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ABSTRACT

During the late afternoon on 16 November 2008 the Brisbane (Queensland, Australia) suburb of ‘‘The Gap’’

experienced extensive wind damage caused by an intense local thunderstorm. The CP2 research radar nearby

detected near-surface radial velocities exceeding 43ms21 above TheGap while hail size reports did not exceed

golf ball size, and no tornadoes were reported. The storm environment was characterized by a layer of very

moist near-surface air and strong storm-relative low-level flow, whereas the storm-relative winds aloft were

weak. While the thermodynamic storm environment contained a range of downdraft-promoting ingredients

such as a ;4-km-high melting level above a ;2-km-deep layer with nearly dry-adiabatic lapse rates mostly

collocated with dry ambient air, a;1-km-deep stable layer near the ground would generally lower expectations

of destructive surface winds based on the downburst mechanism. Once observed reflectivities exceed 70dBZ,

downdraft cooling due to hail melting and downdraft acceleration based on hail loading are found to likely

become nonnegligible forcing mechanisms. The event featured the close proximity of a hydrostatically and

dynamically driven mesohigh at the base of the downdraft to a dynamically driven mesolow associated with

a low-level circulation. This proximity was instrumental in the anisotropic horizontal acceleration of the near-

ground outflow and the ultimate strength of the Gap storm surface winds. Weak storm-relative midlevel winds

are speculated to have allowed the downdraft to descend close to the low-level circulation, which set up this

strong horizontal perturbation pressure gradient.

1. Introduction

Damaging straight-line winds are perhaps the most

common convectively generated hazard associated with

severe thunderstorms (Kelly et al. 1985; Hurlbut and

Cohen 2014). Particular attention is warranted for storm

modes that are most likely to produce particularly strong

straight-line surface winds—derechos (Johns and Hirt

1987) and high-precipitation (HP) supercells (Moller et al.

1990). At least observationally this includes the pursuit of

a better understanding of storm environmental attributes

that are characteristic of high-end wind storms.

Coniglio et al. (2011) found that the primary differ-

ence between the 8 May 2009 derecho environment and

a more general mesoscale convective system (MCS;

Houze 2004) environment was a strong and deep low-

level jet (Tuttle and Davis 2006) that was transporting

anomalously high mixing ratio air toward the storm un-

derneath anomalously large midtropospheric lapse rates.

Interestingly, these ingredients are primarily promoting

stronger updrafts, rather than stronger downdrafts. Evans

and Doswell (2001) previously considered 67 derecho en-

vironments and also pointed to strong 0–2-km above

ground level (AGL) system-relative flow and reasonably

steep 700–500-hPa lapse rates, the former again being

a feature that distinguished derecho environments from

nonsevere MCS environments in their study. Curiously,

though, the 67 derechos occurred over a very wide range of

shear and instability measures.

One additional environmental characteristic of the

derecho environments documented inEvans andDoswell

(2001) is the relatively weak system-relative mid-

troposphericwinds. Themiddle 50%of the 4–6-kmsystem-

relative winds in their derecho distribution were between

5.5 and 10.5ms21. Such weak system-relative flows have
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also been highlighted as a noteworthy feature in a series of

conference papers on extremewind-producing storms such

as the Lahoma, Oklahoma, storm on 17 August 1994

(Conway et al. 1996; Lemon and Parker 1996), which re-

sembled similar largely nontornadic prior events such as

the Pakwash (Ontario, Canada) 18 July 1991 storm and

others (Brooks and Doswell 1993). Eyre (1992) added two

Australian events to this collection. In most of these ex-

treme wind cases, however, the underlying storm was an

HP supercell rather than an MCS or a derecho, the latter

being a convective windstorm produced by a small subset

of MCSs (Johns and Hirt 1987). Moller et al. (1994) found

that it is particularly the high-precipitation end of the su-

percell spectrum that tends to produce strong straight-line

winds and large hail, a finding that reaffirms the already

known strong connection between heavy precipitation and

damaging surface winds.

Most downdrafts are driven thermodynamically

through the evaporation of liquidwater,melting of ice, and

sublimation of ice. Each of these phase changes cools

the surrounding air and increases its density, which is

equivalent to the generation of negative buoyancy. Hy-

drometeor loading is an additional downward directed

force that is believed to be of secondary importance in

forcing downdrafts [see p. 260 in (Wakimoto 2001)]. A

range of idealized modeling studies found that the ef-

fectiveness of phase changes to generate a negatively

buoyant downdraft is strongly dependent on the storm

environment. Kamburova and Ludlam (1966), Srivastava

(1985, hereafter S85; 1987), and Proctor (1989, hereafter

P89) all agree that strong convectively driven downdrafts

are promoted by a core of very large hydrometeor mixing

ratios descending through a dry-adiabatic subcloud layer.

S85 and P89 also point out that narrow downdrafts

(downdraft diameters of ;2 km or less) are increasingly

vulnerable to the entrainment of ambient air and the di-

lution of their negative buoyancy, and that a very humid

layer of air near the ground promotes additional down-

draft acceleration due to a higher virtual temperature

(lower density) of the environmental air. P89, extending

the rain-only simulations of S85 by including ice, also

emphasizes that intense microbursts benefit from high

melting levels overlaying a layer of dry air with steep

lapse rates. These environmental ingredients allow large

amounts of hail to melt, and for the resulting liquid water

to evaporate in an environment that is rapidlywarming as

the downdraft descends.

P89 and Wakimoto (2001) stress that the downdraft

strength (characterized by a representative downward

velocity W) is not necessarily a reliable indicator of the

magnitude of the horizontal surface wind U in the

thunderstorm outflow. P89 refers to the U 5 U(W) re-

lationship as seemingly erratic given it is influenced by

a range of parameters including the hydrometeor types

and size distributions, the outflow depth and density

gradient across the cold pool boundary (Benjamin

1968), among other factors.

Wakimoto (2001) also reviewed an additional dy-

namical forcing mechanism for downdrafts that is spe-

cific to supercells. While the rear-flank downdraft

(RFD) of a supercell certainly has thermodynamic and

hydrometeor loading forcing components, downward-

pointing dynamically induced vertical pressure gradi-

ents may play an additional role. Based on numerical

simulations, Klemp and Rotunno (1983) define the oc-

clusion downdraft to be the section of the RFD that is

induced by a downward-directed vertical perturbation

pressure gradient associated with strong low-level ro-

tation on the storm scale. Wakimoto et al. (1996) later

confirmed the existence of such an occlusion downdraft

using airborne Doppler radar observations. It stands to

reason that the storm-scale perturbation low pressure

associated with low-level rotation cannot only acceler-

ate air parcels downward, but also horizontally in order

to create damaging winds at the surface. This way,

a downdraft parcel descending at some horizontal dis-

tance from the axis of low-level rotation (Markowski

2002) can be accelerated not only downward but also

horizontally from the cold pool mesohigh toward the

circulation-induced low.

This study examines how a multicell–HP supercell

hybrid storm that formed in a seemingly marginal se-

vere thunderstorm environment on 16 November 2008

was able to cause extensive wind damage over an area

exceeding 20 km2 in the densely populated suburb of

‘‘The Gap,’’ located about 10 km west-northwest of the

center of Brisbane, Queensland, Australia. Peak radial

winds reached about 43m s21 near the surface, with

hail up to golf-ball size reported. Fortunately, as part of

the Queensland Cloud Seeding Research Program

(Tessendorf et al. 2012), the storm was not only

observed by the operational S-band Doppler ra-

dar, Mount Stapylton, but also a second, polarimetric

S-band Doppler radar, CP2.

2. Evolution of the larger-scale prestorm
environment

On the synoptic scale, water vapor loops supported

by numerical model analyses (not shown) show a pro-

gressive eastward-moving vertically stacked low over the

southern Tasman Sea (Fig. 1). Upper-level ridging was

apparent over the northern parts of Queensland (QLD)

and the adjacent oceans. A broad, cyclonically curved

diffluent 300-hPa jet extended into southern QLD from

the south.
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A surface front extended from a 992-hPa surface low in

the southern Tasman Sea through the northeastern cor-

ner of New SouthWales (NSW) into central and western

QLD during the morning (0100UTC 16 November 2008;

LT5 UTC 1 10h; Fig. 2). Along its northern segments,

this boundary generally separated warmer and moister

air with north-to-northeasterly flow to the northeast from

drier and cooler air to the southwest (Fig. 2). Near the

coast south of Brisbane the front was a relatively sharp

east–west running boundary at 0100 UTC (1100 LT)

along which the first storms initiated around 0030 UTC.

By 0430 UTC storms initiated almost all the way to the

western border of QLD (Fig. 3). The probability of en-

countering severe thunderstorms increased from west to

east along the boundary, as can be broadly inferred from

the temporally consistent size and spread of the storm

anvils in Fig. 3, radar imagery (not shown), or the few

available severe weather reports.

Deep-layer shear values were maximized in the

southeastern corner of QLD in the vicinity of the mid-

and upper-level jets, especially in locations where

northeasterly surface winds resided underneath the en-

hanced westerly midlevel flow. The observed 500-hPa

winds at 2300 UTC 15 November reached 17.5m s21 in

Moree and 12.5m s21 at Brisbane airport (large wind

barbs at YMOR southwest of Brisbane and YBBN

northeast of Brisbane in Fig. 2), which equates to mar-

ginally supercell-supporting 0–6-km bulk wind magni-

tude differences of 15–20m s21 at 2300 UTC (e.g., Fig. 8

in Thompson et al. 2003). As indicated by the

0530 UTC Aircraft Meteorological Data Relay

(AMDAR) sounding plotted in Fig. 4, the 0–6-km shear

increased toward the late afternoon at Brisbane airport as

low-level winds began to veer and strengthen below

a marginally strengthening westerly midlevel flow.

3. Data and methodology

This section outlines the observational datasets used

to analyze the event. Two S-band Doppler radars, CP2

and Mount Stapylton (see Fig. 5 for their location)

provided complementing views of the storm. CP2 is

a dual-wavelength (X and S bands), polarimetric re-

search radar operated by the Centre for Australian

Weather and Climate Research (CAWCR). CP2 (S

band) is operated with a 0.938 beam at a wavelength of

10.7 cm with 150-m-range resolution. CP2 commonly

scans every 6min with a maximum range of 142.35 km,

and the Nyquist velocity of the radar is 27.2m s21.

More details can be found in Keenan et al. (2007),

FIG. 1. Water vapor image at 0030 UTC 16 Nov 2008. Overlaid are the names of the Aus-

tralian states and territories (Australian Capital Territory excepted): Western Australia, WA;

Northern Territory, NT; South Australia, SA; Queensland, QLD; New South Wales, NSW;

Victoria, VIC; and Tasmania, TAS. The low pressure system in the southern Tasman Sea

referred to in the text is marked by a capital el (L).
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Bringi and Hendry (1990), and Keeler et al. (1984;

1989). Mount Stapylton is an operational radar of 18
beamwidth with a range resolution of 250m and a tem-

poral resolution of 6min.

The data accuracy of CP2 has been verified through

extensive comparisons of radar-based rainfall estimates

with rain gauge and video disdrometer measurements

(Pepler andMay 2012), as well as with a recent calibration

FIG. 2. The observed surface dewpoints (in 8C, shaded in green), surface winds (short barb, 2.5ms21; long barb,

5ms21), and surface temperatures (also in 8C, red solid contours) at 0100 UTC 16 Nov 2008 across QLD. The observed

500-hPawinds at radiosonde locations are overlaid using larger redwind barbs (otherwise following the same notation as

for the surface winds). The thick gray line segments mark surface airmass boundaries. The inset in the top-right corner

magnifies the area surrounding Brisbane (and omits the surface temperature analysis). The circles in the inset mark the

25-, 50-, and 75-km radar range rings for the Mount Stapylton radar south of Brisbane. All analyses are subjective.
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45–51 days prior to the Gap storm (K. Glasson 2013,

personal communication).

In addition to the radar data, upper-air information

from YBBN soundings (including AMDAR) was used,

and surface observations were obtained from Automatic

Weather Stations (AWSs) operated by the Bureau of

Meteorology in Australia. Geostationary Meteorological

Satellite-5 (GMS-5) images are provided to the bureau by

the Japan Meteorological Agency (JMA).

4. The Gap storm initiation and intensification

A closer inspection of the event indicates that meso-

scale boundaries were a likely contributor to the storm’s

behavior and possibly the storm’s intensity. The bound-

aries in this section were identified as temporally and

spatially coherent radar finelines in the lowest few scan

elevation angles.

At 0442UTC a north–south-oriented sea-breeze front

(SBF) intersected a northward-moving front–outflow

boundary east-southeast of Harrisville (Figs. 5 and 6a).

The future Gap storm initiated near this triple point

(Kingsmill 1995) after 0500 UTC and by 0530 UTC

became uniquely identifiable as an intermittently ro-

tating elevated storm east of Harrisville;20 km south of

the cold front by 0530 UTC as part of a broken line

segment of severe storms (locations shown in Fig. 5). By

0540 UTC the storms had turned left to propagate al-

most due north, consistent with the preferred new up-

draft growth on the left flank of an existing persistent

and strong updraft in an environment characterized by

a counterclockwise-turning hodograph (Rotunno and

Klemp 1982, 1985).

Between 0548 and 0624UTC, the northward advance of

the cold front stalled over The Gap and Brisbane City,

while the same boundary continued tomove north farther

to the west of The Gap and into the meridionally aligned

valley of the Brisbane River in which the town of Esk is

located (Fig. 5). In addition to the northward funneling of

the cooler air through the Brisbane River valley, one

plausible explanation for this differential northward ad-

vance of the front around 0600 UTC is that postfrontal

surface pressure falls associatedwith the by nowvery large

Gap storm (with storm-scale rotation in the midlevels)

FIG. 3.GMS-5 VIS image at 0430 UTC (base scan) 16 Nov 2008. The main trough analyzed in

Fig. 1 is clearly marked by deep convection throughout most of QLD.
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east of Amberley were responsible for the stalling bound-

ary segment to the storm’s north. The stalled frontal

boundary and the largely northward propagation of the

Gap storm allowed its north-facing updraft to ‘‘catch up’’

with the boundary by approximately 0624 UTC, ;10–

20min prior to the onset of the destructive winds at

The Gap.

By 0630UTC, theGap stormwas the easternmember in

a pair of large storms andwas now fully surface-based, and

quickly organized into a very compact intense multicell–

HP supercell (Moller et al. 1990) by the time of the wind

event at The Gap. The HP classification can be based

on the storm’s intermittent display of deep rotation in

the 0630 and 0636 UTC base scans from the Mount

Stapylton radar (rotational velocities around 15m s21

over a depth of 3–4km) in combination with other attri-

butes such as a bounded weak echo region (BWER) be-

tween 0624 and 0642 UTC, maximum reflectivity values

exceeding 70dBZ, and a storm motion vector deviating

substantially to the left of the deep-layer mean flow.

Four air masses could be identified at 0612 UTC, about

20min before the onset of the destructive surface winds

FIG. 4. Regular 0000 UTC 16 Nov 2008 sounding from the Brisbane airport (red) alongside AMDAR reports of thermal and wind

profiles at 0225 (purple), 0533 (blue), and 0628 UTC (brown). Note that the 0533 UTC profile was taken by an incoming aircraft from the

west-northwest (passing less than 10 km to the north of The Gap), whereas the 0628 UTC sounding was sampled by the same aircraft

departing to the north-northeast, which took the plane out to sea shortly after takeoff. The ascent trajectory of amaximumenergy 268/218C
surface parcel (based on the observed 26.38/20.68C surface parcel southeast of TheGap in Fig. 6) is shown in gray. The CAPE value of this

parcel when released into the 0000 UTC Brisbane airport sounding is 1541 J kg21.
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over The Gap: a more continental hot and moderately

humid air mass (quadrant I), a more maritime humid and

warm air mass in which The Gap resided (quadrant II),

a cool andmoist postgust front airmass (quadrant III), and

farther inland a cool and slightly less moist postfrontal air

mass (quadrant IV; Fig. 6b). The updrafts associated with

the destructive winds at TheGap appear to sourcemost of

their boundary layer inflow from quadrant II, although the

actual destructive winds after 0630 UTC occurred within

quadrant III with ;228/218C (temperature/dewpoint tem-

perature) parcels at the surface. Insertion of a 268/218C sur-

face parcel (representing the inflow in quadrant II) into the

2300 UTC 15 November 2008 Brisbane airport sounding

(Fig. 4) shows a very low lifted condensation level (LCL)

of ;950hPa, 81 Jkg21 of convective inhibition (CIN),

a level of free convection (LFC) at;820hPa, and surface-

based convective available potential energy (SBCAPE) of

only 1541 Jkg21. Note that the 0000 UTC temperature

profile above the boundary layer remained quite similar to

the AMDAR temperature profiles later in the day.

5. Discussion of potential causes of the destructive
surface winds

In this section we will present a variety of separate

physical mechanisms that, in aggregate, can explain the

ferocity of the observed surface winds at The Gap on 16

November 2008. Apart from more commonly studied

downdraft forcings such as the evaporation of liquid

water, the often-neglected downward drag from the de-

scent of a large and intense elevated hail core associated

with rapid updraft weakening was likely to have been an

appreciable contributor to the observed destructive sur-

face winds as a detailed quantitative estimate of the drag

forcing will show. More importantly, the very strong

near-surface winds within the Gap storm’s outflow were

most likely the result of near-ground horizontal acceler-

ations from the cold pool into a storm-scale low associ-

ated with a low-level circulation.

a. Intensity of the maximum surface winds

The previously stated peak radial velocity of 43ms21

is the result of a subjective correction to the ‘‘raw’’ maxi-

mumvalue of 49ms21 returned by theCP2 radar.A radial

cross section through the radial velocity maximum at

0648 UTC shows the peak radial velocity of 49m s21

(Fig. 7). A range of factors cast doubt on the accuracy of

this single pixel peak value. The raw radial velocity data

imply a bin-to-bin radial parcel acceleration of 10ms21

over a distance of ;150m, and a range of other un-

representative radial velocity pixels are present on the

mesoscale. Further, the CP2 radar beam took samples at

FIG. 5. Isochrones (labeled with UTC times) of the southerly cold front–dominant cold pool

edge moving north (solid lines), and a sea-breeze front moving west (dashed lines) during the

afternoon of 16Nov 2008. For improved discernibility of the boundarymovement, the boundaries

have been grouped into half-hourly bins color coded in light green (before 0430 UTC), purple

(0430–0500 UTC), mustard (0500–0530 UTC), red (0530–0600 UTC), green (0600–0630 UTC),

and blue (after 0630 UTC). Note that the 0530 UTC scan from CP2 is missing. The star symbol

east of Harrisville marks the location of the Gap storm shortly after initiation at 0530 UTC.
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FIG. 6. (a) Mesoscale surface analysis at 0442 UTC 16 Nov 2008, around the time of the

demise of the initial supercell visible in the southeastern corner of this plot, and;45min prior

to the initiation of the Gap storm. The airmass boundaries were drawn based on radar re-

flectivity finelines; the front–outflow boundary moving north is marked F/OFB, and the

westward-moving sea-breeze front is marked SBF. All surface winds show flow of magnitude

2.5m s21 (half barb), with both surface temperatures (in red) and dewpoint temperatures (in

green) given in 8C. Underlaid is the 18 tilt base reflectivity image from the CP2 radar.

(b)Mesoscale surface analysis at 0612UTC16Nov 2008, approximately 30min before the onset

of the destructive winds at The Gap. The solid white lines mark clearly identifiable sections of

the F/OFG and SBF, and the dashed white lines mark sections identified with lower confidence.
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466m (the beam-height estimate is based on a standard

atmosphere) in the presence of hills surrounding The Gap

reaching almost 300m in height. Finally, the velocity data

possess a high local spectrum width value of 6.3ms21.

For the estimation of the peak radial velocity along the

0.58 beam we treat the 49ms21 value as a missing value

and fit a cubic polynomial to the two adjacent radial ve-

locity measurements on either side. This interpolation is

FIG. 7. (a) Radial velocity on the 0.58 plan position indicator (PPI) scan of the CP2 radar at the

peak of theGap stormwind event (0648UTC). The blue colors along the eastern border of the wind

damage polygon in (a) are aliased values where the radial velocities exceed the radar’s Nyquist

velocity of 27.2ms21. (b)Vertical cross section through the peak aliased velocity in (a) at a distance r

from the CP2 radar (in km) along the radial axis, and height above the mean sea level along the

vertical axis. (c)Unaliased radial velocity profile along the radial segment [shownbywhite lines in (a)

and (b)]. The uncorrected peak radial velocity of 49ms21 occurs at r 5 28.7km. Color bar radial

velocities are in ms21 and are negative for inbound velocities and positive for outbound velocities.
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shown as a dashed curve in Fig. 7c and produces a cor-

rected radial velocity maximum of 43ms21, which is also

a closer match to the inferred 10-m peak gust value of

45ms21 derived from a postevent damage assessment

(Leitch et al. 2009, p. 26).

b. Thermodynamic downdraft drivers of the Gap
event as a wet microburst

1) ELEVATED CORE OF LARGE HAIL

A time series of constant-altitude base reflectivity

images across various heights indicates that the Gap

wind event was preceded by a large and intense reflec-

tivity core descending from the upper levels of the storm

to the surface. Figure 8 shows that at 0636 UTC the Gap

storm possessed its most intense core aloft (z $ 6 km).

The updraft displayed a BWER (Phillips 1973) at z 5
6 km as an indicator that the storm was strong at this

time. After 0636 UTC the upper-level core at z5 10 km

began to decrease in reflectivity, while the cores at lower

altitudes (between z 5 2 and 4 km) reached their peak

reflectivity in the subsequent two radar scans at 0642 and

0648UTC. This behavior suggests a descending hail core

as a key player in the generation of the strong surface

winds.

The storm’s large core at 0636 UTC contained peak

reflectivity values exceeding 70dBZ (on CP2 and Mount

Stapylton) at that height where ambient temperatures

measured 2158C. Despite the large reflectivity values

present in the hail growth zone (from2108 to2308C), it
is likely that the Gap storm contained a large mass of

hailstones below giant size ($102mm in diameter). Blair

et al. (2011) found that 75% of giant-hail-producing

storms (based on their Storm Data sample) contained

midlevel mesocyclones with rotational velocities ex-

ceeding 20m s21 and storm-top divergence magnitudes

exceeding 60m s21. Also, 99% of their giant-hail-

producing storms were supercells. In contrast, the Gap

storm only showed intermittent midlevel rotation while

reaching amaximum rotational velocity of;17m s21 and

a storm-top divergence magnitude of ;53m s21.

Additional evidence that a descending hail core was

instrumental in the Gap windstorm comes from some of

the polarimetric variables observed by CP2. Figures 9a

and 9b show the collocation of a 70-dBZ reflectivity core

with a patch of near-zero differential reflectivity ZDR at

0630 UTC about 7–8km AGL (with an ambient tempera-

ture between 2188 and 2278C; see Fig. 4). At 0642 UTC

a similar combination of high (horizontal) reflect-

ivity ZH and low ZDR was observed very close to and

FIG. 8. Mount Stapylton radar CAPPIs at heights of 2, 4, 6, 8, and 10 km (from bottom row to top row) for base scan times from 0624

(leftmost column) to 0700 UTC (rightmost column) in 6-min time steps.
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approximately 600m above the damage area at TheGap

(Fig. 10). Wakimoto and Bringi (1988), among others,

previously documented that a low-ZDR column inside

a high-reflectivity core is likely to be indicative of a hail

shaft and, in their case, was also associated with a mi-

croburst generated by a thunderstorm in northern Ala-

bama. Even nonspherical hailstones tend to produce

low-ZDR returns because they tumble and rotate on

descent and their orientation is generally characterized

by a relatively wide distribution of canting angles; that is,

they are statistically isotropic scatterers. Finally, Fig. 9

shows streaks of high positive ZDR down radial of, and

negative specific differential phase KDP with low values

(;0.9) of, the correlation coefficient rhv collocated with

the storm’s core. This is suggestive of a mixture of hail

and more vertically oriented low inertia ice crystals in

the presence of the storm’s electrostatic field (Hubbert

et al. 2014). The absence of a positive ZDR orKDP signal

indicates that there are no large oblate liquid state

scatterers (such as large raindrops) present (Zrni�c et al.

1993; Ryzhkov and Zrni�c 2007).

The Gap damage area closely matched the observed

low-level hail-core swath as seen from theMount Stapylton

radar. Figures 11 and 12 show that the Gap storm first

produced a more substantial low-level core exceeding

62dBZ in the 0.58 scan at 0642 UTC, just south of

the wind damage report area at The Gap. The intense

low-level core lasted for three scans, with no further

returns in excess of 62 dBZ after 0654 UTC, at which

time the core had concluded its descent in the northern

parts of the damage area. The timing of the onset and

demise of the low-level hail core and its track through

precisely the damage area strongly suggest that it was

instrumental in the destructive wind event.

The apparent initial descent of the hail core south of

the damage area should be put into perspective. This

area is sparsely populated, forested and hilly bushland

that is unlikely to generate numerous damage reports

due to the lack of infrastructure. One of the few

buildings in the area (the Channel 7 building on Mount

Coot-Tha) did suffer roof damage (Brisbane Regional

Forecasting Centre 2013, personal communication).

Extensive tree damage has also been documented in

this area (Leitch et al. 2009).

The threshold of 62dBZhas been subjectively chosen as

this value best illustrated the progression of the low-level

FIG. 9. A 17.88 PPI image of (a) ZH, (b) ZDR, (c) KDP, and (d) rhv as observed in the 0630 UTC base scan by CP2

(located at the origin). The location of The Gap is denoted by a red circle north-northeast of the radar origin. At the

Gap storm location the radar beam is approximately 6 km AGL. There is also a TBSS to the north-northeast of the

radar.
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hail corewithout generating numerous isolated ‘‘pixels’’ in

Fig. 12. Lemon (1998) associated reflectivity returns of

63dBZ or higher in conjunction with a $5-dBZ three-

body scatter spike (TBSS) signature as seen by S-band

radars with severe hail observations on the ground

(Lindley and Lemon 2007). Such a TBSS can also be seen

on several occasions in the Gap storm (e.g., Fig. 9 shows

a TBSS exceeding 10dBZ).

These indicators, in combination with observations

of golf-ball-sized hail after prolific melting (see below),

suggest that there was a large amount of significant hail

present in the upper parts of the Gap storm prior to

the wind event. We will now explore why the storm

environment was thermodynamically favorable for

responding to a descending core of large hail with the

very strong observed surface winds.

2) HIGH MELTING LEVEL

Figure 13 indicates that the descending hail would

have begun to melt at around the wet-bulb zero level of

;3740m AGL (The Gap is located 56m above sea

level). The most representative thermal profile in the

lowest few kilometers experienced by theGap storm just

prior to the damaging surface winds was sampled by

the 0533 UTC AMDAR sounding. Although the

0628 UTC AMDAR profile might appear to be better

suited for the description of the storm environment, the

profiling aircraft left Brisbane airport in a northerly di-

rection over the sea (Fig. 14), which led to the sampling

of the less representative offshore marine boundary

layer with distinctly cooler low-level temperatures and

low-level winds influenced by the land–sea temperature

contrast (Fig. 4).

3) DRY-ADIABATIC LAPSE RATES AND DRY AIR

BELOW THE MELTING LEVEL

A nearly 3-km-deep layer of steep lapse rates extends

from the melting level around 3.74km downward toward

1 km AGL (900hPa), with the lower portion (900–

750hPa) approaching dry-adiabatic lapse rates. Ryzhkov

et al. (2013), using a thermodynamic profile broadly

comparable to the 16 November 2008 Brisbane airport

sounding at 0000 UTC (Fig. 4), showed that melting of

25–35-mm-diameter hailstones reduces the effective ice-

core diameter only by about 5mm on the way to the

surface, while stones with initial diameters below 14mm

FIG. 10. (top) A 18 PPI scan of (a) the horizontal reflectivity factor ZH and (b) the differential reflectivity ZDR as

seen by theCP2 radar at 0642UTC. (bottom)Corresponding vertical cross sections through (c)ZH and (d)ZDR along

a 20-km north–south-oriented segment marked by a white line in the top panels. The Gap damage area is shown as

a turquoise polygon in (a). The irregular white outlines in (a) and (b) indicate distinct areas of low ZDR.
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melt entirely. With reported hail sizes not exceeding

golf-ball size, this finding suggests that the maximum

initial hail sizes in the Gap storm were not significantly

larger than golf balls.

Figure 13 also shows that the ambient air between

;930 and 800 hPa is relatively dry, allowing the melt-

water to efficiently evaporate so that the developing

downdraft is cooled through two separate diabatic pro-

cesses. P89 also identified dry air around the melting

level as conducive to downdraft acceleration as it allows

entrainment of dry air and evaporative cooling right

where the liquid first becomes available. This process,

however, also reduces the hail melting rate (Ryzhkov

et al. 2013). Due to the dry-adiabatic lapse rates, the

downdraft likely remained negatively buoyant below

the melting level and accelerated until it reached the

900-hPa level, about 1 km above the ground.

Above 900 hPa, the 0533 UTC sounding (assuming

the 0000 UTC 16 November 2008 moisture profile is still

representative of the 0533 UTC conditions) is reason-

ably similar to the baseline simulation in P89 charac-

terized by the 2300 UTC 30 June 1982 Denver,

Colorado, sounding. In both cases the ambient melting

level was located around 3 km above the base of a dry-

adiabatic layer in the presence of dry air. P89 found that

a wet microburst containing a descending hail core ex-

perienced significant cooling only after the hail core had

descended through a ;2-km-deep dry-adiabatic sub-

cloud layer below the melting level. For a 71-dBZ core

[assuming an exponential hail size distribution following

Lin et al. (1983)], P89 simulated an 118C temperature

deficit in the cold pool and a maximum downdraft speed

of 19.4m s21 suggestive of a strong thermodynamically

forced downdraft impacting the top of the near-surface

stable layer in the Gap storm case.

c. Downdraft forcing due to very large condensate
loading

Prompted by the large radar reflectivity located above

the freezing level and indications that large amounts of

hail were present in the Gap storm (see section 5b

above), we now examine more closely how hail loading

aloft might influence the downdraft speeds above The

Gap. The integration of the Boussinesq form of the

vertical momentum equation for a standard atmosphere

where the downdraft is driven only by the hail-loading

term results in an analytical solution for the downdraft

speed as a function of the reflectivityZdB and initial core

height zi (Fig. 15; see the derivation in the appendix).

For reflectivity values of 60 dBZ or less, even hail-driven

FIG. 11.Mount Stapylton radar base reflectivity scans at 0.58 elevation during a time where a low-level hail core traversed the damage area

of the Gap storm (white polygon). The color bar shows base reflectivity values in dBZ.
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downdrafts with a very high origin height of 10 km do

not exceed downward velocities of 25m s21. As the hail-

core reflectivity is increased from 60 to 70 dBZ, the

downdraft strength nearly doubles to 50m s21 for

a parcel descent from zi 5 10 km. This increasing sen-

sitivity of downdraft strength to the underlying core

intensity with increasing ZdB is not too surprising, given

the nonlinear increase in the hail mixing ratio with ZdB

(qH ; 10ZdB/17:5) and the linear relationship between the

downdraft acceleration and the hail mixing ratio [see the

appendix, Eqs. (A1) and (A3)].

A simple comparison of the relative importance of

downdraft cooling through evaporation and the equiva-

lent ‘‘cooling’’ due to hydrometeor loading suggests that

the cooling potential due to evaporation of liquid water is

nearly one order of magnitude (8.3 times) larger

(Wakimoto 2001, p. 260). The melting of ice would fur-

ther augment this cooling potential imbalance because of

the additional contribution of the latent heat of fusion.

However, there are two considerations that need to be

kept in mind in this comparison. First, in any wet mi-

croburst where the melting of ice or the evaporation of

water is incomplete, only a fraction of the potential

cooling effect due to phase changes is realized. With hail

up to golf-ball size and heavy rain reported in the Gap

storm downdraft, this first consideration seems to be ap-

plicable to this event. Second, even with condensate

loading being a minor partner in the downdraft forcing,

the results above suggest that for intense hail cores with

reflectivities exceeding 60dBZ, the hail-loading term

appreciably contributes to the downward acceleration of

air parcels in the downdraft as revealed by the sensitive

nonlinear relationship between reflectivity and the hail

mixing ratio.

The final downdraft velocities in Fig. 15 also require

some qualifications. The assumption was made that the

hail-mixing ratio was constant through the descent of

a downdraft parcel from an initial level to the ground

(other than changes due to increasing ambient air

density). In reality, hailstones melt below the melting

level and the downward forcing due to hail loading

would decrease over time once the downdraft par-

cel resides below the melting level. In addition, the

downdraft decelerates near the ground as it starts to

interact with the storm’s cold pool. For these two rea-

sons alone the vertical velocity magnitudes in Fig. 15

are an overestimate of realistic near-ground downdraft

speeds.

d. Horizontal acceleration of the outflow due to
thermodynamic processes

P89 showed for the baseline case (the 2300 UTC 30

June 1982 Denver sounding) that a wet microburst con-

taining hail experienced significant cooling only in the

lowest kilometer of its descent through a ;2-km-deep

dry-adiabatic subcloud layer below the melting level.

Wakimoto (2001) pointed out that the cooling due to

melting hail and the subsequent evaporation of liquid

water does not necessarily enhance the vertical down-

draft strength significantly, but that the near-ground

cooling strengthens the overall outflow wind speeds

through an increase in the horizontal density gradient.

Despite an 118C peak temperature drop, the maximum

downdraft vertical velocity in P89 was only 12ms21 for

the baseline case while the simulated surface outflow

wind difference reached 42ms21 (which means outflow

winds of nearly twice the magnitude of the downdraft

assuming a symmetric outflow divergence pattern). Any

explanation of downdraft-related outflow winds must

therefore carefully inspect how downdraft properties in-

fluence the strength of the final near-ground horizontal

flow in the cold pool.

FIG. 12. Schematic highlighting the time evolutionof the.62-dBZ

low-level reflectivity core of the Gap storm between 0630 and

0706 UTC 16 Nov 2008 in the 0.58 scan of the Mount Stapylton

radar. The time of occurrence of the 0.58 core is color coded. The

vast majority of the wind damage reports were clustered inside the

black polygon.
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The vertical cross section through the core of the

strong radial winds (Fig. 7b) shows that the destructive

radial winds for the Gap storm event were mostly con-

tained in the lowest 500m above ground level. This

observation is consistent with the outflow depths of 300–

1000m produced in the P89 simulations for precipitation

core diameters larger than 1 km. P89 found that the

outflow depth of a microburst was primarily sensitive to

the low-level lapse rates (the depth tended to match the

depth of any near-ground stable layer; see p. 2150 in

P89) and to the precipitation core width (the wider the

core, the deeper the cold pool).

The Gap storm’s hail-core width was near the upper

end of the range explored by P89 with the 0636 UTC

hail core (.60dBZ) at 7 km AGL measuring 11km 3
6 km in areal extent (Mount Stapylton radar; not shown).

The 0533 UTC sounding (Fig. 13) shows a near-ground

stable layer about 1 kmdeep. Both of these indicators are

suggestive that the Gap storm’s outflow was deep, per-

haps as deep as ;1 km.

The combination of efficient downdraft cooling

through the partial melting and evaporation of initially

large hail, downdraft acceleration in a dry-adiabatic

environment underneath a relatively high melting level

in the presence of dry ambient air, and the likely gen-

eration of deep outflow in a stably stratified moist low-

level environment have set up a relatively deep and

(above the surface) cool outflow that is subject to strong

horizontal acceleration.

Once the outflow interacts with the ground, the cold

pool accelerates outward into less dense ambient air,

with the leading edge showing similarities to a spreading

gravity current. The gust front’s propagation speed is

mainly driven by the cold pool depth H and density

difference Dr compared to the ambient air, in accor-

dance with the theoretical propagation speed V of

a gravity current as derived in Benjamin (1968):

V;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gH

Dr

r

s
, (1)

where r is the density of the cold pool air. Even if we

were to ignore the findings that observed gravity currents

move with a speed V closer to half the speed given

by Eq. (1) (Wakimoto 2001), and if we assume that the

outflow is 1 km deep, a gust front moving at the speed of

the observed Gap storm winds of 43m s21 would require

a 10% density change (Dr ; 0.1r) across the cold pool

boundary, far exceeding the 4% value in P89’s baseline

case, which produced a cold pool surface pressure per-

turbation of 2.63hPa and a far greater cold pool tem-

perature perturbation of 211.08C. Alternatively, there

would need to be an unrealistically strong normal gust-

front relative flow that makes up any difference between

the actual gust front propagation speed and the value of

43ms21. These considerations cast doubt on the notion

that simple gravity current propagation provides the full

explanation of the observed Gap storm wind speeds.

Such doubt is supported by the relatively small observed

differences in surface temperature and dewpoint tem-

perature across the outflow boundary of the Gap storm.

The observed 0639 UTC Archerfield temperature and

dewpoint temperature were 21.78C inside the cold pool

(Fig. 5), while the 0600 UTC preoutflow sea-breeze

values at Brisbane were 26.08 and 21.08C, respectively
(Fig. 6b). The observed cold pool surface temperature

deficit of 4.38C was far smaller than the 2118C coun-

terpart in the P89 baseline simulation, likely due to

downdraft warming in the stable layer near the ground

relative to the environment. While the stable layer might

have produced a deeper outflow, it also accounted for

a reduction in the outflow temperature deficit, and

hence the potential of horizontal acceleration driven by

horizontal density gradients.

e. Horizontal outflow acceleration due to dynamic
processes

The thermodynamically induced horizontal outflow

accelerations neither explain the full observed near-

surface wind strength nor the anisotropy of the associ-

ated radial velocity signature. The CP2 storm-relative

surface velocity divergence signature (not shown) shows

only a modest storm-relative southward flow of 12ms21

FIG. 13. Close-up version of the 0000 UTC 16 Nov 2008

Brisbane airport sounding (lines of medium thickness), the

0533 UTC 16 Nov 2008 AMDAR sounding (thick lines) with its

attendant wind profile (short barbs, 2.5m s21; long barbs, 5m s21;

vertical scale in km), and the 1200 UTC 15 Nov 2008 Brisbane

airport sounding (thin lines). Tick marks on the vertical scale to

the right are in km above sea level.
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or less, while the northward branch produced radial winds

of 34ms21. While the storm motion vector of 10m s21

from 2008 would have augmented the north-northeast

components of the outflow winds, an additional flow-

accelerating forcing mechanism was probably present.

A closer inspection of the radar-observed near-surface

radial wind field suggests that the full magnitude of

the Gap storm surface winds received an additional

dynamically driven contribution. The low-level (1.38)
storm-relative velocity scan in Fig. 16 shows a low-level

circulation pattern moving in a northeasterly direction

through the southern half of the Gap storm damage area

(marked by a white polygon). Surprisingly, the corre-

sponding 5.68 scans (transecting the Gap storm at around

4.6 km AGL) show that a persistent midlevel circulation

was absent around the time of the maximum surface

winds. This means that the Gap storm possessed a dy-

namically forced storm-scale perturbation low in the low

levels, but not in the midlevels. Any downdraft forming

above and in the vicinity of the low-level circulation in the

storm would therefore have been accelerated downward

toward the storm-scale low by a vertical pressure pertur-

bation gradient acting in addition to any thermodynamic

forcing already discussed (Markowski 2002). Perhaps

more importantly, any thermodynamically forced down-

draft descending within the neighborhood of the low-level

circulation would have deposited cool outflow air close

to the low perturbation pressure associated with the cir-

culation. Conversely, at the downdraft location high per-

turbation pressure set up due to the composition of the

hydrostatically balanced weight of the relatively cold

outflow column and the dynamically induced component

related to the deceleration of the downdraft near the

FIG. 14. Low-level flight tracks for the (left) 0533 and (right) 0628 UTC AMDAR observations. Each flight track is overplotted on the

time-matching 7-km CAPPI radar image: (left) 0530 and (right) 0630 UTC. The radar images are based on observations from the Mount

Stapylton radar and are of differing spatial scale to optimize the display of the actual flight track. The turquoise polygon marks the wind

damage area surrounding The Gap.

FIG. 15. Magnitude of the terminal downdraft vertical velocity

wmax (m s21) as a function of the downdraft parcel base reflectivity

(dBZ) and the altitude zi (m) from where the parcel starts its de-

scent. The dotted contour lines show the velocity magnitudes 2.5,

7.5m s21, etc.; the dashed lines show 5, 15m s21, etc.; and the solid

lines show 10, 20m s21, etc.
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ground.The close proximity of the downdraft perturbation

high pressure and the low-level circulation low pressure is

hypothesized to have been a key driver for the horizontal

acceleration of theGap stormoutflow and themagnitude of

the damaging winds at the surface. Figure 17 shows the

migration of the low-level circulation and associated

perturbation low across the Gap storm damage area. The

maxima in the radial low-level velocities closely follow the

low-level circulation center, in support of the hypothesis

above. The 0630 and 0636 UTC scans in Fig. 17 also show

that the storm’s low-level circulation existed prior to,

rather than as a result of, the Gap storm downburst. A

comparison of the CP2 scans with the Mount Stapylton

scans supports this interpretation as the strong near-

surface winds are oriented toward the low.

The near-surface horizontal perturbation pressure

gradient conceptually increases with 1) a more intense

low-level circulation, 2) a more intense downdraft, 3)

a colder downdraft, and 4) a smaller distance between

the mesohigh and the mesolow. We will now show that

the storm-relative wind field reported in associationwith

many high-end straight-line wind events might play

a role in the enhancement of the perturbation pressure

gradient.

A peculiar characteristic of largely nontornadic de-

structive wind storms is a storm-relative flow in the inflow

layer that substantially exceeds themidlevel storm-relative

flow (Evans andDoswell 2001; Conway et al. 1996; Lemon

and Parker 1996; Brooks andDoswell 1993; Coniglio et al.

2011).

Figure 18 shows that the storm-relative flow for the

Gap storm exceeded 10m s21 through a depth of the

lowest 200 hPa above the ground, transporting high

(,208C) surface dewpoints and high (,12 g kg21) mix-

ing ratios through 70 hPa (Fig. 4) into the updrafts of the

Gap storm prior to the wind event (Fig. 6b). Consistent

with these observations, Coniglio et al. (2011) conclude

that exceptionally high moisture fluxes into the 8 May

2009 derecho updrafts associated with a strong low-level

jet were instrumental in the creation of the damaging

surface winds through primarily a strengthening of the

updrafts themselves.

The strong storm-relative winds for the Gap storm in

the 0533UTC sounding (Fig. 18) also increased the storm-

relative helicity (SRH; Davies-Jones 1984) values with

the 0–3-km SRH of 2134m2 s22. The supply of stream-

wise low-level vorticity suggests at least some potential

for storm-scale rotation, as is evident in Fig. 16. The di-

minished values of SRH in the 0628 UTC AMDAR ho-

dograph (Fig. 18) representative of the near-coastal wind

profile (Fig. 14) might have contributed to the Gap

storm’s decline after 0648 UTC, alongside increasingly

cooler low-level inflow and a strengthening cap as the

storm approached the coastline given its motion vector

toward 208.
Similar to the aforementioned Lahoma or Pakwash

storms, for example, the Gap storm also exhibited light

midlevel storm-relative winds below 8m s21 in the 770–

620-hPa layer (Fig. 18). Light storm-relative winds are

commonly observed with storms that produce strong

FIG. 16. Storm-relative (top) midlevel (5.68 tilt) and (bottom) low-level (1.38 tilt) velocities from the Mount Stapylton radar located

beyond the bottom-right corner of each image. The two range ring segments shown are located at radii of 25 km (bottom right) and 50 km

(top left). The beam center heights over the damage area are approximately 1.3 km (bottom tilt) and 4.6 km (top tilt). The white polygon

marks the damage area and contains the vast majority of damage reports to the State Emergency Services.
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nontornadic winds, and they have been linked to the

promotion of a strong cold pool in otherwise favorable

thermodynamic environments (Evans and Doswell

2001), but also to the risk of an updraft being undercut

by the surging cold pool (Brooks and Doswell 1993;

Brooks et al. 1994, Thompson 1998). The light storm-

relative winds in the Gap storm case allowed the hail core

and downdraft to descend to a location close to the low-

level circulation, thus promoting a strong horizontal

perturbation pressure gradient between the cold pool and

the circulation near the ground. A subsequent demise of

the low-level circulation, which previously ‘‘channeled’’

the storm’s outflow northward past its western flank

while allowing continuing southbound inflow on its

eastern flank (Fig. 17), would have allowed the outflow

to surge northward and cut off the inflow into the Gap

storm’s updraft (see also the helicity discussion above).

6. Summary and conclusions

On 16November 2008, an unusually intense windstorm

with near-surface winds exceeding 43ms21 created

widespread tree and roof damage about 10km west-

northwest of Brisbane, one of Australia’s largest cities.

The near-storm environment showed a number of simi-

larities with previous nontornadic destructive windstorms

associated with storm modes such as HP supercells

(Conway et al. 1996; Lemon and Parker 1996) or derechos

(Evans and Doswell 2001; Coniglio et al. 2011). It

possessed relatively strong low-level storm-relative flow

that transported very moist air with boundary layer

mixing ratios exceeding 12 g kg21 toward the storm’s

updraft, but only light (,10m s21) midlevel storm-

relative winds were present at the peak of the event.

The wind-producing storm contained multiple updrafts,

some of which exhibited severity-indicating radar sig-

natures such as bounded weak echo regions (BWERs),

three-body scatter spikes (TBSSs) or a reflectivity value

exceeding 70 dBZ and reduced correlation coefficients

rhv within the hail growth layer between 2108 and

2308C. Apart from transient circulations, midlevel me-

socyclones were largely absent, while a more persistent

low-level circulation pattern was present at the time of

the destructive winds.

Separate wind-promoting mechanisms acted in aggre-

gate to produce the observed destructive winds (Fig. 19).

Very moist strong storm-relative low-level flow allowed

the formation of strong updrafts and elevated cores

containing large hail. Upon descent, the hail core en-

countered a thermodynamic environment largely favor-

able for the formation of a cold and intense downdraft.

The core started tomelt high above the ground due to the

relatively high melting level (;4 km AGL). The ambient

lapse rates below the melting level approached a dry

adiabat through a depth of about 150hPa, ensuring that

the downdraft (fueled by melting hail and subsequent

evaporation of liquid water) would remain negatively

buoyant. Further cooling potential was present as the

liquid water present experienced a layer of dry ambient

air about 2–3km below the melting level. Near the

FIG. 17. (top) Ground-relative radial winds (m s21) seen by the CP2 radar (0.58 tilt) and (bottom) storm-relative radial winds (m s21)

seen by theMount Stapylton radar (0.98 tilt) at times (column 1) 0630, (column 2) 0636, (column 3) 0642, (column 4) 0648, and (column 5)

0654UTC. The stormmoves at 10m s21 from 2008. The circulations across the bottom row have been fit subjectively to match the velocity

couplet. The storm-scale perturbation low (marked with an L) is placed at the center of the circulation and, at a given time, is in the same

location for each column.
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FIG. 18. Profiles of the ground-relative (‘‘g-r’’) and storm-relative (‘‘s-r’’) flows and corresponding hodographs

constructed from the (top) 0533 and (bottom) 0628 UTCAMDAR aircraft data. The SRH for inflow extending from

the surface up to 700 hPa (approximately 0–3 km) assuming a stormmotion of 10m s21 from 2008 is printed inside the
shaded area, which, in itself, is proportional to the SRH. Pressure levels are annotated at each level (in hPa). Long

wind barbs denote 5m s21, and short wind barbs for 2.5m s21.
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ground, however, the presumably strong downdraft in-

teracted with a stably stratified layer that was almost 1 km

deep, which would have led to downdraft weakening near

the ground.

However, with the 65–70-dBZ hail core descending all

the way to the surface, the downdraft forcing due to

condensate loading is no longer negligible. This finding

relates to a similar conclusion in Coniglio et al. (2011)

that in environments with limited evaporation potential,

hydrometeor loading and melting of abundant ice might

play an important role in downdraft mass fluxes.

We suggest that the acceleration of the deep cold pool

in the direction of the maximum horizontal density gra-

dient (broadly northward) was augmented by the pres-

ence of a persistent low-level circulation pattern to the

northeast of the cold-pool-related mesohigh. The close

proximity of the hydrostatically and dynamically driven

mesohigh at the base of the downdraft to the dynamically

driven mesolow associated with the low-level circulation

is hypothesized to have been instrumental in the observed

anisotropic horizontal acceleration of the near-ground

outflow and the ultimate strength of the Gap storm sur-

face winds. The downdraft descent close to the updraft

would have been promoted by the light midlevel storm-

relative winds, which accounted for relatively small lateral

hydrometeor displacements from their original horizontal

positions in the upper regions of the updraft.

The physical concepts discussed through this study

shouldnowbe further substantiated through a convection-

permitting model that assimilates the Mount Stapylton

and CP2 Doppler data. We hope to progress to such

a study in the near future.
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APPENDIX

Downdraft Acceleration due to Hail Loading

Based on the exponential hailstone size distribution

specified in Lin et al. (1983) and later used (in in-

tegrated form) in Gao and Stensrud (2012), we express

the hail-mixing ratio qH (in kg kg21) as a single-

moment relation:

qH 5
1

r

 
10ZdB

/10

4:333 1010

!4/7

, (A1)

where r is the air density (kgm23) and ZdB the (loga-

rithmic) reflectivity factor (in dBZ).

The hail-mixing ratio qH forms one part of the buoy-

ancy term in the Boussinesq form of the vertical mo-

mentum equation (Houze 1993):

Dw

Dt
52

1

r0

›p0

›z
1 g

�
T 0

T0

1
p0

p0
1 0:608qvap 2 qH

�
1Fz ,
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where w is the vertical velocity of the downdraft parcel

(w . 0 implies upward motion); (r0; T0, p0) are the hy-

drostatically balanced components of the full downdraft

parcel density r, temperatureT, and pressure p; p0 5 p2
p0 is the deviation of the parcel’s total pressure from the

hydrostatically balanced value; qvap is the water vapor

mixing ratio; g the acceleration due to gravity; and Fz

parameterizes the residual downdraft parcel forcing that

has not been captured through the perturbation pressure

or buoyancy forcing terms. Note that qH in Eq. (A2)

strictly denotes the total hydrometeor loading (hail,

graupel, ice, liquid water), but based on the analysis in

section 5bwe treat the core as consisting entirely of large

hail.

To crudely estimate the magnitude of the downdraft

velocities wH achievable due to the hail-loading term

only, we integrate the simplified vertical momentum

equation

DwH

Dt
52gqH (A3)

between the level of origin of the hail core zi and the

ground at z 5 0m. An analytical solution to Eq. (A3)

can be achieved when the ambient vertical density

profile,

r0(z)5
p*

RdT*

�
12

g

T*
z

�(g/gR
d
)21

, (A4)

based on the International StandardAtmosphere (ISA),

is used. Here, T0(z) 5 T
*
2 gz is the ambient vertical

temperature profile, T
*
5 288.15K is the surface tem-

perature, g 5 6.5 3 1023Km21 is the constant lapse

rate, z (m) is the height above ground level, p
*

5
101 325Pa is the surface pressure,Rd5 287 J kg21K21 is

the specific gas constant for dry air, and g5 9.81m s22 is

the acceleration due to gravity.

Equations (A1) and (A4) allow us to rewrite Eq. (A3)

in a form that relates the downdraft parcel acceleration

explicitly to the hail-related reflectivity returns ZdB:

d2zH
dt2

52
g

a(b2 zH)
c

 
10ZdB

/10

4:333 1010

!4/7

, (A5)

where zH (m) is the height above ground level for

a downdraft parcel forced only by the hail-loading term,

c 5 (g/gRd) 2 1 5 4.256 85, b 5 T
*
/g 5 44 330.8m, and

a 5 (p
*
/RdT*)(g/T*)

c ; 2.0319 3 10220 kgm2(31c).

The substitutions f 5 b 2 zH and n 5 df/dt convert

Eq. (A5) into a first-order ordinary differential equation

that has the solution

wmax51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K(ZdB)

12 c
([b2 zi]

12c 2 b12c)

r
, (A6)

where wmax is the magnitude of the maximum

downdraft speed at the surface and K(ZdB)5 (g/a)

(10ZdB/10/4:333 1010)4/7.
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