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ABSTRACT

Interannual variations of Australian climate are strongly linked to the El Niño–Southern Oscillation (ENSO)
phenomenon. However, the impact of other mechanisms on prediction, such as atmosphere–land surface inter-
actions, has been less frequently investigated. Here, the impact of soil moisture variability on interannual climate
variability and predictability is examined using the Bureau of Meteorology Research Centre atmospheric general
circulation model. Two sets of experiments are run, each with five different initial conditions. In the first set of
experiments, soil moisture is free to vary in response to atmospheric forcing in each experiment according to
a set of simple prognostic equations. A potential predictability index is computed as the ratio of the model’s
internal variability to its external forced variability. This estimates the level of predictability obtained assuming
perfect knowledge of future ocean surface temperatures. A second set of five experiments with prescribed soil
moisture is performed. A comparison between these two sets of experiments reveals that fluctuations of soil
moisture increase the persistence, the variance, and the potential predictability of surface temperature and rainfall.
The interrelationship between these two variables is also strongly dependent upon the soil water content. Results
are particularly marked over Australia in this model. A novel feature of this study is the focus on the effectiveness
of ENSO-based statistical seasonal forecasting over Australia. Forecasting skill is shown to be crucially dependent
upon soil moisture variability over the continent. In fact, surface temperature forecasts in this manner are not
possible without soil moisture variability. This result suggests that a better representation of land–surface in-
teraction has the potential to increase the skill of seasonal prediction schemes.

1. Introduction, background, and methodology

Australia experiences large variations of rainfall on
different timescales with considerable impacts on social
and economic activities (Nicholls 1985; Drosdowsky
1993; Allan et al. 1996). Thus, seasonal prediction is a
crucial activity for the Australian Bureau of Meteorol-
ogy. The present seasonal rainfall prediction scheme
uses a statistical forecasting method based on the lagged
relationship between sea surface temperatures (SSTs)
and Australian rainfall (Drosdowsky and Chambers
1998). The single most important predictor used is a
SST pattern centered in the Pacific Ocean, intimately
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linked with the El Niño–Southern Oscillation (ENSO)
phenomenon.

In this study we will explore the importance of soil
moisture variability in helping to establish the lagged
association between ENSO and Australian rainfall un-
derpinning the operational scheme. There is a striking
analogy between soil moisture and SST anomalies. The
ocean acts as an integrator of high-frequency atmo-
spheric thermal forcing (Hasselmann 1976; Frankignoul
and Hasselmann 1977). The soil plays a similar role by
integrating white-noise precipitation and creating a red-
noise time series of soil moisture anomalies (Delworth
and Manabe 1988). However, the timescale of the soil
moisture variability is generally shorter than the time-
scales of the SST variability. Soil moisture interacts with
the atmosphere through surface energy and water bal-
ances, and this has impacts upon the nature of the var-
iability. This suggests that due to these characteristics
and its high interannual variability, soil moisture could
potentially play a role in affecting Australian seasonal
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forecasts. Because of the timescale of its variation, we
might expect that properly included soil moisture may
improve model prediction skill. Of course, the existence
of slowly varying parameters (such as soil moisture)
alone does not imply predictability, as even very simple
models of the climate system show unpredictable long
period responses to stochastic forcing. The first step,
therefore, is to establish whether climate variations of
interest are predictable.

The model used here was integrated for 10 yr fol-
lowing the experimental design described by Gates
(1992) for the Atmospheric Model Intercomparison Pro-
ject. The model is forced using observational estimates
of SST and sea-ice extent for the years 1979–88, a pe-
riod in which two El Niño events (1982/83, 1987) oc-
curred. The atmospheric GCM used here is the Bureau
of Meteorology Research Centre (BMRC) spectral mod-
el run with a rhomboidal resolution to 21 waves, and
17 vertical levels (McAvaney and Colman 1993). The
soil moisture parametrization is a simple approach based
on the Manabe (1969) bucket. Prognostic soil moisture
is represented by a single-layer model; the soil is as-
sumed to have a fixed depth. Changes in soil moisture
are computed from the rates of rainfall, evaporation,
snowmelt, and runoff. Evaporation from the soil is de-
termined as a function of soil wetness and the potential
evaporation rate. Two sets of integrations were per-
formed. In the first set, the soil moisture content was
allowed to vary freely (hereafter, experiment C). In the
second one, the soil moisture was fixed (hereafter, ex-
periment F) to the annual climatological cycle obtained
from C ensemble mean. For each experiment, an en-
semble of 5 realizations of 10 yr each, from 5 different
initial conditions was run, yielding 50 yr of data for
both C and F ensembles. Each set of initial conditions
was generated by running the model for two days using
the previous initial conditions, and then resetting the
clock to the beginning of the run. The prescribed cli-
matological soil moisture values were constructed as the
mean seasonal cycle derived from the C ensemble. Thus,
it does not include short-term variations (e.g., diurnal
and synoptic scale) but more importantly this climatol-
ogy removes interannual variations that result from pre-
cipitation variability and other meteorological forcing.
This is equivalent to a decoupling of the atmospheric
variability from land surface hydrological processes. For
consistency with the SST forcing, soil moisture values
were prescribed every five days using linear interpo-
lation between monthly means. The model was first val-
idated using several observational datasets (Viviand et
al. 2000). The model reproduces the main features of
the partitioning of surface fluxes into latent and sensible
heat fluxes and outgoing longwave radiation. The sim-
ulated Southern Oscillation index (SOI) as defined by
Troup (1965) is also realistic, and while mean rainfall
patterns show some regional biases, the model repro-
duces the main features of the major teleconnections
associated with ENSO.

Our first aim is to compare the potential predictability
between the two ensembles. To do this we compute an
index R for both sets of experiments (i.e., soil moisture
fixed, soil moisture varying). Index R measures the rel-
ative importance of internal chaotic variability with the
variability associated with external (SST and sea ice)
forcing (see Power et al. 1995). Index R is a measure
of predictability if external changes imposed on the at-
mosphere (e.g., SSTs) were perfectly known ahead of
time. In other words, R calculates the relative magnitude
of variability between each ensemble member (or run)
compared with the magnitude of the variability of the
ensemble mean:

s9
R 5 . (1)

s

Here s9 is a measure of the model’s internal variability,
that is, the variability exhibited from run to run when
each run is initiated from slightly different initial con-
ditions. Here s9 is given by

N1
s9 5 s (X , k ∈ [1, 5]), (2)O m m,kN m51

where sm is the standard deviation of variability of pa-
rameter X between the K different runs at month m.
Each ensemble contains five members (i.e., K 5 5).
Index R is calculated at each grid point. Seasonal means
are presented for which there are 30 samples (N) avail-
able. Here is the variability of Xm,k associated withs
SST forcing. It is defined as the standard deviation of
the ensemble mean of the five realizations:

s 5 s(X ),m (3)

where

K1
X 5 X , for m 5 1, N.Om m,kK k51

The R index is one measure of predictability; small
(large) values of R indicate a high (low) level of po-
tential predictability, and is a simple but straightforward
tool to compare the two sets of experiments. See Power
et al. (1995) for further details. The significance of the
difference in R between the two ensembles will be as-
sessed using a Student’s t test with K 2 2 degrees of
freedom. It is worth noting that no attempt is made to
differentiate between the direct effect of soil moisture
and mixed effects due to soil moisture and SSTs com-
bined. Such discrimination is possible with more elab-
orate techniques, such as the analysis of variance (AN-
OVA) described by Zwiers (1996), Rowell (1998), and
Zheng and Frederiksen (1999), but it would require ad-
ditional experiments to be performed. Here, both are
included in what is described as the variance due to soil
moisture. A permutation procedure allows us to estab-
lish the statistical significance of any difference between
the two ensembles (Preisendorfer and Barnett 1983).
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TABLE 1. Externally forced variance of DTR over land in each
ensemble C and F (units are K2). The percentage of DTR variance
explained by the variability of soil moisture in shown in the right-
hand column. Stars indicate results significant at the 90% level.

Variance Season C F
% variance decrease due
to soil moisture variability

Northern
Hemisphere

DJF
JJA

0.36
0.20

0.22
0.09

38<
58<

Southern
Hemisphere

DJF
JJA

0.50
0.34

0.13
0.15

74<
56<

Australia DJF
JJA

1.03
0.34

0.30
0.15

71<
56<

TABLE 3. As per Table 1, but for precipitation (units are mm2).

Variance Season C F
% variance decrease due

to soil moisture variability

Northern
Hemisphere

DJF
JJA

0.11
0.22

0.09
0.16

12
30<

Southern
Hemisphere

DJF
JJA

1.22
0.09

0.78
0.07

37<
22

Australia DJF
JJA

1.33
0.06

0.83
0.04

37<
24<

TABLE 2. Ratio of internal variability (R index), over land, for DTR
in C and F experiments. The right-hand column is the percentage
increase of the R index for the F experiment over the C one. Stars
indicate results significant at the 90% level.

R index Season C F
% increase of R index

F over C

Northern
Hemisphere

DJF
JJA

1.73
1.86

1.82
1.92

5
3

Southern
Hemisphere

DJF
JJA

1.45
1.84

1.62
1.92

12<
4

Australia DJF
JJA

1.23
1.94

1.45
2.15

17<
10<

TABLE 4. As per Table 2, but for precipitation.

R index Season C F
% increase of R
index F over C

Northern
Hemisphere

DJF
JJA

1.61
1.64

1.70
1.76

5
7

Southern
Hemisphere

DJF
JJA

1.38
1.47

1.59
1.58

15
8

Australia DJF
JJA

1.07
1.47

1.47
1.72

37<
17<

2. Results and discussion

The impact of suppressing the interannual (and in-
terseasonal) soil moisture variability on the model’s be-
havior is examined by comparing the F ensemble with
the C ensemble. Global results are presented but dis-
cussion focuses on the analysis over the Australian con-
tinent.

First, the variability of diurnal temperature range
(DTR) is analyzed (Table 1). The term [Eq. (3)] overs
land is averaged over summer and winter for the en-
semble means of C and F. Variability is substantially
reduced when soil moisture is ‘‘decoupled’’ from the
atmosphere in experiment F. The percentage decrease
in the variance ranges from 38% to 74%. The reduction
of variance is more marked in summer [June–August
(JJA) in the Northern Hemisphere and December–Feb-
ruary (DJF) in the Southern Hemisphere]. This is con-
sistent with smaller potential evaporation during the
winter limiting the influence of soil moisture in the par-
titioning of heat fluxes and on surface temperatures.
Furthermore, precipitation variability is higher in sum-
mer (see Table 3, later) when soil moisture is allowed
to vary, inducing higher soil moisture variability. Del-
worth and Manabe (1988) found somewhat similar re-
sults: coupled soil moisture makes a substantial contri-
bution to summer air surface temperature variability.
However, in the present experiments, the contribution
of soil moisture to DTR variance in winter is not neg-
ligible.

In the same way that soil moisture affects externally

forced variability of surface temperature (measured by
), it is also expected to modify internal model vari-s

ability. One measure of this is the predictability, or R
ratio (Table 2). The Northern Hemisphere does not ex-
hibit marked seasonality in R. Moreover the contribution
of soil moisture to variability is modest in both winter
and summer. In the Southern Hemisphere the seasonal
response is much stronger: predictability is high (R in-
dex small) in summer and the influence of soil moisture
is also more important. This feature is particularly no-
ticeable over the Australian continent where the per-
centage increase in the R index is much larger than for
the whole Southern Hemisphere. At the same time, the
percentage increase in the variance, for Australia and
the Southern Hemisphere, is very similar (cf. Table 1).
This suggests that over Australia soil moisture vari-
ability is a key parameter in determining the model var-
iability, and the inclusion of interannual variation of soil
moisture should increase potential predictability.

Next, the standard deviation of externally forced pre-
cipitation variability for the ensemble mean in C and F
is presented in Table 3. Globally, the variance explained
by soil moisture variability is smaller than that for tem-
perature. In the Southern Hemisphere and Australia in
particular, the impact of soil moisture is again greater
than in the Northern Hemisphere, and precipitation var-
iability is characterized by a very strong seasonal de-
pendence. In general, the variance explained by soil
moisture variability is greater in summer than in winter.
The stronger influence of soil wetness in summer is
consistent with larger potential evaporation and larger
precipitation variability, as proposed by Delworth and
Manabe (1988).

Higher potential predictability (lower R) for precip-
itation (Table 4) is found in the Southern Hemisphere,
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TABLE 5. Autocorrelation at lag 1 month of the anomalous precip-
itation time series over Australia for the two experiments sets (ob-
servations from Simmonds and Hope 1997).

Autocorrelation C Observations F

All months
NDJFMA
MJJASO

0.25<
0.26<
0.28<

0.18< 0.10
0.10
0.14

with a striking seasonal difference; austral summer pre-
cipitation is much more predictable than is the case for
winter (as also shown by Frederiksen et al. 1999). Aus-
tralia appears to be the most predictive continent. This
is partly due to its position within the Tropics [where
up to 80% of the interannual variance is predictable,
Rowell (1998)]. The decrease in rainfall predictability
in F compared with C is noticeable for each season
over both hemispheres but is more important in sum-
mer. The contribution of soil moisture to precipitation
potential predictability, estimated by the percentage in-
crease of experiment F’s R index over that of C is more
important over the Southern Hemisphere. Australia ap-
pears once again as one of the most sensitive regions.
In a similar study, Koster et al. (2000) also found that
the land surface is more strongly coupled with the at-
mosphere during summer, but they did not find such a
pronounced influence over Australia as in the present
experiments.

To further investigate this particular behavior over
Australia, the autocorrelation at one month lag of total
precipitation anomalies in the two ensembles of ex-
periments is averaged over Australia (Table 5). Two 6-
month periods are presented, corresponding with
lagged periods, as well as an annual value, which can
be compared with observations from Simmonds and
Hope (1997). All correlations that are significantly dif-
ferent from zero at the 90% confidence level are un-
derscored. The comparison of the C autocorrelation
with the observational one for all months suggests that
the experimental value seems reasonable (although
slightly overestimated). Scott et al. (1995) have shown
that models without a canopy interception reservoir
(such as the land surface scheme used here) tend to
increase autocorrelation. The main feature is that pre-
cipitation persistence is significantly reduced in the F
experiment. The reduction exceeds 50% for the three
periods considered.

Physically, precipitation persistence can be consid-
ered as a feedback mechanism. Positive anomalies of
precipitation produce positive anomalies of soil mois-
ture; this soil moisture increase then feeds back on the
precipitation. It is generally accepted that this feedback
operates through a diminution of the Bowen ratio: an
increase in the latent heat flux and a decrease in the
sensible heat flux. Delworth and Manabe (1988) have
shown in a climate model that the changes in these fluxes
lead to increased relative humidity, since an increase in
latent heat flux results in an increase in atmospheric

moisture, while a decrease in sensible heat flux leads
to a decrease in air temperature. Higher relative hu-
midity may lead to an increased likelihood of precipi-
tation. More detailed studies, using a weather prediction
model (Betts et al. 1996) and a regional climate model
(Schär et al. 1999) on shorter timescales have shown
that the efficiency of convective precipitation processes
is actually increased through the development of a
warmer, moister, and shallower boundary layer, which
provides instability, while the release of this instability
is facilitated by the lowering of the free convective level.

Another impact of soil moisture variability can be
found in its impact on the relationship between rainfall
and DTR. Power et al. (1998) have shown that less
sunshine reaching the surface in rainy years lowers the
maximum daily surface temperature (Tmax), while re-
duced soil moisture during dry periods limits the effect
of the evaporation. Schär et al. (1999) have shown that
these dual mechanisms overall increase the net energy
flux that contributes to the increased convective effi-
ciency, mentioned above. The combined action of sur-
face shortwave radiation and surface latent heat flux
changes put rainfall and temperature out of phase. These
findings are supported here (Fig. 1a). Calculated over
the entire year, negative correlations between precipi-
tation and DTR are found everywhere (a coefficient with
magnitude greater than 0.2 in Fig. 1a is significant at
the 99% level). This is also verified when rainfall is
correlated with daily maximum surface temperature,
daily averaged surface temperature, and to a lesser ex-
tent with daily minimum surface temperature (not
shown). When soil moisture is decoupled, correlations
are reduced over most parts of the globe (Fig. 1b). The
difference is largely significant, in particular over the
Australian continent during summer (not shown). In
summary, changes in both latent and sensible heat fluxes
from the surface due to modifications of soil moisture
variability lead to the considerable weakening of the
relationship between surface temperature and precipi-
tation seen in these results.

So far we have only considered potential predict-
ability. Potential predictability here refers to predict-
ability given a perfect knowledge of future SSTs. It
therefore provides an upper estimate on our ability to
predict the model atmosphere. With potential predict-
ability we are interested in quantifying the degree to
which the atmosphere, for example, is a slave to the
underlying SST; that is, quantification of the relative
magnitude of internal chaotic variability over variability
driven by the underlying SSTs. We now turn to actual
predictability in the model. To do this we use the model’s
SOI prior to time t, to predict modeled rainfall and land
surface temperature for time after t forced by observed
SSTs. The importance of this approach is that it forms
the basis of the method used in most operational forecast
centers.

The correlation coefficients between ensemble mean
simulated SOI and the observed one are only slightly

Unauthenticated | Downloaded 11/02/21 02:45 AM UTC



1234 VOLUME 15J O U R N A L O F C L I M A T E

FIG. 1. Correlation at lag 0 between precipitation and DTR for all months during the period 1979–88: (top) C
ensemble mean and (bottom) F ensemble mean.

reduced in the F experiments (0.81) compared to the C
ensemble (0.84). Therefore correlations in both ensem-
bles are worth investigating. The correlation of the SOI
with precipitation over Australia is evaluated year-round
with precipitation being lagged from 0 to 3 months (Fig.
2). In experiment C (first column), the relationship
strengthens during the early period. Peak values are
reached at lag 1 month in the east, and between 1 and
2 months in the northern part of the continent. At lag
3 months, the correlation is still large. For the F ex-
periments (middle column), the correlation weakens af-
ter the first month. At lag 2 and 3 months, it has com-
pletely vanished. This marked difference in the exper-
iments is significant in the extreme east of the continent
at lag 1 month and over most of the region of interest
after 2 months (Fig. 2, last column). The prescription

of climatic soil wetness amounts does not take account
of hydrological conditions created by past events. These
unrealistic conditions appear to break the SOI–precip-
itation relation. Thus soil moisture plays a crucial role
in the maintenance of this relationship and keeps a mem-
ory of recent past climatic events over the continent.
These results suggest that a poor knowledge of the soil
hydrology could severely limit the skill of seasonal rain-
fall predictions over Australia using a climate model.
Thus an accurate initialization of soil moisture and an
improved simulation of its subsequent evolution should
improve seasonal to interannual rainfall predictions.
Considering the simplicity of the soil moisture scheme,
the model results compare fairly well with the observed
correlations taken from longer records: 1950–99 (Fig.
3). Although the model lagged correlations are some-
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FIG. 2. Correlation between precipitation and the SOI over Australia for all months during the period 1979–88 at lag from 0 to 3 months:
(left) C ensemble mean, (middle) F ensemble mean, and (right) significance at the 80% and 90% level.

what higher than observed. As noted earlier it a known
feature of the ‘‘bucket’’ soil moisture model to increase
the autocorrelation of precipitation.

It is also interesting to note that the temporal evo-
lution of correlations between SOI and maximum tem-
perature (Fig. 4) strengthens, in the C ensemble, during
the lagged period 0–3 months. Halpert and Ropelewski
(1992) also found such a lag between extreme ENSO
events and extreme temperature anomalies. The annual
behavior is dominated by spring and summer conditions.
The results in experiment F are again completely dif-

ferent. A large pattern of positive correlation covers
almost the whole country at lag 0. When results are
analyzed using seasonal means, it appears that the large
negative correlation in austral summer disappears, while
the positive correlation in winter becomes the dominant
signal year-round. The differences are significant over
most of the northern part of the continent. The almost
complete disappearance of significant correlations at lag
2–3 months with decoupled soil moisture suggests a
crucial role for soil moisture variability in maintaining
the ENSO-related signal for the seasonal forecasting of
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FIG. 3. Correlation coefficient maps of Australian monthly precipitation with monthly SOI leading by (a) 0 month, (b) 1 month, (c) 2
months, and (d) 3 months for the period from 1950 to 1999.

temperature—without the variability the observed re-
lationship simply would not occur.

3. Conclusions

The impact of soil moisture variability on (i) potential
predictability and (ii) actual predictability has been in-
vestigated by comparing two ensembles performed with
an AGCM, one with the soil moisture being prescribed
as the mean seasonal cycle. The results show that in
this model, atmospheric variability over land is strongly
linked to variability in soil moisture. Soil wetness fluc-
tuations contribute to an increase in the persistence and
the variability of surface temperature and precipitation.
Moreover, they increase the potential predictability de-
fined as the R ratio of certain atmospheric components.
The potential predictability of rainfall and surface tem-
perature variability in Australia is higher in summer,
and more heavily influenced by soil moisture than else-
where. Examination of the linear relationship between
surface temperature and rainfall confirms that the lagged
relationship between these variables is crucially depen-
dent upon soil moisture fluctuations. The central role
played by soil moisture as a memory of the recent past
was shown. It permits the maintenance of the in-phase

SOI–rainfall relationship and is critical for the lagged
SOI–surface temperature relationship. Indeed, when its
variations are ignored, climate predictability based on
the lagged association between climate variables over
Australia and the SOI almost completely vanish after
one month.

These results emphasize that the soil moisture is a
crucial parameter in determining both the variance and
the predictability of the atmosphere. Nevertheless, it
must be noted that the period 1979–88 was dominated
by two strong El Niño events. Thus, it remains possible
that this signal is not representative of interannual var-
iability in other periods, which could limit the more
general applicability of these results. It must also be
keep in mind that the land surface scheme used is a
very simple one. Previous studies (Scott et al. 1995)
showed that schemes such as this tend to overestimate
atmospheric persistence and variance. This too provides
a caveat on the present results. A further caveat is that
it is possible that the present results may also depend
on other parameterizations present in the model. Thus
it remains possible that they could be significantly dif-
ferent in a different GCM. Overall however, the fact that
the correlations (SOI–rainfall and SOI–surface temper-
ature) in the control experiment compare well with ob-
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FIG. 4. As per Fig. 2 but for maximum temperature.

servations, and that they differ significantly from the
decoupled experiment strongly underlines the central
role of soil moisture. As a result, it would be desirable
to test the present results with a more sophisticated land
surface scheme, since it has been demonstrated that the
bucket scheme behavior may be different from that of
more sophisticated schemes (Timbal and Henderson-
Sellers 1998). However, as shown here, even capturing
the basic features of soil moisture variation (with a very
simple surface scheme) may be enough to significantly
improve model skill. In this light, it is notable that Power
et al. (1998) did not find significant differences in the

modeled relationship between temperature and rainfall
with two different land surface schemes, one a simple
‘‘bucket’’ and one including the role of vegetation.

Following these results, it appears that a represen-
tation of soil moisture variation is a prerequisite for the
skilful forecast of interrannual variations of the Austra-
lian climate. Using coupled climate models, this may
require two steps. First, it may be necessary to accu-
rately initialize and assimilate the soil moisture, as done
in weather forecasting models (Mahfouf 1991). Second,
skill may be added by enhancing the land surface pa-
rameterization, for example, by using multilayer surface

Unauthenticated | Downloaded 11/02/21 02:45 AM UTC



1238 VOLUME 15J O U R N A L O F C L I M A T E

schemes. In a statistical approach, on the other hand, it
may be difficult to take soil moisture into account. It is
probably not suitable directly as an additive predictor
to the SOI or global SSTs. Nevertheless it may be pos-
sible to calibrate the statistical prediction relationships
according to the hydrological conditions (drier, normal,
or wetter year) in a similar manner to that for the In-
terdecadal Pacific Oscillation (Power et al. 1999). This
study focused on the Australian continent where the
most pronounced signal was found, however many of
our conclusions also apply in other areas. In particular,
most of the Pacific region, and other regions linked to
the ENSO phenomenon, appear sensitive to soil mois-
ture variability (Viviand et al. 2000). It would be in-
teresting to see the results of similar studies of soil
moisture impact on seasonal prediction using other glob-
al climate models.
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