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A B S T R A C T   

Geopolymer concrete is a sustainable replacement to the Ordinary Portland Cement (OPC) concrete as it miti-
gates some of the associated problems of OPC manufacturing such as greenhouse gas emission and natural 
resource depletion. There has been significant recent research in the design of fly ash-based geopolymer concrete 
using advanced machine learning techniques which can address some of the problems with classical mix design 
approaches. However, practical application of geopolymer concrete is limited due to lack of standard mix design 
procedure. This comprehensive review summarizes the current literature on machine learning methodologies to 
predict the compressive strength of fly ash-based geopolymer concrete. Firstly, the input parameters used for the 
machine learning model development are categorized based on feature selection or feature extraction. Secondly, 
available machine learning approaches are categorized based on analysis methods namely, nonlinear regression, 
ensemble learning, and evolutionary programming. The effect of hyperparameters on the individual model 
performance, and model comparison based on the prediction performance are also discussed to identify 
potentially more suitable model type and hyper parameter ranges. Further, the paper discusses the input vari-
able’s sensitivity towards the model performance which provides guidance towards future model developments. 
Overall, this paper will provide an understanding of the current state of machine learning approaches to predict 
the compressive strength of geopolymer concrete and the gaps in research for the development of models and 
achieving the required performance. Hence, the summarized knowledge will be highly beneficial to design 
prospective research towards sustainable cement-free concrete using fly ash.   

1. Introduction 

About 4 billion tons of cement is manufactured annually and this 
figure is expected to be increased by 80 million tons each year [1]. Each 
ton of cement manufactured produces approximately 0.7–1.0 ton of CO2 
[2,3], which represent up to 5–8% of global anthropogenic CO2 emission 
[4–8], and pertaining to prevailing conditions, it is expected to rise by 
7% in 2050 [9]. Furthermore, 110–120 kWh of energy is invested on one 
ton of cement produced and collectively [10], it accounts for 10% of the 
annual industrial energy usage [11]. Utilization of alternatives like al-
kali activated binders have not only proven a sustainable solution for the 
aforesaid problems but also provide a way to dispose of industrial waste 
like silica fume, ground granulated blast-furnace slag (GGBFS), and fly 
ash [12–14]. Fly ash, the most abundantly used and least utilized 

aluminosilicate material, is the dust collected from flue gas following 
coal combustion, and it is one of the most significant solid wastes pro-
duced by the coal burning sector. Fly ash particles have a smooth surface 
and are usually spherical [15]. SiO2, Al2O3, CaO, Na2O, Fe2O3, MgO, 
K2O and other metal oxides make up the majority of fly ash. Fly ash also 
includes trace elements including Cd, Cr, Pb, and Hg [16], as well as 
trace levels of radioactive elements like 226Ra, 232Th, and 40K [17]. In 
terms of phase composition, fly ash comprises mullite, quartz, calcite, 
magnetite, and hematite in addition to a considerable quantity of 
amorphous glass. Every year, the globe produces more over 800 million 
tonnes of fly ash [18]. However, a large amount of fly ash is discharged, 
which causes serious damage to the environment and threatens human 
health [15]. On the other hand, fly ash-based geopolymer concrete re-
sults high early strength and improved durability properties (such as 
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reduced permeability, resistance to acid and sulfate attack, and fire 
resistance) against aggressive environments [19,20]. Thus, the paper 
primarily focuses on fly ash-based geopolymer concrete in this review. 

The reactivity of these fly ash sources is contingent upon their 
chemical composition [19,21], mineralogical composition [22], 
morphology [19,23], fineness [24,25], and glassy phase content [26]. 
Alkali activators such as sodium or potassium hydroxides, silicates, 
carbonates or a mixture of these influence the geopolymer properties 
and performance [22]. Due to inconsistency in raw material and alkaline 
activators, the same formulation can result in a wide range of 
compressive strength [27]. To date many attempts have been made to 
design geopolymer mix proportions using classical approaches, which 
can be classified into four groups, namely the target strength method, 
factorial model method, performance-based method, and statistical 
methods. Table 1 shows an updated version of the table found in the 
review conducted by Li, et al. [27]. According to Li, et al. [27] the target 
strength method can be further classified based on the fixity of water 
content, binder content and paste content and used an iterative process 
of laboratory experiments to acquire the required properties of the 
geopolymer concrete. The factorial model has utilized the Taguchi 
method matrix to identify the best combination of input parameters 
whereas the performance-based method involves extensive laboratory 
experiments. Furthermore, statistical approaches have been adopted to 
develop linear and non-linear relationships using the data extracted 
from open literature to predict the compressive strength of geopolymer 
concrete, Eq.1-Eq.3. However, extensive laboratory experimentation 
requires an extensive amount of time and cost [28,29]. The traditional 
statistical models are inefficient when it comes to evaluating actual 
scenarios of concrete with diverse constituents, while the findings 
become inaccurate when new data that differs from the original data is 
utilized [30,31]. This is primarily due to traditional statistical models 
being constructed using fixed equations with limited inputs [32]. 

The application of machine learning in geopolymer concrete to 
predict compressive strength has emerged recently. The advantage of 
using machine learning as opposed to empirical models is its ability to 
fully consider the nonlinear relationship between independent variables 
and dependent variables, as well as the influence of various factors on 
the results [5,12]. It further offers accurate and generalized predictions, 
less computational complexity and convenient reproducibility [30,33].  
Fig. 1 illustrates the range of machine-learning techniques applied in 
geopolymer research up to October 2022. The study focusses on ma-
chine learning models developed to predict the compressive strength of 
100% class F fly ash-based geopolymer concrete and published in 
peer-reviewed literature articles. A few studies have used multiple 
machine-learning approaches and selected the best model based on their 
performance while others have relied on a single technique. Whilst in-
dividual efforts have been made to predict the compressive strength 
using a range of machine learning techniques, there is no in-depth 
analytical comparison conducted between them with respect to the 
geopolymer performance. Hence, this comprehensive review will pro-
vide clear insight and detailed analysis of existing machine learning 
approaches used in fly ash-based geopolymers and identify the current 
research gaps and future development required. The objective of this 
study is to identify the most influential input variables for the machine 
learning model development, and to assess the range of machine 
learning algorithms in terms of their hyperparameters along with their 
optimum values. Moreover, this will consider various methods of model 
performance evaluation and the sensitivity of most utilized input vari-
ables toward the final model predictions. 

The machine learning models shown in Fig. 1 are classified into three 
groups, namely nonlinear regression analysis, ensemble learning, and 
evolutionary programming for discussion purposes in this study. It 
should also be noted that 78% of the models fall into the nonlinear 
regression category while only 22% fall in to the other two combined. 

2. Model inputs and outputs 

The quality of the inputs has a significant influence on output ac-
curacy, in addition to decreasing the computation cost of a machine 
learning model [65]. Two methods namely feature selection, where the 
influential mix variables were used as direct inputs to the model, and 
feature extraction, where new features were derived from the influential 
mix variables, have been adopted for the selection of inputs for the 19 
machine learning models discussed in this review [4,5,13,14,33,58–64]. 
The current review identifies 16 inputs based on feature selection such 
as NaOH concentration, curing temperature, curing time, etc. and 6 
inputs, namely activator / fly ash ratio, Na2SiO3 / NaOH ratio, fine 
aggregate / total aggregate ratio, SiO2 / water ratio, fly ash/aggregates 
ratio and water / solid ratio, based on feature extraction, Fig. 2. The 
mechanism of geopolymer synthesis includes the dissolution of Al and Si 
in the alkali medium, transportation (orientation) of dissolved species, 
followed by a polycondensation, forming a 3D network of 
silico-aluminate structures. The dissolution process is governed by the 
OH- provided by the NaOH solution, and thus the concentration of the 
NaOH solution has been used as a key input variable in more than 80% 
of machine learning models. Furthermore, Na+ resulting from NaOH and 
Na2SiO3 balance the negative charge of the Al3+ in IV-fold coordination, 
while SiO2 from the Na2SiO3 controls the Si/Al ratio in the sialates 
network, and hence the end product [66]. NaOH and Na2SiO3 have been 
used either as weight per meter cube or as a Na2SiO3 / NaOH ratio. 
However, Chu, et al. [62] used SiO2 resulting from the Na2SiO3 and 
Gomaa, et al. [64] utilized Na2O derived from the Na2SiO3 respectively. 
Furthermore, Chu, et al. [62] identified both NaOH concentration and 
SiO2 resulting from the Na2SiO3 has an equal contribution towards the 
model predictions which indicates that the properties of the activator 
solution have a great influence on the model predictions. 

Fly ash, the sole precursor material in the geopolymer mix controls 
the availability of SiO2 and Al2O3 for the dissolution. However, geo-
polymer gel forms on the surface of fly ash particles thereby encapsu-
lating these particles, causing the reaction to cease before it comes to 
completion [67]. This indicates the importance of the size of the fly ash 
particle to enable full utilization of SiO2 and Al2O3 in the reaction 
process. Furthermore, degree of reaction increases with the increased 
amorphous percentage in the fly ash, because dissolution of amorphous 
SiO2 and Al2O3 requires less energy due to weaker bonds. As Li et al. 
noted that the bond energy of Si-O, Al-O and Ca-O are 444, 221–280 and 
134 kJ, respectively [68]. Thus, the direct content of fly ash as used in 
most of the models does not truly represent the actual amount of SiO2 
and Al2O3 available for the polymerization. Several attempts have been 
made to incorporate SiO2 and Al2O3 as separate entities which enables 
improved ANN model performance [5,64] and further study is required. 

High temperature, ranging from 60 0C to 100 0C, curing can signif-
icantly improve the compressive strength of fly ash geopolymer con-
crete, especially early strength, by promoting the polymerization 
reaction of fly ash which clearly illustrates the reason more than 70% of 
the models used temperature as an input variable. Even though the 
studies identified that water content in geopolymer mix only contributes 
to the workability during the handling process [66] excess volume of 
water cause segregation and strength reduction. Furthermore, it has 
been identified that sensitivity of water content towards the compressive 
strength of geopolymer concrete is crucial, means one unit of water can 
completely change the resultant compressive strength. More than 77% 
of the models used the water content either as a direct input variable or a 
ratio with another solid content illustrating its importance towards 
model predictions. 

3. Nonlinear regression analysis 

3.1. Artificial neural network (ANN) 

The structure of an ANN is generally composed of three types of 
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Table 1 
Summary of mixture design methods for geopolymer concrete in the literature.  

Classification Comments 

Target strength method  
1. Fixed water content  • A Ukraine standard RSN 336–84 1984, the first ever standardized method [34]  

• Fix alkaline activator dosage. Then relationship between the concrete strength and activator dosage was established based on design strength requirement. [35]  
• Develop a statistical geopolymer mix design method based on ACI 211.1 Fix the alkaline solution content. Then relationship between GPC strength and AL/B was established. [36]   
• Based on the JGJ 55–2011 method for proportioning PCC with some modification for regression coefficient in Paoluomi formula. [37]   
• Propose the mixture design by combining concepts of ACI strength versus W/B curve of PCC, absolute volume method and combined grading. [38]   
• Modify mixture design of the GPC mixtures by updating the AL/B from laboratory experiments based on the ACI method. [39] 

2. Fixed binder content  • Based on the IS 10262–2009 method for proportioning PCC with some modification for different grades of GPC. [40]   
• Variable concrete densities, the ingredients’ specific gravities, air volume were considered.[41]   
• Further simplified the mix design method proposed by Ferdous et al., in 2013. [42]   
• W/B of 0.35, AL/B of 0.35 and SS/SH ratio of 1.0 by mass were selected based on workability and strength. [43]   
• Various input variables such as AL/B, W/S, concentration of alkaline solution, curing time and temperature were considered to meet required strength. [44] 

3. Fixed paste content  • The influences of specific gravities of ingredients and the air content on GPC densities were not considered in mixture design. [45]   
• Use discrete element modelling (DEM), the close packing density of aggregate was determined. [46]   
• W/S was determined by required strength and satisfying setting time. [47]   
• Combine the close packing of aggregates, excess paste thickness theory and Taguchi method, GPC that meets workability and strength were prepared. [48]   
• Determine aggregates composition according to packing fraction and paste thickness, while binder content was determined by wet packing fraction. [49] 

Performance-based 
method  

• Chloride transport and binding properties of GPC were considered in mix design method. [48] 

Factorial method-based 
models: 
Taguchi methods  

• Aggregate content (1800, 1848, and 1896 kg/m3); AL/B ratio (0.30, 0.35, and 0.40); SS/SH ratio (1.5, 2, and 2.5); Curing method (24 h–600C, 12 h to 700C, and 24 h to 750C). [50]  
• Oven curing temperature (25, 70, and 900C); Oven curing time (2, 4, and 8 h); SH concentration (5, 8, and 12 M) [51]   

• NaOH concentration (5, 8, 12, and 14 M); SS/SH ratio (1, 1.5, 2, and 2.5); AL/B ratio (0.35, 0.38. 0.42, and 0.45); Oven curing time (2, 4, 6, 10 h); Oven curing temperature (25, 40, 70, and 900C); Water curing 
regime (1, 3, 7, and 28 d). [52]   

• OPC content (5, 10, 15, and 20%); NaOH concentration (5, 10, 15, and 20 M); Curing temperature (60, 70, 80, and 900C). [53]   
• W/B ratio (0.32, 0.35, 0.38, and 0.41); F/A ratio (35, 37, 39, and 41%); SL/FA ratio (3:7, 4:6, 5:5, and 6:4); Water content (170, 180, 190, and 200 kg/ m3). [54]   
• Binder content (400,450, and 500 kg/m3); AL/B ratio (0.35, 0.45,and 0.55);SS/SH ratio (1.5, 2, and 2.5); [55]  
• SH concentration (10, 12, and 14 M) W/B ratio (0.5, 0.45, 0.4, and 0.35); FA/B ratio (0, 15, 30, and 45%); Excess paste thickness (32, 40, 48, and 56 μm); Na2O/binder ratio (4, 5, 6, and 7%); Ms (0.5, 1.0, 1.5, and 

2.0). [56] 
Statistical methods  • Data extracted from open literature and developed regression models for both low calcium and high calcium fly ash-based alkali activated concrete.[57] 

CS = 157.09 − 406.95x
AC
B

+ 51.27x
SiO2Fly ash

Al2O3Fly ash
+ 28.129 ×

SS
SH

− 78.811 ×
W
S
− 0.210x C+1.821x M − 9.125x

AC
B
×

Si
Al2

+0.345x
AC x C

B
+ 0.7078x

AC x Curing time
B 

Eq.1   

• Data extracted from open literature and developed liner and no liner Regression models for low calcium fly ash-based geopolymer concrete [11] 

CS = − 66.8 − 1.697
Si
Al

+ 187.75
L
B
+ 0.246(FA) − 0.016(F) − 0.012(C) − 0.334(SH) − 0.538(SS) + 0.942

SS
SH

+ 0.179(M) + 0.228(A) + 0.342(T) + 0.01(CD)Eq. 2CS = − 1997208×
( Si
Al

)− 0.508
×
( L
B

)− 1.606
×

FA− 2.134 × F0.016 × C0.089 × SH− 0.27 × SS0.274 ×
( SS
SH

)− 0.533
× M0.117 × A− 0.305 + 9993.13×

( Si
Al

)− 0.423
×

( L
B

)− 0.068
× FA− 0.368 × F− 0.151 × C− 0.184 × SH− 0.426 × SS− 0.0007 ×

( SS
SH

)− 0.453
× M0.134 × A− 0.022 × T0.352 ×

CD− 0.064Eq.3 

Note: AL=Alkaline liquid, B= Binder, PCC= Portland cement concrete, W= Water, SS= Sodium silicate, SH= Sodium hydroxide, S= Solids, GPC= Geopolymer concrete, FA= Fly ash, L=Liquid, F = Fine aggregates, 
C=Coarse aggregates, M= NaOH Molarity, A= Sample age, AC=Activator 
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layers: an input layer, hidden layer(s) an output layer. The input layer 
conveys input variables for model training validation and testing. The 
hidden layer(s) is/are responsible for linking between the input layer 
and the output layer that delivers the result of the model [69]. Activa-
tion functions make backpropagation possible as the gradients are 
supplied along with the error to update the weights and biases. 
Nonlinear activation functions introduce non-linearity into the output of 
a neuron [70]. Furthermore, ANN training is achieved via learning al-
gorithms, which enable the model to understand the concept of the 
problem [71]. Hence, the behavior of ANN changes according to the 
type of learning algorithm [31]. Table 2 outlines the various ANN ap-
proaches employed for estimating compressive strength of geopolymer 
concrete, which are discussed later. 

It can be observed in the Table 2 that ANN has been widely used by 
researchers to predict the compressive strength of fly ash-based geo-
polymer concrete. The size of the databases varied between 110 and 298 
datasets. All the databases have been developed using the data extracted 
from the literature except for two models which used data from their 
own set of laboratory experiments [4,58]. Generally, in making ANN 
models, the database is divided into training (TR), validation (VAL), and 
testing (TS) subsets. The training set is used for model training. Vali-
dation data provides unbiased evaluation of the model fit on training 

data and prevents model overfitting by stopping the training process 
when the error increases. The model is finally applied on the testing data 
to assess the predictive performance. The most common data division 
scheme used is 70% of the data for the training dataset while the 
remaining is allocated to the validation and testing. Models having both 
validation and testing datasets used equal splits of 15% for each, while 
models having either validation or test set used the remaining 30%. 
However, two studies have used 90% [4] and 85% [60] data allocation 
for the training subset while the remaining 10% and 15% were allocated 
to the validation subset. Furthermore, models have used data normali-
zation which enables them to overcome distortion effect due to different 
scales of data. Random sorting has been used to ensure unbiased data 
splitting between training, validation and test subsets. Peng and Unluer 
[5] sorted the data randomly and normalized between − 1 and 1 while 
Gunasekara, et al. [13] used 0–1 range for the normalization. Other 
studies have not reported any data preprocessing before feeding data 
into the ANN models. 

The number of hidden layers and the number of neurons in each 
hidden layer governs the size of the weight and bias matrixes associated 
with the ANN model. Each neuron contains its own bias and each 
connection between neurons has a dedicated weight. While most of the 
studies including Thanh Pham et al. [60] and Gunasekara et al. [13] 
have used a single hidden layer in the neural network, Bhogayata et al. 
[61], Dao et al. [58] and Khan et al. [14] used 3, 5 and 10 hidden layers 
respectively. Furthermore, the majority of the studies have used less 
than 20 hidden neurons whereas Bhogayata et al. [61] and Huynh et al. 
[4] used 60 and 384 hidden neurons respectively. As a remedy for 
co-adaptation caused by large number of hidden neurons in the network, 
the drop out method, which removes hidden and visible units from a 
neural network in a random manner, has been applied [4]. The dropout 
process disregards neurons during the training phase. At each training 
step, nodes are dropped out of the network with a probability of 1-p or 
maintained with a probability of p, leaving a smaller network. Huynh, 
et al. [4] used a drop out ratio of 0.2 which retained 77 neurons in the 
trained model out of 384 neurons originally used. By utilizing this 
dropout, the network overfitting caused by large number of hidden 
neurons is expected to be avoided. 

The effect of learning rate on the ANN model performance has been 
studied by using two learning rates 0.1 and 0.5 with a 3 hidden layered 
neural network, each having varied the number of hidden neurons 

Fig. 1. Machine learning techniques used for the prediction of compressive 
strength of geopolymer concrete [4,5,13,14,33,58–64]. 

Fig. 2. Input variables used in machine learning models [4,5,13,14,33,58–64].  
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between 1 and 60 [61], Table 2. Furthermore, Thanh Pham [60] and 
Gunasekara, et al. [13] studied the effect of training function by 
developing multiple models with distinct training functions. Thanh 
Pham [60] identified the Levenberg-Marquardt training function out-
performs the other seven training functions used, namely, resilient 
backpropagation, Polak-Ribiere conjugate gradient, conjugate gradient 
with Powell / Beale restarts, BFGS quasi-newton, one step secant, 
Fletcher-powell conjugate gradient, adaptive learning rate back-
propagation, Bayesian regularization and scaled conjugate gradient, 
while Gunasekara, et al. [13] identified Bayesian regularization as the 
best training function compared to Levenberg-Marquardt and scaled 
conjugate gradient. Furthermore, the selection of the layer activation 
function plays a crucial role in ANN model as the weighted inputs are 
passed to the next level through activation functions. The different 
activation functions used in ANN models are summarized in the Table 2. 
Sigmoid activation, linear activation and rectified linear unit functions 
have been used, where the linear activation function was used in the 
output layer of all the models while either sigmoid activation or rectified 
liner unit were used in the hidden layers. 

Performance assessment of machine learning algorithms has been 

carried out using statistical methods that describe the model fitting.  
Table 3 gives statistical metrics employed for evaluating ML models with 
their corresponding mathematical expressions. These methods indicate 
how well the predicted values fit with actual data. Moreover, they can be 
adopted in sensitivity analysis, pointing out the weight of each input 
variable in the prediction process. Not only can statistical metrics assess 
the performance of machine learning techniques, but they may also be 
used as reference for comparing the effectiveness of several algorithms. 
Huynh, et al. [4] used coefficient of determination (R2) to determine the 
best model out of the two models developed while Gunasekara, et al. 
[13] used mean squared error for the evaluation of best training algo-
rithm. Coefficient of determination (R2), root mean squared error 
(RMSE) and mean squared error (MSE) have been commonly used to 
assess the model performance [4,5,13,58,60] while other statistical 
parameters [14] were seldomly used between the models. Further to 
statistical measures, some studies performed laboratory experiments 
and compared the predicted compressive strength with the actual 
strength resulted from the laboratory experiments [61]. 

Table 2 
Summary of ANN models.  

Data Model parameters Performance Ref 

Database size: 150, 
Data source: Literature, 
Data division: Train: 70%, Validation: 15% Test: 15%, Number of inputs: 
6, 
Output: Compressive strength (20.18–77.00 MPa), 

Sigmoidal activation function 
(SAF). 
Maximum epochs 10,000. 
Details of 8 models 

Model performance was evaluated based on the 
laboratory experiments. 

[61] 

HL 1 HL 2 HL 3 LR 
2 2 2 0.1 
2 2 2 0.5 
6 10 2 0.1 
6 10 2 0.5 
30 30 30 0.1 
30 30 30 0.5 
1 30 60 0.1 
1 30 60 0.5 

Database size: 263, 
Data source: Experimental, 
Data division: Train: 90%, Validation: 10% Test: 0%, 
Number of inputs: 6, 
Output: Compressive strength (5.44–67.86 MPa) 

Rectified liner unit (ReLu). 
Hidden neurons: 384  

[4] 

Model 1 
Layer normalization: Yes 
Drop out ratio (p): 0.2 

Coefficient of determination (R2) 
TR: 0.921 VAL: 0.889 
Root means square error (RMSE) 
TR: 3.153 VAL: 4.711 

Model 2 
Layer normalization: No 
Drop out ratio (p): 0.2 

Coefficient of determination (R2) 
TR: 0.827 VAL: 0.798 
Root means square error (RMSE) 
TR: 4.802 VAL: 5.059 

Database size: 190, 
Data source: Literature, 
Data division: Train: 85%, Validation: 15% Test: via lab experiments 
Number of inputs: 6, 
Output: Compressive strength (20 – 89 MPa) 

Hidden layers: 1 
Hidden neurons: 19 
Training function: Levenberg- 
Marquardt 

Coefficient of determination (R2) [60] 
TR: 0.720 VAL: 0.619 
Root means square error (RMSE) 
TR: 9.04 VAL: 8.97 

Database size: 210, 
Data source: Experimental, 
Data division: Train: 70%, Validation: 0% Test: 30% 
Number of inputs: 4, 
Output: Compressive strength (18.92–74.12 MPa) 

Sigmoidal activation function 
(SAF). 
Training function: Scaled 
Conjugate Gradient method 

Coefficient of determination (R2) [58] 
TR: 0.693 TS: 0.851 
Root means square error (RMSE) 
TS: 2.265  

Database size: 110, 
Data source: Literature, 
Data division: Train: 70%, Validation: 15% Test: 15% 
Number of inputs: 14, 
Output: Compressive strength (min, max) 

Hidden layers: 1 
Hidden neurons:18 
Sigmoidal activation function 
(SAF). 

Coefficient of determination (R2) [5] 
TR: 0.947 VAL: 0.822 TS: 0.915 
Root means square error (RMSE) 
TR: 2.5 VAL: 3.68 TS: 1.95 

Database size: 298, 
Data source: Literature, 
Data division: Train: 70%, Validation: 30% Test: 0% 
Number of inputs: 10, 
Output: Compressive strength (8.2 – 63 MPa) 

Hidden layers: 10 
Hidden neurons: Each layer 
maximum up to 10 neurons. 
Training function: Levenberg- 
Marquardt 
Maximum epochs: 100 

Coefficient of correlation (R) [14] 
TR: 0.849 VAL: 0.931 
Root means square error (RMSE) 
TR: 6.02 VAL: 4.93 

Database size: 166, 
Data source: Literature, 
Data division: Train: 70%, Validation: 0% Test: 30% Number of inputs: 4, 
Output: Compressive strength (12.0–80.4 MPa) 

Hidden layers: 1 
Hidden neurons: 8 
Training function: Bayesian 
Regularization 

Coefficient of correlation (R) [13] 
TR: 0.86 TS: 0.86 
Root means square error (RMSE) 
TR: 0.006  

Note: HL1: Hidden layer 1, HL2: Hidden layer 2, HL3: Hidden layer 3, TR: Training, VAL: Validation, TS: Test 
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3.2. Deep neural networks (DNN) and residual networks (Resnet) 

DNN is another approach used to predict the compressive strength of 
geopolymer concrete which consists of more layers and neurons 
compared to the ANN, leading to its ability to learn functions with a high 
degree of complexity. However, according to the authors [4,63] DNN 
has its own limitations in training a very deep network to further 
improve its accuracy. DNN are trained through a backpropagation 
process that relies on gradient descent, shifting down the loss function 
and finding the weights that minimize the output. If there are too many 
layers, repeated multiplications will eventually reduce the gradient until 
it “disappears”, and performance saturates or deteriorates with each 
layer added. To overcome the problems associated with DNN, ResNet 
was developed [72]. ResNet models with modified architectures have 
been empirically demonstrated to improve the learnability of neural 
networks with less error on predefined tasks. Fig. 3 depicts ResNet’s 
residual blocks with shortcut connections, where H(x) is the desired 
mapping output of a certain layer and x is the input data. Skip connec-
tions behave as shortcuts that skip 2 or 3 layers (Fig. 3). This shortcut 
will change how the gradient is calculated at each layer. This solves the 
problem of vanishing gradient in DNN by allowing this alternate 

shortcut path for the gradient to flow through. Furthermore, it allows 
the model to learn the identity functions which ensures that the higher 
layer will perform at least as good as the lower layer, and not worse [4]. 

Two studies have used both DNN and Resnet to predict the 
compressive strength of geopolymer concrete. It can be observed from  
Table 4 that both the studies have performed a set of laboratory ex-
periments to develop their databases of sizes 335 [63] and 263 [4] and 
used 80:20 and 90:10 training to validation ratios respectively. How-
ever, none of the studies have used test data set to assess the general-
ization capability of the models. Furthermore, models have used 9 and 6 
input variables while their compressive strength had same ranges of 
5.44 MPa to 67.86 MPa. 

The number of hidden layers in DNN were limited to two, whereas 
Resnet used an additional weight which make total number of hidden 
layers in to three to make the element-wise addition operation at the end 
of the architecture. The hidden neurons in each hidden layer varied 
between 128 and 300 in DNN while Resnet repeat the same number of 
hidden neurons in the layer 2 and the layer 3. Rectified linear unit 
(ReLu) has been used as the layer activation function in all both DNN 
and Resnet models. Furthermore, the effect of layer normalization has 
been assessed for both DNN and Resnet models by switching layer 
normalization between on and off state. The effect of drop out was also 
assesd for both DNN and Resnet models using a dropout ratio 0.7 and 
comparing it to the model without applying dropout [63], while another 
study used a constant dropout value of 0.2 for all the models [4]. Both 
studies [4,63] used Adam as the optimizer for both DNN and Resnet 
models, as the authors stated it inherited various good features from 
optimizers such as AdaGrad and RMSProp. With Adam, an update is 
ensured in every step, to modify network parameters in the direction 
influenced by historical gradients. This makes it less biased by the cur-
rent learning sample or minibatch and keep the learning effective when 
there are sparse gradients. 

Layer normalization enables the DNN to overcome issues such as 
longer training time and instability caused by accumulation of large 
error gradients which is termed as exploding gradient. Nguyen, et al. 
[63] observed an increase in coefficient of correlation of the training 
dataset from 0.873 to 0.951 while validation performance increased 
from 0.867 to 0.954 as layer normalization is introduced to the model. 
Huynh, et al. [4] observed similar improvement in a layer normalized 
model with a 12% increment training results and 7% increase in vali-
dation results, Table 4. Dropout reduces both training and validation 
model performance. Nguyen, et al. [63] observed a 4% and 3% reduc-
tion in the training and validation performance for the model with both 
layer normalization and dropout, while a higher reduction was observed 
for the same model without the layer normalization and with dropout, in 
range of 10% for both training and validation. 

Unlike the DNN, the effect of layer normalization on the performance 
of the Resnet model seemed to be ineffective. According to the obser-
vations of Nguyen, et al. [63] training performance of the ResNet model 
was slightly increased by 0.5% with layer normalization while valida-
tion performance remained unchanged, Table 4. However, Huynh, et al. 
[4] noticed about 2.5% increment in both training and validation per-
formance with the layer normalization. Dropout in the Resnet behaved 
in a similar manner as in the DNN, where the training and validation 
performance of the model decrease by 4% for both models either with or 
without the layer normalization. 

3.3. Adaptive neuro-fuzzy interface system (ANFIS) 

ANFIS is an artificial intelligence technique which combines ANN 
with fuzzy logic [58] and consists of five layers, namely fuzzification 
layer, rule layer, normalization layer defuzzification layer and summa-
tion layer [73]. ANFIS models have been modeled using databases of 
size 90 [33], 298 [14] and 210 [58]. Different data division schemes 
have been adopted for the selection of training, validation and testing 
datasets. Ahmad, et al. [33] used 80:20 train to test data splitting while 

Table 3 
Statistical metrics used for the performance evaluation.  

Statistical 
parameter 

Formula Ref 

Coefficient of 
determination R2 =

(
n
∑

iyiy′
i −

∑
iy′

i
∑

iyi
)2

(

n
∑

iy′2
i −

∑

i
y′

i

)2(

n
∑

iy2
i −

∑

i
yi

)2 
[4] 

R2 = 1 −

∑n
i=1

(
yi − y′

i
)2

∑n
i=1

(
yi − y

)2 
[5,58, 
60] 

Coefficient of 
correlation R =

∑n
i=1

(
yi − yi

)(
y′

i − y′
i
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
yi − yi

)2 ∑n
i=1

(
y′

i − y′
i
)2

√ [13, 
14] 

Mean absolute 
percentage error MAPE =

1
n
∑

⃒
⃒
⃒
⃒
⃒

yj − y′
j

yj

⃒
⃒
⃒
⃒
⃒
× 100 [4] 

Root mean square 
error RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
×
∑n

j=1

(
yj − y′

j

)2
√

[4,5, 
58,60] 

Mean square error MSE =
1
n
×

∑n
j=1

(
yj − y′

j

)2 
[5,13, 
60] 

Mean absolute error MAE =
1
n
×

∑n
i=1

⃒
⃒yi − y′

i
⃒
⃒ [5,58] 

Relative squared 
error RSE =

∑n
i=1

(
y′

i − yi
)2

∑n
i=1

(
yi − yi

)2 
[14] 

Relative root mean 
squared error RRMSE =

1
ŷ
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
yi − y′

i
)2

n

√

whereŷ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
yi − yi

)2

n

√

[14] 

Performance index ρ =
RRMSE
1 + R  [14] 

Note: yi: Actual compressive strength,y′i ∶Predicted compressive strength, yI: 
Mean of actual 

compressive strength, y′
i: Mean of predicted compressive strength.  

Fig. 3. A block in a deep residual network [72].  
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Dao, et al. [58] used 70:30. However, Khan, et al. [14] used the same 
ratio of Dao, et al. [58], (70:30) data division scheme for training and 
validation data splitting. Furthermore, the number of model input var-
iables ranged from 4 to 10 while their compressive strength values in the 
databases ranged between 8.2 MPa to 89 MPa, Table 5. 

Three models [14,33,58] have been developed in the studies using 
two member functions in the fuzzification layer, Triangular membership 
function [33] and Gaussian membership function [14,58]. The second 
layer of all the models have used the rule of IF-THEN.A single study 
reported details on the output member function as constant function. 

Performance of the models were evaluated using either coefficient of 
correlation (R) [14] or coefficient of determination (R2) combined with 
other statistical parameters such as mean absolute error (MAE) and root 
mean square error (RMSE). Other than these common statistical mea-
sure, Khan, et al. [14] have used additional measure such as relative 
squared error (RSE), relative root mean squared error (RRMSE), and the 
performance index (ρ), Table 3. 

Furthermore, all the ANFIS model performance have been compared 
with some other machine learning models. According to Ahmad, et al. 
[33], ANFIS model outperform the Multivariate adaptive spline model 

Table 4 
Summary of DNN and Resnet models.  

Data Model 
parameters 

Performance Ref 

DNN 
Database size: 335, 

Data source: 
Experimental, 
Data division: Train: 
80%, Validation: 20% 
Test: 0%, Number of 
inputs: 9, 
Output: Compressive 
strength 
(5.44–67.86 MPa) 

Hidden layers: 2 
Hidden neurons: 
L1 300, L2: 200 
Rectified liner unit 
(ReLu).  

[63] 

Model 1 
Layer 
normalization: Yes 
Drop out ratio: 0.7 

Coefficient of 
correlation (R) 
TR: 0.951 VAL: 

0.954 
Root means square 
error (RMSE) 
TR: 2.39 VAL: 

3.14 
Model 2 
Layer 
normalization: Yes 
Drop out ratio: 0 

Coefficient of 
correlation (R) 
TR: 
0.993 

VAL: 
0.985 

Root means square 
error (RMSE) 
TR: 
1.47 

VAL: 1.82 

Model 3 
Layer 
normalization: No 
Drop out ratio: 0.7 

Coefficient of 
correlation (R) 
TR: 
0.873 

VAL: 
0.867 

Root means square 
error (RMSE) 
TR: 
4.96 

VAL: 4.80 

Model 4 
Layer 
normalization: No 
Drop out ratio: 0 

Coefficient of 
correlation (R) 
TR: 
0.968 

VAL: 
0.960 

Root means square 
error (RMSE) 
TR: 
2.43 

VAL: 2.71 

Database size: 263, 
Data source: Literature, 
Data division: Train: 
90%, Validation: 10% 
Test: 0% 
Number of inputs: 6, 
Output: Compressive 
strength 
(5.44–67.86 MPa) 

Hidden layers:2 
Hidden neurons: 
L1:128 L2: 256 
Rectified liner unit 
(ReLu).  

[4] 

Model 1 
Layer 
normalization: Yes 
Drop out ratio: 0.2 

Coefficient of 
Determination (R2) 
TR: 
0.923 

VAL: 
0.898 

Root means square 
error (RMSE) 
TR: 
3.27 

VAL: 2.52 

Model 2 
Layer 
normalization: No 
Drop out ratio: 0.2 

Coefficient of 
Determination (R2) 
TR: 
0.821 

VAL: 
0.840 

Root means square 
error (RMSE) 
TR: 
5.01 

VAL: 3.16 

Resnet 
Database size: 335, 

Data source: 
Experimental, 
Data division: Train: 
80%, Validation: 20% 
Test: 0%, Number of 
inputs: 9, 
Output: Compressive 
strength 
(5.44–67.86 MPa) 

Hidden layers: 3 
Hidden neurons: 
L1 300, L2: 200 L3 
200 
Rectified liner unit 
(ReLu).  

[63] 

Model 1 
Layer 
normalization: Yes 
Drop out ratio: 0.7 

Coefficient of 
correlation (R) 
TR: 0.958 VAL: 

0.942 
Root means square 
error (RMSE)  

Table 4 (continued ) 

Data Model 
parameters 

Performance Ref 

TR: 2.66 VAL: 
2.18 

Model 2 
Layer 
normalization: Yes 
Drop out ratio: 0 

Coefficient of 
correlation (R) 
TR: 
0.998 

VAL: 
0.986 

Root means square 
error (RMSE) 
TR: 
1.30 

VAL: 1.28 

Model 3 
Layer 
normalization: No 
Drop out ratio: 0.7 

Coefficient of 
correlation (R) 
TR: 
0.954 

VAL: 
0.942 

Root means square 
error (RMSE) 
TR: 
2.61 

VAL: 1.95 

Model 4 
Layer 
normalization: No 
Drop out ratio: 0 

Coefficient of 
correlation (R) 
TR: 
0.994 

VAL: 
0.992 

Root means square 
error (RMSE) 
TR: 
1.31 

VAL: 1.26 

Database size: 263, 
Data source: Literature, 
Data division: Train: 
90%, Validation: 10% 
Test: 0% 
Number of inputs: 6, 
Output: Compressive 
strength 
(5.44–67.86 MPa) 

Hidden layers: 3 
Hidden neurons: 
L1:128 L2: 256 L3: 
256 
Rectified liner unit 
(ReLu).  

[4] 

Model 1 
Layer 
normalization: Yes 
Drop out ratio: 0.2 

Coefficient of 
Determination (R2) 
TR: 
0.921 

VAL: 
0.915 

Root means square 
error (RMSE) 
TR: 
3.24 

VAL: 3.28 

Model 2 
Layer 
normalization: No 
Drop out ratio: 0.2 

Coefficient of 
Determination (R2) 
TR: 
0.896 

VAL: 
0.937 

Root means square 
error (RMSE) 
TR: 
3.81 

VAL: 1.98 

Note: TR: Train, VAL: Validation 
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(MARS) in terms of both training and testing, Table 5. Khan, et al. [14] 
compared the ANFIS model with ANN and Gene expression program-
ming (GEP) model where he observed similar improvement in model 
performance in all 5 statistical measures used for both training and 
validation. Similar observations were made by Dao, et al. [58] where he 
compared the ANFIS model with ANN model and achieved performance 
improvement of 3.3% for the test data in terms of coefficient of 
determination. 

3.4. Support vector machine (SVM) 

It was observed that SVM has been used in a single study to predict 
the compressive strength of geopolymer concrete. This model developed 
by Peng and Unluer [5] used a database with 110 datasets and 14 inputs 
to develop a SVM model and compared the results with the models 
developed using back propagation neural network (BPNN) and extreme 
leaning machine (ELM). Collected data were shuffled randomly, and all 
input variables were preprocessed by the same normalization algorithm 
to unify their dimensions. Moreover, a data division scheme of 70%, 
15% and 15% was adapted for training, validation, and testing data 
selection. 

Kernel function was used as RBF and e-SVR was used as SVM type, 
while tolerance and epsilon values were maintained at 0.001 and 0.1. 
The performance of the developed model was evaluated using four 

statistical measures, coefficient of determination (R2), mean square 
error (MSE), root mean square error (RMSE) and mean absolute error 
(MAE). 

It has been observed that the performance of the SVM (R2= 0.903) 
had a lower value for its training dataset in terms of R2 compare to the 
BPNN (R2= 0.947) and ELM (R2= 0.922). However, the resultant R2 

value of validation and testing SVM model (R2
Val 

= 0.92, R2 
test = 0.955) 

outperformed validation and testing of the other two models (BPNN, 
R2

Val 
= 0.822, R2

test = 0.915, ELM, R2
Val
= 0.893, R2 

test = 0.914). 

4. Evolutionary programming and ensemble learning 

4.1. Gene expression programming (GEP) 

A strong soft computing technique, namely, genetic programming 
(GP), is valuable as it ignores the previous forms of established re-
lationships for the development of the model. An extension of GP, 
namely, GEP, which encodes a small program and uses fixed-length 
linear chromosomes, was recently introduced to predict the compressive 
strength of geopolymer concrete [74]. The architectural design of GEP 
model is determined by the number of genes and size of head, which 
latter determines the complexity of each expression by summation of 
sub-expression trees (sub-ETs) of the model. Genes value determines the 
number sub-ETs developed by manipulating the input variables with the 
functions in the function set while head size defines the maximum 
number of starting nodes in a sub-ET. Final model output is achieved by 
combining the sub-ETs using the linking function [75]. 

Two GEP models have been developed using databases of size 298 
and 311 as shown in Table 6. The datasets were extracted from the 
literature. Furthermore, the database consists of 10 and 8 input variables 
while the range of compressive strength in the databases varied between 
8.2 and 63 MPa and 10.5–63 MPa respectively. Model training was done 
using 70% of the total database while the remaining 30% was used for 
the model validation. Both the models did not consider assessing the 
model generalization using a test data split. Both models used an iden-
tical set of model parameters except for number of genes and function 
set. Khan, et al. [59] used 4 genes while Chu, et al. [62] used 3 genes for 
the model development. Furthermore, both models used addition, sub-
traction multiplication and division as the common functions where 
Khan, et al. [59] used cubic root as an additional function in their model. 

GEP has an advantage over the other machine learning models as it 
provides a simple mathematical expression which can represent the 
outcome that is appropriate for practicable usage for better predictive 
accuracy. Based on 4 genes Ali Khan, et al. [12] developed an equation 
to predict the compressive strength as a combination of four equations 
Eq.4 to Eq.8 where T, A,M, %S/W, Ns/No, %AG, F/AG,. AL/FA, %P, %EW 
denote temperature required for curing of the sample, age of the sample, 
the molarity of the sodium hydroxide (NaOH) solution used, the per-
centage of silicon dioxide (SiO2) to the water ratio for preparing sodium 
silicate (Na2SiO3) solution, the ratio between sodium silicate (Na2SiO3) 
solution to NaOH, the percentage by volume of total aggregates, the 
ratio between fine aggregate to total aggregates, the ratio between alkali 
to fly ash, percentage of plasticizer, and percentage of extra addition of 
water, respectively. 

f ′
c(MPa) = A× B× C × D (4)  

A =

̅̅̅̅̅
S
W

3

√

% − P%+

(

M ×
F
AG

×
AL

FA
× 6.61

)

+EW% − AG% (5)  

B = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A+ 80

0.083(T − 17.87)
+M +

NS

NO

3

√

(6)  

Table 5 
ANFIS model details.  

Data Model 
parameters 

Performance Ref 

Database size: 90, 
Data source: 
Literature, 
Data division: 
Train: 80%, 
Validation: 0% Test: 
20%, 
Number of inputs: 
4, 
Output: 
Compressive 
strength (20.0 – 
89.00 MPa) 

Membership 
function: 
Input 
membership 
function: 
triangular MF 
Output MF: 
Constant. 
Rule layer: 
Rule of IF- 
THEN 
Optimization 
method: 
Hybrid 
optimization. 
Epochs: 500 

Coefficient of determination 
(R2) 

[33] 

TR 0.74 TS 0.90 
RMSE 
TR 2.81 TS 5.53 
MAE 
TR 0.35 TS 1.11 

Database size: 298, 
Data source: 
Literature, 
Data division: 
Train: 70%, 
Validation: 30% 
Test: 0% 
Number of inputs: 
10, 
Output: 
Compressive 
strength (8.2 – 
63 MPa) 

Membership 
function: 
Input 
membership 
function: 
Gaussian MF 
Rule layer: 
Rule of IF- 
THEN 
Epochs: 4 

R [14] 
TR 0.925 VAL 0.978 
RMSE 
TR 4.08 VAL 2.59 
MAE 
TR 3.28 VAL 2.08 

Database size: 210, 
Data source: 
Experimental, 
Data division: 
Train: 70%, 
Validation: 0% Test: 
30% 
Number of inputs: 
4, 
Output: 
Compressive 
strength 
(18.92–74.12 MPa) 

Membership 
function: 
Input 
membership 
function: 
Gaussian MF 
Rule layer: 
Rule of IF- 
THEN 

Coefficient of determination 
(R2) 

[58] 

TS 0.879 
MAE 
TS 1.655 
RMSE 
TS 2.265 

Note: TR: Train, VAL: Validation, TS: Test 
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C =
F
AG

−

⎛

⎜
⎜
⎝EW% × M −

0.0003
NS
NO

− EW%

⎞

⎟
⎟
⎠ − 0.0003 (7)  

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

P% − S
W%

)

1.16

T

3

√
√
√
√
√

+

̅̅̅̅̅̅̅̅̅
0.17

F
AG

3

√

+ 0.77 (8) 

According to the 3 genes employed by Chu, et al. [62] the equation 
for compressive strength prediction consists of three equations Eq.9 to 
Eq.12 where T, t, A, %Ag, M, %S, %P, %Ew denote initial temperature 
required in the curing regime, time for curing in hours, age of samples in 
days, percentage of total aggregate by volume, molarity of sodium hy-
droxide (NaOH) solution, SiO2 solids percentage in sodium silicate 
(Na2SiO3) solution, superplasticizer and extra water as percent FA 
respectively. 

f ′
c(MPa) = E × F × G (9)  

E = 4.1 −
18.46

8.94 + P%
×

S% + Ew%
Ag − S%

(10)  

F = 1+
(2 × A) − 131.23

T × t
(11)  

G =
T − (2 ×M)

9
−

2
M − 9

+ 11.91 (12) 

Compared to other methods such as liner regression, nonlinear 
regression and multi expression programming (MEP) that provide cor-
relations to predict the properties of concrete, GEP has better prediction 
accuracy both in training and validation, Table 7. Based on the obser-
vations of Ali Khan, et al. [12], coefficient of correlation (R) for the 
training of the GEP model is 0.858 and it is 6% higher than the linear 
model and 3% higher than the non-linear model, Table 7. Furthermore, 
GEP model recorded validation performance of 0.963 and 7% and 4% 
higher accuracy than the linear and nonlinear models. Similar results 
were observed by Hong-Hu Chu a et al. [62] where it achieved 0.864 and 
0.984 for training and validation performance, which is 4% and 9% 
higher than the MEP model respectively. 

Based on Table 7 it can be observed that both models resulted higher 
training error compared to validation error of the corresponding model 
which is the opposite of the general behavior of the machine learning 
models. 

4.2. Random Forest (RF) 

Random forest (RF) has also been adopted in two studies as a fore-
casting tool. The RF technique is comprised of three main steps that 
included the assembling of trained regression trees via a training data-
set, the calculation of the mean value of a single regression tree 
outcome, and the validation of predicted results via a validation dataset 
[59]. Optimization algorithms used in the RF models ensure that 
inputs-output correlations are properly established, outliers are 

Table 6 
GEP model details.  

Data Model 
parameters 

Performance Ref 

Database size: 
298, 
Data source: 
Literature, 
Data division: 
Train: 70%, 
Validation: 
30% Test: 0%, 
Number of 
inputs: 10, 
Output: 
Compressive 
strength 
(8.2–63 MPa) 

Number of 
chromosomes 
150 
Number of 
genes 4 
Head size: 10 
Linking 
function 
Multiplication 
Functions set +, 
− , /, ×,∛ 
Constants per 
gene 10 
Type of data 
Floating data 
Upper bound 
value 10 
Lower bound 
value – 10 
Mutation rate 
0.001380 
Inversion rate 
0.005460 
IS 
transportation 
rate 0.005460 
RIS 
transportation 
rate 0.005460 
Gene 
recombination 
rate 0.007550 
Gene 
transportation 
rate 0.002770 
Shape 
normalization 
done 

Coefficient of correlation 
[59] TR 0.858 VAL 0.964 

RMSE 
TR 5.971 VAL 2.643 
MAE 
TR 5.823 VAL 2.057 
RSE 
TR 0.325 VAL 0.0675 
RRMSE 
TR 16.949 VAL 4.949 
Performance index 
TR 0.091 VAL 0.025 

Database size: 
311, 
Data source: 
Literature, 
Data division: 
Train: 70%, 
Validation: 
30% Test: 0%, 
Number of 
inputs: 8, 
Output: 
Compressive 
strength 
(10.5–63 MPa) 

Number of 
chromosomes 
150 
Number of 
genes 3 
Head size: 10 
Linking 
function 
Multiplication 
Functions set +, 
− , /, ×, 
Constants per 
gene 10 
Type of data 
Floating data 
Upper bound 
value 10 
Lower bound 
value – 10 
Mutation rate 
0.001380 
Inversion rate 
0.005460 
Gene 
transportation 
rate 0.002770 
One-point and 
two-point 
recombination 
rate 0.00277 

Coefficient of correlation [62] 
TR 0.864 VAL 0.984 
RMSE 
TR 5.901 VAL 1.521 
MAE 
TR 5.624 VAL 1.319 
RSE 
TR 0.253 VAL 0.0315 
RRMSE 
TR 15.495 VAL 3.895 
Performance index 
TR 0.083 VAL 0.019 

Note: TR: Train, VAL: Validation, TS: Test 

Table 7 
Performance comparison.  

Author Model Train Validation 

R MAE RMSE R MAE RMSE 

Ali Khan, 
et al. [12] 

GEP  0.858  5.823  5.971  0.964  2.057  2.643 
Linear  0.807  6.543  6.986  0.897  4.967  5.546 
Non- 
Linear  

0.835  6.053  6.593  0.924  4.875  5.054 

Hong-Hu 
Chu a et al. 
[62] 

GEP  0.864  5.624  5.901  0.984  1.319  1.521 
MEP  0.831  5.632  6.605  0.938  2.330  3.013  
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accounted for, and variance and bias among model trees are kept as low 
as possible. During the study of Gomaa, et al. [64] a database of 180 
unique records with 20 input variables was randomly split in to 75% and 
25% as training and testing. Furthermore, grid search optimization 
method was adopted and identified 500 no. of trees and 9 no. of leaves 
per tree as the optimum values. Further the study identified, when the 
number of splits was fewer than nine, the logical divisions in the data-
bases were numerically insufficient and too basic to completely incor-
porate the complicated connections between inputs and outputs. When 
the number of splits was greater than nine, the complexity of the trees 
(CARTs) increased the probability of bias, which led to overfitting. 
Similarly, when the number of trees was fewer than 500, the RF model 
lacked sufficient bootstraps to make reliable predictions (for new alkali 
activated concrete compositions). However, when an excessive number 
of trees (more than 500) were utilized, the computational complexity of 
the model unquestionably grew. 

However, during the study of Khan, et al. [59], original trained set 
was used to calculate a new trained dataset comprised of boot-strap 
data. In this step, some of the data points were removed and swapped 
with the present data points. The removed data points were assembled 
into other datasets and were called out-of-bag data points. Then, the 
regression function was estimated using 2/3 of the data points, and the 
out-of-bag data points were used in validating the model. This process 
was continued till the required accuracy was achieved. Use of optimi-
zation algorithms enables the RF regressor to achieve higher model 
performance [1]. Coefficient of correlation values of 0.9826 and 0.9943 
were observed for training and validation for the model developed by 
Khan, et al. [59] while Gomaa, et al. [64] achieved 0.96 for the training 
and 0.97 for the testing. Furthermore, studies revealed that RF regressor 
outperformed some of the prediction models such as GEP, Linear 
regression and non-linear regression with improved results for training 
giving a 14%, 22% and 18% increase and 3%, 11% and 8% for 
validation. 

5. Parameter sensitivity analysis 

Sensitivity analysis is used to evaluate how input variables affect 
output variation derived by machine learning models. Four approaches 
have been used to detect the parameter sensitivity. The first approach 
calculated the sensitivity percentage using Eq.13 and Eq.14, where fmi-

n(yj) and fmax(yj) are the jth minimum and maximum predictive model 
output, respectively, while input values are kept constant at the mean 
value. Nj gives the range of jth input variable by taking the difference 
between fmax(yj) and fmin(yj) [4,59,62]. 

Nj = fmax
(
yj
)
− fmin

(
yj
)

(13)  

Sensitivity% =
Nj

∑n
i=1Nj

(14) 

The second approach was permutation feature importance (PFI). The 
core idea of PFI is that if a certain input variable (Xi) has a great influ-
ence on the result, the prediction accuracy will significantly decrease by 
randomly arranging Xi, during which the order of other variables is 
unchanged. Based on the definition, the calculation expression of the PFI 
value for a specific variable obtained by using mean absolute error 
(MSE) as error measurement function is shown in Eq.15, where MAEperm 
and MAEorig are mean absolute error before and after randomly 
adjusting Xi sequence, respectively [5]. 

PFI = MAEperm − MAEorig (15) 

The third approach simulated the model by choosing the number of 
input variables for the prediction as m-1, where the m denotes the 
number of input variables, and the value of the excluded parameter is set 
to 0. Simulation performance was measured in terms of coefficient of 
determination (R2) and the results were compared [58]. The fourth 

approach used a decision-tree structure of the RF model, after it being 
trained, and fully validated against the test set, which was analyzed to 
estimate and rank each attribute’s importance in accordance with the 
magnitude of influence it exerts on compressive strength and is pre-
sented as “importance” which is a dimensionless parameter [64]. 

Parameter sensitivity studies on geopolymer concrete, Table 8, 
identified that fly ash/ aggregates ratio is more sensitive towards the 
compressive strength prediction as it determines the internal void 
structure of geopolymer concrete. Huynh, et al. [4] observed the highest 
sensitivity percentage, 35.55% for fly ash / aggregates ratio, which was 
119.17% higher than the second highest sensitivity parameter in the 
same study, Table 8. However, the individual effect of coarse aggregates, 
fine aggregates and fly ash found to be less sensitive towards the output 
predictions. Peng and Unluer [5] noticed least PFI values of 0.03 and 
0.02 for coarse aggregates and fine aggregates out of 14 input variables 
used, while Gomaa, et al. [64] observed third and second lowest 
“importance” values 58 and 59 for coarse aggregates and fine aggregates 
compared to the 15 input variables used. Furthermore, studies of Dao, 
et al. [58] and Peng and Unluer [5] noticed a lower sensitivity of the fly 
ash content to the output results with a R2 value of 0.839 and PFI of 0.03 
which are 1.14% and 95.7% lower than the highest values. 

R2 value of 0.839 and PFI of 0.03 which are 1.14% and 95.7% lower 

Table 8 
Input parameter sensitivity analysis results.  

Input parameter Sensitivity indices 

Sensitivity % PFI R2 Importance  

[62] [4] [59] [5] [58] [64] 

Curing Temperature 
(0C) 

26.25 16.22 25.30 0.07 - 483 

Curing Time (hrs.) 11.58 14.93 - 0.09 - 301 
Age of specimen 

(days) 
9.00 - 5.88 - - 370 

NaOH molarity 
(mol/L) 

9.75 16.18 2.32 0.25 - - 

Total aggregate by 
volume (%) 

10.61 - - - - - 

Superplasticizer (% 
fly ash) 

12.21 - 6.71 0.26 - - 

SiO2 in Na2SiO3 (%) 8.90 - - - - - 
Water content (% or 

kg) 
11.70 - 18.85 0.09 0.835 176 

NaOH/ Na2SiO3 - 12.90 0.85 0.12 - - 
Fly ash / Aggregates - 35.55 - - - - 
Alkali liquid / Fly 

ash 
- 4.22 6.85 0.06 - - 

SiO2/ H2O in 
Na2SiO3 

- - 22.94 - - - 

Total aggregate 
percentage by 
volume 

- - 7.71 - - - 

Fine to total 
aggregates 

- - 2.61  - - 

Fly ash (Kg) - - - 0.03 0.839 - 
SiO2 in fly ash (%) - - - 0.71 - 51 
Al2O3 in fly ash - - - 0.21 - - 
Coarse aggregates 

(kg) 
- - - 0.03 - 58 

Fine aggregates (kg) - - - 0.02 - 59 
NaOH solution 

weight (kg) 
- - - 0.08 0.822 - 

Na2SiO3 solution 
weight (kg) 

- - - 0.30 0.833 - 

Curing regime      754 
Mixing procedure - - - - - 644 
Loss on ignition (%) - - - - - 607 
Specific surface area 

of fly ash (m2/kg) 
- - - - - 155 

Na2O in fly ash (%) - - - - - 137 
K2O in fly ash (%) - - - - - 107 
CaO in fly ash (%) - - - - - 99 
Al2O3 in fly ash - - - - - 64  
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than the highest values. Sensitivity of SiO2% in fly ash was reported to 
have two contradictory results where Peng and Unluer [5] observed it as 
the highest sensitive parameter while Gomaa, et al. [64] as the least 
sensitive. This observation in the sensitivity study could be due to the 
notable differences in the ranges of SiO2 percentage values used in the 
databases. Peng and Unluer [5] utilized a broad range of SiO2 percent-
ages ranging from 31.32% to 71.5%, whereas Gomaa, et al. [64] used a 
more narrow range of SiO2 percentages, spanning from 36.9% to 43.9%. 
Properties of fly ash such as Al2O3%, Na2O%, CaO%, K2O% and specific 
surface area were found to have less sensitivity while loss in ignition was 
ranked as third highest sensitive parameter [64]. Curing conditions, 
which control the dissolution kinetics of fly ash and precipitation ki-
netics of the reaction products, is identified as a sensitive parameter in 
the model outputs. Gomaa, et al. [64] observed the highest “importance” 
value of 754 for the curing regime (oven curing, Ambient curing, and 
moist curing) while the importance value of curing temperature, with 
the parameter range of 27–70 0C, and time, with a parameter range of 
1–28 days, were 483 and 301 respectively. Similar observation on 
curing temperature was made by Chu, et al. [62] and Khan, et al. [59] 
being the most sensitives parameter of their study with a value of 
26.25% and 25.3% respectively while Huynh, et al. [4] identified curing 
temperature as the second most sensitive with a value of 16.22%. On the 
other hand, Peng and Unluer [5] identify the sensitivity of curing tem-
perature and time as minimal with values of 0.07 and 0.09 for the PFI 
which are 87.3% and 90.1% less than the most sensitive in the study. 

Sensitivity of Na2SiO3 in the model output is prominent as it controls 
the SiO2 availability for polymerization and hence the features of 
resultant sialates network. Dao, et al. [58] and Peng and Unluer [5] 
identified Na2SiO3 has having the second highest sensitivity in their 
studies, 45.62% and 42.25% lower compared to the highest sensitivity 
of the studies respectively. However, Chu, et al. [62] identify SiO2% in 
Na2SiO3 has least sensitivity towards the output predictions, while 
Khan, et al. [59] identify the ratio between SiO2% in Na2SiO3 and water 
as the second highest sensitivity for the model predictions. Sensitivity of 
NaOH content and concentration has been identified to have a moderate 
contribution towards model outputs with PFI values of 0.08 and 0.25 
respectively. Gomaa, et al. [64] used 8 mixing procedures and identified 
as the second highest sensitive parameter with an importance value of 
644 in their study. Mixing procedures are designed to represent different 
mixing sequences of materials and mixing durations. Further details on 
mixing procedures can be found by refereeing to the paper. 

6. Discussion 

Machine learning techniques have been adopted by several re-
searchers as a novel approach to forecast the compressive strength of 
geopolymer concrete. Most of the studies focused on predicting 
compressive strength as the model output by using properties of fly ash, 
activators, curing conditions, aggregates, and extra water as the model 
inputs. Fly ash, either as weight or a ratio with another parameter, has 
been used in all the machine learning models, while SiO2 and Al2O3 
content of fly ash have been used in only two studies. However, total 
SiO2 and Al2O3 in the fly ash found to be ineffective in the geopolymer 
synthesis as more contribution comes from the amorphous SiO2 and 
Al2O3 [66]. Furthermore, other chemical, physical, and mineralogical 
properties of fly ash, which have been found to be crucial input variables 
during the experimental studies, have not been included in any of the 
machine leaning models [66]. Thus, the highly varying nature and 
source dependency of fly ash have been not incorporated into machine 
learning models, which has been suggested as resulting in poor perfor-
mance for test data in some of the machine learning models [59,64]. 

The effect of alkaline activator has been considered in most of the 
models. Properties such as concentration of alkali hydroxide controls the 
rate of dissolution of precursor material by alkali hydrolysis and for-
mation of concentrated gel phase which eventually rearrange and 
reorganize in to geopolymers. Moreover, silicate ions released from the 

alkali silicate solution determine the type of end product which in turn 
influences the properties of geopolymer. Furthermore, sensitivity anal-
ysis of the model parameter highlighted curing time, curing temperature 
and water content as the three principal input variables which control 
the reaction process of geopolymer. Higher temperatures result high 
reactivity leaving less unreacted particles. Furthermore, it governs the 
setting time of concrete and has significant influence on initial and final 
setting time of geopolymer concrete. Water content controls the work-
ability of geopolymer concrete, where high quantities cause segregation 
and reduction in compressive strength. 

From our point of view incorporation of physical, chemical, and 
mineralogical properties of fly ash may lead to standard predictive 
model which can be used estimate compressive strength of geopolymer 
concrete irrespective of the origin of the fly ash. Furthermore, it enables 
mixing of fly ash with different sources having distinct properties to 
optimize the resultant concrete. NaOH concentration, NaOH content 
and Na2SiO3 content seems to be important input variables for the 
machine leaning models as it represents the activator in the geo-
polymerization. However, NaOH solid content used for NaOH solution 
preparation, Na2O and SiO2 solid content in Na2SiO3 along with the total 
water content seems to be more effective as the input variables for the 
models. Furthermore, curing time and temperature are required input 
variables for machine learning models as it controls the setting time and 
reaction kinetics of the geopolymer concrete. All input variables sensi-
tivity analysis were conducted using the machine learning models 
developed for the corresponding study. As a result, the size and quality 
of the data set and level of hyper parameter tuning may have significant 
impacts on the sensitivity of each input variables. This explains the 
reason for some input variables to have higher sensitivity in some 
models while the same input variables may have the least in other 
models [5,64]. 

Size of the database used for the machine learning model develop-
ment depends on the relevancy and reliability of the dataset. Further-
more, it depends on the model complexity, learning algorithm, required 
error margin and input diversity. Since papers discussed in the review 
have used distinct models and sets of hyper parameters, making con-
clusions on the size of the data set on the performance of the machine 
leaning model is ineffective. However, small dataset with high reliability 
and relevancy could perform better than a large data set which is less 
reliable and relevance. Data splitting between training, validation and 
testing is essential for model training, reducing model overfitting and 
assessing the generalization capability respectively. The most utilized 
and accepted data splitting ratio in the literature was 70:15:15 percent 
for training, validation, and testing. However, models with K-fold cross 
validation method divide data into k number of folds and used k-1 no. of 
folds for training while remaining set is used for validation or testing. 
This ensure that the entire instances are utilized for training and vali-
dation/testing of the model, and every instance is once utilized for the 
validation/testing purpose. 

Data normalization has been used in several machine learning 
models while details were missing about other types of preprocessing 
techniques such as missing data identification and removal of duplicated 
data which may cause an incorrect view of the overall statistics of data 
and removal of outliers which often tend to affect the model’s overall 
learning, and prediction performance. Furthermore, compressive 
strength of geopolymer concrete highly depend on the size and the shape 
of the mould used for sample casting. Thus, normalization factors for 
mould type need to be applied to get the better performance. 

Model hyperparameters are crucial factors that determine the 
behavior and the performance of the machine learning model. Tuning of 
hyperparameters and feature selection enables ANN models to achieve 
similar performance compared to complex models such as DNN, ResNet 
and ANFIS. Proper selection of hidden layers and hidden neurons in 
ANN, based on the complexity of the problem and availability of data, 
improves the model predictions, and avoid both underfitting and over-
fitting of the model. As a result, performance of the model will increase 
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while demand for the computational requirement will reduce. However, 
even a higher number of hidden layers and hidden neurons combined 
with proper dropout probability resulted in better predictions [4] at the 
cost of higher computational power. Randomly initialized weights and 
biases of a neural network were tuned to optimize network performance 
as defined by the network performance function using the training 
function. There are two different ways in which training can be imple-
mented: incremental mode and batch mode. All the ANN models 
reviewed here used batch mode training functions such as 
Levenberg-Marquardt and Bayesian regularization. Bayesian regulari-
zation functions slightly outperformed Levenberg-Marquardt training 
function while other training functions resulted poor performance dur-
ing the model development [13]. 

DNN, Resnet and ANFIS are extended versions of ANN. DNN consists 
of multiple hidden layers with high number of hidden neurons at each 
layer [4,63]. When dealing with small number of datasets DNN models 
are easily prone to be overfitted and can be overcome by layer dropout 
and layer normalization [4]. However, dropout easily ignore the 
important features when there are less influential input variables. DNN 
models developed by Nguyen, et al. [63] used a large drop out ratio (0.7) 
which ignores 70% of the nodes. As a result, the model without dropout 
outperformed the model with dop out which can be due to ignoring of 
important features due to large drop out ratio. However Huynh, et al. [4] 
developed a DNN model with 0.2 drop out ratio and observed, model 
with drop out, outperform the model without drop out. Resnet was 
introduced to overcome the vanishing/exploding gradient of neural 
network by using skip connections. However, Resent models also suffer 
from model overfitting which can be avoided by careful implementation 
of layer dropout and special attention should be given to not avoid 
important features when dealing with small number of input variables. 
Similar to DNN models Resnet models resulted poor performance with 
large dropout ratio [63] and improved performance with small dropout 
ratio [4] compared to the models without applying dropout. An ANFIS is 
a kind of ANN that is based on Takagi–Sugeno fuzzy inference system. 
Khan, et al. [14] and Dao, et al. [58] developed ANN and ANFIS models 
and results indicate the superiority of the ANFIS model compared to the 
ANN models. This is because ANFIS integrates both neural networks and 
fuzzy logic principles and it has a potential to capture the benefits of 
both in a single framework. Its inference system corresponds to a set of 
fuzzy IF–THEN rules that have learning capability to approximate 
nonlinear functions. 

Unlike all other machine learning methods, GEP generates a set of 
equations to predict the properties of geopolymer concrete based on the 
user-defined number of genes and function sets. The number of genes 
represent the number of variables involved, while the function set de-
fines how each parameter is combined in the final equation to predict 
the compressive strength. However, proper selection of number of genes 
and function sets are an iterative process, and the final equations may 
not necessarily capture the complex behavior of geopolymer concrete as 
it would be captured by a neural network-based model. Tuning of 
hyperparameters for any machine learning model is iterative process 
and depends on the size of dataset and number of input variables used to 
train the model. Compared to complex neural networks, simplified 
models such as support vector machine and RF have proven their ability 
to predict the properties of geopolymer concrete with higher prediction 
accuracy. However, the generalization capability of the model in prac-
tical applications and tuning of model hyperparameters need further 
investigation. 

Only 5 models used a test dataset to assess the generalization capa-
bility while the rest of the 16 models used only training and validation 
datasets. Assessing the model performance using the validation dataset 
is not a reliable approach because the validation data is already exposed 
to the model during the hyperparameter tuning and hence the model can 
predict reasonable results for the validation dataset. However, based on 
the training and validation results of the model, DNN and Resnet 
outperform all other models [4,63]. As discussed earlier due to large 

number of hidden neurons DNN and Resent can easily overfit the model. 
As such in the absence of separate test dataset to assess the generaliza-
tion capability, the results given are insufficient to determine whether 
these model are superior to the other models. Based on the performance 
indices on the test sets SVM and ANN are identified as the best methods 
to predict the compressive strength of geopolymer concrete. However, it 
should also be noted that the model performances may also have been 
affected by the choice of model inputs and the level of hyperparameter 
optimization. 

Performance analysis of the machine learning models were con-
ducted using several statistical parameters. Coefficient of determination 
was used by 50.0% of the studies while 41.6% used coefficient of cor-
relation to assess the model performance. The Coefficient of correlation 
and coefficient of determination evaluate overall performance of the 
models and are used for the model comparison purposes. However, they 
do not provide an idea about the magnitude of the error. Root mean 
squared error (RMSE) was utilized in 83.33% of the studies while, mean 
absolute error (MAE) and mean squared error (MSE) were used in 66.6% 
and 25.0% of the studies respectively. Root mean squared error (RMSE), 
mean squared error (MSE), and mean absolute error (MAE) represent the 
magnitude of error, and the model comparisons using them are mean-
ingful when models are built using same set of data. 

From our point of view by using several independent statistical error 
measures enables to verify the results of model performance. However, 
even with the overall performance measures, a fair comparison of 
various machine learning models reviewed here is impossible, as these 
models have been developed using distinct data sets, and any data 
preprocessing performed (e.g. missing data treatment, outlier removal 
etc.) is unknown. In the current review all the studies have used either 
coefficient of correlation or coefficient of determination along with 
another error measures which give an indication of overall error 
magnitude, such as RMSE, MSE or MAE except for a single study [61] 
which have not adopted any measures evaluate the model performance. 

Evaluation of model performance using laboratory trials for verifi-
cation is an important step to identify the potential practical implica-
tions such as the models’ behavior for new sources of fly ash outside the 
database, workability, and initial setting time. This will enable to 
assessment of the performance of the model and further optimization of 
the model while ensuring the practicability of the resultant concrete.  
Fig. 4 depicts the model predictions and experimental results of five 
studies while the other studies do not perform experimental tests to 
validate their model performance. 

The coefficient of determination calculated using the experimental 

Fig. 4. Model predictions vs experimental results comparison.  
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results and model predictions for the study conducted by Gunasekara, 
et al. [13] is 96.6, while the models developed by Gomaa, et al. [64] and 
Thanh Pham [60] predict the compressive strength with coefficients of 
determination of 94.3 and 94.5, respectively. Models developed by 
Ahmad, et al. [33] and Bhogayata, et al. [61] showed coefficients of 
determination of 76.0 and 0.45, respectively. To ensure the models 
generalization capability it is recommended that all the developed 
models should be validated with an experimental data employing mul-
tiple sources of fly ash to identify model performance and improve 
accuracy. 

As a summary the review paper discuss several machine learning 
methods used to determine the compressive strength of geopolymer 
concrete. Studies have used different databases in terms of both size and 
the input variables to develop the models. Furthermore, types of 
hyperparameters and the level of optimization were not mentioned in 
most of the studies. As a result, a proper comparison between the studies 
is hard to perform. In general, some models [5,13,63,64] have used data 
normalization before training the models and it has been identified that 
it as a crucial step in machine learning model development. Only a single 
attempt [12] has been made to take in to account the shape and size 
factor of the specimens used to evaluate the compressive strength in 
different studies. This strength normalization is crucial as the data had 
been gathered from different studies which may had used different types 
of molds. Studies have not mentioned about outlier detection methods, 
any missing data treatment or any other data pre-processing used, which 
could have affected the model performance. 

The models under consideration in this paper have employed a set of 
input variables to forecast the compressive strength of geopolymer 
concrete. However, the approach used to derive the values for these 
input variables raises a concern. Because the models can generate pre-
dictions for any given input variable values, irrespective of their prac-
ticality in real-world applications. A potential remedy to this issue is to 
utilize the input variable values those documented in the literature. 
However, even with this reference, the process of identifying the most 
fitting values for these input variables can be a time-intensive endeavor. 
Another approach to identify the values for the input variables is to use 
graphical or statistical methods developed in the literature. However, 
the accuracy of the values of the input variables would depend on the 
accuracy of the graphical or statistical model. 

7. Conclusions 

This paper has reviewed the machine learning techniques used to 
predict compressive strength of geopolymer concrete. The following 
conclusions can be summarized from the overall review within this 
study:  

1. The reported models were accurate for the limited ranges for the 
input variables such as chemical composition, particle size distri-
bution, surface area and amorphous content of fly ash. However, the 
models may not perform well for a completely new source of fly ash 
with properties lying outside the established limited ranges.  

2. ANN has been used in most of the studied due to its robust nature. 
Both sigmoid activation function and rectified linear unit activation 
functions appeared effective for the hidden layer activation while 
Bayesian regularization function and Levenberg-Marquardt training 
function were effective in model training.  

3. Simple models like SVM and RF achieved similar performance to 
ANN models, while generalization capabilities of RF should be 
evaluated using test dataset and further understanding on hyper-
parameters is required to fine-tune the models.  

4. It has been observed that complex nonlinear models such as DNN, 
ResNet and ANFIS provide accurate prediction in conjunction with 
dropout and layer normalization. However, further research is 
required to identify whether the model loose some of the high 
sensitivity nodes due to drop out.  

5. GEP model provides a set of equations to predict the properties of 
geopolymer concrete while other black box models such as ANN, 
SVM etc. do not provide such direct expressions to predict the 
properties of geopolymer concrete.  

6. Only five models were validated using laboratory experiments while 
others have used a part of the database to either as test data or 
validation data to assess the model. This approach will not give an 
insight into the model performance for practical applications when 
the model enconters a completely new source of fly ash with 
completely distinct characteristics from those available in the 
database.  

7. Based on the Sensitivity analysis [4,5,59,62], fly ash to aggregate 
ratio, curing conditions, Na2SiO3 content have been identified as the 
most sensitive input variables, while fly ash content, aggregate 
content, Al2O3%, Na2O%, CaO%, K2O % and specific surface area 
have been found to be less sensitive towards the model outputs. 

8. Research gaps and recommendations 

This review identifies several gaps in knowledge as follows. All the 
studies have selected input variables only referring to past literature, 
and no justification was given for the selection criteria. By incorporating 
a reasonable feature selection method used in the machine learning 
model development (such as: information gain, fisher’s score, correla-
tion coefficient, and neighborhood component analysis), this can be 
addressed. Furthermore, details on the data preprocessing are hardly 
found on the studies except for a few that motioned about data 
normalization. Unprocessed data may contain outliers, duplicated re-
cords, and missing data, which can affect the quality of models devel-
oped and their generalization capability. Use of proper data 
preprocessing and reporting them along with the data used and the 
evaluation performance enable readers to compare their models with 
those of others. This will help identifying most appropriate pre-
processing techniques for the data set in concern. Moreover, details on 
the fine-tuning of model hyperparameters hardly found in the literature, 
which could have been used to enhance the model performance. Some 
studies have used error measure that are directly related one another. 
For the model evaluation, several independent statistical error measures 
should be used, with at least one relative error measure (such as coef-
ficient of determination, correlation coefficient) and at least one abso-
lute error measure (such as RMSE, MAE). Further, in addition to such 
summary error measures, appropriate graphical representation of model 
performances (such as Fig. 4 in this manuscript) are comprehensible to 
any reader. Assessing the generalization capability of the model using a 
test dataset completely unexposed to model fitting stage should incor-
porated into the model development and validation process in all the 
machine learning models. Another ideal addition, wherever possible, is 
further validation of such model using laboratory experiments. On 
another side, when such experiments are conducted with multiple 
samples (e.g. triplicate tests), making all such measurements available 
can help understand the model errors in compared to the magnitudes of 
the inherent uncertainties in the production process itself. 

Furthermore, all the models were developed to predict the 
compressive strength of the geopolymer concrete for a given combina-
tion of input variables. However, the problem of practical interest is to 
know the values of such input variables that can provide a particular 
compressive strength. Currently, how ANN models can be useful in such 
scenario is not clear. Past data records can provide some suitable prior 
estimates for the input variables. How ANN models can be incorporated 
to further refine such estimates has to be investigated. A systematic way 
to extract such prior estimates from past data also requires attention in 
the future models. Implementing such a systematic approach to directly 
predict the mix proportions required to achieve a desired compressive 
strength, in the form of a user-friendly interface that does not require 
understanding machine learning would certainly benefit industry. 

In proposing future recommendations, the development of a 
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comprehensive machine learning model that integrates the chemical, 
physical, and mineralogical properties of fly ash as inputs is recom-
mended. In addition, expanding the model to predict other important 
mechanical properties of geopolymer concrete, like flexural strength, 
split tensile strength, and elastic modulus is recommended. These 
properties are crucial for structural engineering and including them in 
the model would make it more comprehensive. This way, the model can 
be a useful tool for engineers and researchers, helping them better un-
derstand how geopolymer concrete behaves mechanically. This expan-
sion will make the model more versatile and contribute to the wider 
application of geopolymer concrete in different structural situations. 
Such a user-friendly model has the potential to revolutionize the 
industry’s ability to employ geopolymer concrete in practical applica-
tions, offering a seamless solution for both practitioners and researchers. 

CRediT authorship contribution statement 

David Law: Writing – review & editing, Supervision, Formal anal-
ysis, Conceptualization. Madushan Rathnayaka: Writing – original 
draft, Methodology, Investigation, Formal analysis, Conceptualization. 
Chamila Gunasekara: Writing – review & editing, Supervision, Project 
administration, Methodology, Formal analysis, Conceptualization. 
Dulakshi Karunasinghe: Writing – review & editing, Supervision, 
Formal analysis, Conceptualization. Weena Lokuge: Writing – review & 
editing, Supervision, Formal analysis, Conceptualization. Kushan 
Wijesundara: Writing – review & editing, Supervision, Formal analysis, 
Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships 

that could have appeared to influence the work reported in this 
paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

The scholarship provided by the School of Engineering in RMIT 
University and Faculty of Engineering in University of Peradeniya to the 
first author is acknowledged. The financial support provided by 
Australian Research Council Discovery Early Career Researcher Grant 
(DE230101221) is also acknowledged. 

References 
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