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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Frost damage impacts the financial sus
tainability of spring wheat production.

• We tested a new frost index insurance 
based on a heating degree days which 
enables farmers to optimally sow.

• Crop simulation indicate yield gains in 
all locations and show a frost index in
surance contract can secure increased 
returns.

• Integrating frost index insurance with 
optimal cropping reduces financial im
pacts and enhances income stability.
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A B S T R A C T

Context: Losses due to frost undermine the financial sustainability of growing spring wheat, which is often 
managed by the late sowing of crops. While late sowing may reduce frost risk, it can compromise yields due to 
increasing risks of heat and drought stress later in crop development.
Objective: To develop and test a novel targeted frost index insurance cover called the heating degree day tem
perature minimum call option, which allows farmers to plant earlier and increases their chances of attaining 
higher yields while also financially protecting them in case of a frost event.
Methods: The potential value of the insurance was investigated using crop simulation modelling. Based on the 
integration of the Agricultural Production Systems sIMulator (APSIM) modelling framework and index insurance 
structures for 22 frost-affected farms over 40 years in Australia’s wheat growing regions, we (i) determined the 

* Corresponding author at: Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
E-mail addresses: jonathan@celsiuspro.com.au (J. Barratt), Jarrod.Kath@usq.edu.au (J. Kath), Shahbaz.Mushtaq@usq.edu.au (S. Mushtaq), Brian.Collins@unisq. 

edu.au (B. Collins), karine.chenu@uq.edu.au (K. Chenu), j.christopher@uq.edu.au (J. Christopher), duc-anh.an-vo@unisq.edu.au (D.-A. An-Vo). 

Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

https://doi.org/10.1016/j.agsy.2025.104306
Received 3 October 2024; Received in revised form 25 February 2025; Accepted 3 March 2025  

Agricultural Systems 226 (2025) 104306 

Available online 25 March 2025 
0308-521X/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:jonathan@celsiuspro.com.au
mailto:Jarrod.Kath@usq.edu.au
mailto:Shahbaz.Mushtaq@usq.edu.au
mailto:Brian.Collins@unisq.edu.au
mailto:Brian.Collins@unisq.edu.au
mailto:karine.chenu@uq.edu.au
mailto:j.christopher@uq.edu.au
mailto:duc-anh.an-vo@unisq.edu.au
www.sciencedirect.com/science/journal/0308521X
https://www.elsevier.com/locate/agsy
https://doi.org/10.1016/j.agsy.2025.104306
https://doi.org/10.1016/j.agsy.2025.104306
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2025.104306&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Sowing
Management practices

optimal sowing date and potential yield benefits, (ii) estimated the yield impact of frost for crops sown on that 
date, and (iii) examined the utility of index-based frost insurance options that may financially protect farmers 
from frost risk if they sow on the optimal date, assuming they sow and insure their crops every year.
Results and conclusions: On all farms modelled, gains were made on those sowed on the optimal date. Where frost 
occurred regularly, the use of the targeted frost index helped secure increased returns and, therefore, benefits. 
The targeted integration of the frost index insurance with optimal sowing dates, especially for frost-prone re
gions, may be an important strategy for reducing financial impacts and enhancing income stability.
Significance: The use of the targeted frost index where frost occurred regularly could help secure increased returns 
and, therefore, benefits to farmers and the wider community. The targeted integration of the frost index in
surance with optimal sowing dates, especially for frost-prone regions, may be an important strategy for reducing 
financial impacts and enhancing income stability in frost-affected food bowls globally. We are not aware of any 
similar study that has been conducted.

1. Introduction

Extreme cold weather has a major impact on productivity, which 
translates to reduced yields (Lesk et al., 2016). These reduced yields 
have financial consequences not only on the individual farmer’s income 
but also on the up- or downstream income of stakeholders in the local 
economy. For wheat crops, frosts occurring after flag leaf emergence and 
around anthesis can be devastating for the grower. Extreme frost events 
in wheat production in Australia, as well as globally, represent a sig
nificant risk that needs to be managed to achieve more profitable out
comes for the growers and to ensure food security (Barlow et al., 2015).

The effects of frost in agriculture have been extensively researched 
both internationally (Budong et al., 2010; Kalma et al., 1992; Porter and 
Gawith, 1999; Woldendorp et al., 2008) and domestically in Australia 
(Barlow et al., 2015; Crimp et al., 2016; Zheng et al., 2015a). Zheng et al. 
(2015a) estimated the annual yield loss in Australia due to frost to be 
about 10 % of gross production, which results in $700 million in eco
nomic losses each year. Frost damage in wheat is usually spatially var
iable, as it is influenced by factors such as temperature, soil type and 
colour, soil moisture, cloud cover, wind speed, topography, crop species, 
crop nutrition, crop density, and sowing time (Anderson and Garlinge, 
2000). Managing frost is a balancing act for the farmer. If the farmer 
sows early, they risk flowering in the high frost risk window, while late 
sowing risks yield loss due to terminal heat and drought stress (Chenu 
et al., 2013; Zheng et al., 2012; Ababaei and Chenu, 2019, 2020; Crimp 
et al., 2016; Flohr et al., 2017, 2018). Despite the warming in climate, 
farmers have increasingly been affected by frost (Zheng et al., 2015a; 
Collins and Chenu, 2022) and will be confronted by this problem for 
decades to come (Collins and Chenu, 2021). In the eastern Australian 
grain regions, the yield loss attributable to frost, including the loss due to 
delayed sowing strategies, was estimated to be as high as 38 % for mid- 
flowering cultivars (An-Vo et al., 2018; Zheng et al., 2015a).

The most commonly employed frost risk management strategy to 
maximise yield has been to sow crops late to delay the heading, flow
ering, and grain fill stages until after the main frost risk period (Frederiks 
et al., 2011, 2015; Fuller et al., 2009). Growers turn to this phenological 
solution to manage frost risk, which comes down to choosing the wheat 
variety and the timing to sow (Collins and Chenu, 2021; Flohr et al., 
2018; Zheng et al., 2012). However, risk-averse growers tend not to sow 
at the optimal sowing date for yield potential to avoid frost damage. 
Crop insurance enables farmers to take calculated risks by adjusting 
sowing dates, potentially resulting in higher yields (Nguyen et al., 
2024). It has been important for farmers to sow their crop at the optimal 
time for two reasons. First, sowing optimally provided them with the 
potential for greater tonnage and, hence, greater income, although it 
came with a risk. Second, knowing the potential for greater income, the 
purchase of insurance is less burdensome. In all the farms, sowing 
optimally provided a net gain to the farmers (APSIM), including the cost 
of insurance. Therefore, sowing at the optimal long-term sowing date for 
yield potential and a targeted index insurance structure may represent 
an innovative risk management solution for growers. This approach for 
managing frost risk may encourage growers to sow crops at the optimal 

time to increase yield while insuring their crops against potential losses 
due to frosts. To our knowledge, this approach has not been investigated 
previously.

Crop insurance can help reduce the financial impact of frost. Two 
types of insurance can be used: indemnity-based insurance and non- 
indemnity insurance. Indemnity-based insurance refers to an insurance 
policy that has an insurable interest. For example, the valued damage 
caused by hail, in which case the loss is evaluated by an assessor after the 
fact. Non-indemnity insurance refers to insurance that proscribes a 
contractual loss amount to be paid once an event occurs, where no 
assessment is required. Indemnity-based insurance products for frost are 
currently either not available in Australia or too expensive. For non- 
indemnity insurance, index insurance solutions show potential. How
ever, as pointed out by Dalhaus et al. (2018), the current index insurance 
designs do not adequately account for the critical stages of crop growth. 
Furthermore, in their work on addressing the use of index insurance for a 
drought affecting winter wheat during anthesis in Europe, Dalhaus et al. 
(2018) found that incorporating adjustments for the phenological stages 
could reduce the temporal basis risk inherent in using index insurance 
and could generally improve the attractiveness of using index insurance 
to manage weather risk and thus the farmer’s income. Temporal basis 
risk is one of three to consider when structuring index insurance. Tem
poral basis risk refers to the risk of timing when a structure should start 
and finish. An index insurance design incorporating changes in frost risk 
during different phenological stages may increase the farmer’s income 
and represent a way for growers to maximise profitability. Hence, 
sowing in the optimal window and then managing frost risk via index- 
based insurance may be a viable option.

Frost impact can occur at all stages of crop development, but in 
wheat in Australia it is particularly damaging starting from flag leaf 
emergence Zadoks growth (Z39; Zadoks et al., 1974), around 25 days 
before flowering until ~10 days after anthesis (Zadoks growth stage 
Z69). In this research, we examined a novel index insurance structure 
that covers two types of frost risk, which we refer to as ‘stem frost’ and 
‘head frost’. First, ‘stem frost’ refers to frost that kills the flowering 
spikes, which can occur when plant temperatures drop below approxi
mately − 5 ◦C (Bell et al., 2015; Flohr et al., 2017; Frederiks et al., 2015; 
White and Edwards, 2007). Plant temperatures of − 5 ◦C may occur 
when temperatures measured in the standard meteorological Stevenson 
screen are between − 2 ◦C and − 1 ◦C. However, there is no direct 
relationship between the temperature measured in the Stevenson screen 
and that of the actual plant (Frederiks et al., 2011, 2015; Fuller et al., 
2009). Second, ‘head frost’ refers to an event that can occur when screen 
temperatures drop below 0 ◦C ~ 10 days after anthesis has commenced. 
This is a critical period for the grain set, and if the temperature drops, 
then this may result in reduced grain numbers.

The primary research question is whether crop insurance strategies, 
combined with optimal crop management to increase yield, could sta
bilise income when frosts occur and increase income during non-frost 
periods(Christopher et al., 2016)(Barnett and Mahul, 2007)(Fig. 1). 
The study took an alternative approach to index design, compared with 
Dalhaus et al. (2018) and Conradt et al. (2015). First, the proposed 
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method follows similar lines with regard to phenology as Dalhaus et al. 
(2018) but differs in information about critical days, which are agro
nomically sourced directly at the farm and by an agronomist in this 
study. Second, the approach does not use growing degree days, as did 
Conradt et al. (2015), but rather threshold screen temperatures (i.e. 
targeted degrees) at two critical periods for frost sensitivity, namely (i) 
temperatures below 0 ◦C, − 1 ◦C, and − 2 ◦C from flag leaf emergence, 
depending on the test sites climatology, until the end of flowering and 
then (ii) less than 0 ◦C for 10 days when flowering begins. The overall 
risk period corresponds to the Zadoks growth stages Z39 to Z70.

We hypothesised that a farmer’s income would potentially increase if 
they sow during the optimal sowing window and then use index insur
ance to effectively compensate for frost damage should it occur (Bucheli 
et al., 2020; Thong et al., 2024) To test this, we took a sample of frost- 
prone farms representing the major grain growing regions of Australia 
and used crop simulation modelling for a standard cultivar (cv Hartog) 
to (i) determine the optimal sowing date at each studied location and the 
associated potential yield benefits compared with the current late sow
ing to reduce frost risk, (ii) estimate the long-term yield impact that frost 
has on crops sown optimally, and (iii) examine the utility of an index- 
based frost insurance option that may help to financially protect 
farmers from frost risk if they plant at the optimal sowing date for long- 
term yield (see Fig. 1). It must be noted that the aim of the study is 

illustrate the value of the insurance via a specific cultivar for a wide 
range of conditions (22 locations × 40 years = 880 environments).The 
approach could be expanded to look at particular farms and combine 
choices related to both cultivar (e.g. maturity type, frost sensitivity) and 
sowing date to minimise frost, heat and drought stress (Collins and 
Chenu, 2021; Flohr et al., 2017; Zheng et al., 2015a).

2. Materials and methods

2.1. Study region and climatic data

This research covered individual wheat farms across the Australian 
wheat belt. To achieve a good diversity of climatic conditions, the farms 
were selected in 22 locations (Table 1) within the three Grain Research 
and Development Corporation (GRDC)-defined agro-ecological regions: 
north, south, and west.

The Australian northern grain region, encompassing New South 
Wales (NSW) and Queensland (QLD), is characterised as having mainly 
vertosol clay soils with high water storage capacity and tropical, sub
tropical, and temperate environments. Farmers can grow both winter 
and summer crops, and many aim to produce wheat that is classified as 
high protein. We examined farms in the northern region, specifically in 
the sub-regions of QLD Central, NSW Central, NSW East, and QLD 

Fig. 1. Schematic showing potential actions by farmers regarding sowing dates and frost index insurance and the likely outcomes of these actions.
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Southeast, as well as the NSW and Victorian (Vic) Slopes (Table 1). The 
southern grain region is characterised by variable soils and a temperate 
climate. The yields are highly dependent on spring rains, and many of 
the soil types do not store water well, so the timing of the rain is critical. 
The studied farms in the southern region were in South Australia (SA), 
Vic Mallee, the SA and Vic Bordertown-Wimmera districts, and the Vic 
High Rainfall regions. Finally, the western region, which has low soil 
fertility, is classified as having a Mediterranean climate. The yields are 
determined by good winter and spring rains. The specific farms we 
studied in this region were in West Australia (WA) Central, WA Eastern, 
and the WA Sandplains.

The study region was further characterised using Bureau of Meteo
rology (BOM) frost day data. The BOM provides data on the number of 
days a year that the temperature drops below 0 ◦C. The BOM provides 
thematic maps covering regions that suffer from temperatures below 
0 ◦C and hence have the potential for frosts (BOMs Provide Key Climate 
Groups, 2025). To make the study relevant, climate data from farms 
located within these regions were analysed to ensure that temperatures 
dropped below 0◦ and were then reconciled against frost losses within a 
dataset of simulated yield. Twenty-two sites were identified as suitable 
for the frost index insurance structure and to represent the cropping 
zones in the Australian wheat belt (Chenu et al., 2013; Zheng et al., 
2015a).

2.2. Critical temperatures and phenological stages in the index insurance

The current study took an approach to index insurance design similar 
to that of Dalhaus et al. (2018) and Conradt et al. (2015), with the 
following modifications. First, the proposed method follows similar lines 
as Dalhaus et al. (2018) regarding crop phenology but differs in infor
mation about critical days, which are simulated with the wheat module 
of the Agricultural Production Systems sIMulator (APSIM) modelling 
framework (Zheng et al., 2015b; Holzworth et al., 2014; Keating et al., 
2003) here. APSIM is accessible by farmers and advisors (https://www. 
apsim.info/). Second, the approach does not use growing degree days as 
did Conradt et al. (2015) but rather threshold temperatures (referred to 
here as ‘targeted degree days’) at two critical periods approximately 
corresponding to the reported periods of vulnerability to stem and head 
frost damage.

The wheat development rate varies greatly depending on the geno
type and location, which affects temperature and other pedo-climatic 
factors. To model the effects of frost at critical developmental periods 

for this study, we postulated that in optimal growing conditions, 
anthesis of a mid-maturating variety typically occurs 150 days after 
sowing. Then, we counted back 25 days to approximate when the flag 
leaf emerged. From this date until 10 days after anthesis (i.e. a 35-day 
period), the crop was considered susceptible to stem frost and then 
head frost. In this study, stem frost is defined as frost that kills the spike, 
whereas head frost kills individual florets on the spike (Frederiks et al., 
2011).

We used two insurance options (described in more detail in Section 
2.4). One considered a 35-day critical period, including both stem and 
head frosts, with the risk period starting with the emergence of the flag 
leaf through booting, head emergence, and then anthesis and early grain 
filling (i.e. the Zadoks’ growth stages between Z39 and Z70; Zadoks 
et al., 1974). Zheng et al. (2015a) suggested that threshold temperatures 
of between − 2 ◦C and 0 ◦C, as measured by a Stevenson screen, during 
the 35-day risk period were often recorded when a stem or head frost 
would be likely. The second cover option focused solely on head frost. If 
temperatures dropped below 0 ◦C during the 10 days after anthesis, a 
head frost was likely. Both for stem and head frosts, a substantial loss of 
yield can occur at these critical stages of plant development. Therefore, 
we designed an insurance structure that incorporated phenological 
triggers relating to how the plant behaved at low temperatures. We 
believe this is the first step for the discussion on the use of index in
surance for frost in agriculture.

2.3. Crop simulation and climate data

To obtain representative data, the APSIM-wheat module (v7.10) was 
used to simulate cv Hartog’s phenology and yield in each of the 22 study 
locations using daily weather data from the SILO point-scale database 
(Jeffrey et al., 2001) for 40 years from 1980 to 2019. Representative soil 
types and management practices were chosen for each location 
following Chenu et al. (2013) and Collins and Chenu (2021). Although 
different wheat varieties have different characteristics, the study was 
illustrated for cv Hartog to assess the index-based frost insurance option 
in 40-year simulations across 22 locations.

APSIM is widely used to simulate biophysical processes in agricul
turally based production systems (e.g. Ababaei and Chenu, 2019, Aba
baei and Chenu, 2020; An-Vo et al., 2018; Chenu et al., 2017; Collins 
et al., 2021, Hammer et al., 2019; Zheng et al., 2018). Zheng et al., 
(personal communication) used a comprehensive validation dataset 
comprising 52 cultivars and 2958 observations from 202 sites, demon
strating that APSIM-Wheat can accurately simulate Hartog’s phenology 
(specifically, 50 % heading dates and Zadoks scores near flowering) with 
an RMSE of approximately 4 days (Zheng et al., 2015b). Reviews of 
APSIM’s performance show that it performs well for wheat, with a root 
mean square error < 1 t/ha across a range of environmental conditions 
(Hao et al., 2021).

We used a customised version of APSIM-Wheat (Zheng et al., 2015b; 
Chenu et al., 2019; Collins and Chenu, 2021), which estimated post- 
heading frost impacts on yield. To approximate the distribution of 
exposed heads from different tillers at susceptible post-heading stages, a 
yield multiplier was applied, starting at 1 (i.e. no yield loss) at the late- 
booting stage (Z45) and linearly decreasing to 0.1 (i.e. 90 % yield loss) 
by mid-heading (Z55), when most tillers would have reached the sus
ceptible post-heading stage (Z49). Maximum susceptibility was main
tained until the onset of dough development (Z80), with a constant yield 
multiplier of 0.1 for each day with a minimum temperature below 0 ◦C 
during Z49-Z80. Beyond Z80, the yield multiplier was gradually 
increased to 1, reaching full recovery by the end of dough development 
(Z89).

Crop simulations based on APSIM- Wheat were used to identify the 
best sowing dates and associated long-term yield for cv Hartog at each of 
the 22 studied locations. This assessment was conducted over a 40-year 
period using 10 different planting dates (March 11, March 27, April 10, 
April 26, May 10, May 26, June 11, June 27, July 11, and July 27) for 

Table 1 
Locations of farms assessed and their corresponding agro-ecological zones.

Farm Latitude Longitude Zone

Roma − 26.57 148.79 QLD Central
Dalby − 27.18 151.26 NSW Northeast/QLD Southeast
Dubbo − 32.24 148.61 NSW Northeast/QLD Southeast
Waikerie − 34.18 139.98 NSW Northeast/QLD Southeast
Gunnedah − 30.98 150.25 NSW Northeast/QLD Southeast
Gilgandra − 31.71 148.66 NSW Northeast/QLD Southeast
Narrabri − 30.32 149.78 NSW Northeast/QLD Southeast
Parkes − 33.14 148.16 NSW Central
Urana − 35.33 146.03 NSW Central
Wagga − 35.16 147.46 NSW/Vic Slopes
Lake Bolac (SE) − 37.71 142.84 Vic High Rainfall
S Walpeup − 35.12 142 SA/Vic Bordertown-Wimmera
Pinnarro − 35.26 140.91 SA/Vic Bordertown-Wimmera
Birchip − 35.98 142.92 SA/Vic Bordertown-Wimmera
Ceduna − 31.9 133.42 SA Vic Mallee
Hopetoun − 35.73 142.37 SA Vic Mallee
Balaklava − 34.14 138.42 SA Mid North-Lower Yorke Eyre
Roseworthy − 34.53 138.69 SA Mid North-Lower Yorke Eyre
Salmon Gums − 32.99 121.62 WA Sandplain
Lake Grace − 33.1 118.46 WA Central
Katanning − 33.69 117.56 WA Central
Kellerberrin − 31.62 117.72 WA Eastern
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each of the 22 studied locations. The date that produced the highest 
average predicted yield over 40 years was defined as the optimal sowing 
date (see Table 2).

We conducted two sets of APSIM simulations for all studied sowing 
dates. The first set predicted potential yield without frost impacts to 
determine the yield farmers could achieve if there were no frost events. 
The second set of APSIM simulations included frost impacts and pro
vided predicted yields that farmers could achieve with frost events. The 
difference between the predicted ‘non-frosted’ yield and the predicted 
‘frosted’ yield of crops is the potential yield lost due to frost, which was 
used to quantify the amount of income that would need to be covered by 
insurance.

2.4. Index insurance options

Index insurance is a non-indemnity type of insurance that requires no 
proof of loss. It is assumed and agreed between the buyer and the seller 
before the risk period that a financial loss will arise once certain events 
that pertain to the index occur. Risk periods, thresholds, and strikes are 
used to define when and how much a policy will pay. There are many 
international and domestic studies on the application and effectiveness 
of index insurance in agriculture (Adeyinka et al., 2015; Breustedt et al., 
2008; Gine, 2010; Conradt et al., 2015; Dalhaus et al., 2018; Dalhaus 
and Finger, 2016; Kath et al., 2019; Turvey and Mclaurin, 2012; Barnett 
and Vedenov, 2004. Here, we assumed that the grower would buy the 
insurance every year.

To calculate the insurance premiums, key findings from the studies of 
Kotlobovskii et al. (2018), Pietola et al. (2011), and Turvey (2001) were 
incorporated into the design. Kotlobovskii et al. (2018) suggested that 
the use of two parameters in the premium calculation may reduce the 
level of risk to the underwriter and, hence, reduce the premium to be 
paid while providing enough cover for the risk that the farmer wishes to 
cover. Pietola et al. (2011) and Turvey (2001) addressed basis risk 
during the growing season and noted that it was crucial to define critical 
periods of risk within the structure. The adoption of these findings in the 

structure’s design not only reduced premium value but also reduced 
basis risk by focusing on temperatures that were most crucial to the 
yield. The risk period used here corresponded to the 35 days when the 
crop was most susceptible to stem and head frost, as described above. Of 
the two components, Cover 1 addressed stem frost and had a threshold 
of either − 2 ◦C, − 1 ◦C, or 0 ◦C during the 35 days of frost risk, while 
Cover 2 addressed head frost and had a threshold of 0 ◦C during the 10 
days after anthesis.

The suggested frost index insurance aims to cover $300/ha of pro
duction costs, which is the average production cost in Australia, or 
$300,000 for a 1000-ha farm (Herbert, 2017). The calculation of the 
premium involved two heating degree day temperature minimum 
(HDDTmin) call option contracts. A heating degree day (HDD) is a cu
mulative measure in temperature degrees from a defined threshold over 
a nominated period. For example, a threshold defined as 0 ◦C and a 
payout of $50,000 per degree up to a maximum of $150,000 or 3 HDDs. 
In this example, if the temperature on day 1 of the critical period is 
− 1 ◦C, − 0.5 ◦C on day 2, and above 0 ◦C for the rest of the critical period, 
the number of HDDs is 1.5 ◦C, and the payout is 1.5 ◦C x $50,000 =
$75,000 (see Supplementary Table 1). The risk period commences on a 
date deemed to be when the flag leaf emerges and ends 10 days after 
anthesis. In reality, it is usually determined by an agronomist, but it was 
estimated by APSIM-Wheat in this long-term nationwide simulation 
study.

Furthermore, discretion was used in choosing the cover lengths in 
each structure to make the cover affordable in regions where there is a 
high frequency of frosts. Typically, if there are multiple frosts, then 
payouts would be frequent and the premium expensive. For example, by 
extending the cover length (i.e. reducing the payout per HDD), the 
premium is more affordable, which means that the thresholds and 
triggers remain in line with events of frost that cause financial loss.

2.4.1. Insurance premium calculations
The premium calculations were based on the return on risk meth

odology, where we had an expected loss, a probable maximum loss, 
payouts, volatility costs, and contract administration expense (see 
Henderson and Hobson, 2002; Jewson and Brix, 2005; Spicka and 
Hnilica, 2013; World Bank, 2011 for the premium calculation method
ology). Historical burn analysis (World Bank, 2011) was used to deter
mine the probable maximum loss, which was fixed at $300,000 on each 
site. Burn or expected loss analysis is a critical component of the pre
mium. It is the historical loss that a contract would have incurred over a 
predetermined time series.

In this research, 40 years of daily temperature and simulated 
phenology were used to estimate the HDDs for the risk period and the 
losses associated with a stem frost and a head frost. These losses were 
averaged over eight periods of 5, 10, 15, 20, 25, 30, 35, and 40 years 
from 1980 to 2020 (1980–1984, 1980–1989, 1980–1994, etc.). Then, 
these averages were averaged and added to the premium calculation.

The details of the premium calculation approach are provided below. 
We define the HDDTmin for a day as 

HDDTmin(t) = max{0,T − Tmin(t) } (1) 

where Tmin(t) is the minimum temperature of a day t, and T is a chosen 
temperature threshold (i.e. 0 ◦C, − 1 ◦C, or − 2 ◦C, depending on the 
cover chosen for stem frost (Cover 1), and 0 ◦C for head frost (Cover 2). 
Given that the contract runs over a period, a cumulative approach is 
adopted and summed. Hence, HDDTmin over a risk period is given by 

HDDTmin([t1, t2]) =
∑t2

t=t1

max{0,T − Tmin(t) } − φ (2) 

where [t1, t2] is the risk period, and φ is the strike level (i.e. the tem
perature value at which the index insurance option would start to pay 
out). A strike is used in a cumulative policy to determine when a policy 

Table 2 
Average yield gains from optimally sowing crops against the average yield gains 
on non-optimally sown crops.

Farm Average 
Yield 
(kg/ha)**

APSIM 
Optimal 
Date

Optimally 
Sown Yield 
(kg/ha)

Optimal 
Gain (kg/ 
ha)

Cash Gains 
(288/t)*

Roma 1586 26-Apr 1984 399 $86,080
Dalby 2594 10-May 2835 241 $69,474
Dubbo 2885 10-May 3651 766 $220,550
Waikerie 1419 10-May 1757 338 $97,437
Gunnedah 3552 26-May 4291 739 $212,934
Gilgandra 2677 10-May 3445 768 $221,126
Narrabri 2902 10-May 3619 717 $206,392
Parkes 3791 26-May 4589 798 $412,906
Urana 2516 26-May 2982 466 $237,617
Wagga 3535 11-Jun 4158 624 $179,626
Lake Bolac 3687 11-Jun 4777 1090 $314,007
Walpeup 1708 10-May 1748 40 $109,048
Pinnaroo 1704 10-May 2070 366 $105,348
Birchip 1645 10-May 2088 442 $233,824
Ceduna 500 10-May 653 152 $43,875
Hopetown 1675 26-May 2151 476 $136,960
Balaklava 1796 26-May 2447 652 $187,637
Roseworthy 2154 26-May 2973 819 $235,812
Salmon 

Gums
1057 26-Apr 1391 334 $96,178

Lake Grace 1229 26-Apr 1714 485 $139,703
Katanning 2256 10-May 3178 922 $265,403
Kellerberrin 1382 10-May 2062 680 $195,882

Averages 2193 2753 533
$159,900 
***

* Represents the average price of 40 years adjusted for inflation.
** The average yield of all the sowing dates tested.
*** Gain made from optimal sowing is $300/ton x 533 kg gained.
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starts to pay. In this research, no deductible was used (i.e. φ = zero).
The value of the financial loss due to frost damage for a particular 

year i (in AUD) is estimated by 

μi = HDDTmin,i([t1, t2])× χ (3) 

where χ (i.e., the tic value) is the value of the loss per HDD, expressed in 
AUD. The χ is discretionary and determined by the frequency of losses 
associated with the frost events occurring at each site over the risk 
period. The average value of the loss during a period from year 1 to year 
n (n = 40) is given by 

μ(1 to n) =

∑n

i=1
μi

n
(4) 

The standard deviation of loss in the same period is given by 

σ(1 to n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
μi − μ(1 to n)

)2

n

√
√
√
√
√

(5) 

The insurance option premium (P) is then calculated by the average 
values of the losses in five yearly incremental periods over 40 years. 
Then, these averages were further averaged, represented by 

P =
1
m
∑m

j=1
μ(1 to 5)j +

1
m

(
∑m

j=1
σ(1 to 5)j +

∑m

j=1
μ(1 to 5)j

)

×0.25 (6) 

where m is the total count of 5-year periods encompassed within the 
entire study duration. In the case of 40 years, m is 8. In line with com
mon practice in the insurance industry, 0.25 is a constant that captures 
volatility in payouts, as well as the transaction and administration costs 
of insurance. Thus, our premium estimates approximate real-world 
prices.

2.5. Financial benefits of index insurance options

To examine the efficiency of the HDDTmin policy relating to income, 
with and without crop insurance, five assessment criteria were exam
ined (Adeyinka et al., 2015; Kath et al., 2019;Mushtaq et al., 2017; 
Vedenov and Barnett, 2004). The criteria corresponded to (i) an 
assessment of the volatility of crop income through standard deviations, 
(ii) the measurement of whether insurance will increase farmer revenue 
in years with extreme frost conditions via a conditional tail expectation 
(CTE) approach, and (iii) an assessment of the extent to which a frost 
contract reduces downside risk (i.e. whether insurance minimises loss in 
poor years) via a mean root square loss (MRSL) approach. This study 
considers crop insurance as an innovative risk management tool instead 
of a reactive one and takes a novel perspective on the problem of climate 
risk management in cropping systems. Access to insurance enables 
farmers to take additional risks and aim for higher yields by adopting 
best management practices. In case of frost, farmers can plant during 
risky periods to maximise yield, and the frost risks will be taken care of 
by the insurance products. This way, farmers can target higher yields 
and income while covering risks through insurance.

It is worth noting that most academic studies assess fair premiums 
when analysing crop insurance solutions (Dalhaus et al., 2020; Kath 
et al., 2019). However, this study takes into account commercial pre
miums to ensure its relevance for growers. If we were to use fair pre
miums, then most study locations would show a relatively positive 
impact of the integrated approach.

2.5.1. Measuring income volatility via standard deviation
The difference in the standard deviation (STDV) between the wealth 

derived from frosted income was examined using 

Wwithout insurance = Ỹmax ×Price (7) 

The wealth derived from frosted income with insurance less the 
premium is 

Wwith insurance = Ỹmax ×Price+Payout − Premium (8) 

If using the insurance allowed for a reduction in the STDV of the 
wealth, then the insurance was considered beneficial, as it reduced 
volatility in earnings for the farmer.

2.5.2. Assessing benefits during extreme frost conditions via conditional tail 
expectation (CTE)

We used the Conditional Tail Expectation (CTE; Vedenov and Bar
nett, 2004)) method to calculate the potential loss in case of an extreme 
event. This method helps estimate the expected loss beyond a certain 
probability level. We compared the average incomes during the 50 % of 
the years with the lowest frosted yields. We examined the difference 
between the income with insurance payouts minus the premium cost, 
and the income without insurance. If the income was higher with in
surance less the premium than the income without insurance, then the 
insurance was considered beneficial.

2.5.3. Assessing downside risk reduction benefit via mean root square loss
The differences in the square roots of the average losses were 

calculated for the 50 % of years with the highest losses in terms of 
frosted income using the optimum sowing dates without insurance and 
then with insurance. In this study, Mean Root Square Loss (MRSL; 
Vedenov and Barnett, 2004) was based on average losses since the 
farmer would be concerned with below-average revenue. If using in
surance had a smaller MRSL value, then it meant that the insurance was 
efficient.

3. Results

3.1. Optimal sowing dates

Farmers tend not to sow in the optimal sowing window for yield to 
avoid the risk of damaging frost events at critical growth stages, which 
can have a devastating impact on yield and, subsequently, income 
(Frederiks et al., 2015). Optimal sowing has significant yield benefits, 
but the frost risk for most growers is considered too high. APSIM has 
estimated the yields for crops of cv Hartog sown on different dates: 11 
March, 27 March, 10 April, 26 April, 10 May, 26 May, 11 Jun, 27 June, 
11 July, and 27 July. The optimal sowing dates used in this study were 
those that produced the highest average predicated yields over 40 years 
when ignoring frost events (see Fig. 2, Table 2 and Supplementary 
Table 2). The gains on optimally sown crops (i.e. average yield differ
ence between the optimal sowing date and all other nine sowing dates) 
averaged over all the sites and years equalled 533 kg/ha, which showed 
an average income gain of $159,900 over 40 years or an average gain of 
$160/ha. The largest gain of 922 kg/ha over all the sites was recorded 
for Katanning, WA (Table 2).

In the absence of frost, gains can be made by sowing at the optimal 
sowing date, although planting at that date increased the risk of frost. 
Frost-induced losses in long-term average yields ranged from as high as 
92 % in Roma to as low as 13 % at Lake Bolac, with the average loss 
across all sites at 39 % (see Fig. 2c). Furthermore, the frequency of frosts 
affecting optimally planted crops ranged from 2 % of the years at Lake 
Bolac to 61 % at Salmon Gums, with the average across all sites at 9 %. 
When planted at the optimal sowing date, frosted income at Lake Bolac 
improved by 2.6 % when frost insurance was used, while Salmon Gums’s 
income decreased by 16.3 %. Therefore, adopting a correctly timed 
strategy or adopting a strategy using the phenology of the plant could 
yield a better outcome for the farmer.

Table 3 shows the APSIM-predicted frosted and non-frosted yields at 
Gilgandra, NSW. Based on the APSIM simulations, the suggested optimal 
date to sow cv Hartog in the absence of frost was 10 May (Fig. 3). If 
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Hartog was sown on this date, an average yield without frost of 3445 kg/ 
ha over 40 years could be expected. Compared with the other nine 
sowing dates simulated, this corresponded to an increased yield poten
tial of 768 kg/ha, on average. With this optimum sowing date, yield loss 
due to frost was estimated to be 44 %. However, the average yield at 
Gilgandra of 3445 kg/ha for the optimal sowing date over 40 years 
dropped by 61 %, which corresponds to a frosted yield of 1347 kg/ha. 
Therefore, the use of frost insurance is important to insure against a 
financial loss associated with a frost if the crop is sown in the optimal 
window. The same analysis was repeated in the 21 other locations.

3.2. Index insurance premiums

Index-based frost insurance products were developed based on 
HDDTmin contracts (see Supplementary Table 1). The premiums were 
based on predicted losses associated with frosts, and the structure 
comprised two insurance cover options. One option covered stem frost 
and had a threshold of either − 2 ◦C, − 1 ◦C, or 0 ◦C during the 35 days of 
risk period. The other covered head frost with a threshold of 0 ◦C during 

Fig. 2. APSIM-simulated dataset showing the frost summaries for the farms. Mean predicted ‘non-frosted’ (a) and ‘frosted’ (b) yields simulated by APSIM for the 
optimal sowing dates for selected farms at 22 locations across the Australian wheatbelt. Simulations were conducted using 40 years of historic climate data with 
sowing at the optimal sowing date specific to each location. The yield loss at each site is represented in (c), and the mean number of frosts when temperatures were 
less than 0 ◦C is shown in (d). The values represent the mean for 40 years of simulations at each site.

Table 3 
Expected yield for the studied sowing dates showing non-frosted and impacts of 
frost and heat at the site at Gilgandra, NSW. Simulations were conducted over 
40 years with APSIM-Wheat.

Date 
Sown

Average Predicted 
Non-Frosted Yield (kg/ 
ha)

Average Predicted Frosted 
Yield  
(kg/ha)

Loss 
(%)

11-Mar 1592 44 97 %
27-Mar 2094 0 100 %
10-Apr 2654 0 100 %
26-Apr 3219 391 88 %
10-May 3445 1347 61 %
26-May 3259 2803 14 %
11-Jun 2953 2862 3 %
27-Jun 2749 2723 1 %
11-Jul 2556 2556 0 %
27-Jul 2247 2247 0 % Fig. 3. Expected yields for different sowing dates with (orange line) and 

without (blue line) frost and heat impacts. Predicted yields for 10 sowing dates 
with (orange line) and without (blue line) frost impacts at Gilgandra. The data 
correspond to the average of 40 years of simulations with APSIM. The peak in 
the blue line showing approximately 3500 kg/ha on 10 May is the optimal 
sowing date. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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the 10 days after anthesis.
To illustrate this, for a maximum payout of $300,000, which is the 

equivalent of the standardised input costs of $300/ha for a 1000-ha 
farm, Cover 1 (stem frost) has in total $150,000 assigned to this risk 
and between $150,000, $75,000, $50,000, and $30,000 for each HDD 
(cover length), depending on the occurrences and intensity of the his
toric frosts (see Supplementary Table 3). For example, in Salmon Gums, 
WA, 61 occurrences of frost were recorded over the course of 40 years. 
To make the cover economical, the threshold for stem frost was − 2 ◦C, 
incorporating a strike of 2 and a cover length of $50,000. Likewise in 
Birchip, Vic, there were four occurrences of frost. The threshold was 
0 ◦C, there was 1 strike, and the cover length was $30,000. Similarly, 
Cover 2 (head frost) also has $150,000 assigned to this risk and between 
$50,000 and $150,000 for each HDD, once again depending on the 
frequency of the historic frost events. With an HDDTmin index insurance 
policy, the farmer will receive a fixed amount for every HDD above 0 up 
to the maximum of $300,000 during the risk period (see Supplementary 
Table 1).

Fig. 4 shows the calculated premium, total payouts, and mean dif
ferences for each studied location based on a 1000-ha farm. Panel (4a) 
shows that Dubbo had the highest estimated premium at 12.1 % of the 
sum insured or $42.2/ha, while Narrabri had the lowest premium at 1.5 
% or $5.3/ha of the sum insured. It is interesting to note that Dubbo had 
16 occurrences of frost whilst Narrabri had only 5, which intuitively 
makes sense as the risk of frost is higher for Dubbo. The average pre
miums were 6.6 % or $23.2/ha. From an insurance industry perspective, 
these premium estimates were in line with index insurance premiums 
sourced in Australia for similar covers.

Panel 4b shows the total payouts that each farm has claimed over 40 
years; Dubbo naturally has the highest claims and highest premium. But 
Wagga, which has the second highest claim, has had more historical 
frost events ie 20 events than Dubbo, yet the premium value was 8.7 %, 
significantly lower than Dubbo. There were two main reasons for this. 
The thresholds for the cover in each case were the same, and strikes were 
identical in each case. The first reason for the difference had to do with 
the actual temperatures between the two sites. The Dubbo farm suffered 
from more low temperatures than Wagga. The lowest recorded tem
perature at Dubbo was − 5.5 ◦C, whilst at Wagga, it was − 2.5◦. The 
second reason was that Dubbo suffered from more recent frosts than 
Wagga, and hence, these losses had a priority in the pricing algorithm.

Panel 4c shows the difference in the premiums paid over claims made 
over the 40 years. In most cases, this showed that the difference was 
negative towards the farmer and favoured the underwriter. Intuitively, 
this makes sense as the underwriter needs to factor in costs associated 
with the risk, profit margin and management of the cover. Where it was 
not the case it could be construed as a cover that was mispriced. Albeit 
the annual cost of having the cover towards the farmer as a result of the 
difference was marginal compared to the other expenses associated with 
the farming. Indicating that the cover was worthwhile.

3.3. Efficiency of frost index insurance options

3.3.1. Measuring income volatility
The income volatility was measured by calculating the Standard 

Deviation (STDV) with and without insurance. The differences in STDV 
between frosted income for crops sown optimally indicated that eight of 
the 22 sites were predicted to have reduced volatility in earnings if an 
HDDTmin contract was purchased annually for 40 years (see Fig. 5; 
Supplementary Table 4). The blue-coloured locations show positive ef
fects on reducing income volatility). Reducing the volatility of earnings 
is a key motivator for insurance, as it means that cash flow can be 
constant. This is more important for farms that are highly leveraged, as 
there is an interest component to be considered.

3.3.2. Assessing benefits during extreme frost conditions
We utilised the Conditional Tail Expectation (CTE) method to anal

yse the income with and without insurance. Looking at the average in
come in 50 % of the years with the largest disparity between incomes 
with and without frost, the findings revealed that only five out of the 22 
farms were better off (see Fig. 6 and Supplementary Table 5). Income 
with insurance in another 10 farms was slightly worse by 5 % or indif
ferent, which suggested that small refinements in the structure resulting 
in reduced premiums could cause efficiency gains. As frosted income 
plus insurance less payouts were higher than frosted income, the use of 
insurance could improve the farmer’s income.

The results suggested that the use of the HDDTmin call structure could 
hedge the effects of frost. However, it needs to be further refined to 
benefit all regional frost-affected areas. The need for greater refinement 
falls in line with suggestions from Adeyinka et al. (2014), who con
ducted CTE tests for over 40 years for rainfall index insurance for wheat. 
Their results indicated that the insurance was positive in QLD and 
negative in WA, further highlighting the spatial elements of the useful
ness of weather-based index insurance. Furthermore, research on using 
weather-based index insurance for sugar in Tully, QLD, showed that CTE 

Fig. 4. Insurance premium results showing total premiums paid, total payouts, 
and mean differences over 40 years. Calculated premiums paid, payouts, and 
mean differences over 40 years for the 22 studied locations.
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on a rainfall index was efficient (Kath et al., 2018). Interestingly, the 
conclusion from Kath et al. (2018) in Tully, QLD, may point to the 
spatial nature of the effectiveness of index insurance in that it can be 
effective for a small, clearly defined region but is inconsistent in a wide 
range of environments. The reasons why index-based frost insurance 
works in some regions but not in others should be explored in detail.

3.3.3. Assessing downside risk reduction benefits
Based on the MRSL analysis, related to the average losses in 50 % of 

the highest loss years over 40 years without insurance and with insur
ance, the results showed, once again, that the insurance was of limited 
efficiency across all the frosted regions. A negative change in variability 
implied that HDDTmin was risk reducing and, therefore, beneficial. Out 
of the 22 test farms, six had negative values, indicating that the insur
ance was efficient (Fig. 7 and Supplementary Table 6).

Although it was not only about frost but included multiple weather 
risks, Vedenov and Barnett’s (2004) study on the efficiency of weather- 
based index insurance for corn measured by MRSL showed that the use 
of contracts reduced risk exposure for the grower by 54.4 % on average. 
This was a greater reduction than the results of this study, which showed 
that only 27.3 % of the contracts were efficient, based on MRSL analysis. 
However, one important aspect when compared with this study was the 
drastically different performance between contracts. Vedenov and Bar
nett (2004), further suggested that optimal weather derivatives required 
complicated combinations of weather variables to achieve reasonable 
fits between weather and yield. Kath et al. (2019) also found that the 
MRSL test for efficiency for the use of weather-based index insurance for 
wheat contracts differed between the regions analysed.

4. Discussion

This study was conducted to develop insurance options and test them 
in a simple case study, i.e. for one wheat cultivar (cv Hartog) using a few 
sowing dates (15-d intervals) with effects of frost impacts modelled 
based on expert knowledge (Zheng et al., 2015b), and for a selection of 
environments (22 locations and 40 years of historical data). To have 
greater value to farmers, the developed approach could be applied to 
specific farms, and for best management practices related to both cul
tivars (i.e. maturity type and frost sensitivity, e.g. Celestina et al., 2023; 
Zheng et al., 2015a) and sowing dates (1-d intervals). Simulations could 
also be conducted to assist farmers adapting their management practice 
to each season, e.g. depending on available soil moisture at sowing (e.g. 
Zheng et al., 2018).

4.1. Summary of financial efficiency

A summary of the financial efficiency analyses is presented in 
Table 4. The financial efficiency analysis of using the HDDTmin call 
option indicated that protection against frost damage could theoretically 
be adequately managed through HDDTmin if there was a high frequency 
of frost events in which the resulting yield losses were high (>60 %). The 
total losses were not entirely recovered by the insurance, although the 
farmer was better off when the cover was found to be efficient by using 
CTE, the volatility of income, and MRSL. However, in those cases where 
frost events were few, the use of the HDDTmin call to manage frost events 
could not be considered efficient.

Notably, some of the tested policies were highly efficient at some 

Fig. 5. Potential benefit of insurance based on the standard deviation (STDV). The blue-coloured names represent positive effects. Locations where the insurance had 
a potential benefit based on STDV. The blue-coloured names represent positive effects. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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locations (e.g. Lake Bolac, Dalby, Wagga Gilgandra, and Narrabri) but 
not others (e.g. Pinnarro, Lake Grace, Birchip, Salmon Gums, Gunnedah, 
Katanning, Kellerberrin, and Hopetown) (see Table 4). Overall, opti
mally sowing assuming no frost did provide gains for all test sites, but 
hedging income against frost to further capitalise on these gains on some 
farms needs further consideration (see Supplementary Table). In terms 
of the financial efficiency of using HDDTmin, 40 % of the farms were 
better off. Furthermore, 36 % saw reduced volatility in earnings, 22 % 
had income in the poorest years, and 27 % were efficient. If the pre
miums were reduced, greater efficiencies would occur. The premium 
values were based on market-recognised methods (see Section 2.4.1). 
The calculation of the premiums as described was based on historical 
losses, with administration and volatility costs embedded in the pre
mium. Historical losses cannot be changed, but administration and 
volatility costs could be reviewed. This will depend on reinsurance 
providers lowering administration costs, which could occur if more 
policies were taken up and greater efficiencies gained through the 
automation of the processing and settling of contracts.

4.2. Reducing basis risk to improving the use on index insurance

To enhance the consistency of insurance premiums and increase the 
adoption of insurance, it is important to address three significant basis 
risk issues related to index insurance. These issues should be carefully 
considered. Moreover, it is important to assess the effectiveness of 
various insurance coverage options. A comprehensive argument should 
be developed to justify why certain insurance covers are more effective 
than others in mitigating basis risk. Dalhaus and Finger (2016) sug
gested that the main issues with the uptake of index insurance could be 

summed as three points: 

1) Design basis risk: the index does not include all the relevant infor
mation or parametrisation.

2) Spatial basis risk: the distance between the point measurement and 
the farm location differs (Leblois et al., 2014; Ritter et al., 2014).

3) Temporal basis risk: there are imperfect choices about timing (Deng 
et al., 2007; Díaz-Nieto et al., 2010).

Furthermore, Kelleher et al. (2001) considered that the measurement 
of the in-crop temperature and its recording is an additional basis risk 
issue. Although we believed that the HDDTmin strategy, which was based 
on the phenology of the plant, was confirmed when initiating the cover 
with triggers generic to the plant, answering most of the basis risk 
questions, we still needed to understand why some policies were more 
efficient than others.

In Gilgandra, when the crop was planted on the optimal sowing date, 
there was a gain of 768 kg/ha. During the 35-day critical period, there 
were an average of eight frosts per season, leading to a potential income 
loss of up to 51 %. At this farm, the insurance strategy was highly effi
cient across the entire ensemble of efficiency measures compared to not 
taking frost insurance but planting on the optimal sowing date.

Similarly, at Birchip, which has an optimal sowing gain of 445 kg/ha, 
an average of four frost events per annum during the critical period, and 
a potential income loss of up to 11 %, the insurance strategy was highly 
inefficient. It’s essential to note that the insurance structures were 
consistent across all sites. In the calculation of the premiums, we found 
that for those sites where the covers were more efficient, frost events 
that made up the loss calculations in the premium value occurred in 

Fig. 6. Potential benefit of insurance based on income in the poorest years. The blue-coloured names represent positive effects. Locations where the insurance had a 
potential benefit based on income in the poorest years. The blue-coloured names represent positive effects. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 7. Potential benefit of insurance based on the mean root square loss (MRSL). The blue-coloured names represent positive effects. Supplementary Table 6: 
Potential Benefit of Insurance Based on Mean Root Square Loss. 
Locations where the insurance had a potential benefit based on MRSL. The blue-coloured names represent positive effects. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Table 4 
Summary of financial efficiency analysis across all the test sites on average for 40 years. In the table, y = yes (HDDTmin is efficient), and n = no (HDDTmin is inefficient). 
HDDTmin: heating degree day temperature minimum.

Efficiency Summary

Farm 
Location

Yield Gained From 
Optimally Sowing

Economic Assessment of 
the Insurance

Premium Versus Payout 
Assessment

Difference in Standard 
Deviation of Payouts

Conditional Tail 
Expectation

Mean Root 
Square Loss

Roma y y n n n n
Dalby y y y n y n
Dubbo y n n n y n
Waikerie y n n y n y
Gunnedah y n n n n n
Gilgandra y y y y y y
Narrabri y y n y y y
Parkes y y n y n n
Urana y n n y n y
Wagga y y n y n y
Lake Bolac y y n y y y
S Walpeup y y n n n n
Pinnarro y n n n n n
Birchip y n n n n n
Ceduna y y n y n n
Hopetoun y n n n n n
Balaklava y n n n n n
Roseworthy y n n n n n
Salmon 

Gums y n n n n n

Lake Grace y n n n n n
Katanning y n n n n n
Kellerberrin y n n n n n
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earlier years and not in more recent times (i.e. the calculation of losses 
were more historical as opposed to more current). For example, Dubbo 
suffered from major frosts in 2018 and 2017, whilst the last major frost 
in Wagga was in 2012. This represents an important feature when 
pricing up index insurance structures, as the loss calculation is a critical 
component for the premium.

4.3. Improving spatial basis risk

Overall, the use of an HDDTmin call as an insurance product to help 
mitigate frosts on crops sown optimally provided mixed results when 
used annually. We suggest this can be dramatically improved by a 
reduction in spatial basis risk. Reducing spatial-basis risk is currently 
being investigated by the BOM and the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO). At present, the data used to 
price contracts are based on the national surface model of historical 
meteorological data on a 5 km × 5 km grid. It is anticipated that CSIRO’s 
project on downscaling and increasing the granularity of the data will 
provide a more accurate picture of what happens in the paddocks. Using 
downscaled data to price options may provide insurance that is more 
closely aligned with the needs of the grower. Furthermore, the BOM has 
been researching the use of trusted private automated weather sites to 
increase data intake, which will refine the granularity of the data. Field 
trials are currently being conducted, and the hope is that obtaining data 
from additional sites around Australia will increase the granularity and 
accuracy of the data, which can then be applied to pricing more 
appropriate insurance. As part of an initiative with the GRDC, the CSIRO 
is working on a project to map heat and frost on a paddock basis. This 
will help refine the granularity of the risk areas. By using better-refined 
data to define the risk areas, we aim to reduce basis risk and increase the 
efficiency of the covers.

Similar to other cases of index-based products, the results are more 
highly efficient when the cover is more targeted, as suggested by Pietola 
et al. (2011). For example, using multiple indexes in the insurance, the 
gains at Roma are of a similar order to those previously reported by 
Pietola et al. (2011), where a basket of rainfall plus temperature index 
insurance managed to hedge about 38 % of a wheat grower’s yield risk, 
with 62 % remaining as uninsured basis risk. Although the structures 
used by Pietola et al. (2011) were different and not focused on frost, the 
use of dual indexes seems to provide greater efficiency. Kotlobovskii 
et al. (2018) confirmed that index-based insurance in Russia is cost- 
effective. In their study on frost index insurance for tea, Huang et al. 
(2021) suggested that the compensation rate and basis ratio meet the 
basic requirements of insurance companies. Dalhaus and Finger (2016)
suggested that the use of gridded data improves the potential of weather 
index-based insurance. Given the nature of frost, increasing the granu
larity of the data away from 5 km × 5 km to a smaller area may provide 
more efficient results and represent a further topic to investigate.

4.4. Improving pricing structure

The pricing of frosts was determined by the frequency and intensity 
of recent occurrences. However. in some cases where the frequency and 
intensity of frosts were similar, the pricing was skewed to frosts that 
occurred more recently. For instance, despite the similar intensity of 
frosts between Gilgandra and Birchip, the absence of frosts in Gilgandra 
for some time led to cheaper options. This could be observed in the 4.79 
% premium for Gilgandra, substantially lower than Birchip’s 9.04 %. 
This pricing methodology was systematically based on a loss calculation 
weighted towards the most recent years, resulting in cheaper premiums 
for areas with fewer recent frost events. Similar findings were noted in 
Narrabri, where the absence of frost events over the last five years 
allowed for a cheaper premium.

4.5. Designing an insurance contract based on plant phenology

There are limited studies on planting on the optimal date and then 
using index insurance to help maintain gains, as well as the use and 
effectiveness of index insurance that has a phenological component. 
Leblois and Quirion (2013), Kapphan et al. (2012), and Conradt et al. 
(2015) considered a phenological approach to insurance in the use of 
grower degree days to determine the start and end dates of covers and 
had mixed results. Pietola et al. (2011) were conclusive in their results 
that open-sourced phenological reports reduced the basis risk of index 
insurance based on weather. They found that weather events triggering 
indemnity payments should be structured with certain critical time re
gimes over their distribution during the growing season. As such, the 
structures used in this study correspond to the phenology of the plant 
sown on a critical day to optimise yield and having insurance during the 
critical reproduction stages, which is anticipated to help make the pol
icies more attractive to growers.

5. Conclusion

We have tested a new frost insurance solution that enables farmers to 
take calculated risks and plant earlier, improving their chances of higher 
yields and providing financial protection in case of a frost event. The 
APSIM-Wheat simulations show that most optimally sown crops are 
subject to yield loss due to frost in the areas considered. Frost damage 
can occur pre-head emergence when temperatures drop below − 2 ◦C, 
− 1 ◦C, and 0 ◦C, possibly triggering a stem frost with a potentially 
dramatic or even catastrophic loss of yield and subsequent income. 
Temperatures below 0 ◦C around anthesis can reduce grain set, resulting 
in significant yield losses as well. The total losses caused by frost on the 
farms under study are estimated to be 39 % of the yield for optimally 
planted crops. On farms experiencing frequent frosts (i.e., more than five 
frost events during the estimated 35 days of sensitivity), the loss of yield 
and income is around 60 %.

On those farms where the frequency of frost events and hence losses 
are high, the use of frost index insurance, namely the use of HDDTmin, is 
efficient and even more efficient if no recent historical frost events or 
insurance losses have occurred because the premiums will be lower.

The use of index insurance is not efficient for farms with a low fre
quency of frost events, as the losses from such events have been rela
tively minor. The premiums across the 22 farms average 6.6 % of the 
sum insured. However, on the farms where frost losses are greater than 
60 %, the premiums are slightly higher than 10 % in extreme cases. 
Based on the higher premiums at the high frost risk sites and where the 
use of HDDTmin is efficient, the results indicate that, on average, the 
farmers will be better off by $121/ha when sowing during the optimal 
planting window and using targeted index frost insurance to cover frost 
risk.

Financial efficiency analysis indicates that protection for frost dam
age can be theoretically adequately managed through the HDDTmin call 
if a high frequency of frost events results in significantly high losses of 
>60 %. Total losses are not recovered entirely by the insurance, 
although the farmer is better off if the cover is found to be efficient. In 
cases where frost events are not high but low to average, the use of an 
HDDTmin call to manage frost events can be considered inefficient if used 
every year.

We envisage that, with an improvement in the climate prediction of 
frost occurrence, crop modelling, better access to data, and refinement 
in the tuning of structures, the targeted integration of frost index in
surance with optimal cropping windows, especially for high frost-prone 
regions, can be an important strategy for reducing financial impacts and 
enhancing income stability.
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