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A B S T R A C T

Turbulent combustion closure models – for Transported Probability Density Function (TPDF) models – where
more than one other stochastic particle influences the mixing process for any given particle may not be
mathematically conservative. A technique is proposed here which makes the mixing process conservative
within numerical precision by correcting the matrix governing the contribution each particle makes to each
particle’s new value. In each iteration, the matrix is normalised to become conservative, then renormalised
to become well-mixed so that it complies with numerical stability requirements. The technique inherently
converges until the error in conservation is lower than the desired tolerance. This technique is tested on
the Multiple Mapping Conditioning (MMC) model using the Interaction-by-Exchange-with-the-Mean (IEM)
model for the turbulent micro-mixing closure (MMC-IEM) for the approach where the two closest particles
in reference space are used to compute the conditional mean towards which a particle relaxes. For a single
reference variable, these two particles are the immediate neighbour in either direction in reference space. While
this method is implicitly conservative if all particles have identical weights, it is inherently unconservative
otherwise. This is a challenge for applying this method to standard inhomogeneous combustion codes, where
varying particle weights is used to manage computational load and accuracy by removing stochastic particles
if there are too many in a region and creating stochastic particles if there are insufficient. The technique is
tested using an inhomogeneous lifted-flame open flow, with the introduction of numerical conservation having
an insignificant impact on the mean results, so the essence of MMC-IEM is preserved. The conservation error
in the scalars is 3 orders of magnitude lower than the specified tolerance for the matrix. However, because
the chemical kinetics scheme only used 48 species – of which, 28 were steady-state – it is expected that the
application of this technique to practical cases with more species and at higher pressures will have a more
significant impact.
1. Introduction

As the world seeks to transition away from fossil fuels, in a num-
ber of sectors combustion remains advantageous compared to elec-
trification. In the aviation industry for instance [1], batteries have
significantly lower energy density than fuels; fuel consumption reduces
the weight of aircraft during flight, thereby increasing range; and
the efficiency of aircraft at cruising altitude means that their CO2
emissions are lower than conventional electricity generation. The major
challenges facing combustion of alternative fuels is to operate as lean
as possible for maximum reduction in pollution, but still maintain a
stable flame [2,3]. To be able to design such systems requires accurate
modelling of extinction-reignition phenomena [4].

E-mail address: andrew.wandel@unisq.edu.au.

The Multiple Mapping Conditioning (MMC) model [5,6] provides
a framework that has been successfully used to model extinction-
reignition phenomena. Key to its design is the reference variable which
is used for conditioning: this reference space is mapped to the main
scalars and permits the model to govern the locality of mixing.

Section 2 derives the criteria that are to be met for a mixing model
to perform correctly, then Section 3 proves that MMC-IEM fails to
comply with all of these criteria. Section 4 introduces a technique that
can be used to make any Transported Probability Density Function
model compliant within numerical precision, followed by a demonstra-
tion of this technique using MMC-IEM in Section 5 and conclusions in
Section 6.
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2. Numerical properties of mixing processes

Let 𝜙𝑘
𝑖 be the value of any variable 𝜙 for particle 𝑖 at time instant

𝑘. The interaction process is defined to have all particles explicitly
nfluence the value of each particle to determine the new value:

𝜙𝑘+1
𝑖 =

∑

𝑗
𝐿𝑖𝑗𝜙

𝑘
𝑗 , (1)

where 𝐿𝑖𝑗 represents the elements of the interaction matrix 𝐋. The
matrix for the rate of interaction, 𝐌, can also be defined [7]:

𝑊𝑖𝑑 𝜙𝑖 = −
∑

𝑗
𝑀𝑖𝑗𝜙

𝑘
𝑗 𝑑 𝑡 , (2)

where 𝑊𝑖 is the weight of particle 𝑖 (its mass or probability) and
he Einsteinian summation convention is not used. Assuming simple

upwinding to discretise the change in 𝜙, substitution of Eq. (1) into
q. (2) yields (𝛿𝑖𝑗 is the Kronecker 𝛿-function):

𝐿𝑖𝑗 ≡ 𝛿𝑖𝑗 −𝑀𝑖𝑗𝑑 𝑡∕𝑊𝑖 . (3)

If a scheme is conservative, then the entire amount of each particle
is distributed precisely to the particle field – nothing from an individual
particle is lost or gained. For Eq. (1) to be conservative – which means
hat the mean value of the field 𝜙 is unchanged by the operation Eq. (1)
 the sum of the elements in each column must be [7]:

∀𝑗
∑

𝑖
𝑀𝑖𝑗 = 0 , ∀𝑗

∑

𝑖
𝑊𝑖[𝛿𝑖𝑗 − 𝐿𝑖𝑗 ] = 0 . (4)

After some basic algebra, the conditions to satisfy conservation, Eq. (4),
are:

∀𝑗
∑

𝑖
𝑀𝑖𝑗 = 0 , ∀𝑗

1
𝑊𝑗

∑

𝑖
𝑊𝑖𝐿𝑖𝑗 = 1 . (5)

If ∀𝑖𝑊𝑖 = 𝑊 , then Eq. (5) becomes ∀𝑗
∑

𝑖 𝐿𝑖𝑗 = 1. A consequence of
q. (5) is that the solution of Eq. (1) is bounded [7]: min(𝜙𝑘

𝑖 ) ≤ 𝜙𝑘+1
𝑖 ≤

max(𝜙𝑘
𝑖 ). Ensuring that the mixing process is conservative is especially

mportant for spray processes, because the gaseous mixture fraction
s no longer conservative due to the source created by the droplet
vaporation. This change in the behaviour of the mixture fraction poses
hallenges for the modelling of these systems, especially because any
hange in conservation cannot be attributed to numerical errors [8].

If a scheme is ‘‘well-mixed’’, then each particle receives the same
otal mass fraction that it distributed to the particle field. For Eq. (1)
o be numerically stable, it is necessary for 𝐋 to be well-mixed; math-
matically, the sum of the elements in each row must be:

∀𝑖
∑

𝑗
𝑀𝑖𝑗 = 0 , ∀𝑖

∑

𝑗
𝐿𝑖𝑗 = 1 . (6)

A consequence of Eq. (6) is that a uniform solution is preserved by
q. (1): if ∀𝑖𝜙𝑘

𝑖 = 𝜙, then ∀𝑖𝜙𝑘+1
𝑖 = 𝜙. In other words, the enforcement

of Eq. (6) guarantees numerical stability because the solution of Eq. (1)
oes not introduce numerical fluctuations in the value of 𝜙𝑘+1

𝑖 – which
would likely be divergent.

There are a number of other properties that the formula for 𝑀𝑖𝑗
should obey for physical modelling [7]. The physical properties that
are not directly addressed in this work are localness of mixing and
relaxation to a Gaussian distribution in homogeneous turbulence. The
remaining mathematical property that 𝑀𝑖𝑗 must obey for turbulent mix-
ing [7] ensures that the dissipation of the covariance of multiple scalars
𝜙 and 𝜑 complies with the covariance transport equation (which also
ensures variance decay [7]). To achieve compliance, 𝐌𝑠 ≡

1
2 [𝐌 +𝐌T]

(the symmetric part of 𝐌) must be a positive semi-definite matrix; to
satisfy this requirement, 𝐌𝑠 must be symmetric and all its eigenvalues
must be non-negative.

Depending on the weighting kernel used to define the elements 𝑀𝑖𝑗 ,
𝐌 can be sparse, and this is a desirable feature when particle 𝑗 is distant
from 𝑖 because it enforces localness.
2 
3. Compliance of IEM with the numerical conditions

The Interaction-by-Exchange-with-the-Mean (IEM) model [9,10],
which has the variant Interaction-by-Exchange-with-the-Conditional-

ean (IECM) [11–13], has the following formula for the mixing sub-
step:

𝑑 𝜙𝑖 = −𝜙𝑖 − ⟨𝜙⟩
𝜏

𝑑 𝑡 , (7)

where ⟨𝜙⟩ is the (local) mean of 𝜙 and 𝜏 is an appropriately-defined
ixing timescale.

It is common to compute the mean discretely:

⟨𝜙⟩ =
∑

𝑗 𝑊𝑗𝜙𝑗
∑

𝑗 𝑊𝑗
=
∑

𝑗

𝑊𝑗𝜙𝑗
∑

𝑙 𝑊𝑙
, (8)

therefore Eq. (7) becomes

𝑑 𝜙𝑖 = −𝑑 𝑡
𝜏

(

𝜙𝑖 −
∑

𝑗

𝑊𝑗𝜙𝑗
∑

𝑙 𝑊𝑙

)

. (9)

Substituting into Eq. (2) yields for discrete IEM:

𝑀𝑖𝑗 ≡
𝑊𝑖
𝜏

(

𝛿𝑖𝑗 −
𝑊𝑗

∑

𝑙 𝑊𝑙

)

. (10)

Any particle not involved in computing ⟨𝜙⟩ (because it is in a different
region of space) can be assigned 𝑊𝑗 = 𝑊𝑙 = 0 for the purposes of
computing Eq. (10).

The proof that Eq. (10) satisfies Eq. (6), and is therefore well-mixed,
is:
∑

𝑗
𝑀𝑖𝑗 =

𝑊𝑖
𝜏

(

∑

𝑗
𝛿𝑖𝑗 −

∑

𝑗

𝑊𝑗
∑

𝑙 𝑊𝑙

)

=
𝑊𝑖
𝜏

(

1 −
∑

𝑗 𝑊𝑗
∑

𝑙 𝑊𝑙

)

=
𝑊𝑖
𝜏

(1 − 1) = 0 .

The proof that discrete IEM is conservative — because Eq. (10) satisfies
Eq. (5) is:
∑

𝑖
𝑀𝑖𝑗 =

∑

𝑖

𝑊𝑖
𝜏

𝛿𝑖𝑗 −
∑

𝑖

𝑊𝑖
𝜏

𝑊𝑗
∑

𝑙 𝑊𝑙

=
𝑊𝑗

𝜏
−

∑

𝑖 𝑊𝑖

𝜏
𝑊𝑗

∑

𝑙 𝑊𝑙
=

𝑊𝑗

𝜏
−

𝑊𝑗

𝜏
= 0 .

However, in order for Eq. (5) to be satisfied for any valid specification
of 𝑊𝑗 , all particles 𝑗 must have the same value of ⟨𝜙⟩ as particle 𝑖; in
ther words, the calculation of ⟨𝜙⟩ must be segregated – the particles
ust be grouped so that they exclusively contribute to the computation

f ⟨𝜙⟩ for that group; in other words, 𝐌 must be a block diagonal
atrix.

3.1. Pairwise models

For pairwise models, where each particle’s value of 𝜙 only changes
due to the values of 𝜙 for the two particles in the pair, 𝐌 can be defined
for each pair of particles to be:

𝐌 = 𝑚{𝑖𝑗}
[

1 −1
−1 1

]

, (11)

where 𝑚{𝑖𝑗} is some scalar coefficient for each particle pair that is
efined by the specific model. Every pairwise model satisfies both the
ell-mixed and conservation criteria, Eqs. (5) and (6) respectively,

irrespective of the method used to simulate the mixing, i.e. irrespective
of the formula used for 𝑚{𝑖𝑗}.

The Modified Curl’s model [14,15] is one of the most common
pairwise models, where 𝑚{𝑖𝑗} is chosen independently for each pair-
ing. The other most commonly-used pairwise model is EMST [7],
where each particle may be paired with multiple other particles; while
Eq. (11) is applied for each pairing (hence the method is inherently
both conservative and well-mixed), 𝑚{𝑖𝑗} is dependent on the values
determined for other pairs (which is why EMST is not linear).
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3.2. MMC

Multiple Mapping Conditioning (MMC) [5] introduces a condition-
ng variable 𝜉 which is used to enforce locality on the transport of
. Modern applications of MMC exclusively use a stochastic approach,
ith numerous closures for the mixing process devised described be-

ow. Fundamental to all methods is the concept of a ‘‘minor’’ mixing
imescale 𝜏𝑐 , which governs the rate of decay of 𝜙 to ⟨𝜙|𝜉⟩. This obeys
𝑐 < 𝜏 if there is a significant correlation between 𝜙 and 𝜉, with 𝜏𝑐∕𝜏

monotonically decreasing with increasing correlation [16,17] between
𝜙 and 𝜉.

One approach to closing the mixing process is called ‘‘MMC-Curl’’
16–21], where the Modified Curl’s model [14,15] is used to compute

the amount by which the particles share their values. Particles are
aired based on closeness in reference space and only some particles
ix each timestep.

Most MMC implementations use an IEM closure:

𝜙𝑘+1
𝑖 = 𝜙𝑘

𝑖 −
𝜙𝑘
𝑖 − ⟨𝜙|𝜉𝑖⟩

𝜏𝑐
𝛥𝑡 , (12)

with the principal difference between those implementations the
method used to compute ⟨𝜙|𝜉𝑖⟩. Note that the minor timescale is
necessary in Eq. (12) – but is not necessary in IECM [11–13] –
because the conditioning variable 𝜉 is normally associated with 𝜙
directly or via another scalar. This correlation by definition between
𝜙 and 𝜉 means that |𝜙𝑘

𝑖 − ⟨𝜙|𝜉𝑖⟩| is normally significantly smaller than
|𝜙𝑘

𝑖 − ⟨𝜙⟩|. However, in IECM |𝜙𝑘
𝑖 − ⟨𝜙|𝐔𝑖⟩| is approximately the same

as |𝜙𝑘
𝑖 − ⟨𝜙⟩| because there is fundamentally no requirement for 𝜙 and

𝐔 to be correlated, although they almost certainly have at least some
correlation in practice.

The most widely-used method in MMC, used in MMC-LES [22,23]
nd some RANS [24–26], defines ⟨𝜙|𝜉𝑖⟩ by pairing particle 𝑖 with some

particle 𝑗 that is nearby in 𝜉-space and computing ⟨𝜙|𝜉𝑖⟩ using the
weighted mean of 𝜙𝑖 and 𝜙𝑗 . Because this can also be formulated as a
Modified Curl’s [14,15] method, this method is called ‘‘MMC-Curl-IEM’’
here. By being a pairwise method, it is implicitly conservative [7].

The method called ‘‘MMC-IEM’’ [27–30] solves Eq. (12) by comput-
ng ⟨𝜙|𝜉𝑖⟩ as the weighted mean of the particles either side of particle
:

⟨𝜙|𝜉𝑖⟩ =
𝑊𝑖−1𝜙𝑘

𝑖−1 +𝑊𝑖+1𝜙𝑘
𝑖+1

𝑊𝑖−1 +𝑊𝑖+1
. (13)

Eq. (12) becomes:

𝑑 𝜙 = −𝑑 𝑡
𝜏𝑐

(

𝜙𝑘
𝑖 −

𝑊𝑖−1𝜙𝑘
𝑖−1 +𝑊𝑖+1𝜙𝑘

𝑖+1
𝑊𝑖−1 +𝑊𝑖+1

)

𝑀𝑖𝑗 =
𝑊𝑖
𝜏𝑐

{

𝛿𝑖𝑗 −
[𝑊𝑗+1𝛿𝑖(𝑗+1) +𝑊𝑗−1𝛿𝑖(𝑗−1)

𝑊𝑗+1 +𝑊𝑗−1

]}

(14)

making 𝐌 a tri-diagonal matrix. The particles at either end require a
oundary condition: the particle acts as a ghost particle for the absent
article that would be outside the range of existing particles [30]. For
he first few particles, the interaction matrix is:

𝐿{1−3}{1−3} =

⎡

⎢

⎢

⎢

⎣

1 − 𝑑 𝑡
𝜏𝑐
(1 − 𝑊1

𝑊1+𝑊2
) 𝑑 𝑡

𝜏𝑐
𝑊2

𝑊1+𝑊2
0

𝑑 𝑡
𝜏𝑐

𝑊1
𝑊1+𝑊3

1 − 𝑑 𝑡
𝜏𝑐

𝑑 𝑡
𝜏𝑐

𝑊3
𝑊1+𝑊3

0 𝑑 𝑡
𝜏𝑐

𝑊2
𝑊2+𝑊4

1 − 𝑑 𝑡
𝜏𝑐

⎤

⎥

⎥

⎥

⎦

(15)

It is straightforward to prove that this scheme satisfies Eq. (6). It
is, however, only conservative if all the weights are identical (refer
to Appendix for the proof). Since inhomogeneous codes rely on the
weights being different for each particle, this poses challenges for this
method. To rectify this problem, it is inadvisable to attempt to correct
the values so that the mean is preserved following the (unconservative)
mixing process. This is because the cell mean is computed using every
particle, so 𝑀𝑖𝑗 has no non-zero elements, and the method almost
certainly violates the well-mixed criterion. A robust technique to make
this scheme conservative is presented in Section 4.
3 
3.3. PSP model

The Parameterised Scalar Profiles (PSP) model [31] is very similar
o the MMC-IEM model in that Eq. (12) is solved with a conditional

mean computed using Eq. (13) (albeit PSP is only formulated with
uniform weights 𝑊 ): two particles are chosen, with one of those
particles’ value of 𝜙 being no greater than 𝜙𝑖 and the other being no
maller than 𝜙𝑖. However, the principal difference between PSP and
MC-IEM is that in PSP the two particles chosen to compute Eq. (13)

are randomly selected from those particles in the computational cell –
instead of those immediately closest – and the selection persists until
either the difference between the chosen particle’s 𝜙 and 𝜙𝑖 changes
sign (i.e. they change order), or a certain time has elapsed (randomly
chosen, based on the turbulent mixing frequency). A further variation
s that in PSP 𝜏𝑐 for each particle is solved using a stochastic differential

equation for the frequency 1∕𝜏𝑐 .
It can therefore be concluded that this primary definition of PSP

is well-mixed. However, it is inherently not conservative – even if the
articles have the same weight – because 𝐌 is not a tri-diagonal matrix.
his problem was recognised in the original formulation of PSP [31],

with a correction applied by using a weighted sum of the changes
 𝜙𝑖 ≡ 𝜙𝑘+1

𝑖 − 𝜙𝑘
𝑖 computed by Eq. (12). However, as noted earlier,

while this approach causes the method to become conservative (ergo
bounded), it is no longer well mixed. It can therefore be concluded that
PSP is another candidate model for the approach described in the next
section.

4. Numerical technique to enforce conservation

The scheme described here [32] enables any interaction matrix 𝐋
to become conservative to the desired numerical precision. Let the
rrors for conservation and well-mixedness, 𝜖𝑐 ,𝑗 and 𝜖𝑤,𝑖 respectively,
e defined so that:
1
𝑊𝑗

∑

𝑖
𝑊𝑖𝐿𝑖𝑗 = (1 + 𝜖𝑐 ,𝑗 ) × 1 (16)

∑

𝑗
𝐿𝑖𝑗 = (1 + 𝜖𝑤,𝑖) × 1 . (17)

If ∀𝑗𝜖𝑐 ,𝑗 = 0, then the matrix 𝐋 is conservative by virtue of Eq. (5); if
∀𝑖𝜖𝑤,𝑖 = 0, then the matrix 𝐋 is well-mixed by virtue of Eq. (6). Since
he errors can be attributed to any element in the entire row/column of
, it is possible to normalise 𝐋 using these errors to ensure compliance.

The procedure to make 𝐋 conservative is, for iteration 𝑚:

1. Compute the error in conservation for the well-mixed matrix 𝐿𝑚
𝑖𝑗

using Eq. (16).
2. Make the well-mixed matrix 𝐿𝑚

𝑖𝑗 conservative:

∀𝑖,𝑗 �̂�𝑚
𝑖𝑗 = 𝐿𝑚

𝑖𝑗 ÷
(

1 + 𝜖𝑚𝑐 ,𝑗
)

. (18)

3. Compute the error in well-mixedness for the conservative matrix
�̂�𝑚
𝑖𝑗 using Eq. (17).

4. Make the conservative matrix �̂�𝑚
𝑖𝑗 well-mixed:

∀𝑖,𝑗𝐿𝑚+1
𝑖𝑗 = �̂�𝑚

𝑖𝑗 ÷
(

1 + 𝜖𝑚𝑤,𝑖

)

. (19)

This should be repeated until max(|𝜖𝑚𝑐 ,𝑗 |) is lower than the desired error
olerance 𝜖. Tests for different distributions of 𝑊𝑖 using a tri-diagonal
atrix found that this scheme always converges.

5. Validation of the technique

The binomial Langevin-MMC (BLM-MMC) framework [20,21] was
used, with the binomial Langevin mixture fraction [33] used to define
the reference variable:

𝐺𝜂 ( ) ( )1∕2
𝑑 𝜂𝑖 = 2𝜏
𝜂𝑖 − ⟨𝜂⟩ 𝑑 𝑡 + 𝐵𝜂⟨𝜀𝜂⟩ 𝑑 𝑤bin . (20)
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Fig. 1. Ensemble mean of centreline Favre-averaged mixture fraction rms for 𝜏𝑐∕𝜏 =
1∕8. Unconservative (𝜖 = 10−2), —; 𝜖 = 10−3, —; 10−4, —; 10−5, —. Experiment [35], ◦.

Table 1
95% confidence intervals (CI) for the conservation error in 𝐋 and consequential absolute
error in mean mixture fraction for each instance of Eq. (1). The final column is the
mean additional computational time required to complete the simulations relative to
= 10−2. Results are for different error tolerances 𝜖 for 𝜏𝑐∕𝜏 = 1∕8.
𝜖 𝐋 error ⟨𝑍⟩ error 𝛥𝑡CPU

Lower CI Upper CI Lower CI Upper CI

10−2 0.5704 × 10−2 0.5727 × 10−2 0.3098 × 10−5 0.3193 × 10−5 0%
10−3 0.8631 × 10−3 0.8644 × 10−3 0.3835 × 10−6 0.3951 × 10−6 0.24%
10−4 0.9739 × 10−4 0.9749 × 10−4 0.4802 × 10−7 0.4936 × 10−7 1.46%
10−5 0.9952 × 10−5 0.9958 × 10−5 0.6518 × 10−8 0.6703 × 10−8 3.34%

Here 𝐺𝜂 is the drift coefficient, 𝐵𝜂 the diffusion coefficient, 𝑑 𝑤bin is
a binomial Wiener process [34] and the mean scalar dissipation is

odelled as ⟨𝜀𝜂⟩ ≡
⟨

𝜂′2
⟩

∕𝜏, with the scalar timescale proportional to
he turbulent timescale 𝜏𝑢 using the standard form 𝜏 = 𝜏𝑢∕𝐶𝜙 (𝐶𝜙 = 2.0).
he MMC scalars evolve according to:

𝑑 𝑍∗𝑝 = 𝑆 𝑑 𝑡 (21)

𝑑 𝑌 ∗𝑝
𝐼 = (𝑆 +𝐼 )𝑑 𝑡 , (22)

where 𝑍 is the MMC mixture fraction, 𝑌𝐼 are the reactive scalars, 𝐼
s the chemical source term, and 𝑆 is modelled using Eq. (2).

The test case was an experiment of a methane-air jet with vitiated
oflow [35], which has been extensively used as a test case for turbulent
ombustion models [36–41]. The jet had 33% v.v. CH4 at room temper-

ature, while the coflow was lean H2 (equivalence ratio of 0.4) that was
urned (to 1350 K) prior to entering the experimental zone. The jet’s
ipe diameter was 𝑑 = 4.57 mm and flowed at 100 m/s, while the coflow
peed was 5.4 m/s. Because the ignition of the primary jet relies on
ufficient mixing with the co-flow, a lifted flame is produced, while the
et Reynolds number of 28,000 causes significant extinction-reignition
o occur, which, by design, is challenging for turbulent combustion
odels to predict.

The technique was implemented into the parabolic PIPER code [42],
with a reduced chemical mechanism for methane that uses 48 species,
28 of which are steady-state, and 300 reactions [43]. The turbulence is
modelled using a Reynolds stress model [44] with the triple moments
and pressure transport terms closed using the generalised gradient
iffusion formulation [45], while the standard turbulent kinetic energy

dissipation rate model [46] is used with 𝐶𝜀2 changed from 1.92 to 1.8
to better predict the spreading rate.

It has previously been proven for homogeneous combustion that
he effect of renormalisation causes minimal deviations in the results
ompared to the implicitly-conservative scheme with uniform particle
eight [47]. That work also found that the resultant error in mixture

raction conservation was approximately 5 orders of magnitude smaller
han the error tolerance 𝜖 specified to be the maximum allowable value
f 𝜖𝑐 ,𝑗 .

The compliance of the technique with the covariance transport
equation was checked for 𝐌𝑠. Cholesky factorisation [48] was used to
est whether 𝐌𝑠 is positive semi-definite, but this was never found to
e the case. The reason for this is that while 𝐌𝑠 is always symmetrical,

t least one of its first few eigenvalues is negative. However, because

4 
Fig. 2. Ensemble mean of centreline Favre-averaged mixture fraction for 𝜖 = 10−5.
𝜏𝑐∕𝜏 = 1∕8, —; 1∕4, —; 1∕3, —; 1∕2, —. BLM-MMC-Curl [21], – –. Experiment [35], ◦.

Fig. 3. Ensemble mean of centreline Favre-averaged mixture fraction rms. As per Fig. 2.

the ratio of the magnitude of these negative eigenvalues to the largest
eigenvalue is always less than 𝜖, to numerical precision 𝐌𝑠 is positive
semi-definite, therefore the technique complies with the covariance
transport equation to the accuracy 𝜖.

Because the timestep was relatively small compared to 𝜏𝑐 , the
maximum error in 𝐋 when applying no iterations was found to be ap-
proximately 𝜖𝑐 ,𝑗 = 10−2, so this case is considered to be unconservative.
Fig. 1 shows the centreline mixture fraction rms for 𝜏𝑐∕𝜏 = 1∕8 [16]
for a range of error tolerances. Improving the conservation slightly
increased the mixture fraction rms and consequently delayed the major
heat release. However, the 95% confidence intervals for each variable
and each error tolerance are sufficiently broad to overlap for each error
tolerance, so all results are statistically identical: the technique does not
significantly change MMC-IEM.

The error in conservation for 𝐋 (Table 1) closely matches 𝜖 for
sufficiently-small values of 𝜖. Because almost every instance of 𝐋 in the
urrent simulations has an error less than 10−2, decreasing 𝜖 causes

an increasing fraction of locations to apply the technique of Section 4.
While this is the nominal input error, the output error is measured by
the absolute error in the mean mixture fraction caused by the mixing
defined by 𝐋. For the homogeneous case [47], this error was 5 orders
of magnitude lower than 𝜖, whereas here this error is 3 orders of
magnitude lower (Table 1). This demonstrates that the nominal error
tolerance 𝜖 is more powerful and a certain precision in the results can
be achieved with a more relaxed tolerance, saving computational effort.

Table 1 also shows the relative increase in the mean computational
time required for each error level. Because very few instances of 𝐋
had errors greater than 10−2, there is unsurprisingly only an incon-
sequential increase in computational time to apply 𝜖 = 10−3. The
computational time appears to grow exponentially with each decade
that 𝜖 is reduced, but the error in 𝐋 also asymptotically approaches
𝜖 within this data set (indicating that almost every instance of 𝐋 has
an error greater than 𝜖 = 10−5), so it is expected that each further
reduction in 𝜖 by a decade would increase computational effort by
approximately 2% in the current simulations.

The remaining results are all for 𝜖 = 10−5 and for reference previous
BLM-MMC-Curl results using the same code and chemical kinetics [21]
are also shown. The prediction of the centreline mean mixture fraction
value (Fig. 2) is consistent irrespective of the parametric choices. The
tandard value [16] for the timescale ratio 𝜏𝑐∕𝜏 = 1∕8 predicts satis-

factorily the mixture fraction rms (Fig. 3) upstream of the major heat
release (𝑧∕𝑑 < 40), but under-predicts the experiment for essentially
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Fig. 4. Ensemble mean of centreline Favre-averaged temperature. As per Fig. 2.

Fig. 5. Ensemble mean of centreline Favre-averaged temperature rms. As per Fig. 2.

the rest of the domain. Increasing 𝜏𝑐∕𝜏 reduces the intensity of mixing,
esulting in progressively-increased values of the rms. It is likely that
𝑐∕𝜏 needs to be varied according to the turbulent intensity, consistent
ith previous findings for a homogeneous combustion case [17], where

it was found that an increased 𝜏𝑐∕𝜏 was required for a passive scalar
case.

This variation in mixture fraction rms governs the location of the
flame’s front and its thickness: the mean temperature (Fig. 4) shows
hat the flame advances slightly as 𝜏𝑐∕𝜏 increases, while the flame is
lso substantially broadened. This is because increasing 𝜏𝑐∕𝜏 increases
he conditional fluctuations [17], which reduces the likelihood of fuel

and oxidiser particles interacting, thereby increasing the mixing du-
ration. The parameter 𝜏𝑐∕𝜏 has long been recognised as critical for
modelling MMC in particular [16] because it can tune the model to
 desired flame width; this parameter is also inherent in any turbulent
ombustion model, even if it is not explicitly determined or parame-
erised. All of the cases commence the major heat release significantly
efore the experiment, with 𝜏𝑐∕𝜏 = 1∕8 providing the closest match
o the flame thickness, but higher values more closely matching the
xperiment through the major heat release zone because the flame
or 𝜏𝑐∕𝜏 = 1∕8 finishes sooner. This behaviour is replicated in the
emperature rms (Fig. 5) and species (Fig. 6).

The mixture fraction probability density function (pdf) (Fig. 7)
emonstrates broad agreement with the experiment, with increasing
alues of 𝜏𝑐∕𝜏 delaying the mixing of the coflow and fuel stream. The
ffect of the parameters can be clearly seen in the scatter plots of
emperature as a function of mixture fraction (Fig. 8). Increasing 𝜏𝑐∕𝜏

permits greater conditional fluctuations, which causes more of the lean
particles to be able to approach chemical equilibrium early on. This,
however, delays the major heat release 40 ≤ 𝑧∕𝑑 ≤ 60 from the rich
particles because of the reduced rate of mixing of the unmixed fuel and
oflow with the burning particles. It is this reduced rate of mixing that
dvances the flame compared to the experiment and BLM-MMC-Curl
ecause there is insufficient local extinction in the vicinity of 𝑧∕𝑑 = 40.

6. Conclusions

A technique to impose conservation – to numerical precision – on a
ixing model that is not inherently conservative is shown to satisfy

ll mathematical criteria for a mixing process without significantly
ltering the mixing process. The MMC-IEM model is identified as being
 model that is not conservative if the stochastic particles are assigned
ifferent weights (probabilities), which is a common procedure in
nhomogeneous solvers. The technique is tested using the BLM-MMC
5 
Fig. 6. Ensemble mean of centreline Favre-averaged mass fractions. (a) O2; (b) OH;
(c) CO; (d) H2. Lines as per Fig. 2.

Fig. 7. Mixture fraction pdf at different axial locations. BLM-MMC as per Fig. 2;
Experiment [35]: – ⋅.

framework for a jet that produces a lifted flame containing significant
extinction-reignition. The model provides satisfactory agreement with
the experiment, although it is noted that the timescale ratio 𝜏𝑐∕𝜏 may
need to vary to respond to the local turbulent conditions, consistent
with previous findings for homogeneous combustion [17].

In the current work, a single reference variable was considered.
hile the technique to make the model conservative can be applied

o MMC-IEM with multiple reference variables, there are additional
omplications that need to be resolved in multi-dimensional space. This
s because in a single dimension each particle influences the mixing
f precisely two particles; in multiple dimensions, each particle can
nfluence the mixing of any number of particles – including zero. Future
ork will determine how to specify MMC-IEM so that the conservation

echnique is effective for multiple reference variables and also apply

this technique to the PSP model.
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Fig. 8. Scatter plots of temperature, varying with mixture fraction. The right column is the experiment [35], the column beside that is BLM-MMC-Curl [21]. The vertical yellow
lines indicate the stoichiometric mixture fraction, while the yellow upper curve indicates chemical equilibrium and the yellow lower angled line represents frozen conditions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Novelty and significance statement

The novelty of this research is a new technique to make mixing
models conservative within an error tolerance, applied to the MMC-
IEM model which is not conservative for inhomogeneous simulations
that use varying particle weights. It is significant because it permits
MMC-IEM with a single reference variable (and other micro-mixing
models) to be used without concerns that a lack of conservation in the
formulation will create unphysical behaviour in the chemistry solver.
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Appendix. Proof that MMC-IEM is only conservative if all weights
are equal

To determine if Eq. (14) is conservative, consider:
∑

𝑖
𝑀𝑖𝑗 =

∑

𝑖

𝑊𝑖
𝜏𝑐

{

𝛿𝑖𝑗 −
[ 𝑊𝑗+1

𝑊𝑗−1 +𝑊𝑗+1
𝛿𝑖(𝑗+1) +

𝑊𝑗−1

𝑊𝑗−1 +𝑊𝑗+1
𝛿𝑖(𝑗−1)

]}

= 1
𝜏𝑐

[

𝑊𝑗 −

(

𝑊 2
𝑗

𝑊𝑗−2 +𝑊𝑗
+

𝑊 2
𝑗

𝑊𝑗 +𝑊𝑗+2

)]

=
𝑊𝑗

𝜏𝑐

[

1 −𝑊𝑗
(𝑊𝑗 +𝑊𝑗+2) + (𝑊𝑗−2 +𝑊𝑗 )
(𝑊𝑗−2 +𝑊𝑗 )(𝑊𝑗 +𝑊𝑗+2)

]

=
𝑊𝑗

𝜏𝑐

[

1 −
𝑊𝑗 (𝑊𝑗−2 +𝑊𝑗 +𝑊𝑗+2) +𝑊 2

𝑗

𝑊𝑗 (𝑊𝑗−2 +𝑊𝑗 +𝑊𝑗+2) +𝑊𝑗−2𝑊𝑗+2

]

.

To satisfy Eq. (5) requires

𝑊 2
𝑗 = 𝑊𝑗−2𝑊𝑗+2 ; (23)

this is only generally possible if ∀𝑗𝑊𝑗 = 𝑊 , i.e. all particles have
identical weights.
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