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Fatigue life of tubular joints in offshore structures is significantly influenced by the degree of bending (DoB). The DoB exhibits
considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key
input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket
structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the
DoB in tubular X-joints. In the present paper, results of parametric equations available for the calculation of theDoB have been used
to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending
loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using
Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. In each case,
Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for
each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.

1. Introduction

Offshore jacket-type platforms are mainly fabricated with
circular hollow section (CHS) members. The intersection
between CHS members is called a tubular joint. Figure 1
shows a tubular X-joint along with the three commonly
named positions along the brace/chord intersection: saddle,
crown toe, and crown heel. Nondimensional geometrical
parameters including 𝛼, 𝛽, 𝛾, 𝜏, and 𝛼

𝐵
which are used to

feasibly relate the behavior of a tubular joint to its geometrical
characteristics are defined in Figure 1.

Tubular joints are subjected to wave induced cyclic loads
and thus are susceptible to fatigue damage. The stress-life (𝑆-
𝑁) approach, based on the hot-spot stress (HSS), is widely
used to estimate the fatigue life of the joint. The HSS can be
calculated through themultiplication of nominal stress by the
stress concentration factor (SCF). However, the investigation
of a large number of fatigue test results has shown that tubular
jointswith different geometry or loading type butwith similar
HSSs often can endure significantly different numbers of
cycles before failure [1]. These differences are thought to

be attributable to changes in crack growth rate which is
dependent on the through-the-thickness stress distribution
as well as the HSS. The stress distribution across the wall
thickness is assumed to be a linear combination ofmembrane
and bending stresses. It can be characterized by the degree
of bending (DoB), that is, the ratio of bending stress to total
stress.

As mentioned before, it has become evident that the
HSS is not enough to characterize all aspects of fatigue
failure. Therefore, the standard stress-life approach may be
unconservative for the joints with low DoB. Hence, the
current standard HSS-based 𝑆-𝑁 approach can be modified
to include the effect of the DoB representing the through-
the-thickness stress distribution in the tubular joint in order
to reduce the scatter in the 𝑆-𝑁 curve and to obtain more
accurate fatigue life prediction. The other shortcoming of
the 𝑆-𝑁 approach is that this method gives only the total
life and cannot be used to predict fatigue crack growth and
the remaining life of cracked joints. For the fatigue analysis
of cracked joints, fracture mechanics (FM) should be used.
The accurate determination of a stress intensity factor (SIF)
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Figure 1: Geometrical notation for a tubular X-joint.

is the key for FM calculations. It is well known that it is
necessary to take the complex stress field in tubular welded
joints into account to have accurate SIF data. Owing to the
complexities introduced by the structural geometry and the
nature of the local stress fields, it is impossible to calculate
the SIFs analytically. This problem is often tackled by using
the simplified models, such as the flat plate solution or T-
Butt weight function based method, with an appropriate load
shedding model. In order to use these simplified SIF models
to calculate the remaining fatigue life of tubular joints, the
information is required again on the distribution of through-
the-thickness stress acting in the anticipated crack path,
which can be characterized by the DoB. Thus, the DoB is an
important input parameter for the calculation of fatigue crack
growth in tubular welded joints.

Deterministic fatigue analyses typically produce conser-
vative results, since limiting assumptions are to be made on
key input parameters. Some of the key parameters of the
problem can exhibit stochastic behavior. This highlights the
necessity of conducting a reliability analysis in which these
key parameters can be modeled as random quantities. The
fundamentals of reliability assessment, if properly applied,
can provide immense insight into the performance and
safety of the structural system. Under any specific loading
condition, the DoB value in a tubular joint is mainly deter-
mined by the joint geometry and exhibits considerable scatter
calling for greater emphasis in accurate determination of its
governing probability distribution which is an essential input
for the fatigue reliability analysis of a tubular joint. As far as
the authors are aware, despite the considerable research work
accomplished on the study of SCFs and SIFs in tubular joints
and a few projects defined about the deterministic analysis of
theDoB (see the next paragraph), no comprehensive research
has been carried out on the probability distribution of the
DoB in tubular joints. What has been used so far as the
probability distribution of the DoB in the fatigue reliability
analysis of offshore structures ismainly based on assumptions
and limited observations, especially in terms of distribution
parameters.

Bowness and Lee [2] investigated the fatigue crack cur-
vature under the weld toe in an offshore tubular joint. Lee
et al. [3] numerically studied the cracked tubular T-, Y-, and
K-joints under combined loads. Shao [4] analyzed the stress
intensity factor (SIF) for cracked tubular K-joints subjected
to balanced axial load. Wordsworth and Smedley [5] studied
stress concentrations at unstiffened tubular joints. Efthymiou
[6] developed a set of SCF formulae and generalized influence
functions for use in fatigue analysis. Chang and Dover [7]
proposed parametric equations to predict stress distribu-
tions along the intersection of tubular X- and DT-joints.
Lotfollahi-Yaghin and Ahmadi [8] investigated geometric
stress distribution along the weld toe of the outer brace
in two-planar tubular DKT-joints. Ahmadi and Lotfollahi-
Yaghin [9] performed a geometrically parametric study on
central brace SCFs in offshore three-planar tubular KT-joints.
Ahmadi et al. [10] studied chord-side SCF distribution of
central brace in internally ring-stiffened tubular KT-joints.
A series of systematic thin shell FE analyses were carried
out by Chang and Dover [11] for 330 tubular X- and DT-
joints typical of those found in offshore structures, under
six different types of loading. Mean and design equations
for DoBs at critical positions in axially loaded tubular K-
joints were derived byMorgan and Lee [12] from a previously
established FE database of 254 joints. Design equations met
all the acceptance criteria recommended by the UKDoE [13].
Lee and Bowness [14] proposed an engineering methodology
for estimating SIF solutions for semielliptical weld-toe cracks
in tubular joints. The SIFs for a grouted tubular joint were
determined both numerically and empirically by Shen and
Choo [15].

In the present paper, results of parametric equations
available for the calculation of the DoB have been used
to propose probability distribution models for the DoB in
the chord member of tubular X-joints subjected to four
different types of bending loads including single and double
in-plane bending (IPB) and out-of-plane bending (OPB)
loadings (Figure 2). Based on a parametric study, a set of
samples was prepared and density histograms were generated
for these samples using Freedman-Diaconis method. Twelve
different probability density functions (PDFs) were fitted to
these histograms. The maximum likelihood (ML) method
was used to determine the parameters of fitted distributions.
In each case, Kolmogorov-Smirnov test was used to evaluate
the goodness of fit. Finally, after substituting the values of
estimated parameters in distribution models, a set of fully
defined PDFs have been proposed for the DoB in tubular X-
joints under bending loads.

2. DoB in Tubular X-Joints Subjected to
Bending Loads

Asmentioned earlier, the degree of bending (DoB) is the ratio
of bending stress over total stress expressed as

DoB = 𝜎𝐵
𝜎
𝑇

=

𝜎
𝐵

𝜎
𝐵
+ 𝜎
𝑀

, (1)
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Figure 2: Considered loading conditions.
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Figure 3: Linearized through-the-thickness stress distribution.

where 𝜎
𝐵
and 𝜎

𝑀
are the bending and membrane stress

components and 𝜎
𝑇
is the total stress on the outer surface of

the chord (Figure 3).
Chang and Dover [11] proposed a set of equations for

the calculation of the DoB of the chord member in tubular
X-joints subjected to bending loads (2). In these equations,
the DoB is corresponding to the position of the HSS, that is,
the position in which the maximum SCF occurs. DoBS-IPB,
DoBS-OPB, DoBD-IPB, and DoBD-OPB denote the DoB under
the single IPB, single OPB, double IPB, and double OPB
loadings, respectively (Figure 2), and DoB+ and DoB− stand
for the DoB at the positive and negative HSS positions. It
should be noted that single IPB and single OPB loadings
can actually occur in a tubular joint of an offshore jacket
structure depending on the wave incident angle, location
of the joint, relative position of the wave crest, and design
load combination. In such loading cases, the single IPB/OPB

moment is balanced by the internal forces of the chord
member instead of the other brace member

DoB−S-IPB = exp(−0.7153 + 0.654 sin 𝜃 − 1.491𝛽5

+ 0.00129

𝛼
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Table 1: Values of statistical measures for the DoB samples.

Statistical measure Sample
DoB−S-IPB DoB+S-IPB DoBS-OPB DoB−D-IPB DoB+D-IPB DoBD-OPB

𝑛 3125 3125 625 3125 243 625
𝜇 0.4220 −0.6714 0.9054 0.8171 0.5890 0.8983
𝜎 0.3050 1.65 0.0274 0.0747 0.2002 0.0337
𝛼
3

−0.0633 −0.9183 −0.1602 −0.2505 0.0183 −0.2918
𝛼
4

1.4590 2.3547 2.3787 2.9113 2.2840 3.2364

+ 0.091

𝜏

𝜃

+ 0.127𝜃 + 0.00024𝛼𝛾

+0.0018

𝛼

𝜃

− 0.00012𝛼
2
) ,

DoB+D-IPB = 1.521 + 0.00063𝛼𝛾 + 0.011392𝛽
2
𝛾𝜏

− 1.116 sin 𝜃 − 0.079
𝛽

𝜃

− 0.0053

𝛾

𝜃

+

0.00551

𝛽
2

+ 0.00011𝛾
2
− 0.0129𝛽

3
𝛾

− 0.00005

𝛾
2

𝛽

+ 0.575sin2𝜃

− 0.083𝜃 − 0.00012𝛼
2
+

25

𝛾
3
− 0.0078𝛼,

DoBD-OPB = 0.8388 − 0.0183
ln𝛽
𝜃

+ 0.00215𝛽𝛾𝜏
2

− 0.2123𝛽
5
+ 0.00475𝛽

2
𝛾

− 0.00003𝛾
2
− 0.0371 ln𝛽

− 0.0433 ln (sin 𝜃) − 0.0052 ln 𝜏
𝜃

.

(2)

The validity ranges for the application of (2) are as follows:

6.0 ≤ 𝛼 ≤ 40.0,

0.2 ≤ 𝛽 ≤ 0.8,

7.6 ≤ 𝛾 ≤ 32.0,

0.2 ≤ 𝜏 ≤ 1.0,

35
∘
≤ 𝜃 ≤ 90

∘
.

(3)

3. Preparation of the DoB Samples

A MATLAB code was developed to generate six samples for
the DoB based on (2). These equations have five variables
including 𝛼, 𝛽, 𝛾, 𝜏, and 𝜃. DevelopedMATLAB code divided
the validity range for each parameter (3) into equal intervals
and calculated the DoB for all possible combinations of the
boundary values. For example, to generate the DoB−S-IPB
sample, developed code calculated the DoB for all possible

combinations of five values of 𝛼 (6, 14.5, 23, 31.5, and 40), five
values of 𝛽 (0.2, 0.35, 0.5, 0.65, and 0.8), five values of 𝛾 (7.6,
13.7, 19.8, 25.9, and 32), five values of 𝜏 (0.2, 0.4, 0.6, 0.8, and
1.0), and five values of 𝜃 (35∘, 48.75∘, 62.5∘, 76.25∘, and 90∘)
which led to 3125 (55) data points for this sample.

Values of the size (𝑛), mean (𝜇), standard deviation (𝜎),
coefficient of skewness (𝛼

3
), and coefficient of kurtosis (𝛼

4
)

for generated samples are listed in Table 1.
The value of 𝛼

3
for DoB−S-IPB, DoB+S-IPB, DoBS-OPB,

DoB−D-IPB, and DoBD-OPB samples is negative meaning that
in these cases; the distribution is expected to have a longer
tail on the left, which is toward decreasing values, than on
the right. However, the DoB+D-IPB sample has a positive
𝛼
3
value which means that its distribution is expected to

have a longer tail on the right. Moreover, in DoB−S-IPB,
DoB+S-IPB, DoBS-OPB, DoB

−

D-IPB, and DoB
+

D-IPB samples, the
value of 𝛼

4
is smaller than three which means that, in these

cases, the probability distribution is expected to bemild-peak
(platykurtic). On the contrary, in DoBD-OPB sample, the value
of 𝛼
4
is greater than three meaning that, in this case, a sharp-

peak (leptokurtic) probability distribution is to be expected.

4. Generation of the Density Histograms

For generating a density histogram, the range (𝑅) should be
divided into a number of classes/cells/bins. The number of
occurrences in each class is counted and tabulated. These
are called frequencies. Then, the relative frequency of each
class can be obtained through dividing its frequency by the
sample size. Afterwards, the density is calculated for each
class through dividing the relative frequency by the class
width. The width of classes is usually made equal to facilitate
interpretation.

Care should be exercised in the choice of the number
of classes (𝑛

𝑐
). Too few will cause an omission of some

important features of the data; too many will not give a clear
overall picture because there may be high fluctuations in the
frequencies. In the present research, Freedman-Diaconis rule
was adapted to determine the number of classes:

𝑛
𝑐
=

𝑅 (𝑛
1/3
)

2 (IQR)
, (4)

where 𝑅 is the range of sample data, 𝑛 is the sample size, and
IQR is the interquartile range calculated as follows:

IQR = 𝑄
3
− 𝑄
1
, (5)
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Figure 4: Generated histograms for DoB samples: (a) DoBS-OPB, (b) DoB
−

D-IPB, (c) DoB
+

D-IPB, and (d) DoBD-OPB.

where 𝑄
1
is the lower quartile which is the median of the

lower half of the data and, likewise, 𝑄
3
is the upper quartile

that is the median of the upper half of the data.
For example, density histograms of DoBS-OPB, DoB

−

D-IPB,
DoB+D-IPB, and DoBD-OPB samples are shown in Figure 4. As
it was expected from values of 𝛼

3
and 𝛼
4
(Table 1), histograms

of (a), (b), and (d) have a longer tail on the left than on the
right, while the histogram of (c) has a longer tail on the right.
It can also be seen that histograms of (a), (b), and (c) are
platykurtic; while the histogram of (d) is leptokurtic.

5. Application of Maximum Likelihood
Method for PDF Fitting

In order to investigate the degree of fitting of various
distributions to the sample data, twelve different PDFs were
fitted to the generated histograms. For example, PDFs fitted to
density histograms of DoBS-OPB, DoB

−

D-IPB, DoB
+

D-IPB, and
DoBD-OPB samples are shown in Figure 5.

In each case, distribution parameters were estimated
using the maximum likelihood (ML) method. Results are
given in Table 2. It should be noted that none of the consid-
ered distributions was acceptably fitted to the DoB−S-IPB and
DoB+S-IPB samples. Hence, no data is provided for these two
samples in Table 2.

The ML procedure is an alternative to the method of
moments. As a means of finding an estimator, statisticians
often give it preference. For a random variable 𝑋 with a
known PDF, 𝑓

𝑋
(𝑥), and observed values 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, in a

random sample of size 𝑛, the likelihood function of 𝜃, where
𝜃 represents the vector of unknown parameters, is defined as

𝐿 (𝜃) =

𝑛

∏

𝑖=1

𝑓
𝑋
(𝑥
𝑖
| 𝜃) . (6)

The objective is to maximize 𝐿(𝜃) for the given data set.
This is easily done by taking 𝑚 partial derivatives of 𝐿(𝜃),
where 𝑚 is the number of parameters, and equating them
tozero. Then the maximum likelihood estimators (MLEs) of
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Figure 5: PDFs fitted to the generated histograms of DoB samples: (a) DoBS-OPB, (b) DoB
−

D-IPB, (c) DoB
+

D-IPB, and (d) DoBD-OPB.

the parameter set 𝜃 are found by solving the equations. In
this way, the greatest probability is given to the observedset
of events, provided that the true form of the probability
distribution is known.

6. Using Kolmogorov-Smirnov Test to
Evaluate the Goodness of Fit

The Kolmogorov-Smirnov goodness-of-fit test is a nonpara-
metric test based on the cumulative distribution function
(CDF) of a continuous variable. It is not applicable to
discrete variables. The test statistic, in a two-sided test, is
the maximum absolute difference (i.e., usually the vertical

distance) between the empirical and hypothetical CDFs. For a
continuous variate𝑋, let𝑥

(1)
, 𝑥
(1)
, . . . , 𝑥

(𝑛)
represent the order

statistics of a sample of the size 𝑛, that is, the values arranged
in increasing order. The empirical or sample distribution
function 𝐹

𝑛
(𝑥) is a step function. This gives the proportion

of values not exceeding 𝑥 and is defined as

𝐹
𝑛 (
𝑥) =

{
{
{
{

{
{
{
{

{

0, For 𝑥 < 𝑥
(1)

𝑘

𝑛

, For 𝑥
(𝑘)
≤ 𝑥 < 𝑥

(𝑘+1)
𝑘 = 1, 2, . . . , 𝑛 − 1

1, For 𝑥 ≥ 𝑥
(𝑛)
.

(7)
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Figure 6: Empirical CDFs for generated DoB samples: (a) DoBS-OPB, (b) DoB
−

D-IPB, (c) DoB
+

D-IPB, and (d) DoBD-OPB.

For example, empirical CDFs for DoBS-OPB, DoB
−

D-IPB,
DoB+D-IPB, and DoBD-OPB samples have been shown in
Figure 6.

Let 𝐹
0
(𝑥) denote a completely specified theoretical con-

tinuous CDF. The null hypothesis𝐻
0
is that the true CDF of

𝑋 is the same as 𝐹
0
(𝑥). That is, under the null hypothesis,

lim
𝑛→∞

Pr [𝐹
𝑛 (
𝑥) = 𝐹0 (

𝑥)] = 1. (8)

The test criterion is the maximum absolute difference
between 𝐹

𝑛
(𝑥) and 𝐹

0
(𝑥), formally defined as

𝐷
𝑛
= sup
𝑥

󵄨
󵄨
󵄨
󵄨
𝐹
𝑛 (
𝑥) − 𝐹0 (

𝑥)
󵄨
󵄨
󵄨
󵄨
. (9)

Theoretical continuous CDFs fitted to the empirical
distribution functions of DoBS-OPB, DoB

−

D-IPB, DoB
+

D-IPB,
and DoBD-OPB samples have been shown in Figure 7.

A large value of this statistic (𝐷
𝑛
) indicates a poor fit.

Hence, the acceptable values must be known. The critical
values𝐷

𝑛,𝜉
for large samples, say 𝑛 > 35, are (1.3581/√𝑛) and

(1.6276/√𝑛) for 𝜉 = 0.05 and 0.01, respectively [16] where 𝜉 is
the level of significance in hypothesis testing.

Results of Kolmogorov-Smirnov test for DoBS-OPB,
DoB−D-IPB, DoB

+

D-IPB, and DoBD-OPB samples are given in
Tables 3−6, respectively. It should be noted that, according to
the results of Kolmogorov-Smirnov test, none of considered
continuous CDFs was acceptably fitted to the DoB−S-IPB and
DoB+S-IPB samples. Hence, no table is provided here for these
two samples.

It is evident in Tables 3−6 that Beta, Generalized Extreme
Value, Weibull, and Logistic distributions have the smallest
values of test statistic for DoBS-OPB, DoB

−

D-IPB, DoB
+

D-IPB,
and DoBD-OPB samples, respectively.

7. Developed Probability Models for DoBs

Based on the results of Kolmogorov-Smirnov goodness-of-fit
test (Tables 3−6), it can be concluded that Beta, Generalized
Extreme Value, Weibull, and Logistic distributions are the
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Figure 7: Theoretical CDFs fitted to the empirical CDFs of DoB samples: (a) DoBS-OPB, (b) DoB
−

D-IPB, (c) DoB
+

D-IPB, and (d) DoBD-OPB.

best probability models for DoBS-OPB, DoB
−

D-IPB, DoB
+

D-IPB,
and DoBD-OPB in tubular X-joints under bending loads,
respectively. The PDFs of these distributions are given by the
following equations:

𝑓
𝑋 (
𝑥) =

Γ (𝑎 + 𝑏)

Γ (𝑎) Γ (𝑏)

𝑥
𝑎−1
(1 − 𝑥)

𝑏−1
(Beta distribution) ,

𝑓
𝑋 (
𝑥) =

1

𝜎

exp [−(1 + 𝑘
𝑥 − 𝜇

𝜎

)

−1/𝑘

] (1 + 𝑘

𝑥 − 𝜇

𝜎

)

−1−1/𝑘

(Generalized Extreme Value distribution) ,

𝑓
𝑋 (
𝑥) =

𝑘

𝜆

(

𝑥

𝜆

)

𝑘−1

exp [−(𝑥
𝜆

)

𝑘

] ; 𝑥 ≥ 0

(Weibull distribution) ,

𝑓
𝑋 (
𝑥) =

exp (− (𝑥 − 𝜇) /𝑠)
𝑠 (1 + exp (− (𝑥 − 𝜇) /𝑠))2

(Logistic distribution) ,
(10)



Advances in Civil Engineering 9

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
0

2

4

6

8

10

12

14

16

Data

D
en

sit
y

(DoB)hs data
Beta

(a)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

Data

D
en

sit
y

(DoB)hs negative data
Generalized extreme value

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

1.5

2

Data

D
en

sit
y

(DoB)hs positive data
Weibull

(c)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
0

5

10

15

Data

D
en

sit
y

(DoB)hs data
Logistic

(d)

Figure 8: Proposed PDFs for the DoB values in tubular X-joints subjected to the bending loads: (a) DoBS-OPB—Beta distribution, (b)
DoB−D-IPB—Generalized Extreme Value distribution, (c) DoB+D-IPB—Weibull distribution, and (d) DoBD-OPB—Logistic distribution.

where Γ(𝑎) is the Gamma function defined as follows:

Γ (𝑎) = ∫

∞

0

𝑒
−𝑟
𝑟
𝑎−1
𝑑𝑟. (11)

After substituting the values of estimated parameters
from Table 2, the following probability density functions
are proposed for the DoBS-OPB, DoB

−

D-IPB, DoB
+

D-IPB, and
DoBD-OPB in tubular X-joints subjected to bending loads:

𝑓
𝑋 (
𝑥) = (5.9328 × 10

14
) 𝑥
96.8619

(1 − 𝑥)
9.2226

(DoBS-OPB) ,

𝑓
𝑋 (
𝑥) = 12.9527 exp [(4.2938𝑥 − 4.4022)3.0166]

⋅ (4.4022 − 4.2938𝑥)
2.01660

(DoB−D-IPB) ,

𝑓
𝑋 (
𝑥) = 5.0026 (

𝑥

0.657831

)

2.29088

⋅ exp [−( 𝑥

0.657831

)

3.29088

] ; 𝑥 ≥ 0

(DoB+D-IPB) ,

𝑓
𝑋 (
𝑥)

=

exp (− (𝑥 − 0.899405) /0.0187924)
0.0187924 (1 + exp (− (𝑥 − 0.899405) /0.0187924))2

(DoBD-OPB) .

(12)

Developed PDFs, shown in Figure 8, can be adapted in
the fatigue reliability analysis of tubular X-joints commonly
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Table 2: Estimated parameters of PDFs fitted to the density histograms of DoB samples.

Fitted PDF Parameters Estimated values
DoB−S-IPB DoB+S-IPB DoBS-OPB DoB−D-IPB DoB+D-IPB DoBD-OPB

Birnbaum-Saunders 𝛽
0

𝛾
0

0.90498
0.0303296

0.813539
0.093508 — 0.897649

0.037795

Extreme value 𝜇

𝜎

0.91884
0.0251115

0.853587
0.0693142

0.688765
0.190828

0.91473
0.0318889

Gamma 𝑎

𝑏

1089.95
0.000830676

116.665
0.0070038 — 704.135

0.00127574

Generalized extreme value
𝑘

𝜎

𝜇

−0.342762
0.0280815
0.896484

−0.331497
0.0772041
0.79235

−0.286603
0.19848
0.518683

−0.325209
0.0350571
0.887031

Log-logistic 𝜇

𝑠

−0.0988711
0.0177489

−0.201561
0.05286

−0.56315
0.219722

−0.106302
0.0209965

Logistic 𝜇

𝑠 — —
0.906074
0.0160357

0.819049
0.0427215

0.590133
0.118319

0.899405
0.0187924

Lognormal 𝜇

𝜎

−0.0998412
0.0303511

−0.206291
0.0934124

−0.596375
0.386297

−0.107973
0.0378179

Nakagami 𝜇

Ω

273.263
0.820492 — 2.2093

0.386864
177.064
0.80806

Normal (Gaussian) 𝜇

𝜎

0.905396
0.0273892

0.817095
0.074663

0.589015
0.200225

0.89829
0.0337215

Beta 𝑎

𝑏

97.8619
10.2226 — — 64.4534

7.29193

Rician 𝑠

𝜎

— 0.813649
0.0748107

0.546732
0.209701 —

Weibull 𝜆

𝑘

— — 0.657831
3.29088 —

Table 3: Results of Kolmogorov-Smirnov goodness-of-fit test for DoBS-OPB sample.

Fitted distribution Test statistic Critical value Test result
𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.05 𝜉 = 0.01

Birnbaum-Saunders 0.0613

0.0541 0.0648

Reject Accept
Extreme value 0.0515 Accept Accept
Gamma 0.0596 Reject Accept
Generalized extreme value 0.0425 Accept Accept
Log-logistic 0.0547 Reject Reject
Logistic 0.0521 Accept Accept
Lognormal 0.0612 Reject Accept
Nakagami 0.0723 Reject Accept
Normal (Gaussian) 0.0578 Reject Reject
Beta 0.0404 Accept Accept

found in offshore jacket structures subjected to bending
loads.

8. Conclusions

In the present paper, results of parametric equations avail-
able for the calculation of the DoB were used to propose
probability distribution models for the DoB in the chord
member of tubular X-joints subjected to four different types
of bending loads including single and double IPB and OPB
loadings. Based on a parametric study, a set of samples was
prepared and density histograms were generated for these

samples using Freedman-Diaconis method. Twelve different
PDFs were fitted to these histograms. The ML method was
used to determine the parameters of fitted distributions. In
each case, Kolmogorov-Smirnov test was used to evaluate
the goodness of fit. Based on the results of this test, it was
concluded that Beta, Generalized Extreme Value, Weibull,
and Logistic distributions are the best probability models
for the DoBS-OPB, DoB

−

D-IPB, DoB
+

D-IPB, and DoBD-OPB in
tubular X-joints under bending loads, respectively. Finally,
after substituting the values of estimated parameters in distri-
bution models, a set of fully defined PDFs were proposed for
the DoB in tubular X-joints subjected to the bending loads.
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Table 4: Results of Kolmogorov-Smirnov goodness-of-fit test for DoB−D-IPB sample.

Fitted distribution Test statistic Critical value Test result
𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.05 𝜉 = 0.01

Birnbaum-Saunders 0.0411

0.0242 0.0291

Reject Reject
Extreme value 0.0435 Reject Reject
Gamma 0.0344 Reject Reject
Generalized extreme value 0.0185 Accept Accept
Log-logistic 0.0278 Reject Accept
Logistic 0.0235 Accept Accept
Lognormal 0.0408 Reject Reject
Normal (Gaussian) 0.0221 Accept Accept
Rician 0.0221 Accept Accept

Table 5: Results of Kolmogorov-Smirnov goodness-of-fit test for DoB+D-IPB sample.

Fitted distribution Test statistic Critical value Test result
𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.05 𝜉 = 0.01

Extreme value 0.0746

0.0864 0.1037

Accept Accept
Generalized extreme value 0.0666 Accept Accept
Log-logistic 0.0811 Accept Accept
Logistic 0.0788 Accept Accept
Lognormal 0.1062 Reject Reject
Nakagami 0.0721 Accept Accept
Normal (Gaussian) 0.0710 Accept Accept
Rician 0.0671 Accept Accept
Weibull 0.0660 Accept Accept

Table 6: Results of Kolmogorov-Smirnov goodness-of-fit test for DoBD-OPB sample.

Fitted distribution Test statistic Critical value Test result
𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.05 𝜉 = 0.01

Birnbaum-Saunders 0.0650

0.0541 0.0648

Reject Reject
Extreme value 0.0721 Reject Reject
Gamma 0.0628 Reject Accept
Generalized extreme value 0.0611 Reject Accept
Log-logistic 0.0315 Accept Accept
Logistic 0.0284 Accept Accept
Lognormal 0.0651 Reject Reject
Nakagami 0.0608 Reject Accept
Normal (Gaussian) 0.0588 Reject Accept
Beta 0.0587 Reject Accept
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