to f on H then the sequence formed

by extending these simple functions to Ω (as in Lemma 3.2.3) converges in P-measure

(in the sense of Definition 3.2.6) to f̃ . If f ∈ f̃ ,∫
Ω

f (ψ)P(dψ) =
∫

H
f (ψ)P (dψ). (3.44)

Proof. Let f be a P -measurable function on H and {φk} be a sequence of CH-simple

functions such that | f −φk|P → 0. Extend φk to φ̃k as in Lemma 3.2.3. The series {φ̃k}
is Cauchy in | · |(C ,P)-norm, since the differences have the same | · |(C ,P)-norms as the

sequence {φk} of functions on H, so it converges to a (C ,P)-measurable function on

Ω.

Now suppose there was a different (C ,P)-measurable function, f1, coinciding with f

on H. Since it is different, there must be some cylinder set, S ∈ C , where it is different

from f . But this would imply that f1 and f differ on the non-empty set S∩H, which is

not possible, since f1 and f were assumed to coincide on H.

Because both integration in the sense of Lebesgue, and in the sense in which it is

defined for finitely additive set-functions (Dunford and Schwartz 1957), is defined by

taking limits from simple functions, (3.44) will be true for all P -measurable functions

so long as it is true for the indicator functions of sets in CH . The case where f is an

indicator function follows immediately from the definition of the measure P.

Corollary 3.2.1. Suppose (H,Ω, ι) is an abstract Wiener space, P is the Gauss mea-

sure (a finitely additive set function) on H, and P the measure on Ω induced by P .

Suppose T : H→ (H, | · |Ω) is P -measurable, P ◦T−1 ≤ P and that

dP ◦T−1

dP
= ρ. (3.45)

Let T̃ denote the measurable extension of T to Ω. Then the unique measurable exten-

sion ρ̃ of ρ to Ω is the Radon-Nikodym derivative dP◦T̃−1

dP .

Proof. To show that ρ̃ is the Radon-Nikodym derivative it will be sufficient to show

that ∫
Ω

ρ̃(ψ)h(ψ)P(dψ) =
∫

Ω

h(T̃ (ψ))P(dψ), (3.46)



3.3 Example Applications 75

for all measurable bounded h defined on Ω. Because of the linearity and continuity

properties of the integrals in (3.46), it will be sufficient if (3.46) holds for h ∈ h̃ where

h̃ is formed as in Theorem 3.2.4 from h∈Bn, as in Definition 3.2.8. By Theorem 3.2.4,

this follows from (3.45).

3.3 Example Applications

A complete example in which the Radon-Nikodym derivative induced by a transfor-

mation which scales the last exit of Brownian motion is presented in Section 4.3.2.

Let (H,Ω, ι) denote the abstract Wiener space of Brownian motion on the interval

[0,∞), equipped with norm

|ψ|Ω = sup{|ψ(t)/(|t|+1)| : t ≥ 0}.

Throughout this section, ψ(t) is Brownian motion.

3.3.1 A First Example

Definition 3.3.1.

µε,t [ψ](s) = ψ(s)+
(
(ε−1)ψ(t)

t

)
φt(s), s > 0 (3.47)

where φt(s) is defined as in (3.1.10).

This transformation increases the magnitude of the the path ψ by the factor ε at time t

by adding drift up to time t. After time t, the path is shifted vertically by the quantity

(ε−1)ψ(t). To simplify notation in the remainder of this section we set M = µε,t .

Lemma 3.3.1.

DψMh =

εh h = φt ,

h, h⊥ φt ,
(3.48)

Proof. This follows from the fact that M is linear, and hence has constant derivative

equal to M.
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Proposition 3.3.1.

dP◦M
dP

(ψ) = εe−
1
2((ε−1)ψ(t)t−H)

2−((ε−1)ψ(t))t−2Hψ(t). (3.49)

on H.

Proof. The P -measurable derivative of µδ,t is given by (3.48), and hence Det(Mψ) = ε.

By applying Theorem 3.2.2 and using (3.18) and (3.19),

dP ◦M
dP

(ψ) = εexp
(
−1

2
|Mψ−ψ|2H−〈Mψ−ψ,ψ〉H

)
= εe−

1
2((ε−1)ψ(t)t−H)

2−((ε−1)ψ(t)t−1)t1−2Hψ(t).

3.3.2 A second example

Definition 3.3.2.

λδ,t [ψ](s) =

δHψ(s/δ)+ (δ−δH)ψ(t)
t φt(s/δ), s≤ δt

(δ−1)ψ(t)+ψ(s− (δ−1)t), otherwise.
(3.50)

Figure 4.2 illustrates the preceding definition. The value of the transformed path at δt

is the value of the original path at t scaled by the factor δ. The path after t, is shifted

to the right by (δ−1)t and upwards, by (δ−1)ψ(t). The original path before t is both

scaled and shifted to produce the transformed path before δt.

Definition 3.3.3. The modified fBm similarity on H (or Ω) is, for all δ > 0,

κδ,t : H → H (Ω→Ω)

ψ 7→ ψ
′

where

ψ
′(s) =

δHψ(s/δ), s ∈ [0,δt)

(δH−1)ψ(t)+ψ(s− (δ−1)t), s≥ δt.
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Figure 3.2: A path and its transformation by the mapping (3.50)

Note that κδ,t is actually a similarity on H only when H = 0.5. When H = 0.5, because

it is a self-similarity then, we obtain:

dP ◦κδ,t

dP
= 1, (3.51)

for all t > 0.

Proposition 3.3.2.

λδ,t [ψ](s) = κδ,t ◦µδ1−H ,t [ψ](s) = µδ1−H ,δt ◦κδ,t [ψ](s), s≥ 0. (3.52)

Proof. In order to see the first equality, notice from (3.47), we get

µδ1−H ,t [ψ](s) = ψ(s)+
(
(δ1−H−1)ψ(t)

t

)
φt(s), s > 0. (3.53)

Upon applying κδ,t from (3.51) for s ∈ [0,δt) we obtain

κδ,t ◦µδ1−H ,t [ψ](s) = δ
H

[
ψ(

s
δ
)+

((
δ1−H−1

)
ψ(t)

t

)
φt

( s
δ

)]
,

as required. When s ≥ δt, the effect of both λδ,t and of κδ,t ◦ µδ1−H ,t is to shift the

path horizontally and vertically. Both transformations produce a horizontal shift of
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the path by (δ− 1)t. The vertical shift is composed of two parts: (i) the vertical shift

introduced by κδ,t due to the ψ(s) component of (3.53), which is
(
δH−1

)
ψ(t); and

(ii) the vertical shift introduced by µδ1−H ,t , which from (3.53) is
(
(δ1−H−1)ψ(t)

t

)
φt(s),

which is then increased further by the factor δH by κδ,t , giving (δ− δH)ψ(t). So the

net vertical shift is (δ−1)ψ(t), as required.

For the second equality when s ∈ [0,δt)

µδ1−H ,δt ◦κδ,t [ψ](s) = δ
H

ψ

( s
δ

)
+

[(
δ−δH)ψ(t)

δt

]
φδt(s)

= δ
H

ψ

( s
δ

)
+

[(
δ−δH)ψ(t)

t

]
φt(s).

In the case when s ≥ δt, both κδ,t and µδ1−H ,δt shift ψ vertically and horizontally. In

fact µδ1−H ,δt shifts ψ only vertically. We therefore need to verify that the net horizontal

and vertical shift introduced by these operations are as required.

As for the horizontal shift, this is only due to κδ,t , which introduces a shift of (δ−1)t,

which is as required.

As for the vertical shift, κδ,t introduces a shift of (δH−1)ψ(t), so that the path after this

operation now takes the value δHψ(t) at δt. The vertical shift introduced by µδ1−H ,δt ,

on the other hand, is
(
(δ1−H−1)δHψ(t)

δt

)
φδt(δt) =

(
δ−δH)ψ(t). Adding the two shifts,

the net shift is (δ−1)ψ(t), as required.

Proposition 3.3.3.

dP◦λδ,t

dP
(ψ) = δ

1−He−
1
2((δ

1−H−1)ψ(t)t−H)
2−((δ1−H−1)ψ(t)t−1)t1−2Hψ(t).

on Ω.

Proof. Using (3.52), ψ ∈ H, t > 0. Since κδ,t is a self-similarity, dP◦κδ,t
dP = 1 on H.

Hence, using the chain rule for Radon-Nikodym derivatives, by (3.49),

dP ◦λδ,t

dP
(ψ) = δ

1−He−
1
2((δ

1−H−1)ψ(t)t−H)
2−((δ1−H−1)ψ(t)t−1)t1−2Hψ(t).
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3.3.3 A Counter-example

In this section we give an example of a transformation of Ω which is P -measurable

but does not have a provably P -measurable inverse, and hence Theorem 3.2.2 is not

applicable. This highlights the importance of the P -measurable invertibility as the

condition on which successful application of this theorem relies.

Definition 3.3.4.

λ̃δ[ψ] = Λ̃
{τ[ψ],δ}(ψ) (3.54)

where

Λ̃
{τ,δ}[ψ](t) = δ

H
ψ(t/δ)+

(δ−δH)ψ(τ)

τ
φτ(t/δ),

t ≥ 0.

This transformation is symbolically the same as the part of Definition 3.3.2 which

applies for t ≤ τ[ψ], on the whole path. It is therefore much simpler conceptually

than the previous transformation. However, it does not have a provably P -measurable

inverse. The obvious candidate for the inverse of λ̃δ is, assuming δ > 1, λ̃δ−1 . The

reason this fails as an inverse is that a peak of the path occurring after the last exit

may be transformed into a new later last exit by the transformation λ̃δ, when δ < 1, as

illustrated in Figure 3.3.
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Figure 3.3: The transformation λ̃δ applied to a path causing a new last exit to appear

(δ = 0.5)



Chapter 4

Consistent quasi-invariant flows on
Abstract Wiener Space

In this chapter we explore a certain class of quasi-invariant stochastic flows, which

can be used to determine the density of a functional on a Gaussian process. These

flows map the functional value, of the path, to a value δ times as large (for δ > 0), and

also have a consistent Radon-Nikodym derivative. When such a flow exists, the main

theorem shows that there is a simple formula for the distribution of the functional,

expressed in terms of the Radon-Nikodym derivative associated with the mapping.

Two examples which demonstrate the consistent quasi-invariant flows in action are

presented, including one which computes the probability density of the last exit for

Brownian motion.

The Girsanov theorem has been used to derive the distribution of the first passage time

of Brownian motion with drift in (Karatzas and Shreve 2012) and Norros’ fBm theorem

was used to derive an approximation for the sup of fBm with drift in (Norros 1997).

These arguments have some similarity to the approach used in this chapter.
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4.1 Consistent quasi-invariant flows

Assuming a specific functional, ξ : Ω→ R, defined on a probability space (Ω,P) of

random paths has been chosen, a consistent quasi-invariant stochastic flow, {λδ}δ>0,

is one with two consistency properties: (a) the value of the functional is transformed

consistently by the flow, i.e. there is a family of mappings {θδ}δ>0, with θδ : R→ R
such that for all paths, ψ, ξ(λδ(ψ))) = θδ(ξ(ψ)), and (b) the Radon-Nikodym deriva-

tive dP◦λδ

dP induced by the transformation depends on the path via ξ. A formal definition

is given in Section 4.1.3.

The main result of this chapter, also given in Section 4.1.3, is that when a consistent

flow exists, and is known, the distribution of the functional is given by a relatively

simple expression in terms of the induced Radon-Nikodym derivative.

It is not known whether consistent quasi-invariant flows always exist, or what condi-

tions might be required for their existence. Finding an explicit form for a consistent

quasi-invariant flow is, of course, a distinct, and in general more difficult problem.

However, some useful special cases have been discovered and will be explored in Sec-

tion 4.3.

The main advantage of the consistent quasi-invariant flow method is that it does not

rely on the use of a Markov model for the underlying process. Hence it is desirable

to apply this method to non-Markovian processes, for example fractional Brownian

motion. This is the process used in the examples, however in the interests of simplicity,

the process considered is restricted to Brownian motion in the latter part of the Section

4.3. Full treatment of a functional on fractional Brownian motion will be deferred to a

subsequent paper.

4.1.1 Non-linear transformation of Gaussian measures

The Cameron-Martin theorem(Cameron and Martin 1944) provides a partial substitute

for the concept of a density in that it provides a “likelihood ratio” between two different

Gaussian measures which differ by a shift. This shift is another real-valued function of

time which must come from the path space. Not all shifts lead to equivalent measures.
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For that to be the case, the shift must come from the Cameron-Martin space, which is

the space of vectors giving rise to a well-defined nonzero Radon-Nikodym derivative.

This result was extended by Girsanov(Girsanov 1960) to enable comparison of ar-

bitrary Ito measures, i.e. measures constructed by a stochastic differential equation

driven by Brownian motion.

A further extension when the transformation between measures was affine was consid-

ered in (Segal 1958) and (Feldman 1958), and to the general nonlinear case in (Ramer

1974). The resulting formula in these cases takes the form of a product of two terms,

one basically the same as the Cameron-Martin formula, and the other term can be

described as a Jacobian of the nonlinear transformation.

Since a Jacobian is defined in terms of the Fréchet derivative of the transformation,

Ramer observed (Ramer 1974) that the result can still hold when the traditional defini-

tion of Jacobian fails. He replaced the Jacobian by an expression partially induced, by

continuity, from the mapping on the Cameron-Martin space of the measure.

An alternative approach for expressing the Radon-Nikodym derivative between a Gaus-

sian measure and its non-linear transformation was developed in chapter 3. In this

chapter we make use of the result from chapter 3 for which we provided an argument

in Section 3.2.4.

4.1.2 The path spaces

In this chapter we continue to work in the context of the spaces Ω and H as defined in

Chapter 3 and adopt all the notation from there.

4.1.3 Definition

Let ξ : ψ 7→ ξ[ψ] denote an arbitrary functional on paths, for example, ξ could be the

sup of ψ(t)− t, t ≥ 0, or the last exit time (see Definition 1.3.2) of the path ψ. These

two examples of a functional are shown in Figure 4.1. These examples are defined in
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Figure 4.1: The last-exit and sup functionals, for an fBm process

terms of the future of the process, but there are also many examples of causal (non-

anticipative) non-linear functionals.

Definition 4.1.1. Suppose Λ : [0,∞)×Ω→Ω is a measurable mapping, and in terms

of this mapping we define the family, {λδ} of mappings: Ω→Ω, indexed by δ∈ [0,∞),

by

λδ : ψ 7→ Λ(δ,ψ). (4.1)

More over it is assumed that for all delta > 0, λδ is P-measurable. Then Λ is said to

be:

(i) a flow, if there exists a set E with P(E) = 1 such that λ1 is the identity map on E

and λδ1 ◦λδ2 = λδ1δ2 for all δ1,δ2 on E;

(ii) ξ-consistent, if for δ 6= 0 for almost all paths ψ ∈Ω, ξ[λδ[ψ]] = δξ[ψ];

(iii) consistently quasi-invariant with respect to the functional ξ if there exists E ⊆ Ω

with P-measure 1 such that for some function ηδ(x), for each ψ∈ E, for all δ > 0,
dP◦λδ

dP = ηδ[ξ[ψ]];

(iv) a consistent quasi-invariant flow with respect to the functional ξ if all these con-

ditions hold.

Suppose Λ is a consistent invariant flow with respect to a certain functional, ξ, on paths.

We seek to determine the density, h, of the distribution of ξ[ψ] where ψ is a fractional

Brownian motion process. If Λ is a consistent flow, for any δ > 0, the mapping λδ

provides a mapping of {ψ∈Ω : ξ[ψ]∈ (x,x+dx) onto {ψ∈Ω : ξ[ψ]∈ (δx,δ(x+dx)).

The former event has probability hξ(x)dx, where hξ denotes the density of ξ, and the

latter has probability δhξ(δx)dx.
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4.2 The main theorem

Before the main theorem is stated and proved, we note the following.

Proposition 4.2.1. If ηδ(x) is the Radon-Nikodym derivative function of a consistent

flow, then

ηδ(x) = δ
α(x) (4.2)

for some α : R→ R, for all x, δ≥ 0.

Proof. Let

γx : t 7→ ηet (x). (4.3)

By Definition 4.1.1, γx, satisfies

(i) γx(0) = 1;

(ii) γx(u+ v) = γx(u)γx(v).

These conditions (Dunford and Schwartz 1957, Chapter 8) determine that γx(u) =

euα(x), for some α : R→ R. Substituting logδ for t in (4.3) now shows (4.2).

Remark 4.2.1. Notice that (4.3) =⇒ α = ∂ηδ(x)
∂δ

∣∣∣
δ=1

.

Theorem 4.2.1. If Λ is a consistent quasi-invariant flow for the functional ξ, for which

the Radon-Nikodym derivative function, x 7→ ηδ(x) satisfies a Lipschitz condition at x

for all x > 0, then the density of ξ[ψ] is

hξ(x) = Cx−1 exp
(∫ x

1

∂ηδ(y)
∂δ

∣∣∣∣
δ=1

y−1dy
)
, (4.4)

where C is the appropriate normalising constant.

Proof. By definition, if ρδ(ψ) is the Radon-Nikodym derivative of the measure P◦λδ

with respect to P, then

P◦λδ(A) =
∫

A
ρδ(ψ)P(dψ) (4.5)

for all measurable A⊆Ω (Dunford and Schwartz 1957).
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Set A(x,y)= {ψ∈Ω : ξ(ψ)∈ (x,y)}, so, using Property (ii) of Definition 4.1.1, λδ(A(x,x+dx))=

A(δx,δx+δdx). Now using Property (iii) of Definition 4.1.1, and the assumption that ηδ(x)

satisfies a Lipschitz condition at x, ρδ(ψ) =ηδ(x)+O(dx) for all ψ∈A(x,x+dx), so (4.5)

implies

P(A(δx,δx+δdx)) = (ηδ(x)+O(dx))P(A(x,x+dx)).

Dividing by dx, taking into account that the length of the interval ξ
(
A(δx,δx+δdx)

)
is

δdx, and letting dx→ 0, we obtain:

δh(δx) = ηδ(x)h(x), δ≥ 0, x≥ 0. (4.6)

Subtract δh(x) from both sides and divide by δ, giving

h(δx)−h(x) = (ηδ(x)/δ−1)h(x),

now divide by δ−1, and let δ↘ 1, giving

lim
δ↘1

h(δx)−h(x)
δ−1

= lim
δ↘1

{
ηδ(x)−1

δ−1
h(x)+

1/δ−1
δ−1

ηδ(x)h(x)
}
,

which, using limδ→1
1/δ−1
δ−1 =−1,

=⇒ xh′(x) =
(

dηδ(x)
dδ

∣∣∣∣
δ=1
−η1(x)

)
h(x)

=⇒ h′(x)
h(x)

=

(
dηδ(x)

dδ

∣∣∣∣
δ=1
−1
)

x−1

=⇒ d
dx

logh(x) =
(

dηδ(x)
dδ

∣∣∣∣
δ=1
−1
)

x−1

=⇒ logh(x) =
∫ x

1

dηδ(y)
dδ

∣∣∣∣
δ=1

y−1dy− logx+C1

=⇒ h(x) =Cx−1 exp
(∫ x

1

dηδ(y)
dδ

∣∣∣∣
δ=1

y−1dy
)
, (4.7)

for some constant C.

4.2.1 A Simple Example of a Flow

Suppose Xt is a Gaussian process which is self-similar, with family of similarities

{κδ}δ>0.
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Consider the functional ξ : ψ 7→ ψ(1) and the family of mappings

λδ : ψ 7→ ψ+(δ−1)ξ(ψ)φ1, δ > 0. (4.8)

The flow property, and ξ-consistency are obvious. By Theorem 3.2.2 of chapter 3,

using the fact (from (3.14)) that 〈ψ,φ1〉H = ξ(ψ), and observing that in this context, in

the notation of Theorem 3.2.2 from chapter 3, Det(I +DHK(ψ)) = δ,

dP◦λδ

dP
(ψ) = δe−(δ−1)ξ(ψ)2

, (4.9)

which shows invariance, with ηδ(x) = δe−(δ−1)x2
. Since dηδ(x)

dδ

∣∣∣
δ=1

= 1− x2, by The-

orem 4.2.1, hξ(x) = Ce−x2/2, x > 0. The same argument applied to the functional

ψ 7→ −ψ(1) shows that the density of ψ(1) has the same shape on the negative real

line and by symmetry each half of the density must have exactly the same weight, so

according to the consistent flow theorem, the complete density is normal with mean 0

and variance 1, which is, indeed, the density of an fBm process evaluated at time 1.

4.3 The last exit of Brownian motion

Let (H,Ω, ι) denote the abstract Wiener space of Brownian motion on the interval

[0,∞), equipped with norm

|ψ|Ω = sup{|ψ(t)/(|t|+1)| : t ≥ 0}.

The following functional is called the last exit of the process ψ.

Definition 4.3.1. Let

τα[ψ]
.
= sup{t : ψ(t)≥ αt},

and in particular, τ = τ1.

4.3.1 A consistent quasi-invariant flow

The flow we define in this subsection is illustrated, in the case where H = 0.5, in Figure

4.2. Here is its mathematical definition :
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Figure 4.2: A path and its transformation by the mapping (4.10)

Definition 4.3.2.

λδ[ψ](t) =

δHψ(t/δ)+(1−δH−1)φδτ(t), t ≤ δτ,

(δ−1)τ+ψ(t− (δ−1)τ), otherwise.
(4.10)

Figure 4.2 illustrates the preceding definition. Observe that the mapping defined in

(4.10) scales the path before τ in the same way as the fBm similarity, while the trans-

formed path after δτ is an exact, congruential, shift, of the original path after τ.

4.3.2 The Radon-Nikodym derivative of λδ

Definition 4.3.3. For any sequence of subsets {Zk}∞
k=0 of R, we say they become dense

in S⊆R, if for any t ∈ S and ε> 0, ∃K > 0, such that for k >K, ∃s∈ Zk with |s−t|< ε.

Definition 4.3.4. With a > 1 (typically only slightly bigger than 1), and m ≥ 2, let

Qa,m = {ak : k = 1−m,2−m, . . . ,m}, Qm = Q21/m,m2m−1 . Note that Nm
.
= |Qm|= m2m.

The sequence of sets Q2 ⊆ Q3 ⊆ . . . becomes dense in [0,∞).
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Definition 4.3.5. Let

τ
{m}
α [ψ]

.
= sup{x : x ∈ Qm and ψ(x)≥ αx} .

and, in particular, τ{m}
.
= τ
{m}
1 .

Lemma 4.3.1. τ{m} converges to τ almost surely and in probability.

Proof. Because the additional sample-points in Qm relative to Qm−1 can’t change the

fact that ψ crosses the line x = t in the j’th interval of Qm, {τ{m}}m>0 is an increasing

sequence. By definition of the space Ω , necessarily ψ(t)
|t|+1 → 0, so for each ε > 0,

∃Bε > 0 such that if Bε =
{

ψ : ∀k > 0,τ{m}(ψ)< Bε

}
then P(Bε) > 1− ε. Thus, on

Bε, the sequence {τ{m}}m>0 is increasing and bounded. Any such sequence has at

least one accumulation point, and this accumulation point must be unique, i.e. all the

sequences in Bε converge. Since ε > 0 was arbitrarily chosen, {τ{m}}m>0 converges

almost surely on Ω.

Since almost sure convergence implies convergence in probability, convergence in

probability also holds.

Lemma 4.3.2. If {λδ}δ>0 is a flow on H and {gδ}δ>0 is a family of real-valued func-

tions on H such that

gδ1(ψ)gδ2 ◦λδ1(ψ) = gδ1δ2(ψ), δ1,δ2 > 0, (4.11)

and

gδ(ψ) = δ
α(ψ)+O

(
(δ−1)2

)
, (4.12)

uniformly in ψ, for δ ∈ (0,∞) near 1, for some function α : H→ (−∞,∞), then

gδ(ψ) = δ
α(ψ),

δ > 0.

Proof. Choose n > 0 and set δ1 = 1 and δ0 = δ
1/n
2 ≈ 1+ δ2−1

n . Then, applying (4.11)

n times, with δ0 in place of δ2 and δ1 increasing from 1 to δ2 by multiples of δ0, and

using (4.12) to evaluate each term, we find

gδ2(ψ) = δ
α(ψ)
2 +O

(
(δ2−1)2

n

)
(4.13)
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for δ2 near 1. Since n is arbitrary, the conclusion follows.

Second proof From (4.11), using the “well-known fact” (Dunford and Schwartz 1957,

Chapter 8) that the only solution of the functional equation f (a+b) = f (a) f (b), for all

a, b ∈ (−∞,∞) is f (a) = eαa, for some α ∈ (−∞,∞), any family of functions {gδ(ψ)}
satisfying (4.11) must take the form gδ(ψ) = δβ(ψ), for some function β. However,

b .
= β(ψ) 6= a .

= α(ψ) for any ψ contradicts (4.12), so β = α.

Lemma 4.3.3. τ is P -measurable on H.

Proof. Because τ{m}, restricted to H, is CH-simple, by the previous lemma, {τ{m}} is

a sequence of CH-simple functions converging in P -measure to τ.

Now let us consider a family of transformations {λδ} defined by

λδ[ψ] = ψ
′

where, for ψ such that τ[ψ] = τ̃,

ψ
′ = λδ,̃τ[ψ]. (4.14)

Proposition 4.3.1. λ
−1
δ,t = λδ−1,δt and λ

−1
δ

= λδ−1 .

Proof. Using the first equality of Proposition 3.3.2 for λδ,t and the second for λδ−1,δt

we find

λδ−1,δt ◦λδ,t = µδH−1,δ−1δt ◦κδ−1,δt ◦κδ,t ◦µδ1−H ,t

= µδH−1,t ◦µδ1−H ,t

= I.

Now for the second equation, suppose τ[ψ] = τ̃. Then λδ[ψ] = λδ,̃τ[ψ] which is a path

with last exit at δτ̃. Hence, when applied to this path, ψ′ say, λδ−1[ψ′] = λδ−1,δτ̃[ψ
′],

and so

λδ−1 ◦λδ[ψ] = λδ−1,δτ̃ ◦λδ,̃τ[ψ]

= ψ.

Since ψ was arbitrary, λδ−1 ◦λδ = I also, as required.
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Proposition 4.3.2.
dP◦λδ

dP
(ψ) = δ

(1−H)(1−t2−2H) (4.15)

on H.

Proof. Proposition 4.3.1 is also true for the version of λδ which uses the approximation

τ{m} in place of τ. Further details of this point are given below.

We can therefore apply Proposition 3.2.10 with τ in place of π, using the sequence

τ{m}→ τ, to conclude

dP ◦λδ

dP
(ψ) = δ

1−He−
1
2((δ

1−H−1)τ−H)
2−(δ1−H−1)τ1−2Hτ

which, using eO((1−δ)2) = 1+O(δ−1)2, and eδ−1 = δ+O(δ−1)2,

= δ
1−He−(δ1−H−1)τ2−2H

+O
(
(δ−1)2)

= δ
1−H

δ
−(1−H)τ2−2H

+O
(
(δ−1)2)

= δ
(1−H)(1−τ2−2H) +O

(
(δ−1)2)

= δ
(1−H)(1−τ[ψ]2−2H)

by Lemma 4.3.2. The result now follows from Theorem 3.2.2 and Corollary 3.2.1.

To explain the invertibility of the approximations to λδ in more detail, define

λ
δ,τ
{k}
1
[ψ] = ψ

′

where

ψ
′(t) = λδ,̃τ[ψ](t), t ≥ 0

in which

τ̃ = τ
{k}
1 (ψ). (4.16)

Since τ
{k}
1 (ψ) = x⇔ τk

δ
(λ

δ,τ
{k}
1
(ψ)) = x,

λ
−1
δ,τ
{k}
1

= λ
δ−1,τk

δ

,

and so λ
−1
δ,τ
{k}
1

is invertible as required in order to apply Proposition 3.2.10.
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4.3.3 The last-exit density

Example 4.3.1.. The last exit from Brownian Motion

Theorem 4.2.1 now applies, and gives Hτ(x) =
∫ x

0 hτ(u)du as the distribution of the last

exit, where

hτ(x) = Cx−1 exp
(∫ x

1

∂ηδ(y)
∂δ

∣∣∣∣
δ=1

y−1dy
)

= Cx−1 exp
(∫ x

1
(1−H)(1− τ

2−2H)τ−1dτ

)
(4.17)

by Proposition 4.3.2

= Cx−1x1−H exp
(
−1

2
x2−2H

)
= Cx−H exp

(
−1

2
x2−2H

)
, (4.18)

for x ≥ 0. So (4.18) is the density of the last exit from the region x > t, by Brownian

motion. A formula which implies (4.18) was derived in (Salminen 1988). The last exit

from a linear boundary with x0 = 0 has also been interpreted as the length of a busy

period (weighted by its length) and under this interpretation its density was determined

to be (4.18) by a completely different method in (Salminen and Norros 2001, Corollary

3.8). Integrating hτ we find C = 2−2H√
2π

, and

Hτ(x) = Erfc
(

x1−H
√

2

)
, x≥ 0.



Chapter 5

Probability densities of functionals of
fBm with drift

In this chapter, we first present a connection between an approximation of the proba-

bility distribution of sup of fBm with drift and the Generalized Gamma distribution.

Some simplified expressions are also provided for when the Hurst parameter takes

certain special values.

We then proceed to derive transport equations for the family of probability densities of

the sup and the first passage for fBm with linear drift. It is also shown that a previously

proposed approximation for the density of the sup satisfies the corresponding PDE, as

well as other necessary constraints for the density of the sup.

5.1 Supremum of fBm with drift

5.1.1 The model and related work

By Theorem 11.11 in (Lifshits 1995), the supremum of fBm with negative drift has

a density, for all 0 < H < 1, except for one possible atom, which must occur at the

minimal value for which the buffer level has non-zero probability density, i.e. 0. It
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is also known that there is no atom at the origin, so the sup has a density, which we

denote henceforth by φ(x,µ).

Let X (t) denote an arithmetic fractional Brownian process with drift, corresponding to

the SDE of the form

dX (t) = µdt +σdBH (t) , X(0) = x0 (5.1)

where BH is an fBm with H ∈ [0,1]. When µ < 0, Q = supt≥0 Xt is well-defined almost

surely and an approximation for its probability density function according to (Chen

et al. 2013) is:

P(Q ∈ (x,x+dx))
dx

≈ φ̃(x,µ) .
=

να
β

ν

Γ

(
β

ν

)xβ−1e−αxν

, (5.2)

where

α =
(1−H)2H−2|µ|2H

2H2Hσ2
1

, (5.3)

β = 1
H −1, and ν = 2(1−H).

This approximation was obtained by inferring the asymptotic form of the density of Q

from that of the complimentary distribution given in (Hüsler and Piterbarg 1999). The

condition that the density is proper then determines the constant. Simulation results

were not able to find any discrepancy of this formula over the range of parameter

values of the density. The mean, standard deviation, and higher order moments of Q,

as predicted by (5.2) were also checked by simulation in (Chen et al. 2015) and no

discrepancy between the approximation (5.2) could be detected for any choice of the

parameters.

Observe that this approximation of the supremum of fBm’s probability distribution is

known as the Generalised Gamma distribution. The Generalised Gamma distribution is

a special case of the Amoroso distribution (Amoroso 1925, Crooks 2010, Omori 1995)

used originally to model income rates. The Amoroso distribution has the following

density

fX (x;a,d,g, p) =
p(x−g)d−1 exp

(
−
(x−g

a

)p
)

adΓ

(
d
p

) , (5.4)

where a > 0, d > 0, p > 0, g ∈ R and x ≥ g and Γ(·) denotes the gamma function.

Substituting g = 0, d = β, p = ν and a = α−1/ν in (5.4) we obtain (5.2), so it is
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a Generalised Gamma density. Stacy (Stacy 1962) defined the Generalised Gamma

distribution as the special case of the Amoroso distribution where g = 0 and identified

the cumulative distribution function (CDF) and moment-generating function (MGF),

in this case, as

F(x;a,d, p) =
γ

(
d
p ,
( x

a

)p
)

Γ

(
d
p

) , (5.5)

and

M(t;a,d, p) =
∞

∑
k=0

aktk

k!

Γ

(
d+k

p

)
Γ

(
d
p

) , (5.6)

respectively, where γ(·) in (5.5) denotes the lower incomplete gamma function. The

mean and variance when g = 0 are

E[Q] = a
Γ((d +1)/p)

Γ(d/p)
, (5.7)

and

Var[Q] = a2

[
Γ((d +2)/p)

Γ(d/p)
−
(

Γ((d +1)/p)
Γ(d/p)

)2
]
, (5.8)

respectively (Crooks 2010). From the MGF, the third central moment is

E[(Q−E[Q])3] =
a3Γ(d+3

p )

Γ(d/p)
+2
(

a
Γ((d +1)/p)

Γ(d/p)

)3

−
3a3Γ

(
d+1

p

)
Γ

(
d+2

p

)
Γ2(d/p)

. (5.9)

5.1.2 The mean, variance, third central moment and Skewness

Replacing d, p and a with their expressions in terms of α and H, we find:

E[Q]≈ α
−1

2−2H

Γ

(
(1−H)/H+1

2−2H

)
Γ

(
1−H

H(2−2H)

) = α
1

2H−2

Γ

(
1

2H(1−H)

)
Γ
( 1

2H

) , (5.10)

Var[Q]≈ α
1

H−1

Γ
( 1

2H

)
Γ

(
1+H

2H(1−H)

)
−

Γ2
(

1
2H(1−H)

)
Γ
( 1

2H

)
 , (5.11)
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and

E[(Q−E[Q])3] ≈ α
3

2H−2

Γ

(
2H+1

2H(1−H)

)
Γ
( 1

2H

) +
2Γ3

(
1

2H(1−H)

)
Γ3
( 1

2H

)
−

3Γ

(
H+1

2H(1−H)

)
Γ

(
1

2H(1−H)

)
Γ2
( 1

2H

)
 . (5.12)

The skewness of Q, can be expressed as

Skewness[Q] =
E[(Q−E[Q])3]

(Var[Q])3/2 . (5.13)

By (5.11) and (5.12), α is canceled out in (5.13), so skewness[Q] is a function of only

one parameter, H.

5.1.3 Simplifications of E[Q] and Var[Q] for certain H values

Consider a single server queue with constant service rate, C [B/s], fed by an fBm input

process with the Hurst parameter H, with mean input rate m [B/s], and variance per

unit time, σ2
1. Introducing the mean net input, µ = m−C, we can characterize the fBm

queueing model by three parameters: H, µ and σ2
1. In the Brownian case of H = 0.5,

where σ2 = m in a Poisson process, (5.3) reduces to

α =
2|µ|
σ2 .

Thus, (5.10) and (5.11) can be further simplified as

E[Q] =

(
2|µ|
σ2

)−1

=
σ2

2|µ|
, (5.14)

and

Var[Q] =

(
2|µ|
σ2

)−2(
2− 12

1

)
=

(
σ2

2|µ|

)2

= (E[Q])2. (5.15)

An alternative way to obtain E[Q] and Var[Q] for the case H = 0.5 is to use the exact

solution for P(Q > x) from (Harrison 1985), which is

P(Q > x) = e
2µ
σ2 x

.
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Then the mean and variance of X are obtained by

E[Q] =
∫

∞

0
P(Q > x)dx,

and

Var[Q] = 2
∫

∞

0
xP(Q > x)dx−

(∫
∞

0
P(Q > x)dx

)2

,

which are consistent with (5.14) and (5.15). Since |µ| = C−m, we can express E[Q]

by (5.14)

E[Q] =
σ2

2(C−m)
,

which is half of that for the equivalent M/M/1 queueing system, where σ2 = m and

E[X ] = m/(C−m). It is also equal to the mean of an equivalent M/D/1 queue under

heavy traffic (where the utilization approaches 1) based on the Pollaczek Khintchine

formula.

When H = 1− 1
2n , for n = 1,2, . . ., we have 1

2H(1−H) =
1

2H +n, and

Γ

(
1

2H(1−H)

)
= Γ

(
1

2H
+n
)

=

(
n−1+

1
2H

)(
n−2+

1
2H

)
. . .

(
1+

1
2H

)
1

2H
Γ

(
1

2H

)
.

Consequently, (5.10) can be expressed without the Gamma function as

E[Q] = α
1

2H−2

[
1

2(1−H)
−1+

1
2H

]
. . .

(
1+

1
2H

)
1

2H
. (5.16)

5.1.4 Consistency of the density under self similar transformation

We now demonstrate that the probability density in (5.2) matches the supremum den-

sity for a fbm process, even after applying the self-similarity transform to it.

It’s noteworthy, although fractional Brownian motion is a self similar process, arith-

metic fractional Brownian motion is a self-affine process, as defined below.

Definition 5.1.1. A stochastic process is said to be self-similar if there exists H > 0

such that for any scaling factor a > 0, the processes X(at) and |a|HX(t) have the same

law. H is termed the self-similarity exponent of the process X.
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Definition 5.1.2. X is said to be self-affine if there exists H > 0 such that for any a > 0

the processes X(at) and |a|HX(t) have the same law up to centering:

∃ba : [0,∞[ 7→ R, X(at)'
(
ba(t)+ |a|HX(t)

)
∀t ≥ 0

Upon applying the transformation

{Xt}t≥0 7→
{

a−HX(at)
}

t≥0 , (5.17)

the mean of a process X with drift µt becomes a1−Hµt and the volatility remains un-

changed. This may be regarded as a self-similarity of the family of fBm processes with

drift.

For the transformed process upon substituting µa1−H in place of µ in α and xa−H in

place of x and by multiplying the right-hand side of Eq. (5.2) with a Jacobian term

a−H can be presented as follows

=
a−Hνa

(1−H)2Hβ

ν α
β

ν

Γ

(
β

ν

) a−H(β−1)xβ−1e−a(1−H)2Hαa−Hνxν

= a−H+
(1−H)2Hβ

ν
−H(β−1) να

β

ν

Γ

(
β

ν

)xβ−1e−a(1−H)2H−Hναxν

Substituting for β and ν in the power of a in the initial coefficient, we obtain

−H +
(1−H)2Hβ

ν
−H (β−1) =−

(
1
H
−2
)

H +

(
1
H
−1
)

H−H = 0

while the power of a in the exponential term is (1−H)2H−Hν = 0 which reduces the

transformed probability density function to match the density in (5.2).

5.2 The Self Similarity PDEs

5.2.1 Self Similarity PDE for supremum of fBm with drift

A self-similarity of the probability law for the sup was derived in (Norros 1997, The-

orem 2.1). Consider, on the one hand, an fBm process X(t) with drift µ, and on the
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other hand an fBm process originally with drift aH−1µ transformed by the fBm similar-

ity (5.17). In the second case, using the original density for the sup of this process and

transforming it appropriately, taking into account the Jacobian factor required in front

of the density, it’s sup has density x 7→ aHφ(aHx,aH−1µ). These processes have the

same probability measure, and hence same distribution for the sup, so for any a > 0,

φ(x,µ) = aH
φ(aHx,aH−1µ), (5.18)

x ≥ 0, H ∈ (0,1), µ < 0, σ > 0. We may express this by saying that the fBm self-

similarity induces a similarity relationship on the family of densities of the sup over the

range of different possible values of the drift, µ.

In (Norros 1997), it is argued that (5.18) is useful in relation to applications of fBm as a

model of traffic even without having an explicit form for φQ. In addition, the law (5.18)

is an important tool in the important task of finding explicit solutions, or successively

more accurate approximations for the distribution of Q. The self-similarity of fBm can

be used to carry out simulations much more efficiently (Chen et al. 2013), and (5.18)

makes it possible for validation of the approximation to be comprehensive rather than

exploratory.

In the case of fBm, research into the distribution of Q has taken place over several

decades already, and builds on the special case of Brownian motion, where an explicit

result is known and can be derived in a variety of ways. Although (5.18) does not

uniquely identify the solution, φQ, it plays a role in several of the methods which work

in the case of BM.

For example, a direct approach to solving for φQ can obviously be based on finding

the ratio between φQ(x,µ) and φQ(x+dx,µ) for all x, with µ fixed. However, because

of (5.18), it is equally effective to find the ratio between φQ(x,µ) and φQ(x,µ+dµ) for

all µ, with x fixed. In other words if we can explicitly compare the distribution of the

sup for two cases with different drift, we will be able to solve the key problem. Such

a comparison is provided, in fact, by the Girsanov theorem (Klebaner 2005, Øksendal

2003). This approach works explicitly in the case of BM, and in the case of fBm it has

also been applied, but because the form of the Girsanov theorem (Norros et al. 1999)

in this case is more complex it provides an approximation rather than an exact solution

for φQ (Norros 1997, Proposition 5.3).
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Let us now check that this self-similarity applies to φ̃. For the transformed process

upon substituting µa1−H in place of µ in α and xa−H in place of x and by multiplying

the right-hand side of Eq. (5.2) with a Jacobian term a−H reduces the transformed

probability density function to match the density in (5.2). Thus, (5.2) satisfies (5.18).

Adding and subtracting identical terms to (5.18) we get

a−H
φ(a−Hx,a1−Hµ)−φ(a−Hx,a1−Hµ)+φ(a−Hx,a1−Hµ)−φ(x,a1−Hµ)

= φ(x,µ)−φ(x,a1−Hµ).

Dividing by 1−a and upon letting a→ 1 gives

a−Hφ(a−Hx,a1−Hµ)−φ(a−Hx,a1−Hµ)
1−a

+
φ(a−Hx,a1−Hµ)−φ(x,a1−Hµ)

1−a

=
φ(x,µ)−φ(x,a1−Hµ)

1−a
. (5.19)

The first term in (5.19) can be rewritten as

a−Hφ(a−Hx,a1−Hµ)−φ(a−Hx,a1−Hµ)
a−H−1

× a−H−1
1−a

→ Hφ(x,µ)

as a→ 1. The second term in (5.19) can be rewritten as

φ(a−Hx,a1−Hµ)−φ(x,a1−Hµ)
a−Hx− x

× a−Hx− x
1−a

→ Hx
∂φ(x,µ)

∂x

as a→ 1. A similar limit is clear for the RHS. So, letting a→ 1 in (5.19) gives

Hφ(x,µ)+Hx
∂φ(x,µ)

∂x
= (1−H)µ

∂φ(x,µ)
∂µ

or, rearranged,

Hx
∂φ(x,µ)

∂x
+(H−1)µ

∂φ(x,µ)
∂µ

= −Hφ(x,µ). (5.20)

This type of PDE is known as a transport equation (Zauderer 2011) and can be solved

by the method of characteristics. A characteristic is a path through the parameter space

of the PDE on which the values of a solution evolve according to an ordinary differen-

tial equation. The equations of the characteristic curve may be expressed invariantly

by the Lagrange-Charpit equations (Gyunter 1934)

dx
Hx

=
dµ

(H−1)µ
=

dφ

−H
. (5.21)
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We now try find two functions Π(x,µ,φ), Ψ(x,µ,φ) such that dΠ = dΨ = 0. The

general solution is then given by F(Π,Ψ) = 0 with F an arbitrary function. Using

dx
dµ

=
Hx

(H−1)µ
=⇒ (H−1)µdx−Hxdµ = 0 =⇒ Π = x−µ

H
H−1

and
dx
−x

= dφ =⇒ d(φ+ log(x)) = 0 =⇒ Ψ = φ+ log(x).

Putting these together we obtain the general solution as

F
[
x−µ

H
H−1 ,φ+ log(x)

]
= 0 =⇒ φ =− log(x)+ f

[
x−µ

H
H−1

]
where f is any differentiable function.

Note that since φ̃ also satisfies the fBm similarity (5.18), it also satisfies (5.20).

From (Hüsler and Piterbarg 1999),

P(Q > x)/x
2H2−3H+1

H e

(
− x2−2H (1−H)2H−2|µ|2H

2H2H σ2
1

)
→C (5.22)

as x→ ∞ for some constant C > 0.

Let Φ(x) =
∫

∞

x φ(x)dx, and similarly for Φ̃. By (Chen et al. 2013), in addition to (5.20),

φ satisfies the constraint

Φ(x,µ)/Φ̃(x,µ)→ c

for some c > 0, as x→ ∞. Also,
∫

∞

0 φ(x,µ)dx = 1, µ < 0 and as µ→ −∞, φ(x,µ)

approaches an impulse with mass 1 concentrated at 0. The following theorem shows

that these conditions are all satisfied by φ̃.

Theorem 5.2.1. φ̃ satisfies the PDE (5.20) and all the constraints on φ as identified

above.

Proof. All of this has already been shown except that φ̃ converges to an impulse as

µ→−∞. This follows from (5.18).

If the PDE and the constraints given above imposed a unique solution, we could assert

φ = φ̃. However, we can disprove uniqueness of these conditions as follows. Choose
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µ1 < 0 and x1 > 0, and set φ1(x,µ1) = φ̃(x,µ1) for all x > x1. Now set φ1(x,µ1) for

x≤ x1 in any way which ensures that it is a density. Finally, set φ1(x,µ) for µ 6= µ1 by

the self-similarity. Then φ1 also satisfies the PDE and all the given constraints.

A transport PDE for many quantities related to φ (e.g. dφ

dx , dφ

dµ ), can be derived from

(5.18) by transforming the PDE in the usual way. Solving for any such quantity will

therefore produce a solution for any other, so, in a sense, all such problems are equiv-

alent. More significantly, an approximate solution of a quantity resulting from such a

transformation will lead to an approximate solution for the others and if a condition

which determines a unique solution of one such PDE is known approximately, it will

lead to an approximate solution for all such PDEs.

5.2.2 Self Similarity PDE for First passage time of fBm with drift

Let X (t) denote fractional Brownian process with drift µt, i.e.

X (t) = BH (t)+µt, t > 0, (5.23)

where BH is an fBm with Hurst parameter H ∈ [0,1]. Fractional Brownian motion is

a self similar process. The process X(t) is self-affine, that is to say, on applying the

transformation {Xt}t≥0 7→
{

a−HX(at)
}

t≥0, the mean of the process becomes a1−Hµt

and the volatility remains unchanged.

Let φ(t,µ,x)dt = P(τx ∈ (t, t +dt)). The self-similarity of X implies

φ(t,µ,x) = aφ(at,a1−Hµ,a−Hx), (5.24)

for any a > 0.

Adding and subtracting identical terms to (5.24) we get

φ(t,µ,x)−aφ(t,µ,x)+aφ(t,µ,x)−aφ(at,µ,x)+aφ(at,µ,x)−aφ(at,a1−Hµ,x)

=−aφ(at,a1−Hµ,x)+aφ(at,a1−Hµ,a−Hx)

Dividing by 1−a and taking limits as a→ 1 gives

Hx
∂φ(t,µ,x)

∂x
+ t

∂φ(t,µ,x)
∂t

+(1−H)µ
∂φ(t,µ,x)

∂µ
=−φ(t,µ,x). (5.25)
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This partial differential equation in 3 variables is also a transport equation and can be

solved by the method of characteristics. In this case characteristic equations (ODEs)

are

dx
ds

= Hx
dt
ds

= t
dµ
ds

= (1−H)µ and
dφ

ds
=−φ.

Solving which we get

x(s) = eHs+c1 t(s) = es+c2 µ(s) = e(1−H)s+c3 and φ(s) = e−s+c4.

Eliminating s between x and t, we get x− tH = a constant, µ− t1−H = a constant and

φ− t−1 is a constant, and the general solution is

F
[
x− tH ,µ− t1−H ,φ− t−1]= 0.

Explicitly

φ = f
(
x− tH ,µ− t1−H)+ 1

t
(5.26)

for some arbitrary smooth functions f .



Chapter 6

Conclusions and future work

In Chapter 1, a generalisation of the Girsanov theorem from (Norros et al. 1999) was

provided, which can be applied to fBm processes of a wider parameter range.

In Chapter 2 we proved by showing a contradiction with the theorem on continuity

of Pickands’ constant, that the initial boundary value problem approach of studying

first passage problem of Brownian motion does not carry over to fBm by replacing the

partial differential equation.

The evaluation of the Radon-Nikodym derivative of a measure relative to the same

measure composed with a nonlinear mapping is of great importance in applications and

has been the subject of study for many years. The main results of this thesis extended

that of (Ramer 1974) and in particular make it easier to apply this type of result to

problems from applied probability. Evaluation of these Radon-Nikodym derivatives by

first considering an analogous concept on the Cameron-Martin space of the Gaussian

measure and then extending the formula to the whole space enables a larger class of

nonlinear functions to be successfully investigated.

Being able to infer the Radon-Nikodym derivative from its form on the Cameron-

Martin space relied on an assumption of P -measurability (a special kind of measura-

bility), and this concept of measurability was developed further in this thesis. In partic-

ular, the P -measurable derivative of a P -measurable function was defined and shown

to coincide with the stochastic derivative, under certain assumptions. The stochas-
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tic derivative in turn coincides with the Malliavin derivative when they both exist

(Di Nunno et al. 2009). The main theorem’s results, expressed the Radon-Nikodym

derivative as the Jacobian of a transformation × the classical Cameron-Martin theo-

rem.

It would be fruitful, and a possible future direction of research to investigate, if the ker-

nel function associated with reproducing kernel Hilbert space of a fractional Brownian

motion process can be shown to be a Hilbert-Schmidt operator, then via Sazanov’s

theorem (Sazonov 1958) there is a countably additive measure. This may make the

Radon-Nikodym derivative theory easier to apply as one can lift Gaussian measure

and there will be two countably additive measures. More specifically this may come

in handy for applications, where a transformation of Ω is P -measurable but does not

have a provably P -measurable inverse, as shown in 3.3.3.

Based on this generalisation of the Ramer theorem, a generalised version of Girsanov

theorem for fractional Brownian motion, which is not restricted to changes of linear

drift only was presented. We also demonstrated an example application of this theory,

in which it was used to find the Radon-Nikodym derivative of a measure relative to a

domain-transformation of the measure.

This thesis also introduces the concept of a consistent quasi-invariant stochastic flow,

and showed how it can be used to determine the density of a functional defined on

paths of Brownian motion. This method was then applied to the last exit of a Brownian

motion process from a linear boundary and was used to determine the density of this

functional.

The flows studied in this thesis were only used to determine the density of a functional

defined on paths of Brownian motion. One could try to generalise this by instead

applying it to a functional defined on paths of fractional Brownian motion.

As part of this research, we have established, for the first time, the link between an

approximation of the probability distribution of Supremum of Fractional Brownian

motion and the Amoroso distribution (or its special case of the Generalized Gamma

distribution). This adds an important application to the long list of applications of the

Amoroso distribution (Nadarajah and Gupta 2007, Lienhard and Meyer 1967, Mees

and Gerard 1984). This link has provided new closed-form approximations for the
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mean, variance, third central moment and skewness of an fBm queue. Simplified ex-

pressions for the mean and variance for a range of cases were also provided.

Furthermore a long-standing problem of considerable interest and importance has an

approximate solution as previously proposed in (Chen et al. 2013). In this thesis, the

evidence for this approximation has been developed further. Additionally transport

partial differential equations were derived based on the similarity law, which with the

right additional conditions can give the exact probability density functions.
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Dȩbicki, K. (2006), ‘Some properties of generalized pickands constants.’, Theory of

Probability and Its Applications 50(2), 290 – 298.
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