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Solving DEs using MQ RBFNs �

Numerical Solution of Di
erential Equations using Multiquadric Radial Basis
Function Networks

Abstract� This paper presents mesh�free procedures for solving linear di
erential
equations �ODEs and elliptic PDEs
 based on Multiquadric �MQ
 Radial Basis
Function Networks �RBFNs
� Based on our study of approximation of function
and its derivatives using RBFNs that was reported in an earlier paper �Mai�Duy
and Tran�Cong� ����
� new RBFN approximation procedures are developed in
this paper for solving DEs� which can also be classi�ed into two types� a direct
�DRBFN
 and an indirect �IRBFN
 RBFN procedure� In the present procedures
the width of the RBFs is the only adjustable parameter according to a�i� � �d�i��
where d�i� is the distance from the ith centre to the nearest centre� The IRBFN
method is more accuarte than the DRBFN one and experience so far shows that
� can be chosen in the range � � � � �	 for the former� Di
erent combinations
of RBF centres and collocation points �uniformly and randomly distributed
 are
tested on both regularly and irregularly shaped domains� The results for a �D
Poisson�s equation show that the DRBFN and the IRBFN procedures achieve a
norm of error of at least O���	e� �
 and O���	e� �
� respectively� with a centre
density of �	� Similarly� the results for a �D Poisson�s equation show that the
DRBFN and the IRBFN procedures achieve a norm of error of at least O���	e��

and O���	e � �
� respectively� with a centre density of �� � ���

Keywords� Radial basis function networks� multiquadric function� global approx�
imation� mesh�free method� solution of di
erential equation�
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Notations

superscripts denote elements of a set of neurons or collocation points
subscripts denote scalar components of a vector
n number of collocation points
m number of neurons
x independent variables
ue exact solution
u approximant of the exact solution ue
u�ij���l partial derivative of function u with respect to xixj���xl
ui approximate function u obtained by integrating u�ii
g radial basis function
h basis function obtained by di
erentiating g
�h basis function obtained by di
erentiating h
H basis function obtained by integrating g
�H basis function obtained by integrating H
w weight of basis function
a width of basis function
r radius from the centre located at the neuron under consideration
c �spatial position� of the neuron �centre

k � k Euclidean norm
� scalar factor
d distance from the centre under consideration to the nearest centre
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� Introduction

Many problems in science and engineering are reduced to a set of di
erential
equations �DEs
 through the process of mathematical modelling� Although model
equations based on established physical laws may be constructed� analytical tools
are frequently inadequate for the purpose of obtaining their closed form solution
and usually numerical methods must be resorted to� Principal numerical methods
available for solving DEs include the Finite Di
erence Method �FDM
 �cf� Smith�
����
� the Finite Element Method �FEM
 �cf� Cook et al� ����� Hughes� �����
Zienkiewicz and Taylor� ����
� the Finite Volume Method �FVM
 �cf� Patankar�
���	
 and the Boundary Element Method �BEM
 �cf� Brebbia et al� ����
�
These methods generally require some discretisation of the domain into a num�
ber of �nite elements �FEs
� which is not a straightforward task� In contrast
to FE�type approximation� neural networks can be considered as approximation
schemes where the input data for the design of a network consists of only a set
of unstructured discrete data points� Thus an application of neural networks
for solving DEs can be regarded as a mesh�free numerical method� It has been
proved that radial basis function networks �RBFNs
 with one hidden layer are
capable of universal approximation �Park and Sandberg� ����
� For problems of
interpolation and approximation of scattered data� there is a body of evidence
to indicate that the multiquadric function �MQ
 yields more accurate results in
comparison with other radial basis functions �Franke� ����� Powell� ����� Haykin�
����� p���
� Although it is not proved even experimentally in the present work
that MQ function would result in superior accuracy for solving DEs� the MQ
function is used to study the solution of DEs in this paper based on the above
observation because the main aim of the present work is to demonstrate the pro�
cedure for solving DEs rather than the study of the property of the kernels� It
is important to note that the accuracy of the RBFN solution is in�uenced by a
parameter which is usually referred to as the width of basis function� The value
of this parameter controls the shape of the basis function or the response of the
associated neuron� In the case of learning network� the width parameter measures
the degree to which excited neurons in the vicinity of the winning neuron partic�
ipate in the learning process �Haykin� ����
� Similarly� in the case of functional
approximation� the width parameter of a basis function �centre
 controls its in�
�uence relative to the in�uence of its neighbours in the approximation� Large or
small values make the neuronal response too �at or too peaked respectively and
therefore both of these two extreme conditions should be avoided� In a study of
multiquadric method for scattered data interpolation� Tarwater �����
 has found
that by increasing the shape parameter a� �equivalent to the RBF�s width in this
paper
� the root�mean�squared error of the goodness of �t drops to a minimum
then increases sharply afterwards� In general� as the width increases the system
of equations to be solved becomes ill�conditioned �Zerroukat et al� ����
� By
numerical experimentation� Kansa ����	a
 found that the best results achieved
by multiquadric approximation scheme occurred when the paramater a� is varied
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according to the following expansion

a�i�� � a�min�a�max�a
�
min
�i�����m��� ��


where a�max and a�min are input parameters� superscript �i
 indexes the ith data
point and m is the number of data points� However� Kansa ����	a
 did not
report how a�max and a�min should be chosen until later when Moridis and Kansa
�����
 stated that the ratio �a�max�a

�
min
 should be in the range of �	� to �	��

Based on the formula ��
� Kansa ����	b
 and Sharan et al �����
 have applied
the multiquadric approximation scheme successfully for the numerical solution of
PDEs by enforcing the equation at an appropriate number of collocation points
in order to form a determined system of equations� Similarly� Dubal �����

reported results of the numerical solution of ODEs� However� recently� in solving
some problems of heat tranfer� Zerroukat et al �����
 found that a constant
shape parameter �a�i� � a
 has achieved a better accuracy than a variable a�i�

as given by ��
 and concluded that improving the accuracy by varying the shape
parameter cannot be considered as a general rule� Thus it is important to note
that a�min and the ratio �a�max�a

�
min
 are problem�dependent and how to choose the

best value of these parameters is still open� Recently� Mai�Duy and Tran�Cong
�����
 have developed new methods based on RBFNs for the approximation of
both functions and their �rst and higher derivatives� The so called direct RBFN
�DRBFN
 and indirect RBFN �IRBFN
 methods were studied and it was found
that the IRBFN method yields consistently better results for both function and
its derivatives �Mai�Duy and Tran�Cong� ����
� The aim of this paper is to
report the application of these DRBFN and IRBFN methods in solving DEs� In
contrast to the approach taken by other authors as reviewed above� in the present
methods the width of the ith neuron �centre
 a�i� is determined according to the
following simple relation �Moody and Darken� ����


a�i� � �d�i� ��


where � is a factor� � � 	� and d�i� is the distance from the ith centre to the nearest
centre� Relation ��
 indicates that it is reasonable to assign a larger width where
the centres are widely separated from each other and a smaller width where the
centres are closer� The results obtained �Mai�Duy and Tran�Cong� ����
 show
that the IRBFN method achieves a better accuracy than the DRBFN method
over a wide range of �� Speci�cally� for all problems attempted it was found that
the best value for � is generally in the range of � to �	 for the IRBFN method�
Although this empirical result might allow some tolerance in the choice of the
� value� a more automatic algorithm such as the one proposed by Van Hulle
�����
 is highly desirable� Van Hulle �����
 showed that the kernel�based max�
imum entropy learning rule �kMER
 can achieve equiprobabilistic topographic
map formation of regular� �xed�topology lattices for data�dependent nonpara�
metric regression problems� However� the application of the latter method to the
numerical solution of DEs� which is the case here� will need further investigation�
Both direct and indirect methods are studied in this work for comparative pur�
pose� The scope of this work is limited to linear ODEs and linear elliptic PDEs�
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with an indication of possible extension to other types of DEs in future work� The
paper is organized as follows� A brief review of DRBFN and IRBFN methods for
approximation of function and its derivatives is given in section x�� In section x�
the DRBFN and IRBFN procedures are developed for solving DEs over regular
domains which are de�ned in section x���� Both procedures are illustrated with
the aid of some numerical examples in section x�� Two examples of �D second
order equations are discussed in section x���� The solutions of some �D elliptic
PDEs with Dirichlet and Neumann boundary conditions in regular domains are
demonstrated in section x���� A procedure for solving PDEs on a domain with
curved boundaries �irregular domain
 is described with an illustrative example
in section x���� The e
ect of randomness of collocation points is investigated in
section x���� A discussion of the present methods with regard to other methods
and types of DEs is given in section x�� Section x� concludes the paper�

� Review of methods for approximation of func�

tion and its derivatives

Mai�Duy and Tran�Cong �����
 have reported the so called direct and indirect
RBFN methods for an approximation of function and its derivatives given a set of
discrete unstructured function values� fu�x�i�
 � y�i�gni��� and demonstrated that
the IRBFN method based on MQ RBF yields superior accuracy in comparison
with the DRBFN� For the bene�t of the present discussion the essence of the
methods is summarised in this section� The function u to be approximated is
de�ned by u � Rp � R� and decomposed into basis functions as

u�x
 �
mX
i��

w�i�g�i��x
 ��


where the set of radial basis functions fg�i�gmi�� with m � n is chosen in advance
and the set of weights fw�i�gmi�� is to be found� In the context of functional
approximation� a discussion of the reason for m � n can be found� for example�
in Haykin ������ p���
� In the present context of solving DEs� m � n is normally
chosen� Here and in subsequent discussion superscripts are used to index elements
of a set of neurons or collocation points while subscripts denote scalar components
of a p�dimensional vector� Given ��
� the derivatives of the function� u�j���l� are
calculated by

u�j���l�x
 �
�ku

�xj����xl
�

mX
i��

w�i� �kg�i�

�xj����xl
� ��


In this work the chosen RBF is the MQ given by

g�i��kx� c�i�k
 � g�i��r
 �
p
r� � a�i�� for some a�i� � 	� ��




Solving DEs using MQ RBFNs �

With the model u decomposed into m �xed basis functions in a given family ��
�
the unknown weights fw�i�gmi�� are found� with the help of the general linear least
squares principle� by minimising the sum squared error

SSE �
nX
i��

�
y�i� � u�x�i�


��
��


with respect to the weights of u�

��� Direct method

In the direct method �DRBFN
 the closed form RBFN approximating function
��
 is �rst obtained from a set of training points and the derivative functions
are then calculated directly by di
erentiating such closed form RBFN� Thus the
decomposition of the function can be written as

u�x
 �

mX
i��

w�i�g�i��x
 �

mX
i��

w�i�
p
r� � a�i��� ��


Once the weights in ��
 are found� the derivatives �e�g� up to second order with
respect to xj
 are calculated by

u�j�x
 �

mX
i��

w�i�h�i��x
� ��


u�jj�x
 �
mX
i��

w�i�h
�i�

�x
� ��


where

h�i��x
 �
�g�i�

�xj
�

xj � c
�i�
j

�r� � a�i��
���
� ��	


h
�i�

�x
 �
�h�i�

�xj
�

��g�i�

�xj�xj
�

r� � a�i�� � �xj � c
�i�
j 
�

�r� � a�i��
���
� ���


��� Indirect method

In the indirect method �IRBFN
 the formulation of the problem starts with the
decomposition of the derivative of the function into RBFs� The derivative expres�
sion is then integrated to yield an expression for the original function� which is
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then solved via the general linear least squares principle given an appropriate set
of discrete data points� For example� in the case of multivariate functions with
up to second derivatives� the relevant expressions are

u�jj�x
 �

mX
i��

w�i�g�i��x
 �

mX
i��

w�i�
p
r� � a�i��� ���


u�j�x
 �

mX
i��

w�i�H�i��x
 � C�� ���


u�x
 �

mX
i��

w�i�H
�i�

�x
 � C�xj � C�� ���


where C� and C� are functions of independent variables other than xj and

H�i��x
 �

Z
g�i��x
dxj �

�xj � c
�i�
j 

p
r� � a�i��

�
�

r� � �xj � c
�i�
j 
� � a�i��

�
ln
�

�xj � c
�i�
j 
 �

p
r� � a�i��

�
���


H
�i�

�x
 �

Z
H�i��x
dxj �

�r� � a�i��
���

�
�

r� � �xj � c
�i�
j 
� � a�i��

�
�xj � c

�i�
j 
 ln

�
�xj � c

�i�
j 
 �

p
r� � a�i��

�
�

r� � �xj � c
�i�
j 
� � a�i��

�

p
r� � a�i��� ���


The detailed implementation and accuracy of the above methods were reported
previously �Mai�Duy and Tran�Cong� ����
� The next section discusses the ap�
plication of these methods in a solution procedure for DEs�

� DRBFN and IRBFN procedures for solving

DEs

For simplicity� let us consider the �D Poisson�s equation over the domain �

r�u � p�x
� x � � ���
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wherer� is the Laplacian operator� x is the spatial position� p is a known function
of x and u is the unknown function of x to be found� Equation ���
 is subject
to Dirichlet and�or Neumann boundary conditions over the boundary �

u � p��x
� x � ��� ���


n � ru � p��x
� x � �� ���


where n is the outward unit normal� r is the gradient operator� �� and �� are
the boundaries of the domain such as �� ��� � � and �� ��� � 	� p� and p� are
known functions of x�

Numerical solution of DEs such as ���
����
 is intimately connected with approx�
imating function and its derivatives� It is proposed here that the solution u and
its derivatives can be approximated in terms of basis functions ��
���
 in a direct
procedure or ���
����
 in an indirect procedure� The design of networks is based
on the informations provided by the given DE and its boundary conditions� Note
that in the present context of solving DEs� the �data� points are more general
collocation points instead of just actual given numerical values of the function to
be approximated or interpolated� Thus at a data �collocation
 point either the
DEs �in the case of internal points
 or the DEs and the boundary conditions �in
the case of boundary points
 are forced to satisfy�

��� De�nition of regular and irregular domains

In the present work� a regularly shaped domain is de�ned as a rectangular region
in �D or a parallelepiped region in �D� For example� a �D regular domain is
de�ned by

a � x� � b� c � x� � d�

where a� b� c� d are constant� A domain that cannot be de�ned as above in any
Cartesian coordinate system is called irregular� For example� any �D domain with
curved boundaries or �D domain with curved surfaces are classi�ed as irregular�
If the domain is irregularly shaped it can be converted into a regularly shaped
one as discussed in section x����

��� Collocation points versus RBF centres

In general the location of the collocation points can be di
erent from the location
of the RBF centres� For the regular domain� the centres can be conveniently
arranged on a regular grid and the collocation points can either be randomly
distributed or they can be the same as the RBF centres �Figure �
� Furthermore�
the number of collocation points can be di
erent from the number of RBF centres
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and the centres can be a subset of the set of collocation points� If the collocation
points are the same as the RBF centres of the network then m � n�

��� DRBFN procedure

In the direct approach the sum squared error associated with ���
����
 is given
by

SSE �
X
x
�i��	

�
�u����x

�i�
 � u����x
�i�

� p�x�i�


��
�

X
x
�i��
�

�
u�x�i�
� p��x

�i�

��

�
X

x
�i��
�

�
�n�u���x

�i�
 � n�u���x
�i�

� p��x

�i�

��

��	


Upon substitution of the expressions for u and its derivatives� i�e� ��
���
� into
the above expression for SSE followed by the application of the linear least
squares principle� a system of linear algebraic equations is obtained in terms of
the unknown weights in the output layer of the network as follows�

�GTG
w � GT �p ���


where G is the design matrix whose rows contain basis functions corresponding
to the terms �u����x�i�
 � u����x�i�

� u�x�i�
 and �n�u���x�i�
 � n�u���x�i�

 and
therefore the number of rows is greater than the number of columns �number of
neurons
� w is the vector of weights and �p is the vector whose elements correspond
to the terms p�x�i�
� p��x�i�
 and p��x�i�
�

Alternatively� the solution u in the least squares sense ��	
 can be obtained by
using the method of orthogonal�triangular decomposition with pivoting �or the
QR method
 �Dongarra et al� ����
 for an overdetermined system of equations�
which in this case is

Gw � �p� ���


In practice� the QR method is able to produce the solution at larger values of �
than the normal equations method arising from the linear least squares procedure
�Eq� ���

 and hence the QR method is used in this work�

��� IRBFN procedure

Note that in the expressions ���
����
 associated with the indirect method� the
function u is obtained via a particular u�jj which is generally only one of a number
of possible starting points� For the method to be correct all starting points must
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lead to the same value for function u� Thus in the indirect approach all possible
starting points are taken into account and the sum squared error is given by

SSE �
X
x
�i��	

�
�u����x

�i�
 � u����x
�i�

� p�x�i�


��
�

X
x
�i��	

�
u��x

�i�
� u��x
�i�

��

�
X

x
�i��
�

�
u��x

�i�
� p��x
�i�

��

�

X
x
�i��
�

�
�n�u���x

�i�
 � n�u���x
�i�

� p��x

�i�

��

���


where the term u��x�i�
 is obtained via u��� and u��x�i�
 is obtained via u����
Furthermore� the unknown in the indirect procedure also contains the set of
weights introduced by the interpolation of the constants of integration �e�g� C�

and C� in ���

 in the remaining independent coordinate directions� For example�
if C� is a constant of integration resulting from the integration of a basis function
along the xj direction then it is a function of all independent variables except xj
and hence it is interpolated along all directions except xj� As in the case of direct
procedure using the linear least squares principle� a system of equations �normal
equations
 can be obtained with appropriate substitution of the expression for
the function u and its derivatives ���
����
 into ���
� However� it was found
that Singular Value Decomposition �SVD
 method �Press et al� ����
 provides
superior results over a wide range of RBF�s width �Mai�Duy and Tran�Cong�
����
 and hence SVD is used in this work�

� Numerical Examples

In the following examples� the value of � is varied over a wide range with an
increment of 	�� to investigate its e
ect on the accuracy of the solution� It
appears that there is an upper limit for � above which the system of equations
���
 is ill�conditioned �see discussion in x�
� In the present work� the value of �
is considered to reach an upper limit when the system of equations ���
 becomes
rank de�cient�

A measure of the relative error of the solution or the norm of the error of the
solution� Ne� is de�ned as

Ne �

sPq
i�� �ue�x�i�
� u�x�i�

�Pq

i�� ue�x
�i�
�

���


where u�x�i�
 and ue�x�i�
 are the calculated and exact solution at the point i
respectively and q is the number of collocation points� �Note that in the case of
regularly shaped domains q � n and in the case of irregularly shaped domains
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q � n is the number of collocation points contained within the original domain
only�


��� �D Second Order Equations

����� Example �

Consider the following �D second order equation

r�u � ���	� sin��	x
 ���


on 	 � x � � with u � � at x � 	 and x � �� The exact solution can be veri�ed
to be

ue�x
 � � � sin��	x
� ���


This problem was solved by Dubal �����
 using the multiquadric approximation
scheme in conjunction with a domain decomposition technique� Subdomains are
built from �D MQ approximation  template� which is an M � M matrix con�
structed from multiquadric functions and their derivatives placed at M regularly
spaced data points lying on the unit line� The best result with the �average per�
centage relative error� of �����e � �! was found in the case of �� subdomains
each of which contains � equally spaced points �M � �
 resulting in a total of ��	
data points� In contrast� a total of �	 equally spaced points are used for the de�
sign of both DRBFN and IRBFN procedures in the present work� The accuracy
of the solution is more dependent on the value of � in the case of DRBFN than
in the case of IRBFN procedure as shown in Figures ���� Figure � shows that
the IRBFN procedure achieves a better accuracy than the DRBFN procedure
over a wide range of �� However� at some large values of � the DRBFN results
are signi�cantly improved� For example� at � � ��	� the maximum errors are
��	�e� �! and ����e� �! for DRBFN and IRBFN respectively�

����� Example �

As a second example� consider the following equation

r�u� �ru � �u � exp��x
 ���


on �� � x � �� which has the exact solution

ue�x
 � B� exp�x
 � B� exp��x
 �
�

�
exp��x
 ���
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and the boundary conditions are chosen so that B� � � and B� � �� This
problem was also studied by Dubal �����
� Using the same method as mentioned
in x������ Dubal reported that the minimum value of the �average percentage
relative error� was ����e � �! in the case of �� subdomains with M � � �i�e�
��	 data points
� In the present methods� a total of �	 equally spaced points
are used for the design of DRBFN and IRBFN� The observations on the DRBFN
and IRBFN results �Figures � and �
 are similar to those indicated in the above
example of x������ At � � ��	� the maximum errors are ���� ! for DRBFN and
����e� �! for IRBFN�

��� Elliptic PDE in regularly shaped domain

In this section two examples in �D are studied�

����� Example �

The problem here is to determine a function u�x�� x�
 satisfying the following
PDE

r�u � sin�	x�
 sin�	x�
 ���


on the rectangle 	 � x� � �� 	 � x� � � subject to the Dirichlet condition u � 	
along the whole boundary of the domain� The exact solution is given by

ue�x�� x�
 � � �

�	�
sin�	x�
 sin�	x�
� ��	


This problem was solved using Feed Forward Neural Networks �FFNN
 by Dis�
sanayake and Phan�Thien �����
� The authors used the following con�gurations
�� � � � � � �i�e� two input nodes followed by two hidden layers of three nodes
each and one output node
� ������� and ���	��	�� to solve the problem
using the following data point densities ���� �	��	 and �	��	� The best results
obtained correspond to the last network architecture with the highest density� It
is observed in the paper that the di
erence in the accuracy of the solutions are not
signi�cant between the last two con�gurations �i�e� ������� and ���	��	��

and also between the two denser data distributions �i�e� �	 � �	 and �	 � �	
�
The best FFNN results of Dissanayake and Phan�Thien �����
 are used here to
compare with the present DRBFN and IRBFN solutions� The comparison of Ne

between FFNN� DRBFN and IRBFN solutions is shown in Figure � and it can
be seen that the IRBFN solutions are the most accurate ones in all cases of data
densities under consideration �i�e� � � �� �	 � �	 and �	 � �	
� The in�uence of
data density on the Ne of the DRBFN and IRBFN solutions is depicted in Figure
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� which shows that increasing the data density makes the Ne�� curve more sta�
ble and results in an improvement of solution� However� the improvement only
occurs at large values of � for the DRBFN procedure in contrast with a wider
range of values of � for the IRBFN procedure� Furthermore� with � in the range
� � � � ��� the IRBFN solution has an norm of error of less than �	�� in the case
of �	� �	 data density� Table � gives some indication of the rate of convergence

Table �� Ne of FFNN and IRBFN solutions� The �improve factor� is de�ned
as ratio of Ne between two data densities� The FFNN results are taken from
Dissanayake and Phan�Thien �����


FFNN IRBFN�� � ��	

Density of �	 � �	 ���	e � 	� ��	�e� 	�
Density of �	 � �	 ����e � 	� ����e� 	�
Improve Factor ���� �����

of the solutions as the data density is increased for both the FFNN and IRBFN
procedures� The table also shows that the IRBFN procedure appears to have a
higher rate of convergence�

����� Example �

In this example� the boundary conditions of the problem include both Dirichlet
and Neumann type� Consider the following PDE

r�u � �
� � ��
 exp�
x� � �x�
 ���


on the rectangle 	 � x� � �� 	 � x� � � with the following boundary conditions

u � exp�
x� � �x�
� x� � 	 and x� � ��

u�� � 
 exp�
x� � �x�
� x� � 	 and x� � ��

The exact solution is

ue�x�� x�
 � exp�
x� � �x�
� ���


Here 
 and � are chosen to be � and � respectively� This problem was solved using
the multiquadric approximation scheme by Kansa ����	b
� The author used a
total of �	 nodal points� including �� scattered points in the interior and �� along
the boundary� The reported results showed that the norm of error is ����e � �
�this error �gure is calculated by the present authors using the reported results
of Kansa
� In the present methods� the results obtained here are similar to those
in the previous example� The IRBFN solution achieves greater accuracy in all
cases �data density of �� �� �� � and ��� ��
 as shown in Figures � and �� For
example� with the data density of � � � and � � ��	� the norms of error Nes are
����e� � for DRBFN and ����e � � for IRBFN procedure�
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��� Elliptic PDE in irregularly shaped domain

The �D elliptic equation ���
 subject to the boundary conditions ���
� ���
 is
reconsidered here� However� the domain � in this case is irregularly shaped�
Suppose that ���
 is rewritten as

r�u � p�x
� x � �� 
 � ���


which is subject to the same boundary conditions ���
����
 as before� It can be
seen that a solution u�x
 of ���
� ���
����
 is also a solution of the original system
���
����
� Based on this observation� a more convenient �superdomain� �� can
be chosen to replace the original domain � subject to the condition �� 
 �� The
boundary of the original domain therefore becomes an internal surface within ���
For example� a convenient superdomain for the present �D problem is a set of
appropriate rectangles that is su"ciently large to completely cover the original
domain with curved boundary �cf� Figure �	
� A set of centres can then be
regularly de�ned on this regular superdomain ��� The collocation points then
consist of all the centres and points used to de�ne the original boundary� For
example� a set of uniformly distributed collocation points can be easily de�ned
on �� and the boundary collocation points can be de�ned as the intersection
of the grid lines with the original boundary curve� Then� DRBFN and IRBFN
are designed using the regularly shaped domain with only regularly distributed
collocation points as RBF centres� The boundary conditions are decomposed into
basis functions of the new domain of the network and imposed at the boundary
points thus created�

For the purpose of illustration� let us consider the following Poisson�s equation

r�u � �� ���


on an elliptical domain with semi�major axis of length a � �	 and semi�minor
axis of length b � �� The homogeneous condition u � 	 is imposed along the
whole boundary� The exact solution is

ue�x�� x�
 � �
�

a�b�

a� � b�

��
x��
a�

�
x��
b�
� �

�
� ���


The problem was solved using multiquadric approximation scheme by Sharan et
al �����
� Due to the symmetry of this problem� the author considered only the
�rst quadrant of the ellipse using �� data points� The maximum error was found
to be ����e � �! and the accuracy was up to �ve signi�cant decimal places�
In the present methods� the rectangular superdomain used is �	 � � and the
density of centres is �� � �� which completely covers the elliptical domain �the
number of collocation points corresponding to the �rst quadrant is the same
as that of Sharan et al �����

� The comparison of Ne between DRBFN and
IRBFN solutions is depicted in Figure �� showing again that the IRBFN solution
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is more accurate than the DRBFN one� The solutions corresponding to larger
values of � are very accurate� For example� at � � ��	� the accuracies are up to
four signi�cant decimal places for DRBFN results and eight signi�cant decimal
places for IRBFN results with maximum errors being ����e� �! and ����e� �!
respectively� To further demonstrate the accuracy of the methods the norm of
error is calculated at �� random points� which is ������e�� and �����e�� for the
DRBFN and IRBFN procedures respectively� The maximum error is ����e� �!
and ���	e � �! for the DRBFN and IRBFN procedures respectively�

��� Random collocation points

In the examples discussed so far the centres are also the collocation points in the
case of regularly shaped domains� In the case of irregularly shaped domains� extra
collocation points are generated on the curved boundary in order to accurately
describe the boundary of the domain� In this section the e
ects of randomness
of internal collocation points are investigated� Figure � illustrates the distribu�
tion of regular RBF centres and random collocation points� The RBF centres
are arranged on a regular grid and can be di
erent from the collocation points�
However� the set of collocation points can include the centres as a subset� The �D
example of x����� is reconsidered here with random collocation points� In order
to compare the present results with those of Kansa ����	b
 the same number of
internal random collocation points ��� points
 and the same boundary colloca�
tion points ��� points uniformly distributed
 are used as shown in Figure ��� The
centres �not shown
 are uniformly distributed with a density of �� �� Figure ��
shows that the present methods produce results which are more accurate than
that reported by Kansa ����	b
 for the same problem� Further improvements
can be achieved by including the centres in the set of collocation points as shown
in Figure ��� Note that this inclusion increases the number of collocation points
without changing the number of unknowns� Figure �� also shows that more ac�
curate results are obtained by increasing the centre density as well as including
the centres in the set of collocation points�

� Discussion

��� Types of DEs and accuracy of the IRBFN method

The scope of the present work is limited to the solution of linear ODEs and
linear elliptic PDEs� The results presented in earlier sections show that the
present DRBFN method yields similar accuracy to other methods found in the
literature� On the other hand� the present IRBFN method produces results which
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are several orders of magnitude more accurate than those associated with the
DRBFN method �accuracy is measured in terms of norm of error�
 The above
conclusion corresponds to the experimentally found �best� values of � in the
range of � to �	� Unfortunately� a theoretical determination of an optimal value
for � is� to our knowledge� not available� The better norm of error achieved in the
IRBFN method is also underlined by a smooth error distribution over the entire
domain as shown in Figures ����� where further comments can be found in the
captions� Although the error distribution for the IRBFN is seen to be smooth
in the present data�independent procedure �data�independent in the sense that
the centres are �xed and hence the kernel width is also �xed according to � for
a given �
� Van Hulle �����
 showed that the kernel�based maximum entropy
learning rule �kMER
 can achieve equiprobabilistic topographic map formation
for data�dependent nonparametric regression problems� The application of the
latter method to the numerical solution of DEs will need further investigation in
future work�

��� Why is the IRBFN method more accurate �

A formal theoretical proof of the superior accuracy of the present IRBFN method
cannot be o
ered at this stage� at least by the present authors� However� a
heuristic argument can be presented as follows� In the direct methods� the starting
point is the decomposition of the unknown functions into some �nite basis and
all derivatives are obtained as a consequence� Any inaccuracy in the assumed
decomposition is usually magni�ed in the process of di
erentiation� In contrast�
in the indirect approach the starting point is the decomposition of the highest
derivatives present in the relevant DEs into some �nite basis� Lower derivatives
and �nally the function itself are obtained by integration which has the property
of damping out or at least containing any inherent inaccuracy in the assumed
shape of the derivatives�

��� RBFN and FFNN algorithms

The architecture of the present RBFNs consists of just one hidden layer in con�
trast with the usually multi�layered FFNNs �of the back�propagation multi�layer
perceptron �MLP
 type
� Furthermore� as pointed out by Haykin ������ p���
�
the RBF network and the MLP have totally di
erent arguments for their ac�
tivation functions and the MLPs construct global approximations to nonlinear
input�output mapping in contrast to local approximations in the case of the RBF
networks� Consequently� in terms of �training�� the present RBFN methods result
in a direct system of linear algebraic equations in the unknown weights whereas
the FFNN method relies on an iterative algorithm �e�g� back�propagation
 for
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determining the weights from some initial guess� Although back�propagation al�
gorithm for the FFNN method is computationally e"cient� it su
ers from the
problem of local minima �Haykin� ����� pp�������
 and therefore convergence
to the true solution is a very di"cult issue in the case of FFNNs �for example�
the results of Dissanayake and Phan�Thien �����
 show that their FFNN method
for the problem considered in x����� required �			 iterations for convergence
�
The results presented show that the system of algebraic equations becomes ill�
conditioned at large �� which is generally observed by other authors �Zerroukat
et al� ����
� Too small � values correspond to very localised approximation and
when � is too large the kernel becomes too �at� loosing its ability to approxi�
mate� and therefore heuristically these two extremes would result in sub�optimal
network performance as observed experimentally in this work� Even when the
value of � is in the �optimal� range� some peculiarities in the Ne�� curve are
observed� Despite this peculiar behaviour� the IRBFN results are better than
the corresponding DRBFN results� The reason for this peculiar behaviour is not
clear� However� the results shown here indicate that the sudden drop in the Ne��
curve �which represents a large improvement in accuracy
 is due to a fortuitous
combined e
ect of the centre density and the value of �� As the centre density
increases� this sudden drop disappears and the accuracy is better over the whole
of the �optimal� range of � for the IRBFN method �Figure �b
� The second pe�
culiar behaviour is the oscillation observed at the tail of the Ne�� curves� which
is also due to the combined e
ect of the centre density and the � value� However�
the reason here is probably due to the numerical ill�conditioning of the system
matrix� This explanation is supported by the observation that the system matrix
size for the IRBFN method is slightly more than twice the size of the DRBFN
system matrix� leading to an earlier occurrence of the oscillatory behaviour as
� increases �Figure �a
� These peculiar behaviours can be eliminated with in�
creasing centre density� however� at the expense of the freedom to choose � in
the sense that the range of optimal � value is narrowed� Thus the present RBFN
algorithms are stable for a range of � value� provided that the centre density is
su"cient� up to some critical value of � above which the system matrix becomes
nearly singular� A theoretical relationship for the balance between centre density
and the value for � requires formal investigation beyond the scope of the present
work�

��� Other types of DEs

In principle� the present RBFN methods can be applied to nonlinear DEs� How�
ever� the nonlinearity necessitates an iterative solution procedure� For example�
the coe"cients in the DEs can be estimated using the data obtained from a pre�
vious iteration and become constant in the current iteration� For time�dependent
problems� the method can be extended by treating the time derivatives with �nite
di
erence techniques and the resultant method is still mesh�free� The investiga�



Solving DEs using MQ RBFNs ��

tion associated with the above discussion is beyond the scope of the present paper
and will be carried out in the near future�

� Concluding Remarks

New robust and highly accurate element�free procedures based on MQ RBFNs
for solving DEs are discussed in this paper� The ease of preparation of input data
�i�e� only discrete RBF centres and collocation points� which could be randomly
or regularly distributed� are required
� robustness of the methods �stability over
a wide range of �
 and high accuracy of the solution �norm of error of O���	e��

at least for the IRBFN method with optimal � value
 make the method very
attractive in comparison with conventional methods such as the FDM� FEM�
FVM and BEM� Although the DRBFN method yields somewhat inferior norms
of error of O���	e � �
 �with optimal � value
� the mesh�free nature still makes
the method attractive� Unlike FFNN method� the present procedures are not
iterative and hence more e"cient� In all the tests carried out� with the same
centre density� the indirect RBFN procedure achieves better accuracy than the
direct RBFN procedure over a wide range of � and hence the choice of RBF width
is less critical in the case of the IRBFN procedure� Furthermore� the IRBFN
solution is improved signi�cantly with increasing centre density� which indicates
that the IRBFN procedure is well�behaved with respect to �mesh re�nement��
Both regularly shaped and irregularly shaped domains can be handled with ease�
Further developments of the present procedures and their applications in solving
large scale problems in several science and engineering �elds are under way and
the results will be reported in the near future�
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Figure �� RBF centres and collocation points� Legends �� RBF centre and ��
collocation point� RBF centres are regularly distributed for best results while
collocation points can be random�
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Figure �� Solution of r�u � ���	� sin�	x
� plots of the exact solution and the
approximate solutions obtained from DRBFN and IRBFN procedures at some val�
ues of �� The centre density is �	 and uniform� The results show that the DRBFN
method does not achieve an accuracy comparable with the IRBFN method until
� is larger�
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Figure �� Solution of r�u � ���	� sin�	x
� comparison of Ne between DRBFN
and IRBFN procedures� The centre density is �	 and uniform� The IRBFN
method performs better than the DRBFN method but it exhibits some peculiar
behaviour at certain value of �� Both methods encounter singular system matrix
at large �� Further explanation of these behaviours is given in later examples�
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Figure �� Solution of r�u � �ru � �u � exp��x
� plots of the exact solution
and the approximate solutions obtained from DRBFN and IRBFN procedures at
some values of �� The centre density is �	 and uniform� The results show that
the DRBFN method does not achieve an accuracy comparable with the IRBFN
method until � is larger�
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Figure �� Solution of r�u � �ru � �u � exp��x
� comparison of Ne between
DRBFN and IRBFN procedures� The centre density is �	 and uniform� The
IRBFN method performs better than the DRBFN method� Both methods en�
counter singular system matrix at large �� Further explanation of this behaviour
given in later examples�
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Figure �� Solution of r�u � sin�	x�
 sin�	x�
� comparison of Ne between FFNN�
DRBFN and IRBFN procedures with some centre densities� � � �� �	 � �	 and
�	 � �	� Solid line� FFNN� dashdot line� DRBFN and dashed line� IRBFN�
The FFNN results are taken from Dissanayake and Phan�Thien �����
� When
the centre density is lower� the network ability to approximate is more limited
and the peculiar sudden drops in the norm of error appear to be fortuitous�
General improvement in accuracy is achieved with increasing centre density as
shown However the onset of singular condition occurs sooner as the centre



Solving DEs using MQ RBFNs ��

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

10
1

0 1 2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

�

N
e

N
e

a� Case of DRBFN

b� Case of IRBFN

Figure �� Solution of r�u � sin�	x�
 sin�	x�
� e
ect of centre density on Ne of
DRBFN and IRBFN results� Dashdot line� density of �� �� dashed line� density
of �	 � �	 and solid line� density of �	 � �	� In this plot the behaviours of the
DRBFN and the IRBFN methods are better contrasted� The peculiar sudden
isolated improvements in the norm of error generally disappear with increasing
centre density in both methods� However� the performance of the IRBFN method
generally improves over the whole range of � whereas the DRBFN method does
not signi�cantly improve until � � ��
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Figure �� Solution of r�u � �
� ���
 exp�
x� ��x�
� comparison of Ne between
DRBFN and IRBFN procedures with data densities� ���� ���� ������ Dashdot
line� DRBFN and dashed line� IRBFN� General improvement in accuracy is
achieved with increasing centre density as shown� However� the onset of singular
condition occurs sooner as the centre density increases�
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Figure �� Solution of r�u � �
� � ��
 exp�
x� � �x�
� e
ect of data density on
Ne of DRBFN and IRBFN results� Dashdot line� density of � � �� dashed line�
density of � � � and solid line� density of �� � ��� In this plot the behaviours
of the DRBFN and the IRBFN methods are better contrasted� The performance
of the IRBFN method generally improves over the whole range of � whereas the
DRBFN method does not signi�cantly improve until � � ��
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Figure �	� Regularly extended domain� In the present work� a regularly shaped
domain is de�ned as a rectangular region in �D or a parallelepiped region in �D�
For example� a �D regular domain is de�ned by a � x� � b� c � x� � d� where
a� b� c� d are constant� A domain that cannot be de�ned as above in any Cartesian
coordinate system is called irregular� The �gure illustrates the method of dealing
with irregular domains by a containing it in a convenient set of regular domains�
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Figure ��� Poisson�s equation in an elliptical domain� comparison of Ne between
DRBFN and IRBFN procedures�
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Figure ��� Random internal collocation points for the solution of r�u �
�
� � ��
 exp�
x� � �x�
� Legends �� internal random point and �� bound�
ary point� For the purpose of comparison with the results of Kansa ����	b
� the
same number of collocation points are used� however the randomness cannot be
made the same�
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Figure ��� Solution of r�u � �
����
 exp�
x���x�
� Comparison of Ne between
Kansa�s� DRBFN and IRBFN results �random collocation points
� Although
Kansa�s result �Kansa� ���	b
 is not a function of �� it is shown at all values of
� for comparison with the present results� The IRBFN method is much more
accurate and stable over a wider range of � values�
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Figure ��� Solution of r�u � �
� � ��
 exp�
x� � �x�
� E
ect of centre density
on Ne of IRBFN solution� The top curve corresponds to the case where the
collocation points are random and disjoint from the set of centres� For the other
cases� the legend describes the density of centres which together with the ��
random points constitute the set of collocation points� Thus the set of centres is
a subset of collocation points�
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a� Case of DRBFN

b� Case of IRBFN

Figure ��� Error in the solution of r�u � sin�	x�
 sin�	x�
� the numerical solu�
tions are obtained with � � � in both DRBFN and IRBFN methods� Absolute
error is used instead of relative error because the exact solution vanishes in cer�
tain regions of the domain� For the IRBFN� the error distribution is seen to be
smoother and particularly the error is smaller along the boundary in comparison
with the case of DRBFN�
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a� Case of DRBFN

b� Case of IRBFN

Figure ��� Error in the solution of r�u � �
����
 exp�
x���x�
� the numerical
solutions are obtained with � � � in both DRBFN and IRBFN methods� Per�
centage relative error is used in the plot� For the IRBFN� the error distribution
is seen to be smoother and particularly the error is smaller along the boundary
in comparison with the case of DRBFN�
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a� Case of DRBFN

b� Case of IRBFN

Figure ��� Error in the solution of r�u � ��� the numerical solutions are
obtained with � � � in both DRBFN and IRBFN methods� Percentage relative
error is used in the plot� Since the relevant domain here is elliptical� the error
outside this domain is of no interest and arbitrarily set so that the relevant
data can be seen in the plot� For the IRBFN� the error distribution is seen to
be smoother� Although not shown� the error is smaller along the boundary in
comparison with the case of DRBFN�


