IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 13 September 2023, accepted 9 October 2023, date of publication 20 October 2023, date of current version 31 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3326419

== RESEARCH ARTICLE

Mining Periodic-Frequent Patterns in Irregular
Dense Temporal Databases Using

Set Complements

PAMALLA VEENA“1, TARUN SREEPADA 2, (Member, IEEE),
RAGE UDAY KIRAN“2, (Senior Member, IEEE), MINH-SON DAO "3, KOJI ZETTSU"3,
YUTAKA WATANOBE 2, (Member, IEEE), AND JI ZHANG?, (Senior Member, IEEE)

1Sri Balaji PG College, INTU-Anantapur, Anantapur, Andhra Pradesh 515001, India

2Division of Information Systems, The University of Aizu, Aizuwakamatsu, Fukushima 965-0006, Japan
3National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
4School of Mathematics, Physics and Computing, the University of Southern Queensland, Toowoomba, QLD 4350, Australia

Corresponding author: Rage Uday Kiran (udayrage @u-aizu.ac.jp)

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 21K12034.

ABSTRACT Periodic-frequent patterns are a vital class of regularities in a temporal database. Most previous
studies followed the approach of finding these patterns by storing the temporal occurrence information of a
pattern in a list. While this approach facilitates the existing algorithms to be practicable on sparse databases,
it also makes them impracticable (or computationally expensive) on dense databases due to increased list
sizes. A renowned concept in set theory is that the larger the set, the smaller its complement will be. Based
on this conceptual fact, this paper explores the complements, redefines the periodic-frequent pattern and
proposes an efficient depth-first search algorithm that finds all periodic-frequent patterns by storing only
non-occurrence information of a pattern in a database. Experimental results on several databases demonstrate

that our algorithm is efficient.

INDEX TERMS Data mining, pattern mining, periodic patterns, set complements, temporal databases.

I. INTRODUCTION

The big data generated by real-world applications naturally
exists as a temporal database, an ordered set of transactions
by timestamp. Beneficial patterns that can empower the users
with competitive information to achieve socio-economic
development lie hidden in this data. Tanbeer et al. [1]
described a model to find periodically occurring frequent
patterns in a uniform temporal database. Venkatesh et al. [2]
generalized this model to (an irregular) temporal database.
Since then, the problem of finding these patterns has received
considerable attention [3], [4], [5], [6], [7], [8]. A classic
use case of periodic-frequent patterns is market-basket
analysis. It involves finding the regularly purchased itemsets
in market-basket data. An example of a periodic-frequent

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan A. Lara

pattern is:
{Bread, Jam, Bag}[support = 5%, periodicity = 2 hrs].

The above pattern says that five percent of the customers
have purchased the items ‘Bread, ‘Jam,” and ‘Bag’ at least
once every two hours. The supermarket managers may
find this information beneficial for campaigning, inventory
management, and product placement.

The basic periodic-frequent pattern model is as follows [2]:
Let I = |Ji_,ix,m > 1, be a set of items. Let 7S =
Uizi tsy, where ts, € R represents a timestamp, ts; =
1 represents the initial timestamp in 7S and fsy represents
the final timestamp in 7S. The ts; represents a hypothetical
timestamp, which is crucial to determine the time taken for
the first appearance of a pattern in a database. Let P C I be
a pattern (or an itemset). A pattern containing 8, 8 > 1,
number of items is called a S-pattern. A transaction, rr =

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

118676

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-3611-0143
https://orcid.org/0009-0002-1299-3663
https://orcid.org/0000-0002-5417-0289
https://orcid.org/0000-0003-3044-8175
https://orcid.org/0000-0003-4062-2376
https://orcid.org/0000-0002-0030-3859
https://orcid.org/0000-0001-5131-8447

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

(tid, tsq, @), a > 1, is a triplet, where tid € R* denotes
the transaction-identifier, ts, € {TS — 0} represents the
timestamp, and Q is a pattern. A temporal database, denoted
as TDB, over I and TS is an ordered set of transactions
by timestamp. That is, TDB = |Ji_,tre, n = |TDB,
where |TDB| represents the number of transactions in TDB.
A temporal database is said to be regular if n = #7; otherwise,
the database is said to be irregular. For a transaction tr =
(tid, ts,, Q), if P C Q, it is said that P occurs in tr (or
tr contains P) and that timestamp is denoted as #sf. Let
TSP = Ui:j tsf, j.k € [1,ts7], be an ordered set of
timestamps at which P has occurred in TDB. The support
of P, denoted as sup(P) = |TS*|, where |TS”| represents the
number of transactions containing P. The pattern P is said to
be a frequent pattern if sup(P) > minSup, where minSup
refers to the user-specified minimum support value. Let tsf
and ts°, j < c <d <k, be the two consecutive timestamps
in TS [;f The time difference (or an inter-arrival time) between
tsh and ts” is defined as a period of P, say perl. That is,
peréD = tsg — tsf. Let PERP = {per{J, perf, cee perf;}
be the set of all periods for pattern P. The periodicity
of P, denoted as prd(P) = max(perf |Vperf e SPP).
The frequent pattern P is said to be a periodic-frequent
pattern if prd(P) < maxPRD, where maxPRD refers to the
user-specified maximum periodicity value. Given a temporal
database (TDB) and the user-specified minimum support
(minSup) and maximum periodicity (maxPRD) constraints,
the problem definition of periodic-frequent pattern mining
is finding the complete set of periodic-frequent patterns
having support no less than minSup and periodicity no more
than the maxPRD. Please note that a pattern’s support and
periodicity can be represented in the percentage of |TDB| and
Iy, respectively.

Example 1: Let I = {p,q,r,s,t,u,v} be the set of
items. Let TS = {0, 1, 2, - - - , 12} be the set of timestamps.
A hypothetical temporal database generated from [is shown
in Table 1. This database contains 10 transactions, i.e., n =
10. The initial timestamp of this database, i.e., ts; = 0. The
final timestamp of this database, i.e., tf = 12. Since n! = ts,
this database represents an irregular temporal database with
no transaction occurring at the timestamps 2 and 10. The set
of items p and ¢, i.e., {p, q} (or pq, in short) is a pattern. It is a
2-pattern as it contains only two items. The pattern pg appears
in the transactions whose timestamps are 1, 4, 5, 8, 9,
and 12. Therefore, the list of timestamps containing pg, i.e.,
TSPY = {1, 4, 5, 8, 9, 12}. The support of pq, i.e.,
sup(pq) = |TSPY| = 6. If the user-specified minSup = 5, then
pq is a frequent pattern as sup(pq) > minSup. The periods
for this pattern are: perfq =1(=1-1s), pergq =3(=
4—1),peri? =1(=5—4), per}! =3 (=8-5), pert?! =
1(=9-8),perg? =3 (= 12—9),and per’? = 0 (= 15— 12).
Thus, SPP? = {1, 3, 1, 3, 1, 3, 0}. The periodicity of pgq, i.e.,
prd(pq) = maximum(1, 3, 1, 3, 1, 3, 0) = 3. If the user-
defined maxPRD = 3, then the frequent pattern pq is said to
be a periodic-frequent pattern because per(pq) < maxPRD.

VOLUME 11, 2023

TABLE 1. An irregular temporal database.

tid | ts | items tid | ts items

1 1 pqtu 6 7 rsu

2 3 rst 7 8 pqt

3 4 | pqt 8 9 pgrstv
4 5 pqrstu 9 11 | grs

5 6 | pv 10 12 | pgrsu

TABLE 2. All periodic-frequent patterns generated from Table 1 at
minSup =5 and maxPRD = 3.

Patterns | sup | prd Patterns | sup | prd
p 7 3 pt 5 3
q 7 3 qt 5 3
t 6 3 S 6 2
r 6 2 g 6 3
B 6 2 pqt 5 3

The complete set of periodic-frequent patterns generated
from Table 1 is shown in Table 2.

Several algorithms [3], [9], [10], [11], [12], [13], [14]
were described in the literature to find the periodic-frequent
patterns in a database. The basic approach used in these
algorithms has always been the same. It involved the
following two steps:

1) Construct a list, say ts-list, containing the occurrence

timestamps of a pattern. (The ts-list captures TS”.)

2) Determine whether a pattern is periodic-frequent by
performing an exhaustive search on its ts-list.

The time complexity to search a pattern’s ts-list is O(n),
where n represents the length of a ts-list. Henceforth, the
performance of a periodic-frequent pattern mining algorithm
primarily depends on the lengths of ts-lists generated for the
patterns in a database. The ts-lists in sparse databases are rel-
atively small (or manageable) than those in dense databases.
Consequently, the existing algorithms are practicable on
sparse databases while impracticable (or computationally
expensive) on dense databases. This paper tackles this
challenging problem by exploring the concept of “(set)
complements” and proposing an efficient algorithm to find
the patterns in dense databases.

It has to be noted that discovering periodic-frequent
patterns in dense databases is a challenging and non-trivial
task for the following reasons:

1) Many algorithms [15], [16], [17], [18] were described
in the literature to find frequent patterns in a
dense transactional database. Since these algorithms
completely disregard the temporal occurrence infor-
mation of an item, they cannot be extended to
discover periodic-frequent patterns in a dense temporal
database.

2) Zaki and Gouda. [19] explored the concept of set
difference' to calculate the frequency (or support) of
a pattern in a database. They have not described any
methodology to determine the periodicity of a pattern.

IThe term ser difference refers to relative complement, whereas the term
complement typically refers to absolute complement.

118677

IEEE Access

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

This paper proposes a novel method to calculate a
pattern’s periods and periodicity using complements.

The contributions of this paper are as follows. First,
we introduce the concept of complement timestamp-list for
an item and a pattern. Second, we redefine the support,
period, periodicity, and periodic-frequent pattern using the
complement timestamp-lists. Third, we propose a novel
depth-first search algorithm to find all periodic-frequent
patterns in a dense temporal database. We call our algorithm
Periodic-Frequent Pattern Miner with Complements (PFPM-
C). We also present our algorithm’s correctness and theoret-
ical complexity. Fourth, a new synthetic database generator
algorithm was proposed to create synthetic sparse and dense
temporal databases. We conduct experiments on synthetic and
real-world databases and show that our algorithm is efficient
concerning memory and runtime and highly scalable. Fifth,
a case study on air pollution analytics has been presented
to demonstrate the usefulness of finding periodic-frequent
patterns using PFPM-C. This analytics involves identifying
the areas where people were regularly exposed to harmful
pollution levels in Japan.

This study is a significantly expanded version of our
previous work [20], which reported a preliminary version
of PFPM-C. This study contributes significantly to the
related work by completely comprehending the existing
literature. This study also provides theoretical correctness of
the extended model of periodic-frequent patterns based on set
complements. The time complexity of PFPM-C has also been
investigated in this paper. Furthermore, incorporating new
databases significantly expands the experimental findings
section (Section V), which is of the utmost importance. This
study demonstrates that PFPM-C outperforms the state-of-
the-art on dense databases, regardless of the minSup and
maxPRD values.

The remainder of this study is organized as follows.
Section II describes the literature on frequent pattern
mining and periodic-frequent periodic mining. In Section III,
we define the model of periodic-frequent patterns using
complements. In Section IV, we introduce our algorithm.
In Section V, we present our experimental results. Finally,
in Section VI, we present our conclusions and future works.

Il. RELATED WORK

A. FREQUENT PATTERN MINING

Agrawal et al. [21] introduced frequent pattern mining as
a key intermediary step to discover interesting associations
between the itemsets in a transactional database. Since
then, several algorithms (e.g., Apriori [21], ECLAT [22],
and Frequent Pattern-growth [23]) were described in the
literature to find these patterns effectively. Most of these
algorithms can discover frequent patterns effectively in a
sparse transactional database; however, they suffer from
performance issues while mining the patterns in a dense
transactional database. Zaki and Gouda [19] first explored the
concept of set difference and proposed a depth-first search

118678

algorithm, ECLAT-diffSets, to find all frequent patterns in a
dense transactional database. This algorithm uses the size of
set difference list to determine whether a pattern is frequent
or infrequent in the database. This algorithm does not
describe any methodology to determine the periodicity of a
pattern from the set difference list. Henceforth, this algorithm
cannot be directly extended to find periodic-frequent patterns.
This paper proposed a novel methodology to calculate the
periodicity of a pattern given its set difference information.
Luna et al. [18] conducted a detailed survey on frequent
pattern mining and presented the improvements in the past
25 years.

B. PERIODIC PATTERN MINING IN TIME SERIES, EVENT
SEQUENCES, AND GRAPHS

A key limitation of frequent pattern mining studies is their
inability to consider the temporal occurrence information
of the items in a database. Ozden et al. [24] tried to solve
this limitation by adding a time attribute to a transactional
database, then splitting the database into non-overlapping
subsets by time, and finding cyclic association rules by
counting the number of subsets in which a pattern has
occurred. This approach simplifies the mining algorithm but
also raises a major limitation of missing the patterns that span
multiple windows.

Inspired by Ozden’s work [24], Han et al. [25] described
a model to find partial periodic patterns in an evenly spaced
binary time series. Later, the authors proposed an efficient
algorithm [26] to discover the partial periodic patterns. In this
model, a binary series is split into multiple sequences of
a particular length specified by the user, and interesting
patterns were discovered using only the minSup threshold
value. Yang et al. [27] extended Han’s model to multiple
minimum supports to address the rare item problem. Yang
et al. [28] extended the model to discover asynchronous
periodic patterns in a time series. Xun et al. [29] proposed
an ECLAT-variant to discover partial periodic patterns in
multi-source time series data. A key limitation of these
models is that they fail to discover patterns spanning
multiple sequences. More importantly, the periodic patterns
discovered from a time series are conceptually different
from those in a temporal database. In particular, the periodic
patterns generated in a time series are very close to frequent
patterns generated in a transactional database (if the length
of segment or period is set to 1) as these models only use
the minSup constraint to determine the interestingness of a
pattern.

An event sequence represents an ordered list of events,
where each event has a distinct timestamp. Mannila et al.
[30] introduced frequent episode mining to find all the
episodes (or subsequences of events) that frequently appear
in a sequence over time. An episode is said to be frequent
if its support is no less than the user-specified minSup value.
Huang and Chang [31] extended Mannila’s model to discover
frequent episodes in complex event sequences. Although

VOLUME 11, 2023

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

temporal and event-sequence databases capture the temporal
occurrence information of the items in a database, they differ
in their underlying data models and how they handle temporal
aspects. As a result, the knowledge discovered from frequent
episodes is completely different from the partial periodic
patterns discovered from temporal databases.

Lahiri and Berger-Wolf [32] proposed a model to discover
periodic patterns in graphs. Zhang et al. [33] described a
model to discover seasonal periodic subgraphs in a network.
It has to be noted that the patterns discovered from graphs
are completely different from the patterns generated in
databases.

C. PERIODIC-FREQUENT PATTERN MINING

Tanbeer et al. [1] described the periodic-frequent pattern
model that eliminated the need for splitting the database
by time. This model involved discovering all patterns in a
temporal database that satisfy the user-specified minSup and
maxPrd constraints. A pattern growth technique was pre-
sented to generate all periodic-frequent patterns in a database.
Amphawan et al. [11] designed an efficient depth-first
search-based algorithm for mining top-K periodic-frequent
patterns without using the user-specified minSup constraint.
Kiran and Reddy [3] introduced a novel greedy approach
to discover periodic-frequent patterns effectively. Anirudh et
al. [9] introduced a novel concept of periodic summaries to
find the periodic-frequent patterns in a temporal database.
Anirudh et al. [10] also presented a distributed in-memory
algorithm based on map-reduce and Spark environment.
Ravikumar et al. [14] proposed an ECLAT-based [22] to find
periodic-frequent patterns in columnar databases. Tarun et al.
[5] described a CUDA-based GPU algorithm to find periodic-
frequent patterns. Since these algorithms store a pattern’s
complete temporal occurrence information in a list, they
suffer from computational issues while dealing with dense
databases.

D. EXTENSIONS OF PERIODIC-FREQUENT PATTERN
MINING

Recently, the periodic-frequent pattern model was extended
to find fuzzy periodic-frequent patterns [34], stable
periodic-frequent patterns [7], [35], non-redundant periodic-
frequent patterns [13], periodic-frequent patterns in uncertain
data [36], geo-referenced periodic-frequent patterns [37],
periodic-correlated patterns [2], regular patterns [38], [39],
[40], periodic high-utility patterns [41], fuzzy driven periodic
mining [6], and maximal periodic-frequent patterns [42].
Unfortunately, most of these algorithms maintain the
temporal occurrence information in a list structure and,
thus, suffer from computational issues while dealing with
dense databases. The solution presented in this paper can
be extended to improve the performance of the above
algorithms. However, in this paper, we confine ourselves to
improving the performance of the basic periodic-frequent
pattern mining algorithms for brevity.

VOLUME 11, 2023

liIl. REDEFINITION OF A PERIODIC-FREQUENT PATTERN
USING COMPLEMENTS

In set theory, given a universe of elements U, a complement
of a set A, denoted as A€, is the set of elements not in A. That
is, A = U —A. More important, it turns out that the larger the
set A, the smaller its complement A€ will be, and vice-versa.
This motivated us to discover periodic-frequent patterns in
dense databases using set complements. However, a key
challenge we encountered is the methodology to determine
the periodicity of a pattern from a complement set, as no prior
studies exist in the literature. In this section, we resolve this
challenge and provide the correctness.

/\Definition 1: The cts-list of an item i; € I, denoted as
TS = {TS — TS%}.

Example 2: In Table 1, the item ¢ occurred at the
timestamps of 1, 4, 5, 8, 9, 11, and 12. Thus, 7§89 =
{1,4,5,4,8,9,11,12}. The cts-list of ¢, denoted as
7S9 = TS — TS = {1,3,4,5,6,7,8,9,11,12} —
{1,4,5,8,9,11, 12} = {3, 6, 7}. Similarly, the cts-list of p,
ie,p=1{3,7,11}. -

Definition 2: The cts-list of a pattern P, denoted as TS?,
represents the union of complement timestamp-lists of its
items. That is, 7S* = |J;, .p TS'.

Example 3: Continuing with the previous example, the
complement timestamp-list of the pattern gp, i.e., gp = TSaU
TSP = {3,6,7} U (3,7, 11} = {3,6,7, 11}.

The correctness of the above definition is based on Property 1
and shown in Theorem 1.

Property 1: The timestamp-list of a pattern P, i.e., TS* =
ﬂik epP (A

Theorem 1: Let P = {iy,ip,---,ix}, 1 < x < m,bea
pattern in TDB. The complement timestamp-list of P, i.e.,
TSP = Ui ep TSk,

Proof: According to set theory, the complement of TS,
ie.,
TSP =TS — TSP
=TS — () IS*
ixeP
=TS — (TS" NTS2N---NTS™)
= (TS — TS") U (TS — TS2)U - -- U (TS — TS™)
=TS1 UTS2 U U TSk
= Uj, epTS* (1)
Hence proved. n

Definition 3: The support of pattern P, denoted as
sup(P) = |TS| — |TSX|.

Example 4: The support of gp, i.e., sup(qgp) = 10—4 = 6.
The correctness of the above definition is shown in Theorem
2.

Property 2: If X, Y and Z be three patterns such that Z =
XUYand X NY =0, then TSZ = TSX U TSY.

Example 5: The TS®% = TS41 U TSP = {3,7,11} U
{3,6,7} = {3,6,7, 11}. It means the pattern gp does not
appear at 3, 6, 7, and 11 timestamps.

118679

IEEE Access

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

__Definition 4 (The Periodicity of Pattern X): Let ﬁS\f C
TSZ, where k > 1, be a maximal set_of of consequence
timestamps in 787 such that]TS\Z/; {MTSZ U MTS% U

~UMTSk} = UL 1MTSZ and MTS? mMTSZ =01=<
i <j<k Tlgpﬂ’zodzczty of Z given TSZ, ie. ,prd(Z) =
max(|MTSZ IVMTS? e TS?) + 1.

Example 6: We can spht the TS‘II’/lnt\o three maximal
consecutlve subsets, MTSq” = {3}, MTS = {6,7}, and
MTS‘”’ = {11}. Thus, periodicity of gp, denoted as prd(qp) =
maX(|{3}| {6, 73, {11} + 1 = 3.

Theorem 2: Let P = {i1,i2,---,ix}, 1 < x < m,
be a pattern in TDB. The support of pattern P, denoted as
sup(P) = |TS| — |TSP|.

Proof: The support of P according to the definition of
support 3, the support of P, i.e.,

sup(P) = |TS”|
— |TS — TSP|.)
Hence proved. [|

Theorem 3: Let P = {ij,ip,--- ,ix}, 1 < x < m,bea
pattern in 7. in TDB. The The perzodzcxty of Pin TDB, i.e., prd(P) =

max(|MTSP |VMTSP e TSZ) + 1.
Proof: According to the definition of the periodic-
frequent pattern model, the periodicity of P, i.e.,

d
pd(P) = max(U perf |VperjP e spf)

j=1
d —_—
= max(U IMTS?) + 1]
j=1
= |max(U MTSP)| + 1. (3)
j=1
Hence proved.]

Please note the definition of a periodic-frequent pattern
remains unchanged in our approach. We consider a pattern
periodic-frequent if it satisfies the user-specified minSup
and maxPRD constraints. The following section presents
our algorithm to find periodic-frequent patterns in a dense
database.

IV. PROPOSED ALGORITHM

A. BASIC IDEA: CONSTRUCTION OF CTS-LIST DURING
DEPTH-FIRST SEARCH

An itemset lattice represents the space of items in a database.
This lattice represents the search space of periodic-frequent
pattern mining. Henceforth, the search space size of
periodic-frequent pattern mining is 2" — 1, where n represents
the total number of items in a database. Reducing this
huge search space is a challenging task in pattern mining.
We try to reduce this huge search space by performing the
depth-first search using the downward closure property of
periodic-frequent patterns (see Properties 3 and 4).

118680

A key challenge in performing the depth-first search on
the itemset lattice is the construction of the correct cts-list
for a child node. We tackle this challenge effectively by
constructing the cts-list of a child node, say Q, by performing
the union operation between the cts-lists of its parent node,
say P and an item, say i, that exists in the child node but not
exist in the parent n node Thatls if Q = {PUiy}, where iy & P
and iy € I, then Q =PU zk The correctness of our idea is
shown in Lemma 1.

Property 3: If P C Q, then sup(P) > sup(Q) and prd(P) <
prd(Q) as TSY 2 TS? (or TSP C TS?).

Property 4 (The Downward Closure Property): If P is not
a periodic-frequent pattern, then VQ D P, Q is not a periodic-
frequent pattern. The reason is, if sup(P) # minSup and/or
prd(P) £ maxPrd, then sup(Q) # minSup and/or prd(Q) £
maxPrd (see Property 3).

Lemma 1: Let P = {iy, >, --- ,ix—1}, k > 1, be a pattern
representing a parent node. If Q = {i1, iz, -+, ik—1, ik} 1S a
pattern representing the child node of P, then @ =PUi.

Proof: According to Definition 1, the cts-list of P, i.e.,

P=iUihU---Uir. 4)
Similarly, the cts-list of Q, i.e.,
O=0HUbU- Ui Ui.)

Substituting Equation 4 in Equation 5, we get
0=PUi. (6)

Hence proved. []

B. CONSTRUCTION OF CTS-LIST

Our algorithm, PFPM-C, has the following three steps: (i)
Find all periodic-frequent items (or 1-patterns) by scanning
the database, (i) construct the complement set, i.e., 'S i, for
every periodic-frequent item i;, and (iii) using the downward
closure property (see Property 4), find all periodic-frequent
patterns from the database by performing the depth-first
search on the lattice. Algorithms 1 and 2 provide the
procedures to find the complete set of periodic-frequent
patterns in a database. Now, we illustrate the working of
these algorithms using the database shown in Table 1. Let
minSup = 5 and maxPRD = 3.

Construct the list of timestamps for every item by scanning
the database (Lines 1 to 8 in Algorithm 1). Fig. 2(a)-(c) shows
the TS-list generated after scanning the first, second, and
every transaction in the database. Next, calculate the support
and periodicity for each item in the list. Using the downward
closure property, we prune the items having support is less
than minSup or periodicity is more than maxPRD (Lines 12 to
18 in Algorithm 1). Consider the remaining items in the list as
periodic-frequent items and sort them in support descending
order (Line 22 in Algorithm 1). Fig. 2(d) shows the sorted
list of all periodic-frequent items discovered from Table 1.
Let the sorted list of all discovered periodic-frequent patterns
be denoted as L. Let us update the list of timestamps of all

VOLUME 11, 2023

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

Algorithm 1 PeriodicFrequentltems(7DB: Temporal
Database, minSup: Minimum Support, maxPRD: Maximum
Periodicity
1: Let TS-list = (i, ts-list(i;)) be a dictionary that records
the temporal occurrence information of an item i; in a
TDB. Let TS; be a temporary list to record the timestamp
of the last occurrence of an item in the database. Let Per
be a temporary list to record an item’s periodicity in the
database.
2: for each transaction t.,, € TDB do
3 Set tScur = teyr 1s;
4. for each item i; € t,,,.X do
5
6

if i; does not appear in TS-list then
Insert ; and its timestamp into the TS-list. Set
TS, [l/] = ts¢yr and Per[ij] = (IScur — Sinitial);

7: else

8: Add i’s timestamp in the TS-list.
Update TS)[i;] = tseur and Perlij] =
max(Per[i], (tseur — TSI[ij));

9: end if

10: end for

11: end for

12: for every item i; in TS-list do
13: if len(ts-list(ij)) < minSup then

14: Remove ij from the TS-list;

15: else

16: Set Per[i;] = max(Perl[ij], (tsfina — TSi[ij]));
17: if Per[i;] > maxPRD then

18: Remove ij from the TS-list.

19: end if

20: end if

21: end for

22: Treat the remaining items in the TS-list as periodic-
frequent 1-patterns (or items). Next, sort these
periodic-frequent items in support descending order. Let
L denote this sorted list of items.

23: for every item i; in TS-list do

24: Update the i;’s TS-list with its complement informa-

tion. That is, set rs-list(i) = TS — ts-list. Let us call
this new TS-list a CTS-list for brevity.

25: end for

26: Call PFPM-C(CTS-List).

periodic-frequent items with their complements (Lines 23 and
24 in Algorithm 1). Fig. 2(e) shows the resultant TS-list
produced after applying the set complement. We now call this
list a CTS-list for brevity. Next, we find all periodic-frequent
patterns by performing a depth-first search on the itemset
lattice generated by L (Line 26 in Algorithm 1). The search
space optimization during the depth-first search is achieved
by preventing the search on child nodes if a parent node
fails to be a periodic-frequent pattern (Algorithm 2). Fig. 3.
shows the depth-first search performed on the lattice. We start
with the first item in L, i.e., p. Since p is a periodic-frequent

VOLUME 11, 2023

Algorithm 2 PFPM-C(CTS-List)
1: for each item i in PFP-List do

2: Setpi=@and X =1i;

3: for each item j that comes after i in the CTS-list do

4: Set Y = X Uj. Determine ts-list(Y) = ts-list(X) U

ts-list(j); Calculate sup(Y) = |TS| — |ts-list(Y)]|. Set
per(Y) = 0, periods = @ and tempPer = 0,

5 if ts-list(Y).size == 0 then

6: per(Y)=1

7: else

8 if £8finq 1s in ts-list then

9: Remove sfinq; from ts-list

10: end if

11: for (i = 0;i < ts-list(Y).size() — 1; + + i) do
12: if (zs-list(Y)[i 4 1] — ts-list(Y)[i]) == 1 then
13: tempPer+ = 1;

14: else

15: Append tempPer in to periods. Set

tempPer = 0;

16: end if

17: end for

18: end if

19: per(Y) = max(periods) + 1
20: if sup(Y) > minSup and per(Y) < maxPRD then
21: Add Y to pi and Y is considered as periodic-

frequent pattern;

22: end if

23: end for

24: Call PFPM-C(pi);

25: end for

pattern (or item), we concatenate p with the second item in
L, i.e., g. The result is a new pattern pq. Using Property 2,
we construct its complement list and determine whether it is a
periodic-frequent pattern or not using Definition 4. We repeat
this process until the child node fails to be a periodic-frequent
pattern or lattice is traversed.

C. TIME COMPLEXITY ANALYSIS

Suppose we are examining a database that stores temporal
information. This database contains a transactions, each
corresponding to a specific time. Across all of these
transactions, ¢ unique items exist. Furthermore, the average
transaction length is equal to b. In this database, all items are
deemed of interest and, therefore, included in the analysis.
Understanding the characteristics of the database, including
the number of transactions, unique items count, and the length
of transactions, is crucial for performing the complexity
analysis.

The PFPM-C algorithm significantly contributes to
PFPM by efficiently computing and identifying PFPs. The
Algorithm 1 starts by scanning the entire database and
calculating the support, and periodicity of each item. A list
of items satisfying the minSup and maxPRD constraints are

118681

IEEE Access

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

ts-list
1

ts-list
1,4,5,6,8,9,12
1,4,58,9,11,12
3,5,7,9,11,12
1,5,7,12
3,5,7,9,11,12
1,3,4,58,9
6,9

(a) (b) O]

i ts-list

ts-list

c|lr|alo|—
[E [P I

lo olo c:‘cl

[=[=[=[-]]

w|=s|c|r|o|T|
=
w
INNONOOUI
EEEEEEE

<~wc”m-
EEEEEEEE
=
N

cts-list
3,7,11
3,6,7
6,7,11,12
1,4,6,8
1,4,6,8

(d) (e)

EEEEED
=
N

n| |~ || T|

1,3,4,58,9

FIGURE 1. The process of finding periodic-frequent items and
constructing their cts-lists. (a) After scanning the first transaction.

(b) After scanning the second transaction. (c) After scanning all of the
transactions. (d) An unordered list of periodic-frequent items. (e) Sorted
list of periodic-frequent items and their cts-lists.

{nul | (L)nul | {nul | {nul |

\5\3.7;11 \ \5\3,7,11 | A ER] | ENERZTSNNN kA ER) B Y ERZTSNN k4 El
fremetstiise s per | [5q13,6,7,11 (6] 3]|[paB.6.71L](6]3]| PalE.ez1r][6]3]
[Pat [3,6,7,11,12[5] 3] | [Pt 3.6,7,11,12|[5 | 3]

FIGURE 2. Finding periodic-frequent patterns in the itemset lattice using
the depth-first search technique. (a) Let us start from the
periodic-frequent item p. (b) After determining p as a periodic-frequent
item, we visit its child node pq, construct its cts-list, and determine its
support and periodicity. (c) As pq is a periodic-frequent pattern, PFPM-C
visits its child node pgt and determines it as a periodic-frequent pattern.
(d) The child node, pqtr, is later visited and pruned as it fails to be a
periodic-frequent pattern. (e) The process of depth-first search performed
n on the itemset lattice of p, q, t, r, and s items.

sorted based on their support in ascending order. In the final
step of the algorithm, the timestamp information for each
item is replaced with its complement information, which has
a time complexity of O(a), where a is the total number of
transactions (or worst case size of a TS-list). This process
is repeated for all items in the CTS-List, resulting in a time
complexity of O(c). Overall, the complexity of the initial
Algorithm is O(ab) + O(c) = O(ab), where a represents
the number of transactions and b represents the average
transaction length.

Once the CTS-List (or one-length PFPs) has been iden-
tified, we generate combinations of items to form larger
PFPs. This is accomplished using procedures outlined in
Algorithm 2. This algorithm consists of two steps. In the
first step, it accesses two items and compares their (d —
1) itemset complement TS-lists to generate a d-itemset
complement TS-list. This step has a complexity of O(c?),
where ¢ represents the number of unique items. Notably,
in dense databases where the original TS-list size is large,

118682

the size of the complement TS-list is relatively small. As a
result, the d-itemset construction process is faster, especially
in dense databases. The second step involves calculating each
itemset’s periodicity and support and discarding uninterest-
ing patterns based on user-specified minSup and maxPRD
criteria. The overall complexity of Algorithm 2 is O(c?).

In conclusion, the PFPM-C algorithm has a complexity
of O(c?) for finding all the PFPs. This efficiency makes
PFPM-C a highly effective method for PFPM in dense
temporal databases.

V. EXPERIMENTAL RESULTS

In this section, we show the results of conducted experimen-
tation. The proposed algorithm PFPM-C is evaluated against
the state-of-art algorithms PFP-growth [1], PFP-growth++
[3], and PFECLAT [14]) in terms of runtime requirements and
memory consumption. We conducted experiments on various
real-world dense databases by varying minSup and maxPRD
thresholds.

A. EXPERIMENTAL SETUP

In this subsection, we explain the complete environment
details of the experimentation. The configuration of the server
machine (Gigabyte R282-z94 rack) is as follows: equipped
with two AMD EPIC 7542 CPUs and 600 GB RAM, running
on Ubuntu Server OS 20.04. All algorithms were written in
Python 3.7. On both synthetic (C20D10K) and real-world
(Chess, Connect, PUMSB, Mushroom, and Pollution)
databases were utilized to conduct the experiments. Mostly,
dense databases are taken for experimentation as PFPM-C
performance is poor in sparse databases.

The C20D10K is a synthetic database generated using the
procedure described in [21]. The Chess database is a high-
dimensional real-world database containing 75 items and
3196 transactions prepared from the UCI Chess database.
The Connect is a dense real-world database that contains
all positions in the game of Connect-4 prepared from the
UCI Connect database. The Mushroom is a dense real-world
database containing different species of grilled mushrooms
prepared from the UCI mushrooms dataset. The PUMSB is
a real-world database containing census data for population
and housing with 49,046 transactions.

Many cardio-respiratory issues are caused by air pollution.
The Japanese Ministry of the Environment developed the
Atmospheric Environmental Regional Observation System
(AEROS) to tackle air pollution problems. Several air
pollution measurement sensors are scattered around Japan
as part of this system. Each station collects the data of
various air pollutants, say PMj5, NO>, and Os, hourly.
For our experiment, we confine to PMj5 since particle
size is the primary contributor to the wide variety of
cardio-respiratory issues experienced by Japanese citizens.
According to Air Quality Index Standards, PM2.5 values
greater than 16 ug/m> per hour are unsuitable for the
people. Consequently, the hourly raw data of PM; 5 was then
transformed into a temporal database.

VOLUME 11, 2023

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

TABLE 3. Statistics of the databases.

VOLUME 11, 2023

FIGURE 4. Runtime evaluation across various minSup thresholds.

As there is no optimal way to identify the appropriate
values for the user-defined parameters, the parameters were

S.No Database Type Nature Sparsity Tr.ansactlon Length (in count) ' DaFabase
value min. | avg. max. Size (in count)
1 Chess Real Dense 0.494 37 37 37 3196
2 Connect Real Dense 0.334 43 43 43 67545
3 PUMSB Real Dense 0.976 74 74 74 49,046
4 Mushroom Real Dense 0.806 23 23 23 8326
5 C20D10K | Synthetic | Dense 0.895 20 20 20 10,000
6 Pollution Real Dense 0.5545 11 458 971 717
-10* 104
6 —e— PFPGrowth 1| ‘ "o PFPGrowth 8,000 ‘ [~ PrpGrowin |
—#—PFPGrowth++ —=— PFPGrowth++ —8— PFPGrowth++
—e— PFECLAT 6 —e— PFECLAT [{ —e— PFECLAT
|2 PFPM-C (%) PFPM-C wvy 6,000 PFPM-C ||
S 47 =} =}
s j= =
2 g 4r g 4,000
S 2F § < <
=8 iyl 22,000
of ‘ - D ‘ ‘ ‘ of
2,200 2,400 2,600 2,800 3,000 %_9 6 6.1 6.2 6.3 4.2
minSup minSup 10
(a) Chess (b) Connect (c) PUMSB
10° 10° -10*
1.350 ! ' —e— PFPGrowth || ! ! —e— PFPGrowth ! ! —e— PFPGrowth
—=— PFPGrowth++ 8 —a— PFPGrowth++ || —=— PFPGrowth++
—e— PFECLAT —e— PFECLAT 3+ —e— PFECLAT |
vy 13p PFPM-C 22} PEPM-C 22} PFPM-C
E &6 1 «
s = i
Q B 1) o 2
£ 1.25¢ 84 1B
< < <
(=% e, IE-"S 1]
1.2+
o] s ‘ R
70 80 90 100 110 120 01 02 03 04 05 06 100 150 200 250 300
minSup minSup minSup
(d) Mushroom (e) C20D10K (f) Pollution
FIGURE 3. Number of patterns generated at different minSup thresholds.
_ ‘ E= PF‘PGth ' "o PFPGrowth ' "o PFPGrowth
150 +Pl;l;:(;rg;”x¥+ Il —a— PEPGrowth++ —=— PFPGrowth++
) preMC o 0% = Tmic | o100 = e
£ £ £
= -3 5
=) S 500 S
E 50
g2 g 2
, . .) o . . .] U . . .]
2,200 2,400 2,600 2,800 3,000 5.9 6 6.1 6.2 6.3 4.2 4.3 14 4.5 4.6
minSup minSup 10’ minSup 10’
(a) Chess (b) Connect (c) PUMSB
' ! —e— PFPGrowth 800F ' ' —e— PFPGrowth ! ! —e— PFPGrowth
600 e | e PFPGrowthi || —a— PFPGrowth++ 40 —=— PFPGrowth++ | |
—e— PFECLAT 600 | —e— PFECLAT || —e— PFECLAT
D) PFPM-C () PFPM-C D) 20 PFPM-C
g 400} | g w00l | g
=] =] = 20
200 F : ,
2 2 200 g 10
U L L L L [) L L L L l) L L L
70 80 90 100 110 120 01 02 03 04 05 06 100 150 200 250 300
minSup minSup minSup
(d) Mushroom (e) C20D10K (f) Pollution

chosen based on the statistics of the database. The statistics
of all databases are shown in Table 3. All algorithms

118683

IEEE Access

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

109 101!

10'°

8 1.5¢ " [~ PFPGrowmn |] " [~ PFPGrowth
—a— PFPGrowth++ 1.5F —a— PFPGrowth++ ||
>‘ 6l —e— PFECLAT : —e— PFECLAT
Z 5‘ il PFPM-C Z\. PFPM-C
] —e— PFPGrowth o o 1}
E 4 —a— PFPGrowth++ E E
[5) —e— PFECLAT o)
E PFPM-C 0.5 =
2} E E 0.5
0 ‘ ‘ ‘ 0 o7]
2,200 2,400 2,600 2,800 3,000 59 6 61 62 63 42 43 44 15 16
minSup minSup 10’ minSup 10’
(a) Chess (b) Connect (c) PUMSB
L1010 .1010 109
‘ 5F ‘ —e— PFPGrowth " [~ PFPGrowth
—m— PFPGrowth++ —=— PFPGrowth++
6 4r —e— PFECLAT || —e— PFECLAT
> ~ PFPM-C > 1l PEPM-C ||
= = 3t =
o 4l —e— PFPGrowth o o
E —a— PFPGrowth++ E E
© —e— PFECLAT 5} 2 5}
E ol PFPM-C 1 E E 0.5
\ 1 '_ \\
0 0 ——
70 80 90 100 110 120 01 02 03 04 05 06 100 150 200 250 300
minSup minSup minSup
(d) Mushroom (e) C20D10K (f) Pollution

FIGURE 5. Memory consumption across various minSup thresholds.

employed for evaluation purposes were made available in
the GitHub-hosted PAttern MIning (PAMI) repository [43]
to verify the repeatability of our experiments.

B. EVALUATION OF ALGORITHMS BY VARYING MINSUP
In this first experiment, we evaluate PFPM-C against
PFP-growth, PFP-growth+4-, PS-growth, and PFECLAT
algorithms by varying only the minSup constraint in each
database. The maxPRD value in each database will be set
at a particular value. The maxPRD (specified in count) in
Chess, Connect, PUMSB, Mushroom, C20D10K, C73D10K,
and Pollution has been set at 400, 2000, 14, 2500, 5000, 4000,
and 45, respectively.

Fig. 3 illustrates the total number of periodic-frequent
patterns generated by PFP-growth, PFP-growth++-, PFE-
CLAT, and PFPM-C in different databases by varying minSup
values. The X-axis denotes the minSup, and the Y-axis
denotes the number of periodic-frequent patterns generated at
a particular minSup value. Based on this figure, the following
observations can be made:

1) Since all algorithms have generated the same number
of periodic-frequent patterns, the line plots have
overlapped with one another.

Increasing the minSup threshold value results in the
generation of fewer periodic-frequent patterns. This
is because many patterns fail to satisfy the increased
minSup value. More importantly, long patterns fail to
meet the increased minSup value due to the downward
closure property.

2)

The results of runtime requirements are shown in Fig. 4.
These graphs help us to analyze the relationship between
minSup and runtime required by all algorithms at each

118684

minSup. The X-axis denotes the minSup, and the Y-axis
denotes the runtime requirement of the algorithms at a
particular minSup value. Based on this figure, the following
observations can be made:

1) The increase in value of minSup tends to decrease
the runtime of all algorithms. This is because, as the
minSup increases, the number of periodic-frequent pat-
terns generated will decrease, automatically requiring
less runtime.

Through these graphs, we note that PFPM-C performs
strongly in dense real-world databases like Chess, Con-
nect, PUMSB, Mushroom, and Pollution. However,
in the case of the sparse C20D10K database, PFPM-C
requires higher runtime when compared to state-of-the-
art algorithms.

PFPM-C excels in dense databases primarily due to the
pervasive occurrence of items in all transactions, result-
ing in shorter lengths of complement sets. Conversely,
in sparse databases, the lengths of complement sets
tend to be more extensive. Overall, complement sets
play a pivotal role in reducing the runtime requirements
to determine the periodicity of a pattern.

2)

3)

The memory consumption results are presented in Fig. 5.
The graph allows us to analyze the relationship between
minSup and the memory consumption to mine the periodic-
frequent patterns. The Y-axis represents the memory require-
ments of PFP-growth, PFP-growth++, PFECLAT, and
PFPM-C algorithms. The following observations can be made
based on this figure:

1) Increase in minSup decreases the memory requirements
of all algorithms. This is because fewer patterns will be
generated with the increase in minSup.

VOLUME 11, 2023

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

-10* -10*
Bfmmmmmmmesmoemooenoesooiozas = o ou -
Al 5,000 1
& g 7 &
53 g g 4,000}
—e— PFPGrowth
b=l = e PEPGrowth s L . .
=2 —e— PFPGrowth = 15} +prGr<:3r\:h++ = 3,000 +P11;GE?EX‘TH
Qq —a— PFPGrowth++ Q‘ —e— PFECLAT Q-t PFPM-C
1r —e— PFECLAT PEPM.C 2,000
PFPM-C
o, ‘ ‘ ‘] 10007 ‘ ‘ ‘ |
20 10 60 30 30 40 50 60 70 80 90 10 11 12 13 14
maxPRD maxPRD maxPRD
(a) Chess (b) Connect (c) PUMSB
10° -10* -10*
L5 [~ PrpGrown
—&— PFPGrowth++
—e— PFECLAT 3H| PFPGrowth
é L R e re— 4 PFPM-C 2 :PTF%YSET; *
ja —a— PFPGrowth++ E 1 E PEPM-C
B —e— PFECLAT [} Q
~— PFPMC ﬁ j::
S 0.5f < <
o =TI o,
0.5F
S i
2,000 2,100 2,200 2,300 2,400 2,500 100 200 300 400 500 A1 42 43 4 45
maxPRD maxPRD maxPRD
(d) Mushroom (e) C20D10K (f) Pollution

FIGURE 6. Number of patterns by varying maxPRD in different databases.

120 +‘PFPGmwl]-l »/"‘—;/;;‘ — PrrGown | | ‘
—m— PFPGrowth+- B - , = —=—————4 —=— PFPGrowth++ o
100177 PFErgLAT+ 300F —e— PFPGrowth 1 80128 prrcrar ///
Q g PFPM-C 19 e PFPGrowth++ o PFPM-C
E E —e— PFECLAT E 60 1
‘S 60f = 9 PEPM-C =
§ 10} § 00F=—= g a0t
201
100 208
0
20 40 60 80 60 65 70 75 80 85 90 10 11 12 13 14
maxPRD maxPRD maxPRD
(a) Chess (b) Connect (c) PUMSB
w w w ‘ ‘ 50 ‘ ‘
80 == PFPGrowth "o PFPGrowth
600 - —8— PFPGrowth++ AQ | |=—PEPGrowth++
60|| " PrECLAT —e— PFECLAT
)) PFPM-C Q PFPM-C
E 400} [+ PFPGrowt E E 30k
.- —=—PFPGrowth++ o o
‘E —e— PFECLAT E 401 E 20l
E 2001 PFPM-C E ' a
10t
0 o |
2,000 2,100 2,200 2,300 2,400 2,500 100 200 300 400 500 AT 42 43 44 B
maxPRD maxPRD maxPRD
(d) Mushroom (e) C20D10K (f) Pollution

FIGURE 7. Runtime evaluation by varying maxPRD in different databases.

2) The algorithm PFP-growth and PFP-growth++ algo-
rithms consumed less memory in all databases, whereas
PFPM-C is more efficient than PFECLAT regarding
memory.

3) PFPM-C has more advantages in large databases like
PUMSB and Connect.

C. EVALUATION OF ALGORITHMS BY VARYING MAXPRD
CONSTRAINT

We evaluated the PFP-growth, PFP-growth++, PFECLAT,
and PFPM-C algorithms in the previous subsection by
varying only the minSup value. We now evaluate the

VOLUME 11, 2023

performance of these algorithms by varying only the maxPRD
constraint in each of the databases. The minSup in Chess,
Connect, PUMSB, Mushroom, C20D10K, and Pollution and
Retail databases have been set at 2200, 60000, 42500, 70,
2000, and 50, respectively.

Fig. 6 illustrates the total number of periodic-frequent
patterns generated by PFP-growth, PFP-growth++4-, PFE-
CLAT, and PFPM-C in different databases by varying
maxPRD values. The X-axis denotes the maxPRD, and the
Y-axis denotes the number of periodic-frequent patterns
generated at a particular maxPRD value. Based on this
figure, we can say that raising the maxPRD threshold

118685

IEEE Access

P. Veena

et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

109 .1010 .1010
—e— PFPGrowth 5 ;,"#;_;,_,‘.; 1.2+
» | —a— PFPGrowth++
—e— PFECLAT 4l 10
> PFPM-C > —e— PFPGrowth >
= = 3l —=— PFPGrowth++ = 08
O 4t O —e— PFECLAT]) —e— PFPGrowth
E E PFPM-C E 0.6 —a— PEPGrowth++
Q o 2r 0] —e— PFECLAT
E ol | E) E 0.4 PFPM-C
0.2}
0 ‘ ‘ ‘ R of ; ‘]
20 10 60 80 60 65 70 75 80 8 90 10 11 12 13 14
maxPRD maxPRD maxPRD
(a) Chess (b) Connect (c) PUMSB
10" 10 10°
—e— PFPGrowth —e— PFPGrowth
= PEPGrowth++ 6| |- PFPGrowth++ e PFPGrowth
6F —a— Pl-{:CLAT —e— PFECLAT —=— PFPGrowth++
z‘- PFPM-C b PFPM-C b 1} |~ peECLAT
g al 5 4l 5 PFPM-C
Q))
E i a 2 / E 05y 1
e g e k_—f/*‘/—./‘
0 0 —— _
2,000 2,100 2,200 2,300 2,400 2,500 100 200 300 400 500 41 42 43 44 45
maxPRD maxPRD maxPRD
(d) Mushroom (e) C20D10K (f) Pollution

FIGURE 8. Memory evaluation by varying maxPRD in different databases.

results in more periodic-frequent patterns, as many patterns
meet the maxPRD criteria. All algorithms generate the
same set of periodic-frequent patterns at a given maxPRD
value.

The results of runtime requirements of various algorithms
are shown in Fig. 7. These graphs help us to analyze
the relationship between maxPRD and runtime required by
all algorithms at each maxPRD. The X-axis denotes the
maxPRD, and the Y-axis denotes the runtime requirement of
PFP-growth, PFP-growth++-, PFECLAT, and PFPM-C at a
particular maxPRD value. Based on this figure, the following
observations can be made:

1) Increase in maxPRD increases the runtime require-
ments of all mining algorithms. This is because of the
increase in the number of patterns being generated.

2) Except in the sparse C20D10K database, the PFPM-C
algorithm performed very well in all other databases
and took less time to mine the patterns than other state-
of-the-art algorithms.

The memory consumption results are presented in Fig. 8.
The graph allows us to analyze the relationship between
maxPRD and the memory consumption to mine the periodic-
frequent patterns. The Y-axis represents the memory require-
ments of PFP-growth, PFP-growth++, PFECLAT, and
PFPM-C algorithms. The following observations can be made
based on this figure:

1) Increase in maxPRD increases the memory require-
ments of the mining algorithms. This is because
the mining algorithms must generate and store more
patterns in the memory.

118686

2) The tree-based algorithms, PFP-growth and PFP-
growth4++-, consumed less memory than PFECLAT
and PFPM-C algorithms.

3) PFPM-C consumes less memory than PFECLAT in
some databases and vice-versa.

VI. CONCLUSION AND FUTURE WORK

An efficient algorithm, PFPM-C, was introduced in this
paper to efficiently find periodic-frequent patterns in a
database. This algorithm exploited the notion of “set
complements” to reduce the size of patterns’ timestamps
lists. We introduce a new property to calculate the periodicity
of a pattern from its complement temporal information.
We studied the performance of the PFPM-C algorithm on
various real-world and synthetic databases. Empirical results
demonstrate that PFPM-C is memory efficient and can obtain
all periodic-frequent patterns faster against state-of-the-art
algorithms.

This paper focused on developing a sequential CPU-based
algorithm to find periodic-frequent patterns in a temporal
database. As a part of future work, we would like to
investigate approaches to find the patterns in a distributed
fashion. In future work, we would like to explore new
measures or techniques to further reduce the computational
cost of mining the periodic-frequent patterns.

REFERENCES

[1] S. K. Tanbeer, C. F. Ahmed, B. Jeong, and Y. Lee, “Discovering
periodic-frequent patterns in transactional databases,” in Proc. 13th
Pacific-Asia Conf. Knowl. Discovery Data Mining, in Lecture Notes
in Computer Science, vol. 5476. Cham, Switzerland: Springer, 2009,
pp. 242-253.

J. N. Venkatesh, R. U. Kiran, P. K. Reddy, and M. Kitsuregawa,
“Discovering periodic-correlated patterns in temporal databases,” Trans.
Large Scale Data Knowl. Centered Syst., vol. 38, pp. 146-172, Jan. 2018.

[2]

VOLUME 11, 2023

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

IEEE Access

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. U. Kiran and P. K. Reddy, “Towards efficient mining of
periodic-frequent patterns in transactional databases,” in Proc.
21st Int. Conf. Database Expert Syst. Appl., in Lecture Notes in
Computer Science, vol. 6262. Cham, Switzerland: Springer, 2010,
pp. 194-208.

P. Fournier-Viger, P. Yang, R. U. Kiran, S. Ventura, and J. M. Luna,
“Mining local periodic patterns in a discrete sequence,” Inf. Sci., vol. 544,
pp. 519-548, Jan. 2021.

T. Sreepada, R. Uday Kiran, Y. Watanobe, and K. Goda, “A novel GPU-
accelerated algorithm to discover periodic-frequent patterns in temporal
databases,” in Proc. IEEE Int. Conf. Big Data (Big Data), Osaka, Japan,
Dec. 2022, pp. 121-126.

X. Zhang, Y. Qi, G. Chen, W. Gan, and P. Fournier-Viger, ‘“Fuzzy-
driven periodic frequent pattern mining,” Inf. Sci., vol. 618, pp. 253-269,
Dec. 2022.

H. N. Dao, P. Ravikumar, P. Likhitha, U. K. Rage, Y. Watanobe, and I. Paik,
“Finding stable periodic-frequent itemsets in big columnar databases,”
IEEE Access, vol. 11, pp. 12504-12524, 2023.

R. U. Kiran, P. Fournier-Viger, J. M. Luna, J. C.-W. Lin, and
A. Mondal, Periodic Pattern Mining : Theory, Algorithms, and
Applications. Cham, Switzerland: Springer, 2021. [Online]. Available:
https://link.springer.com/book/10.1007/978-981-16-3964-7(visited 2023-
06-05).

A. Anirudh, R. U. Kirany, P. K. Reddy, and M. Kitsuregaway, “Memory
efficient mining of periodic-frequent patterns in transactional databases,”
in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Athens, Greece,
Dec. 2016, pp. 1-8.

A. Anirudh, R. U. Kiran, P. K. Reddy, M. Toyoda, and M. Kitsuregawa,
“An efficient map-reduce framework to mine periodic frequent patterns,”
in Proc. 19th Int. Conf. Big Data Anal. Knowl. Discovery, in Lecture Notes
in Computer Science, vol. 10440. Cham, Switzerland: Springer, 2017,
pp. 120-129.

K. Amphawan, A. Surarerks, and P. Lenca, “Mining periodic-frequent
itemsets with approximate periodicity using interval transaction-ids list
tree,” in Proc. 3rd Int. Conf. Knowl. Discovery Data Mining, Jan. 2010,
pp. 245-248.

V. M. Nofong and J. Wondoh, “Towards fast and memory efficient
discovery of periodic frequent patterns,” J. Inf. Telecommun., vol. 3, no. 4,
pp. 480-493, Oct. 2019.

M. K. Afriyie, V. M. Nofong, J. Wondoh, and H. Abdel-Fatao, “Efficient
mining of non-redundant periodic frequent patterns,” Vietnam J. Comput.
Sci., vol. 8, no. 4, pp. 455-469, Nov. 2021.

P. Ravikumar, P. Likhitha, B. V. V. Raj, R. U. Kiran, Y. Watanobe,
and K. Zettsu, “Efficient discovery of periodic-frequent patterns in
columnar temporal databases,” Electronics, vol. 10, no. 12, p. 1478,
Jun. 2021. [Online]. Available: https://www.mdpi.com/2079-9292/
10/12/1478

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-mine: Fast and
space-preserving frequent pattern mining in large databases,” IIE Trans.,
vol. 39, no. 6, pp. 593-605, Mar. 2007, doi: 10.1080/07408170600897460.
P. Braun, J. J. Cameron, A. Cuzzocrea, F. Jiang, and C. K. Leung,
“Effectively and efficiently mining frequent patterns from dense
graph streams on disk,” Proc. Comput. Sci., vol. 35, pp.338-347,
Jan. 2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050914010795

L. Vu and G. Alaghband, “Efficient algorithms for mining frequent
patterns from sparse and dense databases,” J. Intell. Syst., vol. 24, no. 2,
pp. 181-197, Jun. 2015, doi: 10.1515/jisys-2014-0040.

J. M. Luna, P. Fournier-Viger, and S. Ventura, ‘“Frequent itemset mining:
A 25 years review,” WIREs Data Mining Knowl. Discovery, vol. 9, no. 6,
pp. 1-12, Nov. 2019.

M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proc.
9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2003,
pp. 326-335.

P. Veena, S. Tarun, R. U. Kiran, M.-S. Dao, K. Zettsu, Y. Watanobe,
and J. Zhang, “Towards efficient discovery of periodic-frequent pat-
terns in dense temporal databases using complements,” in Database
and Expert Systems Applications. Cham, Switzerland: Springer, 2022,
pp. 204-215.

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proc. ACM SIGMOD Int.
Conf. Manage. data, New York, NY, USA, Jun. 1993, pp. 207-216, doi:
10.1145/170035.170072.

VOLUME 11, 2023

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

(41]

[42]

[43]

M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372-390, Feb. 2000.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. ACM SIGMOD Int. Conf. Manage. data, Dallas, TX,
USA, May 2000, pp. 1-12.

B. Ozden, S. Ramaswamy, and A. Silberschatz, ““Cyclic association rules,”
in Proc. 14th Int. Conf. Data Eng., 1998, pp. 412-421.

J. Han, W. Gong, and Y. Yin, “Mining segment-wise periodic patterns in
time-related databases,” in Proc. 4th Int. Conf. Knowl. Discovery Data
Mining, 1998, pp. 214-218.

J. Han, G. Dong, and Y. Yin, “Efficient mining of partial periodic patterns
in time series database,” in Proc. 15th Int. Conf. Data Eng., 1999,
pp. 106-115.

K.-J. Yang, G.-C. Lan, T.-P. Hong, and Y.-M. Chen, “Partial periodic
patterns mining with multiple minimum supports,” in Proc. 9th Int. Conf.
Inf., Commun. Signal Process., Dec. 2013, pp. 1-4.

J. Yang, W. Wang, and P. S. Yu, “Mining asynchronous periodic patterns
in time series data,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 3,
pp. 613-628, May 2003.

Y. Xun, L. Wang, H. Yang, and J. Cai, “Mining relevant partial periodic
pattern of multi-source time series data,” Inf. Sci., vol. 615, pp. 638-656,
Nov. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0020025522011690

H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences,” Data Mining Knowl. Discovery, vol. 1, no. 3,
pp. 259-289, 1997, doi: 10.1023/A:1009748302351.

K.-Y. Huang and C.-H. Chang, “Efficient mining of frequent episodes
from complex sequences,” Inf Syst., vol. 33, no. 1, pp.96-114,
Mar. 2008. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0306437907000506

M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in dynamic
networks,” Knowl. Inf. Syst., vol. 24, no. 3, pp. 467-497, Sep. 2010, doi:
10.1007/s10115-009-0253-8.

Q. Zhang, D. Guo, X. Zhao, X. Li, and X. Wang, *“Seasonal-periodic
subgraph mining in temporal networks,” in Proc. 29th ACM Int. Conf. Inf.
Knowl. Manage., New York, NY, USA, Oct. 2020, pp. 2309-2312, doi:
10.1145/3340531.3412091.

R. U. Kiran, C. Saideep, P. Ravikumar, K. Zettsu, M. Toyoda,
M. Kitsuregawa, and P. K. Reddy, “Discovering fuzzy periodic-frequent
patterns in quantitative temporal databases,”” in Proc. IEEE Int. Conf. Fuzzy
Syst., Jul. 2020, pp. 1-8.

P. Fournier-Viger, P. Yang, J. C. Lin, and R. U. Kiran, “Discovering
stable periodic-frequent patterns in transactional data,” in Proc. IEA/AIE,
in Lecture Notes in Computer Science, vol. 11606. Cham, Switzerland:
Springer, 2019, pp. 230-244.

P. Likhitha, R. Veena, R. U. Kiran, K. Zettsu, M. Toyoda, and
P. Fournier-Viger, “UPFP-growth++: An efficient algorithm to find
periodic-frequent patterns in uncertain temporal databases,” in Proc.
ICONIP, in Communications in Computer and Information Science,
vol. 1792. Cham, Switzerland: Springer, 2022, pp. 182-194.

P. Ravikumar, R. U. Kiran, P. Likhitha, T. Chandrasekhar, Y. Watanobe,
and K. Zettsu, “Discovering geo-referenced periodic-frequent patterns in
geo-referenced time series databases,” in Proc. IEEE 9th Int. Conf. Data
Sci. Adv. Anal. (DSAA), Oct. 2022, pp. 1-10.

S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “RP-tree: A
tree structure to discover regular patterns in transactional database,” in
Intelligent Data Engineering and Automated Learning—IDEAL 2008.
Berlin, Germany: Springer, 2008, pp. 193-200.

S. K. Tanbeer, C. F. Ahmed, and B.-S. Jeong, ‘““Mining regular patterns in
incremental transactional databases,” in Proc. 12th Int. Asia—Pacific Web
Conf., Apr. 2010, pp. 375-377.

S. K. Tanbeer, M. M. Hassan, A. Almogren, M. Zuair, and B.-S. Jeong,
“Scalable regular pattern mining in evolving body sensor data,” Future
Gener. Comput. Syst., vol. 75, pp. 172-186, Oct. 2017.

D.-T. Dinh, B. Le, P. Fournier-Viger, and V.-N. Huynh, “An efficient
algorithm for mining periodic high-utility sequential patterns,” Appl.
Intell., vol. 48, no. 12, pp. 46944714, Dec. 2018, doi: 10.1007/s10489-
018-1227-x.

P. Likitha, P. Veena, R. U. Kiran, Y. Watanobe, and K. Zettsu, ‘“Discovering
maximal partial periodic patterns in very large temporal databases,” in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2021, pp. 1460-1469.
R. U. Kiran. (2023). Pattern Mining (PAMI). Accessed: Oct. 16, 2023.
[Online]. Available: https://github.com/UdayLab/PAMI/tree/main

118687

http://dx.doi.org/10.1080/07408170600897460
http://dx.doi.org/10.1515/jisys-2014-0040
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1023/A:1009748302351
http://dx.doi.org/10.1007/s10115-009-0253-8
http://dx.doi.org/10.1145/3340531.3412091
http://dx.doi.org/10.1007/s10489-018-1227-x
http://dx.doi.org/10.1007/s10489-018-1227-x

IEEE Access

P. Veena et al.: Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases

PAMALLA VEENA received the M.C.A. degree
(Hons.) from the Sri Balaji PG College, India.
She has published papers in the IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE),
the International Conference on Data Mining
Workshops (ICDMW), the IEEE International
Conference on Big Data (IEEE Big Data), and
published journal articles in Applied Intelligence
and Electronics.

TARUN SREEPADA (Member, IEEE) is currently
pursuing the bachelor’s degree in computer sci-
ence and engineering with The University of Aizu,
Aizuwakamatsu, Japan. He has published papers
in DEXA and IEEE International Conference on
Big Data (IEEE Big Data).

RAGE UDAY KIRAN (Senior Member, IEEE)
received the Ph.D. degree in computer science
from the International Institute of Information
Technology, Hyderabad, Telangana, India. He is
currently an Associate Professor with The Univer-
sity of Aizu, Aizuwakamatsu, Fukushima, Japan.
He has published more than 100 papers in refereed
journals and international conferences, such as
EDBT and PAKDD. His research interests include
data mining and machine learning.

MINH-SON DAO received the Ph.D. degree from
the Dipartimento Informatica e Telecomunicazioni
(DIT), Universita degli studi di Trento, Trento,
ITtaly, in February 2005. From 2005 to 2007,
he was a Scientist with GraphiTech, Italy.
From 2007 to 2010, he was a JSPS Post-
doctoral Researcher with the Media Integrated
Communication Laboratory (MICL), Gradu-
ate School of Engineering, Osaka University.
From 2010 to 2013, he was a Researcher with the
Multimedia Signal Processing and Understanding Laboratory (mmLAB),
University of Trento, Italy. He is currently a Senior Researcher with
the Big Data Analytics Laboratory, National Institute of Information and
Communications Technology (NICT), Japan. He also leads several national
and international projects under the Society 5.0 framework. His main
interests include multimedia retrieval, event detection, video surveillance,
data mining, computer vision, and pattern recognition.

118688

KOJI ZETTSU received the Ph.D. degree in
informatics from Kyoto University, in 2005.
He has been researching and developing data
analytics technology with the National Institute
of Information and Communications Technology
(NICT), where he has also been leading the Real
Space Information Analytics Project, since 2016,
to implement a smart data platform based on data
mining and Al For promoting industry-academia-

! government collaboration on the platform, he is a
leader of the Cross-Data Collaboration Project of the Smart IoT Acceleration
Forum in Japan. He is currently the Director General of the Big Data
Integration Research Center, NICT. He has served on numerous academic
societies, conference committees, and working groups. His research interests
include database systems, data mining, information retrieval, and software
engineering.

YUTAKA WATANOBE (Member, IEEE) is cur-
rently a Senior Associate Professor with the
School of Computer Science and Engineering,
The University of Aizu, Japan. His research
interests include visual programming language,
data mining, and cloud robotics.

JI ZHANG (Senior Member, IEEE) is currently
a Full Professor in computer science with the
University of Southern Queensland (UniSQ),
Australia. He has published more than 300 papers
in major peer-reviewed international journals and
conferences, including IEEE TRANSACTIONS ON
KNOWLEDGE AND DatA ENGINEERING, ACM Trans-
actions on Knowledge Discovery from Data,
ACM Transactions on Intelligent Systems and
Technology, AAAIL, 1ICAI, The VLDB Journal,
CIKM, SIGKDD, ICDE, ICDM, and WWW. His research interests include
big data analytics, knowledge discovery and data mining (KDD), and
computational intelligence. He is an IET Fellow, BCS Fellow, RSA Fellow,
Australian Endeavour Fellow, Queensland International Fellow, Australia,
and Izaak Walton Killam Scholar, Canada.

VOLUME 11, 2023

