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Abstract 
 

Agricultural crops exhibit within-field spatial variation.  This variation partly 

results from relevant bio-physical and environmental factors that influence the 

crop during the growing season.  The plant integrates the effects of nutrition, 

water, pests and disease, and displays the results in the foliage.  Remote 

sensing techniques allow the foliage to be monitored and the crop status to be 

assessed. 

 

While the use of conventional remote sensing systems has found many 

applications in agriculture, it is constrained by a number of issues and problems 

related to spatial resolution, repeat cycle, minimum area acquired, timeliness of 

data, etc.  Thus, this research explores the potential of developing and assessing 

low-cost sensing technologies to overcome these limitations.  The specific 

objectives were to: a) identify, evaluate, and analyse the different options for a 

low-cost low-altitude (LCLA) remote sensing system that has potential for 

precision agriculture, b) develop a LCLA remote sensing system that is 

appropriate for use in mapping selected crop attributes (i.e. grain protein, yield, 

maturity and crop type), and c) evaluate the accuracy of classification and 

prediction of the cereal crop attributes. 

 

A low-cost sensor system was developed that incorporated two consumer 

digital still cameras.  One camera captured the colour portion of the spectrum, 

while the other one (with the addition of a band-pass filter) captured the near 

infrared light.  Both cameras were modified to be remotely triggered and 

externally powered.  This sensor arrangement utilised 1.0 megapixel cameras 

in the earlier investigations and then 5.0 megapixel cameras in most recent 

missions.  The sensors were equally well suited to mounting on a remotely 

controlled aircraft or suspended beneath a helium balloon. 

 

Various approaches were taken to determine and evaluate the relationships 

between imagery and crop attributes.  Statistical methods included the use of 

correlation and discriminant function analysis, along with partial least squares 

regression.  Image analysis techniques included the use of both pixel-based 
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(supervised approach) and object-orientated (multi-resolution segmentation) 

classifications. 

 

The results showed that low-cost low-altitude remote sensing systems 

(incorporating consumer digital cameras with helium balloons or remotely 

controlled aircraft) have great capacity to quantify variability in cereal grain 

crops.  Excellent relationships were found between the ‘at-harvest’ yield 

(R2=0.902) and protein content (R2=0.660) of wheat using a single image 

recorded at flowering.  Partial least squares regression, using the cross-

validated approach, produced a stronger relationship with a prediction accuracy 

of 94.2% for yield and 88.5% for protein.  This relationship exceeded all other 

studies reported in the literature. 

 

The same LCLA system has also accurately discriminated (using statistical 

methods) between: a) different nutrition levels in a wheat crop with 75.6% of 

the cases correctly classified, and b) between different cereal grain species 

(with differing nutrition levels) with 86.3% accuracy.  These classification 

accuracies are comparable with, or exceeding other more expensive and/or 

complicated methods.  Attempting to discriminate using image analysis 

procedures, the pixel-based methods yielded an overall accuracy of 65.9% 

when classifying cereal grain crop species comprising of nine classes.  When 

merged to six classes, the accuracy improved to 82.1%.  Using an object-

orientated approach has improved the overall accuracy to 81.0% for the nine-

category classification.  This study also demonstrated LCLA’s ability to assess 

the various growth stages of a barley crop prior to maturity with 83.5% of cases 

correctly classified. 

 

This study concluded that it is feasible to accurately assess selected cereal grain 

crop attributes using low-cost consumer technologies.  The accuracies achieved 

using this system were comparable with, or exceeded, other reported studies 

that used more complicated and expensive sampling systems.  Further work is 

needed to continue refining the initial work on a fully autonomous unmanned 

aerial vehicle (UAV) started in the later part of this study, to extend the use of 

the LCLA system into broader scale applications. 
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Chapter 1 

 

Introduction  
 

 

1.1 Background 

 

 

The ability to measure yield (tonnes / hectare), and more recently the quality (% 

protein), of cereal crops has lead to an increased understanding of the causes of the 

spatial variations within a production unit (Jensen et al. 2001a). The main drawback 

of the current technology is that the quantity and quality information, being obtained 

as the crop is harvested, can only be used retrospectively, and thus cannot be used to 

rectify deficiencies encountered during the growing season or plan niche harvesting 

strategies for consistent quality segregation. 

 

If the crop is the best indicator of its own environment (Legg & Stafford 1998), then 

a “sensing system that can tap into what the crop is ‘saying’” (Stafford 2000, p. 270) 

will aid in the understanding of the variability within the cropping system.  

“Remotely sensed images…can provide information about crop growth and spatial 

variations within fields” (NRC 1997, p. 37) and these images can show the spatial 

and spectral variations (at the time the images were captured) resulting from soil and 

crop characteristics. 

 

Remote sensing has been described as “the practice of deriving information using 

images acquired from an overhead perspective, using electromagnetic radiation that 

is emitted or reflected from the earth’s surface” (Campbell 2002, p. 6).  Remotely 

sensed multispectral imagery can significantly improve the quality and reduce the 

cost, of site characterisation and monitoring (Wright et al. 2003).  Such remotely 

sensed images can be sourced from satellite, aerial and ground based platforms. 
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Considerable research has been conducted using satellite imagery to observe 

cropping areas.  Such research includes matching multi-temporal yield and image 

data (Layrol et al. 2000), predicting wheat grain yield  and protein content (Liu et al. 

2006), spectral discrimination and separability analysis using ASTER imagery (Apan 

et al. 2002), and leaf area index estimations using Landsat TM (Price & Bausch 

1995).  Despite the advantages, satellite remote sensing has well known limitations 

including timeliness, cloud cover, cost, poor spatial resolution (Zhang et al. 2002) 

and a fixed schedule of coverage that may not allow specific events to be captured 

(Wright et al. 2003).  The usefulness of satellite data is further limited when 

evaluating small areas of interest and small objects. 

 

One of the oldest and most widely applied forms of remote sensing are images 

captured from aerial platforms (Wright et al. 2003).  Examples of research conducted 

using aerial imagery to evaluate cropping systems include the following: monitoring 

growth and identifying crop stress in kenaf (Cook et al. 1999); investigating crop 

stress in cotton (Roth 1993) and peanuts (Wright & Mills 2002); and predicting grain 

yield (Staggenborg & Taylor 2000) and cotton lint yield (Vellidis et al. 2004).  

Airborne sensors offer much greater flexibility than satellite platforms by being able 

to operate under clouds and having a much finer spatial resolution (Lamb & Brown 

2001).  When the area imaged per flight is large, the cost per hectare is relatively 

inexpensive (Godwin et al. 2003a).  Conversely, when the area imaged per flight is 

small, the cost increases dramatically.  Aerial imagery is still costly when dedicated 

‘mobilisation’ of the aircraft is required, especially for remote localities and repeated 

data acquisition needs.   

 

Alternatively, cameras mounted on an unmanned aerial platform have greater utility 

with the potential to provide cheaper and repetitive information.  This will enable 

farmers to make improved in-season management decisions about their crop, 

particularly for small areas. 
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1.2 Research Problem and its Significance 

 

 

The recent ability to measure quantity (yield), and more recently, quality (protein) 

parameters of cereal crops, has sparked interests in determining the causes for 

variations within a production unit.  Knowledge of within-field spatial variability, be 

it due to nutrition, soil moisture, compaction or pestilence, will allow better crop 

management to maximise financial returns and in promoting sound environmental 

practices.  However, the main drawback of this yield and protein monitoring 

technology is that the quantity and quality information is only available as the crop is 

being harvested or afterwards, and cannot be applied to rectify deficiencies 

encountered during the growing season of the crop.  Hence, this information can only 

be used retrospectively, and / or to aid with management planning for future crops. 

 

Remotely sensed images have the potential to detect and map variations in crop 

condition.  However, commercially available remote sensing platforms are often 

limited by their spatial, temporal and spectral resolutions, and the cost of the imagery 

is a major concern when dealing with small production areas.  Thus, there is a need 

for a system that has the ability to frequently capture images, has high spatial 

resolution, and covers the spectral range under investigation.  The system should also 

be cost-effective.  An unmanned aerial platform with a suitable sensor could provide 

the needed management information in a timely fashion, as well as satisfying the 

technical (spatial, temporal and spectral) and costing criteria.  The research 

conducted in this thesis investigated that possibility. 

 

 

1.3 Research Objectives 

 

 

The goal of this research was to investigate the potential of detecting variations 

within a growing crop with imagery acquired by a low-cost unmanned aerial 

platform. 
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To achieve this goal, the research formed the hypothesis: “ ‘Off-the-shelf’ consumer 

camera technologies and low-cost low-altitude platforms can provide selected sets of 

information appropriate for use in precision agriculture.”   

 

This hypothesis was tested by addressing the following specific objectives: 

1. To identify, evaluate and analyse the different options for a low-cost 

low-altitude (LCLA) remote sensing system that has potential for 

precision agriculture; 

2. To develop a LCLA remote sensing system that is appropriate for use 

in mapping selected crop attributes; and 

3. To evaluate the accuracy of classification and prediction of cereal 

crop attributes (protein, yield, maturity and crop type) using the 

LCLA remote sensing system. 

 

 

1.4 Context, Scope and Delimitation of the Study 

 

 

The work detailed in this thesis ran in parallel with three research projects conducted 

by the Department of Primary Industries and Fisheries (DPI&F) Queensland, 

Australia for the Grains Research and Development Corporation (GRDC) from 

1998-2006.  These three projects were: 

• DAQ434 “Strategies to apply yield maps to identify and correct yield limiting 

factors for northern cereal crops”;   

• DAQ 528 “Predicting grain quality with yield and protein maps and remotely 

sensed imagery”; and  

• DAQ00067 “Eye in the sky to revolutionise northern crop production”.   

 

The purpose of these three projects were to interpret site-specific information (yield 

maps) by developing strategies that would systematically identify production-

limiting factors as probable causes for observed variation in grain yield.  During the 

implementation of these projects, it became obvious that monitoring crop yield 
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provides only part of the agronomic story for grain crops.  The understanding would 

be greatly enhanced if the grain quality, with protein being the primary measure, of 

the crop being harvested was considered.  Mapping these two features (i.e. yield and 

protein) of a cereal crop enables inferences to be drawn regarding two of the most 

common production-limiting factors for Australian wheat / barley crops: namely 

water and nitrogen supply.   

 

Satellite and aerial images capture site-specific information that could similarly 

enhance crop management, provided that the spectral information is closely 

correlated with crop yield or grain protein or both.  With the capability to monitor 

grain protein at harvest still under development, it was hoped that spectral data from 

remotely sensed images could provide the means of identifying areas in cereal crops 

of high and / or low grain protein.  This ability to identify differing areas would be 

invaluable for harvesting selected areas of similar grain protein.  As premiums are 

paid for the higher protein contents in wheat and for the lower protein contents in 

barley, the return from a crop could be maximised through segregation. 

 

An equally valuable use for this information would be improved forecasting of grain 

classification for marketing advantage.  These prospective applications of remotely 

sensed imagery enable information to be used predictively (before harvesting) rather 

than retrospectively (after harvesting), as is the case with the interpretation of yield 

maps.   

 

Conventional aerial and satellite imagery had limitations (especially in the northern 

region of Australia) that became evident during the course of the above mentioned 

three projects.  Being in control of a system that was low-cost, portable, easy to 

deploy and able to be utilised on a regular basis, was attractive and prompted the 

research and development that constitutes this thesis. 

 

During the development of the low-cost low-altitude remote sensing system, it 

became evident that the system had application to more than just protein and yield 

investigations.  The system was evaluated over many and varied data collection 

missions.  These included: spatial variability assessments in pineapple crops, 

quantifying the areas of high moisture content in a cattle feedlot, checking irrigation 
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uniformity and growth rates in a cotton and lettuce crop and looking at the wear 

patterns and turf growth on football fields.  This thesis, however, concentrated on the 

application of low-cost low-altitude remotely sensed imagery to cereal crop 

production.  In addition to yield and protein investigations, crop type and maturity 

discrimination were also evaluated as part of this thesis.  

 

 

1.5 Organisation of the Thesis 

 

 

This thesis is organised into seven chapters and this is represented schematically in 

Figure 1.1. 

 

The First Chapter presents the background to the research and development that was 

carried out as part of this thesis and also poses the research problem and sets out the 

objectives. 

 

The Second Chapter reviews the two areas of knowledge that are pertinent to this 

study: remote sensing and precision agriculture.  The use of spatial data layers in 

precision agriculture is discussed along with the potential of remote sensing to 

provide additional in-crop information to aid in management decisions.  Existing 

remote sensing systems and their uses are reviewed.  Furthermore, digital imaging 

technologies and their applicability to low-cost remote sensing systems are 

investigated. 

 

Chapter Three describes the preliminary investigations that were conducted to 

evaluate the various components that would be required of a low-cost low-altitude 

(LCLA) remote sensing system.  These investigations covered both the selection of 

the platform and the sensor system.   
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Chapter Four and Chapter Five cover the development of the LCLA system and the 

steps taken to collect real-world data using the system.  Crop mapping investigations 

were carried out to map grain yield, protein and crop maturity, and to discriminate 

between various cereal crop types. 

 

The Sixth Chapter covers the various statistical, image analysis and geographic 

information system based assessments that were undertaken to quantify the 

performance of the LCLA remote sensing system and how well it compares to 

existing technologies and techniques.  Lastly, the Final Chapter covers the 

conclusions and recommendations for future work. 
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Figure 1.1 The schematic layout of this thesis. 
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Chapter 2 

 

Literature Review: Precision Agriculture and 

Remote Sensing 
 

 

In the first chapter, the potential of a low-cost low-altitude (LCLA) remote sensing 

system was postulated.  This second chapter reviewed the potential for the use of 

such a system in an agricultural perspective.  This review considers both the niche 

for a LCLA remote sensing system in precision agriculture applications, as well as 

the relevant sciences and technologies of remote sensing. 

 

 

2.1 Precision Agriculture 

 

 

Parameters related to crop production are known to vary across a field.  This within-

field spatial variability has been know for centuries (Stafford 2000), with yield 

variations (Fairfield Smith 1938) and soil conditions / characteristics (Keen & Haines 

1925) being mapped as far back as the early 20th Century.  Prior to the mechanisation 

of farming that occurred in the latter half of last century, the size of production units 

were very small and delineated by natural boundaries, such as water courses and 

change of soil types (Stafford 2000).  This small field size enabled farmers to vary 

the treatments manually.   

 

As the mechanisation and intensive production on farms increased—made possible 

by the increased size of agricultural tractors—the ability to take into account within-

field spatial variability in these larger production units was lost.  For ease of 

management in applying inputs, these fields were generally treated uniformly. 
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As field sizes have continued to grow (e.g. Australian grain farms have increased in 

size by almost 60 % in the last 25 years, to average just under 2000 ha (ABARE 

2006)) by amalgamating these smaller land parcels, so has the potential for within-

field variability.  Significant spatial variation in crop parameters has been 

documented to occur within fields (Cook & Bramley 1998; Godwin et al. 2003b; 

Stafford et al. 1996).  This variation is often attributed to differences in plant 

available water due to rainfall distribution and changes in soil properties (Oliver et 

al. 2006; Rodriguez et al. 2005), although other management factors such as 

compaction (Jensen et al. 2001b) and fertility (Delin et al. 2005) can also contribute 

to the variation. 

 

With the development of technologies such as global positioning systems (GPS) and 

the ability of machinery to differentially apply inputs, it is becoming more feasible to 

treat areas of the field differently to compensate for the variation, similar to the 

earlier half of last century, albeit, minus the fences.  

 

Precision agriculture attempts to measure this spatial variability in order to manage 

it.  Variation is a feature of all farming systems, particularly in grain cropping 

systems, and includes: 

• Soils–colour, texture, soil depth, nutrition, compaction; 

• Topography–contour, slope, aspect, elevation; 

• Crop growth–emergence, vigour, disease, phenology, yield, protein; 

• Weeds–species, density, distribution; 

• Pests and diseases; and 

• Moisture supply–passage of storm rain, run-off events, fallow management. 

 

In addition to spatial variability, there is variability over time (either within a season 

or from season to season), or temporal variability.  These variabilities influences both 

crop potential and crop performance (Thylen et al. 1999).  Crop potential (a function 

of soil properties and seasonal conditions) influences a grower’s management 

decisions on inputs (amount and timing).  Crop performance (yield and quality) 

determines the return on investment (profit).  If a higher fertiliser rate is applied to 

target a high crop potential and the season does not finish well, grain quality 
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penalties may be incurred.  Alternatively, if too low an application rate is applied in a 

good year, production penalties may be incurred (Kelly  et al. 2004).  In both of these 

cases, profit will be reduced.  

 

By measuring variation, the farmer is in a better position to manage it.  Available 

management options might include (Jochinke et al. 2007): 

• Invest–increase the production potential by overcoming the constraints to 

production (e.g. soil amelioration, claying or liming); 

• Vary–manage according to its current production potential by adjusting the 

spatial distribution of inputs (e.g. seed, fertiliser and other inputs); and 

• Remove–the costs of management may be too high, and an equally viable 

outcome might be to stop production on these poor areas. 

 

 

2.1.1 Definition and Components 

 

Definitions  

 

Many definitions of Precision Agriculture (PA) exist and there are many different 

ideas of what PA should encompass. One such definition is (NRC 1997, p. 17): 

 

“Precision agriculture is a management strategy that uses information 

technologies to bring data from multiple sources to bear on decisions 

associated with crop production.”  

 

While the above definition raises important information dimensions, it fails to 

emphasise the basic premise of PA—the management of spatial and temporal 

variability.  This variability is better incorporated in the following definition which 

comes from the US House of Representatives (US 1997): 

 

“Precision Agriculture—an integrated information- and production- based 

farming system that is designed to increase long-term, site specific and 

whole farm production efficiencies, productivity, and profitability while 

minimizing unintended impacts on wildlife and the environment.” 
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The bill expands on this definition and explains that this will be achieved by: 

• Combining agricultural sciences, agricultural inputs and practices, agronomic 

production databases, and precision agriculture technologies to efficiently 

manage agronomic and livestock production systems; 

• Gathering on-farm information pertaining to the variation and interaction of 

site-specific spatial and temporal factors affecting crop and livestock 

production; 

• Integrating such information with appropriate data derived from field 

scouting, remote sensing, and other precision agriculture technologies in a 

timely manner in order to facilitate on-farm decision making; or 

• Using such information to prescribe and deliver site-specific application of 

agricultural inputs and management practices in agricultural production 

systems. 

 

As the focus of this study is on cereal grain, the livestock and other components of 

PA (listed above) will not be considered. 

 

The particular form of PA that relates to crop management (Whelan 2007) is often 

termed Site-Specific Crop Management (SSCM) and is defined as: 

 

“A form of PA whereby decisions on resource application and agronomic 

practices are improved to better match soil and crop requirements as they 

vary in the field.” 

 

This crop-focused definition narrows the PA philosophy of timely management of 

variation down to its implementation in cropping systems. It relies on matching 

resource application and agronomic practices with the variation in soil attributes and 

crop requirements across a field.  This implies a ‘differential’ treatment of field 

variation rather than ‘uniform’ treatment that underlies traditional agricultural 

management systems.  SSCM should be part of a holistic management approach 

rather than a simple application of technology and should be absorbed into the 

current farming system—for nothing can replace good agronomy and appropriate 

crop management.  
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PA or SSCM can be thought of as a circular process or wheel (see Figure 2.1): 

• Firstly, monitoring or measuring; 

• Next, mapping; 

• From maps, decision making; and 

• Finally, these decisions lead to new or altered actions, which are then 

monitored, and the cycle continues. 

 

At the heart of this system is the spatial referencing (GPS) that occurs with each 

action or process. 

 

 

Figure 2.1 The precision agriculture wheel (McBratney & Whelan 2001).  

 

For the use of PA to be justified, there are several criteria that must be satisfied 

(Plant 2001): 

• That significant within-field spatial variability exists and that influences 

yield and quality;  

• The causes of the variability can be determined and quantified; and  

• Modifying management practises based on this variability increases profit 

and decreases environmental impact. 
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The variability that is evident can change from one part of the field to another 

(spatial) and from one year to the next (temporal) (Blackmore et al. 2003; 

Joernsgaard & Halmoe 2003).  In one year, a particular part of the field can be the 

highest yielding and in the following year it can be the lowest yielding.  The quality 

and quantity of crop variability is driven by: 

• Field variability due to aspect, slope, elevation; 

• Soil variability due to soil fertility; physical properties (density, texture, 

mechanical strength, moisture content, electrical conductivity), chemical 

properties (pH, organic matter, salinity, cation exchange capacity, plant 

available water content, hydraulic conductivity), and soil depth; and 

• Crop variability due to nutrients, water, chlorophyll content, as well as weeds, 

disease, insects, wind, hail and frost. 

 

Enabling Technologies 

 

The current ability of PA to take into account the variability mentioned above would 

not have been possible without a revolutionary development in technologies 

(Stafford 2000) and having several of these technologies converge (Zhang et al. 

2002) to provide the data to drive the system.  These technologies (i.e. computing 

capacity, GPS, geographic information system (GIS), sensors, automatic control and 

remote sensing) will be looked at separately. 

 

Computing 

Many technologies support precision agriculture, but none is more important than 

computers (Pierce & Nowak 1999).  PA requires the acquisition, management, 

analysis and output of large amounts of spatial and temporal data, that would not be 

possible without the use of computers. 

 

Spatial Referencing 

In order to produce a map of variability from a field, it is necessary to quantify the 

variation with the locations from which it was taken (Cook & Bramley 1998).  This 

is the spatial referencing component of Figure 2.1 and is made possible by the use of 

satellite navigation systems, of which the US Global Positioning Systems (GPS) is 

the prominent one.  Each system consists of a space segment that comprises a 
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constellation of dedicated satellites, a ground control segment that monitors, 

manoeuvres and updates the satellites, and a user segment that calculates ground 

position (Krüger et al. 1994). 

 

The required accuracy of the GPS depends on the operation being considered, with 

the following levels of accuracy being recommended (Stafford 1996): 30 m for 

variable fertiliser application, 10 m for yield mapping, 1 m for variable herbicide 

application, 10 cm for spray overlap / row crop planting and 5 cm for seed bed 

forming.  The higher accuracies are achievable with differentially corrected GPS and 

the decimetre-level accuracies achievable with real-time kinematic (RTK) GPS 

(Schmidt et al. 2003).  

 

Information Management 

Once soil, crop and environmental information has been captured (with spatial 

referencing), it needs to be stored, statistically analysed and interpreted before 

management decisions can be made.  An information management system such as a 

geographic information system (GIS) can be employed to meet these requirements.  

A GIS is an information system capable of integrating, storing, editing, analysing, 

sharing, and displaying geographically referenced information (Pierce & Nowak 

1999). 

 

Because precision agriculture is concerned with spatial and temporal variability, and 

because it is information-based and decision-focused, it is the spatial analysis 

capabilities of GIS that enable precision agriculture (Pierce & Nowak 1999).  The 

GIS is the brain of the precision farming system (Clark & McGuckin 1996). 

 

Production Mapping 

Significant within-field variability exists in factors that influence crop yield (Plant 

2001).  This variability occurs over most, if not all, production areas.  The variation 

is usually a result of multiple factors, such as soil moisture, soil characteristics, 

compaction, pests, diseases, weeds or the supply of nutrients.  The complexity of the 

inter-relation of these factors make understanding the yield variability difficult 

(Sudduth et al. 1996).  In the northern grain-growing region of eastern Australia 

however, moisture and nutrient limitations, particularly nitrogen, commonly affect 
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crop production (Jensen et al. 2001a).  These two variables are also expected to 

contribute to substantial within-field variations where there appears to be little or no 

soil variation.   

 

Crop yield is an integrator of the many varying crop and soil parameters (Borgelt & 

Sudduth 1992) and is measured by integrating several sensor and information sources 

including grain flow rate, moisture content, forward velocity and grain harvester 

position. This integrated system is commonly referred to as a yield monitor, which 

allows yield maps to be produced (Reitz & Kutzbach 1996; Stafford et al. 1996). 

 

The yield as a parameter only provides part of the explanation of what is occurring in 

the field.  If this and other contributing data is correlated with grain quality, our 

understanding of the soil fertility status is significantly improved (Strong  & Holford 

1997). 

 

To quantify the yield–protein relationship, numerous methods have been adopted: 

grain heads have been collected prior to harvest (Stafford 1999); samples taken from 

the auger as it discharges into the grain bin (Reyns et al. 1999); and an apparatus 

developed to accurately sub-sample a field (Jensen et al. 2001a).  This apparatus was 

utilised and a protein map produced that, when combined with the yield map, gave a 

much clearer understanding of the determining factors in the crop production.  Sites 

could now be identified where nitrogen (N) supply was likely to have limited crop 

yield (Kelly et al. 2004). 

 

The protein content of grain is a good measure of quality, but measuring grain 

protein spatially continues to be a difficult task.  Protein monitors are under 

development, but not commercially available (Thylén et al. 2002; Zhang et al. 2002) 

and the prototype units that are being used are having problems with the stability of 

calibrations (Jensen et al. 2005; Taylor et al. 2005) . 

 

Attribute Sensors 

Sensors are devices that respond to a physical stimulus.  With computers to record 

the sensor’s output, a GPS to measure position, and a GIS to map and analyse the 

data, any output can be mapped at a very fine scale.  Sensors are critical to the 
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success of the development of PA for three important reasons: sensors have fixed 

cost, can sample at very small scales of space and time, and facilitate repeated 

measures (Pierce & Nowak 1999). 

 

Sensors can be in contact or remote, ground based or space based, and direct or 

indirect.  Sensors have been developed to measure machinery, soil, plants, pests, 

atmospheric properties, and water.  Sensors are also capable of detecting the 

phenomena of motion, sound, pressure, strain, heat, light, and magnetism. These 

measurements relating to properties such as reflectance, resistance, absorbance, 

capacitance, and conductance (Pierce & Nowak 1999).  Sensors are needed to 

provide the site-specific data that is the foundation of the PA system (Hummel et al. 

1996). 

 

Remote sensing, the detection and measurement of photons of differing energies 

emanating from distant object (Frazier et al. 1997), comprises one such group of 

sensors and will be further investigated later in this chapter. 

 

Variable rate application technology (VRT) 

Having determined that there is variability within the production area and within a 

crop, the next step in the PA cycle is to determine what has caused the variability and 

to try to remedy the situation.  Depending on what attributes (e.g. topography, soil 

type, drainage, soil test results, rainfall, chemical / fertiliser application rates and 

yield) have been mapped will determine what parameters can be investigated to 

diagnose the variability.  This diagnosis can be undertaken in a GIS which adds the 

spatial context to generate prescription maps.  In turn, these maps enable controllers 

to automatically adjust the parameter. 

 

If a single influencing factor has been identified and if this factor can be adjusted 

continuously, then some form of VRT can be employed (Plant 2001). Such 

parameters as seeding rate (Beavers et al. 2008), fungicide (Dammer et al. 2008), 

herbicide (Qiu et al. 1998),  liquid fertiliser (Yang 2001), nitrogen (Zhao et al. 2007) 

and irrigation (Perry et al. 2003), have been varied to match the condition in each 

part of the field. 
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2.1.2 Purpose and Benefits 

 

The benefits that precision agricultural technologies offer, as detailed by Cook et al. 

(2000), include enhanced likelihood of profit, product of consistent quality, and 

reduced risk to the environment.  PA also provides farmers and agronomists with the 

capacity to monitor conditions across the entire field and / or farm.  This ability to 

quantify parameters aids in the understanding of the variability within fields, and can 

enhance decisions on crop selection, agronomic management and / or alternative land 

uses.  Such analysis may also identify physical or chemical constraints that are easily 

managed with appropriate treatments. PA can also provide the tools to assess 

whether the treatments have had a positive or negative impact on financial returns. 

 

 

2.1.3 Limitations and Opportunities of Precision Agriculture 

 

Yield monitors have been commercially available for use on combine harvesters 

since the mid 1990s.  Although this has allowed grain growers to collect yield maps 

over a multiple of years, the difficulty in the interpretation of the results has limited 

the uptake of this precision agricultural technology both in Australia and overseas.  

In Chapter 1, it was indicated that the Department of Primary Industries and 

Fisheries (DPI&F) received project funding (1998–2006) from the Grains Research 

and Development Corporation (GRDC).  The aim of this research was to identify and 

correct yield limiting factors.  During this research, it became obvious that 

monitoring yield provided only part of the agronomic story.  The understanding 

would be greatly enhanced if the quality—with protein being the primary measure—

of the crop were considered. 

 

As the yield and protein maps were generated with at-harvest data, the information 

could only be used retrospectively (after harvesting) to make management decisions 

about subsequent crops, with no capacity to make pro-active decisions about the 

existing crop.  In order to make management decisions during the growing season of 

the crop, it was hoped that spectral data from remotely sensed images could provide 

the means of identifying the variability in cereal crops.  The desire to provide a low-
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cost imaging system, with appropriate spectral / spatial / temporal resolution that can 

discern differing crop parameters and crop types, was spawned, resulting in the 

research detailed in this dissertation. 

 

 

2.2 Remote Sensing  

 

 

Remote sensing is the science and art of obtaining information about an object, area 

or phenomenon through the analysis of data acquired by a device that is not in 

contact with the subject under investigation (Lillesand et al. 2004). 

 

 

2.2.1 Basic Concepts 

 

Human Vision 

 

The human visual system can detect the range of light spectrum from about 400 nm 

(violet) to about 700 nm (red) (Lillesand et al. 2004) and perceives this range of 

frequencies as a smoothly varying rainbow of colours.  This range of light 

frequencies is called the visible portion of the light spectrum, as it is detectable by 

the human eye.  

 

The human eye has a lens and iris diaphragm (see Figure 2.2) which serve similar 

functions to the corresponding features of a camera. Light reaching the eye passes 

through the pupil and is focused onto the retina by the lens (Mather 2004).  The 

retina has the ability to separately sense three different portions of the spectrum, and 

are concentrated around the eye's fovea.  These peak sensitivities are identified as red 

(580 nm), green (540 nm) and blue (450 nm)—the primary colours. 

 

Our perception of which colour we are seeing is determined by which combination of 

sensors are excited and by how much.  This is known as the trichromatic theory of 

colour vision or additive colour mixing.  When the three types of sensors in the retina 

receive differing stimulation, colour is perceived, however when they are stimulated 
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equally, white light is perceived (see Figure 2.3).  Like the human eye, colour 

televisions, computer monitors and charged coupled devices (CCD) operate on the 

principle of additive colour mixing 

 

 

Figure 2.2 A simplified cross-section of the human eye (Mather 2004).  

 

 

Figure 2.3 Trichromatic theory of colour vision (Jensen 2007).  

 

The Electromagnetic Spectrum 

 

Remote sensing involves the irradiative interaction of light with the objects of 

interest (Thorp & Tian 2004).  The function of the sensor in remote sensing is very 

similar to that of the human eye, which detects a form of electromagnetic radiation.  

The visible light, along with other forms ranging for radio waves through to gamma 

rays (see Figure 2.4) are collectively grouped, according to wavelength, in the 

electromagnetic spectrum (Lillesand et al. 2004).   
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All matter reflects, absorbs, penetrates and emits electro-magnetic radiation in a 

unique way and are said to have differing spectral reflectance in the electromagnetic 

spectrum, of which several are displayed in Figure 2.5. The signature of healthy 

vegetation is significantly different to that of dry vegetation, water etc. 

 

 

 

Figure 2.4 The visible portion and other components of the electromagnetic 

spectrum (Jensen 2007). 

 

Interaction of Light with Plant Leaves 

 

When electro-magnetic energy is incident on any given earth surface feature, three 

fundamental energy interactions with the feature are possible (Lillesand et al. 2004):  

• Reflected–what is bounced off (and detected by our eyes); 

• Absorbed– used in chemical processes (e.g. photosynthesis or warming); and 

• Transmitted–ready to be reflected, absorbed or transmitted by another 

surface.  
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As radiation in the visible portion of the spectrum falls on a healthy leaf, the 

chlorophyll—contained in the chloroplast—strongly absorbs energy in the 

wavelengths centred at about 450 and 670 nm (Lillesand et al. 2004).  The energy in 

the green portion of the visible spectrum is not absorbed, therefore reflected resulting 

in the bump in the green line at 550 nm in Figure 2.5, and the reason that we perceive 

healthy plants as green.  

 

 

Figure 2.5 Spectral reflectance curves for natural features in the range 400–2500 

nm (Geoimage 2005). 

 

At the upper end of the visible spectrum, the absorption by chlorophyll begins to 

decline and reflectance rises sharply (Campbell 2002).  In the range from 700–1300 

nm, a plant leaf typically reflects 40–50 % of the energy incident on it, with most of 

the remaining energy being transmitted.  Reflectance in this range results primarily 

from the internal structure of the plant leaf.  Because this structure is highly variable 

between species, reflectance measurements in this range often permit discrimination 

between species, even if they appear the same in the visible portion of the spectrum 

(Lillesand et al. 2004). 

 

As a plant matures—or is subject to stress caused by disease, insect attack, water or 

nutrition shortage—the spectral characteristics of the leaf changes and this happens 

more or less simultaneously in both the visible and near infrared regions (Campbell 

2002).  However, changes in the near infrared reflectance are often more noticeable.   
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2.2.2 Methods of Remote Sensing 

 

A remote sensing system consists of two major components: the sensor or device that 

is used to detect and record information from the target, and the platform or vehicle 

which moves the sensor over the target area.  There are varying degrees of 

sophistication of these systems from a simple system (such as the first recorded aerial 

photograph taken by Gaspard Felix Tournachon from his balloon in 1858) to the 

most complex hyperspectral space-borne system (such as the current Hyperion 

instrument onboard NASA’s EO1 earth observing satellite). 

 

As the primary focus of this research is the agricultural application of remote 

sensing, the literature review will focus on this topic.  However, techniques or 

technologies that have been used for other purposes but have application to 

agriculture, will also be included.  Specific agricultural examples will be included at 

the end of each subsection.  

 

Platforms 

 

Satellite 

The application of satellites as a remote sensing platform commenced with NASA’s 

Corona orbital satellite reconnaissance program in the late 1950s.  Mission 9009 

returned to earth on 18 August 1960 with the first images of earth captured from 

space (cited in Jensen 2007).  This mission was later followed by dedicated remote 

sensing satellites such as the launch of LandSat in 1972.  Many satellite remote 

sensing systems have since been (and continued to be) put into space.  Recent high 

resolution satellite launches—IKONOS (1999), QuickBird (2001) and OrbView 

(2003)—have reduced the spatial resolution down to 0.61 m.  The spatial, spectral, 

and temporal resolutions of some of the higher and moderate resolution remote 

sensing satellites are summarised in Table 2.1. 
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Table 2.1 Imaging properties of some remote sensing satellites. 

 

Continued….  

Satellite Revisit Sensor/Band Spectral range Resolution Swath width Quantisation
(days) (micrometers) (m) (km) (bits)

ASTER 16 VNIR
1 0.52-0.60
2 0.63-0.69 15 60 8
3 0.76-0.86

SWIR
4 1.60-1.70
5 2.14-2.18
6 2.18-2.22 30 60 8
7 2.23-2.28
8 2.29-2.36
9 2.36-2.43

TIR
10 8.12-8.47
11 8.47-8.82
12 8.92-9.27 90 60 12
13 10.25-10.95
14 10.95-11.65

Ikonos 3.5-5 Panchromatic
1 0.45-0.90 1 11 11

Multispectral
1 0.45-0.53
2 0.52-0.61 4 11 11
3 0.64-0.72
4 0.77-0.88

IRS 5 Panchromatic
1 0.50-0.75 5.4 63-70 6

LISS-III
2 0.52-0.59
3 0.62-0.68 23.5 141 7
4 0.77-0.86
5 1.55-1.70 70.5 148 7

WiFS
3 0.62-0.68 188 728-812 7
4 0.77-0.85

Landsat 1,2,3 18 MSS
4 0.50-0.60
5 0.60-0.70 80 183 8
6 0.70-0.80
7 0.80-1.10
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Table 2.1 (continued) Imaging properties of some higher resolution satellites. 

 

 

 

Satellite Revisit Sensor/Band Spectral range Resolution Swath width Quantisation
(days) (micrometers) (m) (km) (bits)

Landsat 4,5 16 MSS (as above)
TM
1 0.45-0.52
2 0.52-0.60 30 183 8
3 0.63-0.69
4 0.76-0.90
5 1.55-1.76
6 10.42-12.50 120 183 8
7 2.08-2.35 30 183 8

Landsat 7 16 TM (as above)
ETM+

6 as above 60 183 8
8 (Pan) 0.52-0.90 15 183 8

QuickBird 1-3.5 Panchromatic
1 0.45-0.90 0.61 16.5 11

Multispectral
1 0.45-0.52
2 0.52-0.60 2.44 16.5 11
3 0.63-0.69
4 0.76-0.90

SPOT 1,2 & 3 1-4 Panchromatic
1 0.50-0.73 10 60 8

Multispectral
1 0.50-0.59
2 0.61-0.68 20 60 8
3 0.78-0.89

SPOT 4 1-4 Panchromatic
1 0.61-0.68 10 60 8

Multispectral
1 0.50-0.59
2 0.61-0.68 20 60 8
3 0.78-0.89
4 1.58-1.75

SPOT 5 1-4 Panchromatic
1 0.48-0.71 5 60 8

Multispectral
1 0.50-0.59 10 60 8
2 0.61-0.68
3 0.78-0.89
4 1.58-1.75 20 60 8
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The applications to which this satellite remotely sensed data have been put are 

numerous.  Some of the applications described by Lillesand et al (2004) include the 

following: land use / land, geologic and soil mapping; applications in agriculture, 

forestry, rangeland, water resource, urban and regional planning, wildlife ecology 

and archaeological; and environmental and natural disaster assessments.  Some 

specific examples include: a) policing the illegal use of underground water (Allan 

1982); b) estimation of ground cover (Maas & Rajan 2008); c) discrimination of 

different grasses (Price et al. 2002); d) quantifying land use / land cover in African 

rainforest (Thenkabail et al. 2004); e) mapping leaf area index (Chen et al. 2002); f) 

detecting sugarcane “orange rust” disease (Apan et al. 2004); and g) predicting cereal 

yields (Enclona et al. 2004; Willis et al. 1998).  

 

Inhabited Aerial Vehicles 

The modern discipline of remote sensing arose with the parallel development of 

photography and of flight. The earliest systems were generally lighter-than-air with 

the balloonist Gaspard Felix Tournachon (alias Nadar) taking photographs of Paris 

from his balloon in 1858 and George R. Lawrence using kites to take shots of San 

Francisco after the earthquake in 1906 (Jensen 2007). 

 

The first heavier-than-air systems involved the use of carrier pigeons (with attached 

cameras—the system patented by Julius Neubronner in 1903).  The invention of the 

aircraft provided a more reliable platform with L.P. Bonvillain accompanying Wilbur 

Wright and taking a motion picture over Camp d’Auvours, France in 1908 (Jensen 

2007). 

The combination of aircraft and photography was utilised by the military to perform 

photo-reconnaissance roles.  During World War I, trenches were mapped and troop 

movements and stockpiled arms monitored.  These techniques were refined during 

World War II with photo-reconnaissance playing a vital role in military intelligence, 

monitoring troop build-ups and identifying V2 rocket facilities.  The Cold War 

brought about specialist photo-reconnaissance aircraft (the U2) to undertake the 

collection of information. 
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Modern uses of aircraft as a remote sensing platform are numerous and the 

applications are vast.  The array of applications includes the following: terrain 

analysis (Bhanu et al. 1997); quantifying leaf area index, nitrogen concentration, and 

photosynthetic efficiency in vegetation (Boegh et al. 2002); archaeological 

prospecting (Brivio et al. 2000); mapping of small areas shanty towns (Mason et al. 

1997); detection of landscape features (water, snow, fire, vegetation and soil) (Price 

1998) and  vegetation condition (Nixon et al. 1985).   

 

Even though medium-sized aircraft are currently used for the vast majority of 

airborne remote sensing (Dare 2005), many researchers have been experimenting 

with innovative methods of recording data utilising small aircraft, with the 

motivation for these experiments being budget driven.  Platforms do not have to be 

sophisticated with ultralight aircraft (Clevers 1988; Hunt Jr et al. 2003) and powered 

parasail (Moran et al. 2003) utilised as remote sensing platforms. 

 

Uninhabited Aerial Vehicles 

This experimentation with inhabited small aircraft has also lead to the evaluation of 

uninhabited aerial vehicles (UAV) as a suitable low-cost platform for remote 

sensing.   

Blimps, kites and balloons have been used in several applications to: a) map 

spatial variability between and within agricultural (rice and soybean) fields 

(Inoue et al. 2000) and to assess crop N status (Jia et al. 2004); b) monitor 

gully erosion (Ries & Marzolff 2003) and changes in land surface conditions 

(Baker et al. 2004); c) determine coverage of pecan tree crowns to predict 

evapotranspiration (Wang et al. 2007); d) measure gas flux (Vierling et al. 

2006); e) map periglacial geomorphology (Boike & Yoshikawa 2003); f) 

detect weeds (Lamb & Brown 2001; Richardson et al. 1985); and g) detect 

changes in ecological systems (Murden & Risenhoover 2000). 

 

Remotely controlled helicopters have also been used to map crop status 

(Sugiura et al. 2005),  monitor rangelands (Rango et al. 2006), detect 

damages from hurricanes (Murphy et al. 2008), and as an alternative to 

satellite remote sensing in developing countries (Swain et al. 2007). 
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Advances in microelectronics, micro sensors and telecommunications have 

given remotely controlled aircraft (or UAVs) an enormous potential in a wide 

variety of scenarios. Several applications to which UAVs have been applied 

include: a) pipeline inspections (Hausamann et al. 2005); b) detecting coffee 

ripeness (Furfaro et al. 2007); c) sampling air for dust (Espinar & Wiese 

2006) and spores (Schmale III et al. 2008); d) monitoring climatic conditions 

in hurricanes (Murphy et al. 2008); e) performing search and rescue missions 

(Goodrich et al. 2008); f) monitoring rangeland condition (Hardin & Jackson 

2005); g) detecting cotton response to irrigation and crop residue (Sullivan et 

al. 2007); h) detection and monitoring of marine mammals (Schoonmaker et 

al. 2008); i) monitoring archaeological sites (Hinckley & Walker 1993); and 

j) surveillance of borders and coasts, fire detection, and search and rescue 

(Martínez-Val & Hernández 1999). 

 

Proximal or Ground-based 

Proximal or ground-based systems can be used in several ways: gain an insight into 

the spectral reflectance characteristics of selected materials, calibrate remote sensor 

data, and provide unique spectral data for improved information extraction using 

multispectral and hyperspectral remote sensing data (Jensen 2007).   

 

Studies have used ground-based remote sensing to quantify lettuce head area 

(Hussain et al. 2008), to detect changes in gully erosion (Baker et al. 2004), to detect 

and map weeds (Yang et al. 2002), to predict grain yield in maize by the use of 

active sensors (Inman et al. 2007), and to monitor crop canopy conditions as a real-

time method of variable-rate N applications (Jørgensen & Jørgensen 2007). 

 

Sensors 

 

Sensors play an important role in the spectral resolution of the image and are the 

devices that detect the changes in the subject being viewed.  Sensors can be either 

multispectral or hyperspectral with both types being utilised by proximal, aerial and 

satellite remote sensing systems.  Details for some of the various satellites based 

sensors are given in table 2.1, with multispectral and hyperspectral sensors being 

discussed in the following section. 



Chapter 2                     Literature Review: Precision Agriculture and Remote Sensing 
 

 29

Multispectral 

The procedure demonstrated in 1861 by the Scottish Physicist James Maxwell, of 

photographing a bow of multicoloured ribbon multiple times using different coloured 

filters (red, green and blue and yellow) (cited in Jensen 2007), was a very early 

multispectral sensor.  Since the time of Maxwell, video and digital imaging systems 

have become a versatile remote sensing tool.  

 

Airborne video and digital still imagery has the advantages of relatively low cost, as 

well as real-time or near-real-time availability of imagery for visual assessment and 

computer image processing.  These sensors have the ability to obtain data in very 

narrow spectral bands (by the use of band-pass filters) in the visible to mid-infrared 

regions (Everitt et al. 1995; Mausel et al. 1992) of the electromagnetic spectrum and 

are generally limited to between 4 and 12 spectral bands of information (Jensen 

2007).  The bands are generally centred on 440 nm (blue), 550 nm (green), 650 nm 

(red) and 770 nm (NIR) with the bandwidth from 10–20 nm (Lamb 2000; Lévesque 

& King 1999; Yang et al. 2000).  This remote sensing method has been used 

increasingly in precision agriculture and natural resource management to detect and 

assess crop growth and yield variability (Gopalapillai & Tian 1999; Yang & 

Anderson 1999; Yang & Anderson 2000; Yang et al. 2000)  

 

The type of information collected by multispectral sensors depends on the 

application.  Such sensors have been used in the following: a) monitor and map 

variability in vegetation canopies based on changes in their spectral signatures (Lamb 

2000); b) perform within-field qualitative assessments of agricultural crops 

(Blackmer et al. 1996); c) detect crop stress (Pearson et al. 1994); d) estimate 

sorghum yield (Yang & Anderson 2000) and kenaf production and crop stress (Cook 

et al. 1999); e) map variable growing conditions and yields of cotton, sorghum and 

corn (Yang et al. 2001); f) assess vegetation condition (Nixon et al. 1985); and g) 

distinguish weeds (Richardson et al. 1985). 

 

Hyperspectral  

Multispectral sensors have limitations in providing accurate estimates of biophysical 

and yield characteristics of agricultural crops (Thenkabail et al. 2002) and crop type 

or species identification (Asner et al. 2000).  Limitations such as these have led to an 
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increasing interest in the narrow-waveband hyperspectral sensors.  Hyperspectral 

imaging systems typically acquire data in hundreds, or even thousands of spectral 

bands.  

 

Examples of hyperspectral sensors include: 

• Airborne Visible / Infrared Imaging (details at http://aviris.jpl.nasa.gov/)–has 

224 bands in the region from 400–2500 nm (bands spaced 10 nm apart).  It 

has the capability of collecting image data in very narrow and contiguous 

spectral bands throughout the visible, NIR and mid-infrared regions.   

• Hyperion (on-board NASA's EO1 spacecraft, details at 

http://eo1.gsfc.nasa.gov/)–provides a high resolution hyperspectral imager 

capable of resolving 220 spectral bands (from 0.4 to 2.5 µm) with a 30 meter 

spatial resolution. The instrument images a 7.5 km by 100 km land area per 

image and provides detailed spectral mapping across all 220 channels. 

• ASD FieldSpec 3 (details at http://www.asdi.com/) (proximal)–collects 

samples every 1.4 nm over the 350–1050 nm and every 2 nm over the 1000–

2500 nm range. 

 

With so many bands of information (variables) and so few readings in comparison, 

analysing information from hyperspectral data requires the use of sophisticated 

digital image processing software (Jensen 2007) to reduce the dimensionality of the 

data to a manageable degree.  Such sensors have been evaluated for use in precision 

agriculture (Deguise et al. 1998; Willis et al. 1998), and used to explain variability 

and to classify African rainforests (Thenkabail et al. 2004). 

 

These sensors are expensive to purchase and operate, are generally large and require 

a full-sized aircraft to house the instrument (except for the handheld sensors).  As a 

result, these expensive devices are have not been extensively used in commercial 

agriculture, and are hence beyond the scope of this research. 
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Vegetation Indices 

 

Vegetation indices—a dimensionless, radiometric measure that indicates relative 

abundance and activity of green vegetation (Jensen 2007)—is formed from 

combinations of several spectral.  These values are added, divided, or multiplied in a 

manner designed to yield a single value that indicates the amount or vigour of 

vegetation within a pixel (Campbell 2002).  These indices theoretically provide 

values that are more highly correlated to plant parameters (e.g. leaf area index, 

biomass or vegetative cover) than the raw reflectance measurements (Wanjura & 

Hatfield 1986).  Some of the common vegetation indices, with application to 

multispectral data, are summarised in Table 2.2.  

 

Table 2.2  Potential vegetation indices that can be calculated with multispectral 

remotely sensed data.   

Name Abbreviation Formulae Reference 

Red Ratio Vegetation 
Index 

RVI ���

�
 

(Jordan 1969) 

Normalised Difference 

Vegetation Index 

NDVI ���� � ��

���� � �� 
 

(Rouse et al. 1974) 

Difference Vegetation 
Index 

DVI ��� � � (Tucker 1979) 

Soil Adjusted 

Vegetation Index 

SAVI ���� � ��

���� � � � 	 � 
 �1 � 	� 

(Huete 1988) 

Green Normalised 

Difference Vegetation 

Index 

GNDVI ���� � ��

���� � �� 
 

(Gitelson et al. 
1996) 

Plant Nitrogen Spectral 

Index 

PNSI ���� � ��

���� � �� 
 

(Stone et al. 1996) 

Plant Senescence 
Reflectance Index 

PSRI �� � ��

��� 
 

(Merzlyak et al. 
1999) 

Enhanced Vegetation 
Index 

EVI 
2.5 

���� � ��

���� � �6� � 7.5�� �  1� 
 

(Huete et al. 2002) 

Green Ratio Vegetation 

Index 

GVI ���

�
 

(Xue et al. 2004) 

Red Green Normalised 

Difference Index 

RGNDI �� � ��

�� � �� 
 

(Li et al. 2008) 

Red Green Vegetation 
Index 

RGVI �

�
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2.2.3  Problems and Limitations of Using Existing Remote Sensing 

Systems in Precision Agriculture 

 

Remote sensing offers a non-invasive method of acquiring a bird’s-eye view of 

vegetation.  In order to successfully detect and map vegetation attributes, there must 

be suitable differences in spectral reflectance of the vegetation types and the sensor 

have the appropriate resolution to detect the differences (Lamb & Brown 2001) 

 

The required spatial resolution of any imagery will depend on whether the target is 

characterised by continuous change or whether the variation occurs in discrete 

patches. The former case requires considerably higher spatial resolution than the 

latter.  Obviously, a spatial resolution comparable in size to the expected size of the 

variability is a good starting point (Atkinson & Curran 1997). 

 

Satellite Systems 

 

Satellite systems have limitations, some of which were detailed by Zhang et 

al.(2002) and include: a) a set repeat cycle that may not allow a specific event to be 

captured; b) the limited extent of the area of interest; c) the cost of the data; d) poor 

spatial resolution; and e) the time take to access imagery from the supplier.  As the 

growth and management of agricultural crops are dictated by local weather 

conditions (Atkinson & Curran 1997), cloud cover can have an impact on the 

satellite remote sensing opportunities.  For example, in SE Queensland, Australia, 

during the peak winter growing months of August to October, the mean number of 

clear days are 15.8 14.5 and 12.2, respectively, for “Dalby Post Office” (Site 

number:  041023, Latitude: -27.18° Longitude: 151.26 °E, Elevation: 344 m) (BOM 

2008).  This possibility of cloud requires a high-scheduling flexibility for any 

monitoring system (Lamb 2000). 
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Piloted Airborne Systems  

 

Airborne sensors offer much greater flexibility than satellite platforms and have 

overcome some of these problems.  They are able to operate under clouds and having 

a much finer spatial resolution (Lamb & Brown 2001).  The cost of the imagery is 

still of concern and a number of people have been working on reducing the cost of 

the sensors (Everitt et al. 1995).  However, the operating cost remains high due to the 

cost of commissioning the aircraft especially when a dedicated ‘mobilisation’ of the 

aircraft is required (refer Chapter 1.1).  This is particularly true for remote localities 

and repeated data acquisition needs.   

 

Remotely-Controlled Aerial Platforms 

 

Remote-control helicopters (refer section 2.2.2) were used to generate maps of crop 

status (Sugiura et al. 2005), while model aircraft were used as the platform to 

remotely sensed crop biomass and nitrogen status (Hunt Jr. et al. 2005).  

Additionally, a high-altitude unmanned aerial vehicle was used to monitor crop 

ripeness and weeds in a coffee plantation (Herwitz et al. 2004).  However, these 

systems are expensive: helicopters are worth tens of thousands while the high-

altitude UAVs are worth millions of dollars. These costs make the use of advanced 

remotely-controlled aerial platforms prohibitive for most agricultural applications. 

 

 

2.2.4 Technologies for Use in a Low-Cost Low-Altitude Remote 

Sensing Systems 

 

Platforms 

 

There have been several occurrences of low-altitude aerial platforms being reported 

as research tools to collect imagery.  A cable-supported and helium balloon platform 

has been used to record temporal changes in surficial environments (Baker et al. 

2004).  Kites and balloons were used to map periglacial geomorphology in Alaska 

(Boike & Yoshikawa 2003).  Blimps have been used to map spatial variability 

between and within agricultural (rice and soybean) fields (Inoue et al. 2000) and to 
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monitor gully erosion (Ries & Marzolff 2003).  Remote-control helicopters were 

used to generate maps of crop status (refer 2.2.2) and model aircraft were used as the 

platform to remotely sense crop biomass and nitrogen status (Hunt Jr. et al. 2005).  

Additionally, a high-altitude unmanned aerial vehicle was used to monitor crop 

ripeness and weeds in a coffee plantation (Herwitz et al. 2004). 

 

Sensor Technologies 

 

Many studies have used photographic film as a remote sensing medium (Blackmer et 

al. 1996; Brooner & Simonett 1971; Hinckley & Walker 1993).  However, with the 

advent of digital cameras, many researchers are comparing the two media.  The 

transition to digital environment is inevitable (Light 1996) as processing film takes 

time, it needs to be scanned and the target cannot be confirmed.  Digital sensors have 

better geometric stability, there is no film deterioration, better radiometric quality, 

greater quantum efficiency, and wider spectral sensitivity range (King et al. 1994). 

 

Thus, digital sensors are becoming a viable alternative to small-format analogue 

cameras (Mason et al. 1997).  Digital camera technology has changed tremendously 

in the last decade, and prices plummeted as quickly as performance has increased  

(Lamb & Brown 2001).  Although digital cameras have been used on aerial 

platforms since the early 1990s (Everitt et al. 1995), recent technological 

developments in sensor and navigational systems offer new innovative applications 

for tactical level farming.  

 

Operating Principles of Digital / Video Cameras 

 

The charged couple device (CCD), the imaging sensor in most digital and video 

cameras, is a collection of tiny light-sensitive diodes, which convert photons (light) 

into electrons (electrical charge). These diodes are called photosites. The photosites 

on a CCD respond only to light intensity, not to colour.  The brighter the light that 

hits a single photosite, the greater the electrical charge that will accumulate at that 

site.  The accumulated charge of each photosite in the image is transported across the 

chip and read at one corner of the array. An analogue-to-digital converter turns each 

pixels’ value into a digital value (Lillesand et al. 2004).  
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Unfortunately, each photosite is “colour blind” and only keeps track of the total 

intensity of the light that strikes its surface. In order to get a full colour image, most 

sensors use filtering to look at the light in its three primary colours. Once all three 

colours have been recorded, they can be added together to create the full spectrum of 

colours that we are accustomed to seeing on computer monitors and colour printers.  

 

There are several ways of recording the three colours in a digital camera: 

1. The highest quality cameras use three separate sensors, each with a different 

filter over it. Light is directed to the different sensors by placing a beam 

splitter in the camera (Herwitz et al. 2004). 

2. A second method is to rotate a series of red, blue and green filters in front of 

a single sensor (Lévesque & King 1999). The sensor records three separate 

images in rapid succession, however the three images are not taken at 

precisely the same moment requiring both the camera and the target of the 

photo to remain stationary for all three readings. This is not practical for most 

mobile photographic application. 

3. A more economical and practical method, and used on most digital cameras, 

is to record the three primary colours from a single image by permanently 

placing a filter over each individual photosite (Lillesand et al. 2004). By 

breaking up the sensor into a variety of red, blue and green pixels, it is 

possible to get suitable information in the general vicinity of each sensor to 

make very accurate estimate about the true colour at that location.  

 

The most common pattern of filters is the Bayer filter pattern (see Figure 2.6).  This 

pattern alternates a row of red and green filters with a row of blue and green filters. 

The pixels are not evenly divided—there are as many green pixels as there are blue 

and red combined.  As the human eye is not equally sensitive to all three colours, it is 

necessary to include more information from the green pixels in order to create an 

image that the eye will perceive as a “true colour”.  

 

The advantages of this method are that only one sensor is required, and all the colour 

information (red, green and blue) is recorded at the same moment. It means that the 

camera can be smaller, cheaper, and useful in a wider variety of situations.  
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CCDs are sensitive not only to visible light, but also to infrared light.  If the infrared 

was not filtered out, it would become part of the RGB data and therefore become 

visible in the resulting pictures. This means that the photos taken would look 

different to that perceived by the human eye.  To overcome this problem, a blue filter 

is placed in-front of the CCD to greatly reduce the infrared seen by the CCD, thereby 

making the CCD behave much more like the human eye. 

 

                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

 

Figure 2.6 Bayer filter pattern. 

 

Resolution 

The amount of detail that the camera can capture is called the resolution, and it is 

measured in pixels. The more pixels the camera has, the more detail it can capture. 

 

Compression 

It takes a lot of memory to store digital photos.  For example, the Kodak CX7525 (a 

5.0 Megapixel camera) can store 204 images on a 128 MB SD card when set on 

“good” image size (1496 x 1122), 118 images when set on “better” image size (2048 

x 1536), and only 79 images when set on “best” image size (2560 x 1920) (Kodak 

2004).  Almost all digital cameras use some sort of data compression to make the 

files smaller.  There are two features of digital images that make compression 

possible: repetition and irrelevancy (Nice et al. 2006).  

Repetition–certain patterns developing in the colours in the image. For 

example, if the sky takes up 30 percent of the photograph, some shades of 

blue are going to be repeated over and over again.  Compression routines take 

advantage of patterns that repeat and there is no loss of information as the 

image can be reconstructed exactly as it was recorded.  Unfortunately, the 

files size may only be reduced by 50 %, and sometimes not even close to that 

level.  
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Irrelevancy–recording more information than is easily detected by the human 

eye.  Compression routines take advantage of this fact in order to throw away 

some of the more meaningless data.  Smaller files are achieved by excluding 

more data, with most offering various levels of resolution.  Lower resolution 

means more compression.  Some cameras include the option to store images 

with no compression at all (“CCD raw mode”) for the very best quality. 

 

 

2.3 Summary 

 

 

There are numerous satellites that can provide remotely sensed imagery (e.g. 

Landsat, SPOT, IKONOS and ASTER).  These platforms have spatial resolutions 

varying from 30 m to less than 1 m, and with revisit times from 16 days to 1 day (if 

off-nadir capacity is programmed).  However, these systems have limitations for 

precision agricultural applications, particularly where the extent of the area-of-

interest is not large (< 100 ha) and where the scale of the variation being investigated 

is small.  Clouds and cloud cover are also an issue in being able to image data when 

required. 

 

Aerial imagery acquisitions resolve some of these issues as it has finer spatial 

resolution and ability to be captured on demand.  However, this system also creates 

other problems.  The cost of imagery is very high when a dedicated mobilisation of 

the aircraft is required and there is the issue of availability of the plane and sensor, 

particularly when sourced from interstate where long transit distances are involved. 

 

 

Several studies have shown that low-altitude platforms (e.g. kites, balloons, blimp 

and remotely controlled aircraft) have the capacity to be used as an alternative 

platform for observing various phenomena.  This study focused on the potential of 

detecting and mapping grain crop attributes using digital imagery acquired from a 

low-altitude platform.  

 



Chapter 3 

 

Preliminary Evaluation and Assessment of 

Sensor and Platform Systems 
 

Existing remote sensing imaging systems have limitations that include availability, 

timeliness and cost (Chapter 2); those of particular importance when the area-of-

interest is small (< 10 ha) and when the required resolution is high (sub-metre pixel 

resolution).  This chapter investigates the suitability of alternative readily-available 

consumer imaging technologies, in combination with low-altitude platforms, to 

capture selected attributes of agricultural crops.   

 

 

3.1 Potential Systems  

 

 

The potential imaging system has two components: the sensor system and the 

platform on which it is deployed.  Preliminary studies were conducted to investigate 

the suitability of using a low-altitude unmanned aerial vehicle (platform) and 

consumer imaging technologies (sensor) as an appropriate remote sensing system for 

mapping grain crop attributes. 

 

 

3.1.1 Platform 

 

There is a range of potential low-altitude unmanned aerial vehicles (UAVs) that 

could be utilised as the platform for the low-cost low-altitude remote sensing system.  

Such platforms could include blimps, balloons, kites and remotely controlled model 

airplanes and helicopters.   
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Low-altitude unmanned platforms are variable in their specifications with no single 

kind of platform being ideal for all types of low-altitude remote sensing.  Key issues 

are cost, safety, operator expertise, and quality of imagery for a particular project or 

application.  These factors were weighed on a case-by-case basis in order to select 

the optimum platform for a given low-altitude remote sensing mission.  A summary 

of this evaluation is shown in Table 3.1.  For example, where the area to be imaged is 

small, and ease of deployment and operation is the primary consideration, balloons / 

blimps provide the ideal platform.  However, where the area to be imaged is large, 

and pilots are available, fixed wing aircraft are the preferred choice.   

 

Brief Review of Unmanned Aerial Vehicle (UAV) Applications 

 

Although there have been numerous applications of UAVs as a remote sensing tool 

(see Table 3.2 for a range of studies) some have utilised high altitude and / or high 

cost sensors.  As the focus of this research was to develop a low-cost low altitude 

(LCLA) remote system for use in agricultural applications, these parameters were 

further investigated. 

 

Of the applications listed in Table 3.2, several systems have direct application to the 

LCLA remote sensing system.  These were reviewed in more detail below: 

1. A UAV was used to acquire low-altitude high-resolution imagery for resource 

management (Quilter & Anderson 2000). The UAV was based on a remotely 

controlled model airplane (RCA) with 2.5 m wingspan that could fly up to 

300 m above ground level.  The sensor used was a 35 mm film camera with a 

single vertical image covering a ground area ranging from 75 m² up to 6.5 

hectares, depending on camera lens and flying height. The system was 

utilised to document the effectiveness of riparian restoration, to monitor 

impact of all-terrain vehicles on vegetation, and to evaluate range 

management techniques. The total reported cost of the system (UAV, engine, 

radio controls, and camera) was approximately US$1000 as well as 100+ 

hours of labour to build the UAV.  As this study was undertaken in the year 

2000, the advent of much better resolution digital cameras and the production 

of “nearly-ready-to-fly” models could have changed this scenario. 
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Table 3.1 Comparison of various UAV platform types to perform LCLA remote 

sensing applications in agriculture (☼☼☼☼ indicates high compliance, ☼ indicates 

no or low compliance)*. 

Requirement 

Platform 
Kite Balloon / blimp Fixed wing 

(electric) 
Fixed wing 
(internal 

combustion) 

Helicopter 

Low speed, 
low altitude 
flight 

☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ ☼☼☼☼ 

Low purchase 
cost ☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ ☼ 

Autonomous 
flight 
capability 

☼ ☼ ☼☼☼☼ ☼☼☼☼ ☼ 

Applicability 
to small plot 
work 

☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ ☼☼☼☼ 

Applicability 
to broadacre 
agriculture 

☼ ☼ ☼☼☼☼ ☼☼☼☼ ☼☼ 

Ease of launch ☼☼☼☼ ☼☼☼☼ ☼☼ ☼☼ ☼☼ 

Payload to 
weight ratio ☼☼ ☼☼ ☼☼☼ ☼☼☼☼ ☼☼☼☼ 

Low vibration ☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ ☼ 

Low operating 
cost ☼ ☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ 

Simplicity of 
operation ☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼ ☼ 

Hover 
capability ☼☼☼☼ ☼☼☼☼ ☼ ☼ ☼☼☼☼ 

Endurance ☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼☼ ☼☼☼ 

Portability in 
station wagon ☼☼☼☼ ☼☼☼☼ ☼☼☼☼ ☼☼☼☼ ☼☼☼☼ 

Low 
Deployment 
time 

☼☼☼ ☼☼☼ ☼☼☼ ☼☼☼ ☼☼☼ 

Ease of repair ☼☼☼☼ ☼☼☼☼ ☼☼☼ ☼☼☼ ☼ 
Level of 
manpower 
required 

☼ ☼ ☼☼☼ ☼☼☼ ☼☼☼ 

Directability ☼ ☼ ☼☼☼☼ ☼☼☼ ☼☼☼ 

Safety 
considerations ☼ ☼ ☼☼ ☼☼☼ ☼☼☼☼ 

*  assessed by the author from available information. 
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Table 3.2  Some applications of UAVs in remote sensing. 

Mission objective Platform Sensor Reference 
inspecting pipelines RCA synthetic aperture 

radar 
(Hausamann et al. 2005) 

detecting coffee ripeness RCA multispectral 
camera 

(Furfaro et al. 2007; Herwitz 
et al. 2004; Johnson et al. 
2004) 

sampling air for dust RCA dust sampler (Espinar & Wiese 2006) 
managing golf courses kite digital camera (Aber et al. 2003) 
researching hurricanes helicopter/RCA video camera (Murphy et al. 2008) 
mapping crop status helicopter 3 CCD camera (Sugiura et al. 2005) 
monitoring rangeland RCA 35 mm camera (Quilter & Anderson 2000; 

Rango et al. 2006) 
maping spatial variability 
between and within 
agricultural (rice and 
soybean) fields 

blimp 4 camera multi-
spectral sensor 

(Inoue et al. 2000) 

assessing crop N status balloon 35 mm camera (Jia et al. 2004) 
monitoring gully erosion blimp 35 mm camera (Ries & Marzolff 2003) 
detecting changes in land 
surface conditions 

balloon  digital camera (Baker et al. 2004) 

determining coverage of 
pecan tree crowns to 
predict evapotranspiration 

balloon digital camera (Wang et al. 2007) 

measuring gas flux  blimp hyperspectral, 
thermal and video 
camera 

(Vierling et al. 2006) 

mapping periglacial 
geomorphology  

kite and balloon film camera (Boike & Yoshikawa 2003) 

detecting changes in 
ecological systems  

blimp 2 film SLR cameras (Murden & Risenhoover 2000) 

monitor rangelands  helicopter/RCA digital camera (Rango et al. 2006) 
providing an alternative to 
satellite RS in developing 
countries  

helicopter high resolution 
cameras 

(Swain et al. 2007) 

detecting spores  RCA spore sampler (Schmale III et al. 2008) 
performing search and 
rescue missions  

RCA video camera (Goodrich et al. 2008) 

monitoring rangeland 
condition  

RCA 35 mm camera (Hardin & Jackson 2005) 

detecting cotton response 
to irrigation and crop 
residue  

RCA thermal infrared (Sullivan et al. 2007) 

detecting and monitoring 
of marine mammals  

RCA 4 camera 
multispectral sensor 

(Schoonmaker et al. 2008) 

monitoring archaeological 
sites  

RCA film camera (Hinckley & Walker 1993) 

providing surveillance of 
borders and coasts, fire 
detection, and search and 
rescue  

RCA TV, photographic 
and thermal camera 

(Martínez-Val & Hernández 
1999) 

evaluating drip irrigation 
trials  

RCA digital camera (Simpson et al. 2003) 
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2. A 2.5 m wingspan electric powered model aircraft, with consumer digital still 

cameras (Nikon Coolpix 800), was used in a study (Stombaugh et al. 2003) to 

investigate crop vigour and plant densities.  The system utilised a video 

downlink to aid the ground crew in positioning the UAV.  The digital camera 

was triggered via a servo that utilised an unused channel on the radio 

equipment.  The entire system cost was less than US$1500. 

3. A helium-filled blimp (6.4 m long x 2 m in diameter) was used to acquire 

low-altitude aerial images that was used to monitor rangeland vegetation 

(Murden & Risenhoover 2000). The imaging system consisted of 2 x 35 mm 

still cameras and monochrome charged couple device (CCD) camera used for 

positioning.  The blimp, which was able to collect images from 122 m above 

the ground, had a total cost of US$6500.  It was a good compromise between 

ground-based methods of data collection and fixed-wing or satellite remote 

sensing. 

4. A specially designed hot-air blimp was used in geomorphic and vegetation 

investigations in Spain (Ries & Marzolff 2003).  The system utilised a blimp 

(10 m long with a volume of 100 m³) that was manoeuvred via a ground 

tether. The propane burner and camera system are operated by radio control 

from the ground. The blimp flew up to 400 m high and could lift a payload of 

6 kg.  The cost of the fully equipped, custom-built hot-air blimp system was 

approximately $12,000; the dual-camera system and radio control apparatus 

cost $1500 and $600 respectively. A minimum of four people are necessary 

for ground operation of the system. Dual Pentax cameras were utilised for 

simultaneous photographs of the same ground area, with one camera loaded 

with normal colour film, and the other with colour-infrared film. 

5. Large kites have been used to suspend film and digital cameras to capture 

large-scale high-resolution images in the colour and near infrared (NIR) for 

golf course management (Aber et al. 2003).  The cameras are lifted 50–150 m 

above the surface to provide information for managers to visualise and 

evaluate the condition of the golf course and the consequences of 

management practices.  Kite aerial photography is a means to acquire 

relatively low-cost imagery compared to manned (airplane or helicopter) 

methods.  
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3.1.2 Sensor System 

 

The potential technologies that can be utilised as the sensor for this research included 

video and still camera in both analogue and digital forms.  On reviewing the 

literature, these technologies, in various configurations and combinations, have been 

successfully used as remote sensing tools on conventional aircraft, low-altitude 

platforms and proximal sensing. 

Aircraft based sensors include the use of the following systems: Kodak 

monochrome 1.4 megapixel digital cameras with rotating filters to detect 

forest damage caused by mining (Lévesque & King 1999); a 35 mm camera 

using colour infrared (CIR) film to predict grain-yield variability 

(Staggenborg & Taylor 2000); and a 4 CCD video sensing system that has 

been used to monitor crop emergence, canopy vigour and biomass (Lamb 

2000). 

The use of sensors on low-altitude platforms include a video transmission 

system used to position a UAV over a target to acquire digital camera images 

of drip irrigation trials (Simpson et al. 2003).  In addition, two single lens 

reflex (SLR) (1 x colour and 1 x NIR) cameras position under a blimp to 

monitor gully erosion (Ries & Marzolff 2003). 

The proximal remote sensing configurations include the use of a dual video 

camera system (with narrow bandpass filters to capture red and NIR) to 

measure the area covered by green growing plants (Baron et al. 2002).  This 

study used a frame-grabber to capture images from the video stream.  In 

another study to estimate vegetation cover, a webcam was used to frame the 

image collected by a digital still camera (Zhou & Robson 2001).  This system 

was mounted on a 5.2 m high mast. 

 

As the initial intention was to mount the sensing system onto a small unmanned 

aerial vehicle, the size and weight of the payload was the major limiting factor.  The 

technologies that were reviewed in the literature that had potential to be adopted 

included the board video, 35 mm film and digital cameras.  The weight limitation of 
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the proposed system precluded the multiple video camera systems that have been 

used in conventional aircraft. 

 

 

3.2 Requirements for a LCLA System for Precision 

Agriculture 

 

 

Within the context of this research, there are numerous considerations to be 

evaluated to determine the suitability of a low-cost low-altitude (LCLA) remote 

sensing system for use in agriculture.  The deployment and crop considerations, 

legislative requirements, and cost will be considered.  

 

 

3.2.1 Deployment Considerations 

 

Given the objectives of this research, the following parameters were considered 

important in the evaluation of the LCLA remote sensing system: 

Functionality: The system should be able to acquire aerial images with 

coverage of at least 3 ha and a minimum spatial (pixel) resolution of 0.5 m. 

Portability: The platform should be easily transportable to and from target 

areas.  The platform had to fit into a utility vehicle or full-sized station wagon 

or similar. If assembly and disassembly was required to reduce the size, this 

had to be accomplished by one operator in no more than 10-15 minutes using 

only basic tools. 

Simplicity: The system should be very simple to operate and maintain.  The 

system should be made of readily available materials and components that 

can be easily repaired or replaced in the event of minor damage or failure. 

Robustness: The system should be able to undertake multiple deployments 

and handle the environmental parameters (e.g. long grass, rough roads and 

trees) found in the close proximity to agricultural fields. As the sensing 

equipment is usually the most delicate and expensive items onboard the 
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platform, the platform design had to provide ample protection for this 

equipment. 

 

 

3.2.2 Crop Considerations 

 

Remote sensing offers a non-invasive method of viewing crops.  Lamb and Brown 

(2001) suggested that for successful mapping of vegetation, there are two main 

requirements: a) suitable differences in spectral reflectance or texture exist in the 

subject matter, and b) the remote sensing instrument has appropriate spatial and 

spectral resolution to detect such differences. 

 

As this research is principally focused on mapping crop parameters (quantity, quality 

and maturity) and on discriminating between different crop types, the emphasis in 

this study has been placed on winter cereal crops where these parameters are of 

interest to make informed management decisions.  

 

 

3.2.3 Legislative Requirements 

 

The regulations covering civilian aviation in Australia are extensively set out by the 

Civil Aviation Safety Authority (CASA) in the Civil Aviation Safety Regulations Act 

of 1998 (CASA 2003).  The use of unmanned aerial vehicles falls within this 

category, and the particular areas of the regulations that deal with UAVs are 

contained in “PART 10–Unmanned aircraft and rocket”.  Other recommendations 

are available in the CASA Advisory Circular “AC 101-1 Unmanned aircraft and 

rockets–unmanned aerial vehicle (UAV) operations, design specification, 

maintenance and training of human resources.”  These regulations cover all forms of 

UAV platforms including tethered balloons and kites, unmanned free balloons, and 

UAV systems.  Sections of the regulations that cover the activities undertaken in this 

research have been summarised below. 
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A large UAV means any of the following: 
(a) An unmanned airship with an envelope capacity greater than 100 cubic 
metres; 
(b) An unmanned powered parachute with a launch mass greater than 150 
kilograms; 
(c) An unmanned aeroplane with a launch mass greater than 150 kilograms; 
(d) An unmanned rotorcraft with a launch mass greater than 100 kilograms; 
(e) An unmanned powered lift device with a launch mass greater than 100 
kilograms. 

A micro UAV means a UAV with a gross weight of 100 grams or less. 
And a small UAV means a UAV that is neither a large UAV nor a micro UAV.  
UAV means unmanned aircraft, other than a balloon or a kite. 

 

For the purposes of this research, the UAV systems utilised will fall under the 

“small” category detailed above.  The use of balloons will be covered in a later 

section.  A summary of the operating regulations for a “small” UAV system are 

detailed below. 

 

Operation near people 
(1) A person must not operate a UAV within 30 metres of a person who is not 
directly associated with the operation of the UAV. 
(2) Subregulation (1) does not apply in relation to a person who stands behind the 
UAV while it is taking off. 
(3) Subregulation (1) also does not prevent the operation of a UAV airship within 30 
metres of a person if the airship approaches no closer to the person than 10 metres 
horizontally and 30 feet vertically. 
Where small UAVs may be operated 
A person may operate a small UAV outside an approved area only if: 

(a) Where the UAV is operated above 400 feet above ground level (AGL), 
the operator has CASA’s approval to do so; and 
(b) The UAV stays clear of populous areas. 

 

The “approved area” mentioned in the above section is further defined as follows: 

 

Approval of areas for operation of unmanned aircraft or rockets 
(1) A person may apply to CASA for the approval of an area as an area for the 
operation of: 

(a) Unmanned aircraft generally, or a particular class of unmanned aircraft; 
or 
(b) Rockets. 

(2) For paragraph (1) (a), the classes of unmanned aircraft are: 
(a) Tethered balloons and kites; 
(b) Unmanned free balloons; 
(c) UAVs; 
(d) Model aircraft. 

(3) In considering whether to approve an area for any of those purposes, CASA must 
take into account the likely effect on the safety of air navigation of the operation of 
unmanned aircraft in, or the launching of rockets in or over, the area. 
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(4) An approval has effect from the time written notice of it is given to the applicant, 
or a later day or day and time stated in the approval. 
(5) An approval may be expressed to have effect for a particular period (including a 
period of less than 1 day), or indefinitely. 
(6) CASA may impose conditions on the approval in the interests of the safety of air 
navigation. 
(7) If CASA approves an area under subregulation (1), it must publish details of the 
approval (including any condition) in a notice-to-airmen (NOTAM) or on an 
aeronautical chart. 
(8) CASA may revoke the approval of an area, or change the conditions that apply to 
such an approval, in the interests of the safety of air navigation 
 

The following section summarises further legal information relating to issues such as 

airspace restrictions, maximum operating heights, dropping or discharging of objects 

and weather and day limitations. 

 

Maximum operating height 
A person may operate an unmanned aircraft at above 400 feet AGL only: 

(a) In an area approved under the regulation as an area for the operation of 
unmanned aircraft of the same class as the aircraft concerned, and in 
accordance with any conditions of the approval; or  
(b) As otherwise permitted by this Part. 

Dropping or discharging of things 
A person must not cause a thing to be dropped or discharged from an unmanned 
aircraft in a way that creates a hazard to another aircraft, a person, or property. 
Weather and day limitations 
A person may operate an unmanned aircraft: 

(a) In or into cloud; or 
(b) At night; or 
(c) In conditions other than visual meteorological conditions (VMC); 

Only if permitted by another provision of this Part, or in accordance with an air 
traffic control direction. 
 

All of these legal requirements are written specifically for Australian airspace and 

should be considered accordingly.   

 

 

3.2.4  Costs 

 

With the potential to provide agronomists and farm advisers with a tool to enable 

them to view crop attributes from above, the total capital cost of the system would 

need to be less than AUD$2000 in order to make it an attractive alternative to other 

forms of remote sensing.  There should also be no substantial operating costs. 
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3.3 Preliminary Deployment and Assessment of a Sensor 

and Platform System 

 

 

Several missions were undertaken in this study to evaluate the various components of 

the system.  Details of these missions are listed in Table 3.3. 

 

Table 3.3 The missions undertaken as part of the preliminary investigation. 

Mission 
# 

Date Location Platform Sensor and description 

1 June 2001 “TARMAC” 
Vale View  
-27.673º, 
151.911º 

Zephyr UAV Single analogue video camera (resolution 500 x 
500 pixels), video footage transmitted to ground 
and recorded on digital video camera, later used 
frame grabbing software to convert to still 
(*.jpg) that could be used later.  Required 2 
missions: one to capture colour, another to 
capture IR (IR using Hoya R72 filter).   
Problems with ‘noise’ in video footage and 
directionality of transmission signal.  Showed 
potential; images captured of trees, sorghum 
crop, road etc.  

2 July 2001 Clifton   
-27.934º, 
151.908º 
 

Zephyr UAV Same system as mission #1, with targets, wheat 
crop 

3 18 Mar 2003 “TARMAC” 
Vale View  
-27.673º, 
151.911º 

Magic UAV Single Kodak DC3200 (1 megapixel colour still 
camera) in plane rather than video camera, 
images stored to onboard card, sorghum crop, 
many images collected 

4 21 Mar 2003 UQ, Gatton 
-27.569º, 
152.337º 

Magic  UAV Same system as mission #3, with water and 
nutrition stress, 2 missions, one to capture 
colour (lots of useful images) another to capture 
IR.  Not many images collected as blurry, 
shutter speeds too slow. (Camera needs to be 
modified to make more sensitive to IR) 

5 6 June 2003 Toowoomba 
-27.535º, 
151.932º 

Camera on ground Used Canon Powershot G2 (high end point and 
shoot) that gives camera parameters when 
images taken.  Hence could gauge the effect of 
putting the Hoya R72 filter in front. 

 

 

3.3.1 Platform System 

 

During this preliminary investigation, relationships were formed with members of 

the ‘Toowoomba Amateur Radio Model Aircraft Club’ (TARMAC) who were 

interested in expanding the application of their hobby (i.e. flying remotely controlled 

aircraft) into a real-world situation.  As a result, there were numerous aircraft on 

which to mount sensors and pilots to fly them.  With this access to remotely 
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controlled aircraft, particular emphasis was placed on this form of low-altitude 

unmanned platform, and the majority of testing conducted used this method.  

 

Commissioning of the UAV 

 

Radio controlled model aircraft had been used as an aerial platform to provide very 

low-cost very high-resolution imagery (Hardin & Jackson 2005; Quilter & Anderson 

2000; Simpson et al. 2003).  The aircraft to be utilised as remote sensing platforms 

were based on the selection criteria detailed in previous studies (Hardin & Jackson 

2005; Hunt Jr. et al. 2005), namely, stability in wind, takeoff / landing requirements, 

carrying capacity and slow flight capability. 

 

Hobbyist unmanned aerial vehicles were used during the preliminary evaluation.  

These radio-controlled aircraft were controlled remotely, with a hand-held 

transmitter and a receiver within the aircraft. The receiver controlled the 

corresponding servos that moved the control surfaces (rudder, ailerons, elevators and 

throttle) based on the position of joysticks on the transmitter, which in turn moved 

the plane. 

 

Radio control electronics have three essential elements. The transmitter is the 

controller and has control sticks and switches at the users’ finger tips. The receiver is 

mounted in the model and receives and processes the signal from the transmitter, 

translating it into signals that are sent to the servos. The number of servos installed in 

a model determines the number of channels that the radio must accommodate. 

 

Several differing airframes were utilised in the testing of the unmanned aerial 

vehicle, however the radio control equipment (minimum of 6 channels and operating 

on the 36 MHz band) was common in all tests.  The general minimum requirement of 

the airframe was a) a high-wing cabin-design (for stable slow flight), and b) balsa 

wood construction (ease of repairs) with a 2 m wingspan (to provide sufficient lift). 

A platform of this size needs to be powered by at least a  10 cc 4-stroke glow fuel 

(methanol) motor minimum (or equivalent) to carry a payload of approximately 0.75 

kg (digital camera with associated batteries). 
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One of the major obstacles in utilising a UAV as a platform is the limitation in the 

payload that can be carried, as the larger the aircraft, the larger the payload.  Larger 

model aircraft have inherent obstacles including transportation (wings larger than 2.2 

m are difficult to fit into a standard station wagon) and require longer take-off and 

landing areas.  However, larger aircraft are inherently more stable and less 

responsive (take longer to react to flying changes), hence easier to fly and easier to 

locate in the sky and judge the direction of travel.   

 

Photographs of the various airframes are included in the sensor discussion sections 

following.  An example of such an airframe, the unmanned aerial vehicle utilised on 

Mission #4, is shown in Figure 3.1. 

 

 

Figure 3.1 The ‘Magic’ UAV and the 36 MHz radio control gear used at UQG 

(Mission #4). 
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3.3.2 Sensor System 

 

Analogue Video Camera 

 

With the reduction in cost, miniaturisation, and increase in the resolution of charged 

couple devices (CCDs), it is now possible to incorporate several of these devices into 

a single sensor that can be deployed on a remotely controlled aircraft.  The literature 

showed that it is possible to use board video camera with transmitters, on-board a 

UAV, to transmit footage to the ground where it is stored on a VHS video tape 

(Simpson et al. 2003).  Frame grabbing software could also be used to extract images 

to be analysed (Baron et al. 2002). 

 

Based on these previous studies, miniature surveillance video cameras were initially 

chosen as the sensing system.  An analogue video system (consisting a camera, 

transmitter and receiver) was purchased from OzSpy (details at 

http://www.ozspy.com.au).  The specifications of the camera are detailed in Table 

3.4.  The video signal (1 volt peak-to-peak) from the video camera was relayed to the 

ground using a low power (10 mW) miniature video transmitter operating at 2.4 

GHz.  A video receiver, operating at the same frequency, was used on the ground to 

receive the signal.  The information received was displayed and / or recorded on a 

tape in a Sony Digital8 Handycam video camera using the analogue input channel.  

The video transmitting and receiving components are shown in Figure 3.2 and the 

monitoring and recording system is shown in Figure 3.3.  The initial test aircraft is 

shown in Figure 3.4. 

 

Table 3.4 Black and white video camera specifications. 

Pickup element 1/3” Sony B&W CCD image sensor

Number of pixels 512 (h) x 582 (w)

Resolution 400 TV lines

Minimum illumination 0.1 Lux /F2.0

S/N ratio More than 48dB

Electronic shutter 1/50 to 1/100,000 sec

Lens F5.5/F3.5

Lens angle 92°

Power consumption 120 mA

Dimensions 42 x 42 mm

Power 12 V

Weight 15 g  
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video receivervideo camera

video transmitter

 

Figure 3.2 The components of the 2.4 GHz surveillance video system–transmitter 

(left), camera (middle) and receiver (right). 

 

digital video camera

video receiver

12 V battery

 

Figure 3.3 The analogue video stream is intercepted by the video receiver and 

recorded on the digital video recorder.  The 12 V battery is powering the video 

receiver. 
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Figure 3.4 The ‘Zephyr’ UAV with wing removed (left), radio control gear (middle) 

and starter box containing fuel and battery charger (right) prior to deployment. 

 

The testing was conducted with one monochrome camera and 2.4 GHz video 

transmitter (to transmit the footage to the ground) mounted on the ‘Zephyr’ UAV 

(Mission #1).  The UAV was of a high wing construction utilising a 10 cc glow 

methanol motor and a 1.8 m wing.  An auxiliary 12 V sealed lead-acid battery was 

also installed on the aircraft to supply power to the video transmission system.  The 

video footage being transmitted to the ground was intercepted with a video receiver, 

and this analogue data stream was viewed and stored on the digital video camera.  

The position of the video camera and the UAV configuration is shown in Figure 3.5. 
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video camera

 

Figure 3.5 The ‘Zephyr’ UAV showing the hole for the mini video camera in the 

underside of the fuselage (between the two white strips).  

 

The video footage was transferred from the digital video camera to a computer via a 

peripheral component interconnect (PCI) image capture card and Pinnacle Systems 

‘Pinnacle Studio DV Version 7’ software (details at http://www.pinnaclesys.com/).  

The specifications and requirements of the software are given in Table 3.5.  This 

software allowed images to be viewed ‘frame-by-frame’, with the most appropriate 

images being ‘frame-grabbed’ and stored on the hard drive of the computer.  An 

example of such an image is shown in Figure 3.6.  
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Table 3.5 Specifications and computer requirements for Studio DV Version 7. 

Hardware Internal PCI 

Capture resolution 720 x 576 (PAL) 

Video format DV 

Analogue input No 

Analogue output No 

DV input Yes  

DV output Yes  

Operating system Win 98SE / ME / 2000 

30 min video 0.2 GB–6.5 GB 

Minimum system 

requirements 

PII 300 Mhz, 64 MB 

Ram, 80 Mb disk space 

 

 

banding

 

Figure 3.6 A frame-grabbed image showing a car driving along a dual carriage-way 

(note the banding in the image) acquired during Mission #1. 

 

The colour portion of the spectrum provide useful information, however, the best 

relationships between imagery and green vegetation are found in the near infrared 

(Inoue et al. 2000).  Numerous studies have used monochrome video cameras to 

record NIR information (Everitt et al. 1995; Inoue et al. 2000; Pearson et al. 1994).  
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Although the specifications were not available for the board video camera used in the 

preliminary evaluation, reviewing spectral responses for other published CCD 

imagers (such as the KODAK KAI-0340(Kodak 2008)) indicated that both colour 

and monochrome CCDs are sensitive to the NIR portion of the spectrum (see Figure 

3.7). 

 

 

Figure 3.7 The spectral response for the Kodak KAI-0340 (Kodak 2008) showing the 

response for the monochrome sensor in black and that of the blue / green / red 

sensors in the corresponding colours. 

 

In order to ensure that only the near-infrared light was incident on the CCD, narrow 

bandpass filters have been used (Baron et al. 2002), such as the Kodak Wratten 25 

(Quilter & Anderson 2001) and Wratten 88a filters (Wright et al. 2003).  In this 

study, the visible portion of the spectrum was excluded by placing a Hoya R72 filter 

(HOYA 2005) in front of the lens.  Specifications of the R72 are shown in Figure 

3.8.  The R72 has a slight transmittance in the deep visible red just below the 700 nm 

visible-infrared boundary, 50% transmission at 720 nm and more than 90% 

transmittance over the 800–2200 nm range.  An example of an NIR image obtained 

with the miniature video camera and Hoya R72 filter is shown in Figure 3.9 (note the 

high reflectance of trees in the centre of the image). 
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Figure 3.8 Transmittance of the Hoya R72 filter for the various wavelengths of light. 

 

field

car on road

trees reflecting NIR

 

Figure 3.9 An NIR image collected with the video camera-frame grabber setup on 

Mission #1 (note the bright signature of the row of trees through the centre of the 

image). 

 

With the successful capture of the monochrome and NIR images, initial plans were 

to follow other studies (Escobar et al. 1998) that had multiple cameras (possibly 6–

10) with a specific narrow bandpass filter on each camera to give multispectral 

results.  With the video footage containing 25 frames per second, a multiplexer was 
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tested where 3–4 frames were recorded from each of 4 cameras with a 2–3 frame gap 

between successive camera images.  Within a one second time-gap, several usable 

frames could be captured from each camera, representing nearly simultaneous image 

acquisition.  This system had the potential to provide a light-weight multi-spectral 

sensor system.   

 

As can be seen from the sample images (Figures 3.6 and 3.9), the resolution was not 

high (approximately 400 lines from the 512 x 582 pixels sensor). In order to get 

reasonable image resolution, the UAV had to be flown reasonably close to the 

ground, making the image coverage low.  Noise was also evident in the images, 

possibly due to the directionality of the signal and electrical interference.  There was 

also the issue of the large size of the video files once downloaded onto the computer–

30 minutes of video footage used in excess of 2 Gb of hard-disk space.  For the 

above-mentioned reasons, this proposed system was not pursued past the evaluation 

phase. 

 

35 mm Film Camera 

 

Numerous studies have used 35 mm cameras to capture remotely sensed imagery 

(Quilter & Anderson 2001; Scharf & Lory 2000) as this is a mature technology. In 

other studies, researchers have commented that analogue (film) cameras were more 

economical than digital cameras (Light 1996), however this was in 1996 when digital 

cameras were at their infancy.  As arrays have become larger and storage capacity 

becomes more affordable, digital cameras have become the preferred method 

(Wright et al. 2003) of capturing NIR and colour information.  Film is problematical 

due to a) the care needed in handling the film and cost, b) inconsistency with 

developing, c) errors during scanning, and d) the need for a second camera if colour 

images are also required. 

 

Such 35 mm systems were reviewed and an example of a low-cost remote sensing 

system that had been installed in a UAV (Spies, S 2002 pers. comm., 2 July) is 

shown in Figure 3.10.  After considering the above problems, as well as the 

limitations on weight / space and the number of images able to be collected (a 
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maximum of 36 exposures on colour and NIR film), this study did not pursue the 35 

mm camera system. 

 

 

Figure 3.10 A 35 mm instamatic camera, installed in a mounting frame and utilising 

a servo to depress the shutter button, that was used to take images from a UAV. 

 

Digital Camera  

 

Digital cameras have been utilised in a number of remote sensing applications (also 

refer section 2.2.2): monitor informal townships (Mason et al. 1997), develop large 

scale elevation models (King et al. 1994), investigate the light environment beneath 

the forest canopy (Chapman 2007), detect changes in dynamic surficial environments 

(Baker et al. 2004), quantify lettuce head area (Hussain et al. 2008) and detect and 

map weeds (Yang et al. 2002). 

 

Digital sensors are becoming a viable and reliable alternative to small-format 

analogue cameras (Mason et al. 1997) as they are compact, can cover the crop 

spectral range, and enable immediate reviewing of images.  Digital cameras were 

thus reviewed with the intention of mounting such a camera on the unmanned aerial 

platform.  In order to determine the minimum requirements of a sensor to suit this 

application, the low-end of the resolution range (approximately 1 megapixel in 
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2003), was targeted.  The Kodak DC3200 (Eastman Kodak Company, Rochester, 

New York, USA) was chosen for its simplicity and ease of use, robustness, ability to 

mount a servo to depress shutter release button, and capacity to be powered by AA 

batteries (commonly available and easy to replace in the field).  An image of the 

chosen camera is given in Figure 3.11 and its specifications are provided in Table 

3.6. 

 

In the initial configuration, the camera utilised its own internal batteries, with the 

images being stored to the 64 Mb CompactFlash card in the camera.  The camera 

was initially attached to the underside of a UAV using rubber bands (see Figure 

3.12). 

 

 

Figure 3.11 The Kodak DC3200 digital camera. 
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Table 3.6 The specifications of the Kodak DC3200 digital still camera. 

1,344 x 971 = 1.31 millions of pixels (total 
number of pixels) 

Best/ Better 1,152 x 864 = 995,328 pixels 

Good 576 x 432 = 248,832 pixels 

24-bit, millions of colors 

JPEG 

Internal 2 MB flash memory 

External ATA-compatible CompactFlash card 

Virtual image 

100

1.5 to 2.4 m

Type Optical quality glass 

Maximum Aperture F/3.6 

Focal Length 39 mm (equivalent to 35 mm camera) 
5.4 mm (actual) 

Focus Distance (fixed) 0.6 m to infinity 

Power Batteries (4) AA size 1.5-volt alkaline or AA size 1.2-
volt Ni-MH rechargeable 

Width 113 mm

Depth 53 mm

Height 81 mm

215 g without batteries Weight

Flash Range 

Lens 

Picture Storage 

Viewfinder 

ASA/ISO Sensitivity 

Dimensions

CCD Resolution 

Picture Resolution 

Colour

Picture File Format 

 

Single DC3200 camera

 

Figure 3.12 The single DC3200 camera attached to the underside of the 1.4 m 

wingspan ‘Magic’ UAV. 
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Image acquisition was initiated by activating a switch on the radio control and using 

this spare channel to activate a rotary servo to depress the shutter release button on 

top of the camera (see Figure 3.13).  Servos are hobbyist remote control devices 

typically employed in radio-controlled models, where they are used to provide 

actuation for various mechanical systems such as the steering of a motor car, the 

flaps on an aeroplane, or the rudder of a boat.  Radio control servos are composed of 

a direct current (DC) motor mechanically linked to a potentiometer.  Pulse-width 

modulation signals, which are sent to the servo from the radio control gear, are 

translated into position commands by electronics inside the servo. When the servo is 

commanded to rotate, the DC motor is powered until the potentiometer reaches the 

value corresponding to the commanded position. 

 

Images were captured with the above mentioned system on the 18th March 2003 

(Mission #3) using the ‘Magic’ UAV (powered by an 8 cc glow methanol motor).  In 

less than 30 minutes flying time, over 100 images were collected and a selection is 

shown as Figures 3.14–16.  Figure 3.14 is an image taken from approximately 300 m 

above ground level and show the contoured layout of the cultivation, a dry creek bed 

and a dry dam.  More detail is shown in Figure 3.15 as it was taken from a lower 

altitude (approximately 120 m above ground level). The influence of the tree line on 

the growing crop is clearly visible, as are the headlands and the greater biomass due 

to more fertile soil.  The tree line in this image is the same as captured by the video 

system in Figure 3.9. 
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Figure 3.13 The DC3200 mounted underneath the UAV (note the rotary servo to 

depress the shutter release button). 
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Figure 3.14 An image capture on Mission #3 showing the layout of the land. 
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Figure 3.15 More detailed information captured during Mission #3. 

 

With the plane at an even lower altitude (approximately 50 m), individual plants can 

be clearly distinguished (Figure 3.16), as can planting misses, seed germination 

problems, weeds, grass areas, variation in topography and drainage directions.  This 

test provided a proof-of-concept that off-the-shelf digital still camera can acquire 

images that have suitable spectral and spatial resolution to detect variations in crop 

parameters.  Furthermore, it is robust, easy to use and relatively inexpensive.  Further 

investigations were warranted.  
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Figure 3.16 A low-level image collected during Mission #3. 

 

Testing the DC3200’s Sensitivity to NIR 

 

Studies have indicated that most colour CCD imagers are sensitive to NIR light 

(Dean et al. 2000), as displayed in Figure 3.7.  The DC3200 was not only able to 

capture colour information, but with the addition of the Hoya R72 filter (used 

previously with the board video camera), can also record the NIR information.  Static 

images taken of a tree (see Figure 3.17) showed the level of information that can be 

captured in both the colour and the NIR using the DC3200 camera.  Note the higher 

reflection values for all photosynthetic material in the image. 

 

The concept of collecting colour and NIR images from the aerial platform was tested 

at a trial site at Gatton (Mission #4).  Two flights were required as follows: a) the 

first flight to capture the colour images, and b) a second flight, with Hoya R72 in 

front of the lens, to capture the NIR images.  Images were successfully captured on 

both missions.  The colour images showed good detail with differing crop maturities, 

the effects of weeds and the presence of natural (power lines, fallow) and artificial 

features (car, ground control points), all being evident in Figure 3.18. 
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Figure 3.17 A photo of a tree in standard colour mode (left) and with a Hoya 'R72' 

filter placed in front of the camera (IR mode, right). 
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Figure 3.18 Features of the Gatton trial site (Mission #4), 21st March 2003.  
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In contrast to the colour images, the NIR images were very dark. The image shown 

in Figure 3.19 has been lightened using the image processing package Microsoft 

PhotoEditor to compensate for the low exposure resulting from the use of the Hoya 

R72.  The blur evident in this image, and the darkness of the original image, resulted 

from insufficient light entering the camera and due to the speed of the aircraft.  The 

camera tried to compensate for the lack of light by decreasing the shutter speed 

(hence the blur) to make a correct exposure.  To overcome this problem, the 

sensitivity of the camera to NIR light had to be improved. 

 

 

Figure 3.19 The NIR image of the same corner of the field as in Figure 3.18 (Note 

the location of the car and points A & B both images). 

 

Effects of using the Hoya R72 on Standard Camera Operations 

 

As the DC3200 camera only offered basic functionality, no camera settings were 

recorded with the images.  An investigation was conducted to determine the effect of 

the Hoya R72 filter by using a more expensive camera with greater functionality (in 

this case a Canon PowerShot G2—camera specifications given in Table 3.7).  Images 

were captured of the same subject, with and without the Hoya R72 filter being 

positioned in front of the lens.  The resulting images are shown as Figure 3.20 (the 

car

target
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NIR image on the left with the colour on the right).  The colour image was recorded 

15 s after the NIR image with the camera set to automatic mode, where it controlled 

the exposure settings. 

 

Table 3.7 The specifications of the Canon PowerShot G2 . 

Effective pixels

Image sensor

Digital zoom 

Focusing points

Focusing range

Shutter

Sensitivity 

White balance 

Self-timer 

Storage media 

File format 

Still images :

Movies :

JPEG compression 

Large : 2272 x 1704 pixels

Medium 1 : 1600 x 1200 pixels

Medium 2 : 1024 x 768 pixels

Small : 640 x 480 pixels

320 x 240 pixels 

160 x 120 pixels

Interface 

Power Source 

Dimensions 

Weight 

121 (w) x 77 (h) x 64 (d) mm 

Universal Serial Bus (USB), Audio/Video Output (NTSC or PAL selectable, monaural audio)

Rechargeable Lithium-ion battery (type: BP-511)

Approx. 425 g  (camera body only)

Super fine, Fine or Normal

Auto, ISO 50, ISO 100, ISO 200 and ISO 400 equivalent

TTL auto white balance, pre-set white balance (available settings: Daylight, Cloudy, Tungsten, 
Fluorescent, Fluorescent H or Flash) or Custom white balance

Flash range : 70 cm - 4.5 m (2.3 ft. - 14.8 ft.) (W)

JPEG or RAW

Built-in flash 

Exposure control 
method 

Image recording 
format 

Number of recording 
pixels 

Movies :

Approx. 15 frames/second

LCD monitor 1.8 inch, low-temperature polycrystalline silicon TFT color LCD

Field of view 100 %

Autofocus method TTL autofocus (continuous or single)

Focus lock and Manual focus are available

Lens 7 (W) - 21 (T) mm (35mm film equivalent : 34 - 102 mm)

F2.0 (W) - F2.5 (T)

Up to approx. 3.6 times (Up to approximately 11 times in combination with the optical zoom)

Optical viewfinder Real-image optical zoom viewfinder

Field of view approx. 84 %

Approx. 4-million-pixels

1/1.8 inch CCD Approx. 4.1-million-pixels (total)

Mechanical shutter + electronic shutter, 15 - 1/1000 sec

Normal AF : 70 cm - infinity

Macro AF : 6 cm (W)/ 20 cm (T) - 70 cm

Switchable (Center or 3 selectable positions)

Manual focus : 6 cm (W)/ 20 cm (T) - infinity

AE lock is available

Program AE, Shutter-priority AE, Aperture-priority AE or Manual exposure control

AVI (Image data: Motion JPEG, Audio data: WAVE [monaural])

Still images :

Activates shutter after a 10-sec. delay

CompactFlashTM (CF) card (Type I and Type II)

Design rule for Camera File system, DPOF-compliant

70 cm - 3.6 m (2.3 ft. - 11.8 ft.) (T)

(When sensitivity is set to ISO 100 equivalent)
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Figure 3.20 Image of tree with Hoya R72 filter (left) and in normal mode (right), 

(Mission #5). 

 

There is no visual evidence of blur in the images in Figure 3.20 where the images 

were taken from the ground in a stationary and stable position.  There is high 

reflection of NIR light from the foliage of the eucalypt tree and high absorption of 

NIR light by the blue sky.  

 

To quantify the effects of the use of the Hoya R72, the properties for the images 

displayed in Figure 3.20 were viewed in the camera’s image managing software 

(Canon Utilities ZoomBrowser EX 6.0).  The properties are shown in Figure 3.21 

with the NIR on the left and the colour on the right.  The brightness histogram (green 

rectangle) and shooting information (blue oval) for each image are indicated in 

Figure 3.21.  The effect of the Hoya R72 filter was to make the image proportionally 

darker (the shift to the left in the histogram, indicated by the green box) and to slow 

the shutter speed from 1/200th of a second in the standard colour image down to a 

quarter of a second for the NIR.  The aperture also increased from an f5.6 in the NIR 

to an f2.0 in the colour.   

 

It is assumed that the effect of the Hoya R72 on the DC3200 is similar to that of the 

G2 camera, and hence the reason why the wider aperture and slower shutter speed 

were required by the camera to make a correct exposure, as in Figure 3.19.  This 

automatic camera compensation for the low light levels present when using the Hoya 

R72 would explain the dark and blurred images captured during the NIR image 

testing and the image shown in Figure 3.19.  
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Figure 3.21 The camera settings when taking the images in Figure 3.20. 

 

The charged couple device (CCD) has a degree of sensitivity in the NIR (refer 

section 3.2.2 and Figure 3.7).  Digital cameras are used to record images that 

correspond with what is perceived by the human eye.  As the human eye is not 

sensitive to NIR, digital cameras have been modified to decrease the sensitivity to 

NIR, and thus better represent the capabilities of the human eye.  Hence, a NIR 

blocking filter is placed in front of the CCD to give the most acceptable colour 

representation.  Details of how it is possible to remove this filter to increase 

sensitivity to NIR is provided on the internet (Wooten 2003).  To investigate the 

enhanced spectral response that could be expected from removing the NIR blocking 
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filter from the Kodak DC3200 camera, specifications for other published sensors 

were reviewed.  One such example is shown in Figure 3.22.  Note the enhance 

sensitivity, particularly in the NIR region, by removing the NIR blocking filter.   

 

Figure 3.22 Spectral response with and without IR cut-out (Vaytek 2003) 

 

With IR Cut-Out Filter Removed from DC3200 

 

The procedure of removing the ‘blue’ NIR cut-out filter (shown in Figure 3.23) was 

performed on the DC3200.  The removal of the filter and replacing it with clear glass 

(so that the optical path was unaltered) was undertaken by camera repair technicians, 

who also configured the cameras for electronic (remote) activation and external 

powering.  With these modifications, the operations of the cameras were then 

checked to ensure the manufacturer’s operating tolerances were maintained. 
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blue IR cutout filter

 

Figure 3.23 The DC 3200 pulled apart showing the 'blue' IR cut-out filter. 

 

Electronically Triggering the Camera 

 

Using the servo to depress the shutter-release button was not an accurate and 

repeatable method of initiating image acquisition due to the several seconds delay 

resident in servo rotation and the difficulty of attaching the servo to the camera.  

Also, relying on the pilot of the UAV to initiate image acquisition distracted them 

from their primary objective—flying the UAV.  Rather than using the servo to 

physically depress the shutter button, the output to the servo was investigated as a 

potential method of electronically activating the camera. 

 

A separate 2-channel radio control system (HiTech brand, operating at 29 MHz), 

operating independently of the avionics system, was accessed with the intention of 

using one of the servo outputs to control the image acquisition.  This required an 

additional receiver on the aircraft. 

 

The receiver output from the 29 MHz radio control system was tested in the 

laboratory (see Figure 3.24) and was a typical servo output, i.e. 50 Hz square wave. 

The initial approach was to detect the change in pulse width (achieved by moving the 

throttle / rudder stick) to initiate image capture.  As the 2-channel radio equipment 

was low-cost, the output was relatively noisy (Figure 3.25). Rather than trying to 
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measure the pulse width (to detect a change), it proved simpler to consider the 

presence and absence of signal, achieved by disconnecting and reconnecting power 

via a normally closed push button switch.  To monitor the signal, a complementary 

metal-oxide semiconductor (CMOS) re-triggerable monostable was used as a missing 

pulse detector, which then triggered a second monostable (one shot) to produce a 

single pulse.  A transistor circuit provided the necessary current to operate the relay 

that triggered the camera.  If and when the first monostable failed to receive a pulse 

from the receiver within 100 ms, resulting from the button being pressed on the 

transmitter, the image acquisition sequence would be initiated and an image recorded 

on the camera. 

 

2 channel transmitter

 

Figure 3.24 Testing the output of the 29 MHz 2 channel radio control transmitter. 
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square wave

noise

 

Figure 3.25 The change in the output signal from the receiver when the throttle / 

rudder stick was moved.  The output was noisy, making it difficult to measure. 

 

 

3.4 Conclusions 

 

 

This chapter has shown that remotely controlled aircraft have the capacity to provide 

a stable platform that the average hobbyist has the skills and ability to fly.  Off-the-

shelf digital cameras can acquire useful images when there is sufficient light to make 

an acceptable exposure.  The same digital cameras can be remotely triggered using a 

low-cost remote control equipment that is independent of the flight control that has 

no extra imposition on the pilot.  This functionality is achievable with relatively 

inexpensive equipment with the total cost less than the targeted maximum of $2000.  

Such a system is also small enough to meet the size requirement (i.e. can be carried 

in a station wagon) with standard hobbyist size model planes still having ample 

capacity to lift the sensors, hence meeting all the platform requirements. 
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In order to fully utilise digital cameras as a low-cost low-altitude (LCLA) remote 

sensing system on these platforms, further development is needed to allow the 

simultaneous capture of images in the colour and near infrared portion of the 

spectrum.  This will allow the continued development and the integration of the total 

system. 



Chapter 4 

 

Developing a Low-Cost Low-Altitude Remote 

Sensing System 
 

 

The previous chapter presented a preliminary investigation and evaluation of the 

various components that had potential for a low-cost imaging system.  Chapter 4 

builds on that research and details the development of the low-cost low-altitude 

(LCLA) remote sensing system for use in capturing selected attributes of agricultural 

crops. 

 

 

4.1 The Case for the Two-Camera System 

 

 

4.1.1 Justification for Adoption 

 

The case has already been made in Chapter 3 for a two-camera remote sensing 

system to overcome the problems of making two separate flights with the remotely 

controlled aircraft (RCA) in order to capture the colour and near infrared 

information.  As the inherent proximity to obstacles and the dynamics of the flight 

associated with the take-off and landing of unmanned aerial vehicles (UAV) make 

these the most likely phases for which an incident to occur (Clothier, R. 2008, pers. 

comm., 14 October), halving the number of flights much reduces the crash risk.  

These two activities (i.e. take-off and landing) also place the highest demand on 

operators, with reports showing that most accidents attributed to human-error occur 

during these activities.  Additionally, from an image analysis perspective, there is 

also the desire to capture the colour / near infrared images simultaneously.  This can 

overcome lighting and altitude differences, as well as to ensure the same coverage of 

the subject area and the same sequencing of the images collected. 
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4.1.2 Specifications for the Improved System 

 

In addition to the desired specification detailed in the deployment considerations 

(Chapter 3.2.1), the LCLA remote sensing system should be capable of meeting the 

spectral, spatial and temporal requirements of a system to capture information for 

agriculture.  These requirements include; decimetre pixel resolution, the ability to 

record information for the colour and near infrared portion of the spectrum, and a 

temporal resolution to allow daily captures if required.  Furthermore, the system 

should allow images to be downloaded and interrogated immediately upon the 

platform returning to ground to ensure the coverage of the target area. 

 

 

4.1.3 Missions Undertaken with the LCLA Remote Sensing System  

 

The missions undertaken during the development and deployment of the LCLA (2-

camera) remote sensing system are documented in Table 4.1. 

 

 

4.2 Development of the Data Acquisition System 

 

 

The data acquisition system has two components: the sensor system and the platform 

on which it is deployed.  The development of the platform and sensor system will be 

detailed separately. 
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Table 4.1 Missions with the LCLA remote sensing system 

Mission # Date Location  Platform Sensor and Description 
7 3 June 2003 Toowoomba 

-27.535º, 
151.932º 

Cameras out 
car window 

Testing of 2-camera system, remote triggering and 
with IR blocking filter removed from one camera to 
increase sensitivity in the IR. 

8 12  June 
 2003 

“TARMAC” 
Vale View  
-27.672º, 
151.911º 

Hannibal 
UAV 

Testing of the 2-camera system described above, 
but from an aerial platform. 

9 14  June 
 2003 

“Argyle” 
Macalister 
-26.996º, 
151.032º 

He balloon  Real-world testing of the 2-camera system. No 
experienced UAV pilot, hence use of helium 
balloon.  Crop at a very early stage.  Tried again at 
later growth stage. 

10 1 Aug 2003  “Argyle” 
Macalister 
-26.996º, 
151.032º 

Hannibal 
UAV 

Same field as in previous test. Problems 
encountered with cameras powering-down due to 
inactivity, resulting in differing number of images 
on each camera. 

11 2 Sept 2003 “Colonsay” 
Cecil Plains 
-27.501º, 
151.392º 

He balloon 2-camera sensor modified to overcome power-
down issue.  Nutrition trial with 0–120 kg/ha N 
applied. Many useful images collected and 
processed.  Single tether line. 

12 3 Oct 2003 Suncorp 
Stadium 
Brisbane 
-27.465º, 
153.009º 

He balloon Sensor as above.  Looked for difference in grass 
reflectance.  Due to conditions, sensor thrashed 
around, camera mount broke and sensors hit the 
ground. 

13 14 Oct 2003 “Colonsay” 
Cecil Plains 
-27.501º, 
151.392º 

He balloon Sensor as above.  Modified tether-line attachment 
resulting in more control.  Lots of images collected 
and data analysed.  Paper published in Computers 
and Electronics in Agriculture 2007 

14 28 Jan 2004 Sandalwood 
feedlot, 
Bowenville 
-27.072º, 
151.522º 

He balloon System as above, but with dual tether lines for 
added stability.  Quantified wet areas in cattle 
feedlot and linked to odour generation. 

15 3 Feb 2004 Kingsthorpe  
-27.551º, 
151.777º 

He balloon System as above.  Investigated ability of the system 
to map weed infestations, Undergraduate study at 
USQ. 

16 12 Feb 2004 ANZ Stadium 
Brisbane 
-27.558º, 
153.062º 

He balloon System as above.  Looked for difference in grass 
reflectance and correlated with turf traction results. 

17 3 Mar 2004 Postle St 
Toowoomba  
-27.618º, 
151.917º 

He balloon System as above.  Hail damage assessment. 
Undergraduate study at USQ. 

18 22 Aug 
2004 

Wamuran 
Sunshine 
Coast 
-27.033º, 
152.864º 

He balloon System as above.  Quantified spatial distribution of 
pineapples. 

19 12 Aug 
 2004 

Nindigully  
Western Qld 
-28.476º, 
148.724º 

He balloon System as above.  Species trial with crop at early 
stage of growth.  Conditions very windy and 
resulted in cameras being dislodged and hitting 
ground. 

20 13 Sept  
2004 

Nindigully  
-28.476º, 
148.724º 

He balloon 2nd attempt at acquisition.  Crop near to flowering.  
Useful images obtained, processed and analysed.  

21 4 Oct 2004 “Tullona” 
Croppa Ck, 
NSW 

He balloon System as above.  Very windy conditions.  Due to 
large distance travelled, image acquisition 
attempted.  Wind was that strong that both tether 
lines broke and balloon along with sensor was lost. 

…continued next page 
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…continued from previous page 
22 20 June  

2005 
Wamuran 
Sunshine 
Coast 
-27.033º, 
152.864º 

10 m mast A single DC3200 camera, positioned atop a 10 m 
mast, was used to image pineapples.  Camera was 
powered and triggered by a cable that ran to the 
ground. 

23 20  Aug 
2005 

“Daybreak” 
Dalby 
-27.254º, 
151.283º 

Milne UAV Test flight of new 5 megapixel 2-camera sensor that 
was installed in a purpose built UAV. 

24 4 Oct 2005 “Lundavra” 
Goondiwindi 
-28.056º, 
150.087º 

Milne UAV System as above. Wheat / barley variety trial.  
Planned compared to Specterra aerial imagery.  Un-
fortunately too late in growing season for 
relationships to be determined. However, crop 
maturity assessment undertaken. 

25 18 Apr 2006 “Macquarie 
Downs” 
Leyburn 
-27.922º, 
151.563º 

Milne UAV System as above.  Images acquired of irrigated 
cotton that was near to picking. Investigated ability 
to detect nodes above cracked-boll. 

26 29  Mar 
 2007 

“Daneene” 
Dalby 
-27.230º, 
151.168º 

Milne UAV System as above.  Investigated nodes above 
cracked-boll in cotton due to various irrigation 
regimes.  Unfortunately, no yield monitor data as 
planned.  No further processing. 

27 29 Apr 2007 DPI Gatton 
Research 
Station 
-27.545º, 
152.332º 

He balloon Sensor as above, but He balloon utilised as 
platform.  Imagery of lettuce under various 
fertiliser regimes.  Showed good potential as an 
agronomic tool.  More data to be collected later in 
the year 

28 17 Aug – 8 
Oct 2007 

DPI Gatton  
Research 
Station 
-27.545º, 
152.332º 

10 m mast Sensor as above, however mounted atop 10 m mast.  
Imagery of lettuce under various irrigation regimes. 
Several acquisitions performed during the growing 
season.  Compared to other agronomic data 
collected.  Paper in proceedings of the 14th 
Australian Agronomy Conference, 2008. 

29 5 Mar 2008 Watts Bridge 
Aerodrome 
-27.098º, 
152.460º 

QUT 
Boomerang 
UAV 

Tested autopilot and the ability to autonomously 
trigger sensor when over waypoints.  Sensor 
modified to be triggered by autopilot.   

 

 

4.2.1 Platform 

 

As presented in the preliminary evaluation of the system (Chapter 3), extensive use 

was made of hobbyist remotely-controlled aircraft.  This use of remotely controlled 

aircraft, as the platform on which to deploy the sensor, continued during the 

development of the LCLA system.  However, there were some instances where 

remote-controlled aircraft and / or experienced pilots were not available, or the site 

was not appropriate for aircraft use.  Alternative platform configurations were 

evaluated and the same sensor system could be deployed underneath a helium 

balloon or mounted on top of a 10 m mast.  The skill level needed to fly a helium 

balloon or to use a mast was much reduced compared to that of a remotely controlled 

aircraft and, depending on the target area, made this system a viable alternative. 
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Remotely controlled aircraft 

 

Various remotely controlled aircraft were utilised as a platform for the LCLA remote 

sensing system.  In each case, the aircraft was flown by an experienced operator with 

a second person (with separate radio control gear) acting as the image acquisition 

officer.  In this development phase, the sensor was mounted underneath the fuselage 

of the aircraft and latex rubber bands were utilised to attach the sensor.  This form of 

attachment also allowed for easy removal of the sensor system (refer Figure 3.12). 

 

The system has continued to develop and has also been installed inside the aircraft 

(see section 4.2.3).  The final configuration (a purpose built pod attached under the 

fuselage) will be discussed in section 5.4.3. 

 

Balloon 

 

A balloon platform was used on missions where the deployment of unmanned aerial 

vehicles (UAV) was not possible due to either the equipment being inoperable (due 

to mishaps), the pilot was unavailable, or the location or size of the target area did 

not suit the use of UAVs.  A 1.7 m diameter latex balloon, inflated with balloon-

grade helium, provided sufficient lift to carry in excess of 1.0 kg of payload.   

 

This platform was controlled by tether-lines that were attached to the balloon, with 

the sensor being suspended underneath.  The tether-lines were played out until the 

desired height for recording an image was reached.  This height was controlled by 

viewing the video downlink footage.  The balloon was retrieved by winding in the 

tether-lines and the images downloaded and viewed on a laptop computer whilst at 

location. 

 

The details of this balloon platform system are given in the ‘Systems Deployment’ 

section 5.2.2. 
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4.2.2 1.0 Megapixel Digital Camera Sensor System 

 

During the preliminary evaluation of the sensor system, the capabilities of the 

DC3200 camera were determined (refer section 3.3.2).  With the DC3200’s proven 

ability to capture near infrared information, along with its simplicity, ease of use and 

robustness, the use of this camera continued during the development phase.  In order 

to provide a colour and near infrared sensor system, a 2-camera system was 

developed. 

 

The multispectral sensor system (see Figure 4.1) consisted of two Kodak DC3200 

digital cameras (1.0 megapixel), a small (25 mm x 25 mm) black-and-white analogue 

video camera and transmitter (used for positioning), two 6-volt battery packs, a radio 

controlled receiver, and a small printed circuit board.   

 

Powering the 2-camera system 

 

Two DC3200 cameras, which had been modified to be triggered remotely and to 

increase the sensitivity to the near infrared, were incorporated into the 2-camera 

system shown in Figure 4.1.  The cameras were mounted in a balsawood frame to 

minimise the overall weight of the system.  Each camera was powered with a 

separate 5-cell AA NiMH battery pack (6 volt direct current).  Due to the 12 volt 

direct current requirement of the video camera and transmitter, the pack was also 

connected in series to meet this requirement.  This also shared the power load 

between the two battery packs. 
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Figure 4.1 The 2-camera sensor system. 

 

Triggering the 2-camera system 

 

The method used to trigger the 2-camera system once again used the signal from a 

spare channel on the radio control equipment.  As with the system described in 

section 3.3.2, the signal was monitored by using a CMOS re-triggerable monostable 

as a missing pulse detector.  This in turn triggered a second monostable (one shot) to 

produce a single pulse.  A transistor circuit was used to provide the necessary current 

to operate a double-pole double-throw relay to activate the camera.  The use of this 

type of relay allowed complete electrical isolation between the digital cameras.  If 

the first monostable failed to receive a pulse within 100 ms from the receiver, 

resultant from the button being pressed on the transmitter, the acquisition sequence 

would be initiated to capture an image. The data was stored to the 64 Mb 

CompactFlash card inserted into each camera.  
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On the completion of the mission, the two CompactFlash cards were removed from 

the cameras and each inserted into a Personal Computer Memory Card International 

Association (PCMCIA) picture card adapter that was in-turn inserted into a PCMCIA 

Type II slot on a laptop computer.  This enabled both the colour and the near-infrared 

images to be viewed and checked for consistency and coverage of the target area.  

 

Ground-based testing 

 

On 3 June 2003, the sensing system was initially tested by driving a vehicle around a 

semi-rural area collecting images with the sensor directed out the open car window.  

Images were acquired with the vehicle travelling at approximately 17 m/s (60 kph) in 

order to investigate the effects of motion blur that would be encountered when 

mounted on the aircraft.  By mistake, both cameras had been modified to increase the 

sensitivity to near infrared (NIR).  In this test, one camera was used to capture NIR 

images (with the use of the Hoya R72 filter) with the other camera capturing a 

colour-near infrared (CIR) composite.  

 

Image was taken approximately every 30 s, with a total of 66 images captured on 

each camera.  As can be seen from Figure 4.2, the cameras captured fine detail of 

near objects (the wire pattern in the fence—approximately 10 m away) and far 

objects (vegetation).  Although this was not the preferred configuration, it however 

indicated that by removing the IR cutout filter, the sensitivity of the DC3200 was 

increased and the problems with blurring of images (due to a combination of high 

aperture and slow shutter speed) eliminated.  

 

Following this testing and the subsequent aerial testing at ‘TARMAC’, the colour-

near infrared composite camera was replaced with a partially modified (only for 

remote triggering) conventional colour camera.  The second ‘NIR sensitive’ camera 

was kept as a spare.  All further testing was conducted with the two camera sensor 

that consisted of one colour and one NIR camera. 
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Figure 4.2 The image pair, with the NIR (top) and CIR image (bottom), taken out of 

the car window at 60 kph. 
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Aerial testing 

 

‘TARMAC’ 

The sensor was test-flown on 12 June 2003 mounted on the ‘Hannibal’ UAV at the 

‘Toowoomba Amateur Radio Model Aircraft Club’ (TARMAC) flying field.  The 

installation of the sensor under the UAV is shown in Figure 4.3.  This particular 

UAV was chosen from several other platforms based on the parameters of slow 

stable flight, large fuselage and ability to carry the additional payload (due to the 2-

camera sensor).  The UAV was powered by a 25 cc methanol glow motor, which 

combined with the 2.5 m wingspan, provided ample lift to mobilise the sensor. 

 

receiver

video camera

colour camera

IR camera with 
Hoya R72

 

Figure 4.3 The sensor installed under the ‘Hannibal’ UAV at the TARMAC test, 12 

June 2003. 

 

Images were taken throughout the flight whenever the aircraft was over areas-of-

interest, which included natural and man-made features around the flying field. This 

allowed 20 images to be recorded on each camera during the 15 minute flight.  An 

example of a matched pair of images collected on this mission is displayed as Figure 
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4.4.  The images taken (in NIR and CIR) show surprising detail of a house being 

constructed (centre of image), surrounding vegetation (top left of image) and dirt 

being stockpiled (centre left of image). 

 

 

Figure 4.4 Simultaneous images captured from a UAV, utilising a Hoya R72 filter 

(top) and the CIR (bottom). 
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The system performed to expectation in this trial.  To fully test the utility of this 

system configuration, a mission was planned over a real-world situation—a winter 

cereal cropping area at ‘Argyle’. 

 

‘Argyle’ 

To test the sensor in a real world situation, images were collected over a 40 ha wheat 

field at ‘Argyle’, Macalister, about 100 km W of Toowoomba, using the 2-camera 

system.  Rather than having two NIR cameras as in the previous two sets of images, 

a ‘normal’ colour camera was substituted for the CIR camera.  Images were collected 

from this field on two separate occasions. 

 

On 14 June 2003, the 2-camera sensor was suspended underneath a 1.7 m (7 ft) latex 

balloon filled with helium (He) gas (see Figure 4.5).  The balloon was tied-off using 

a piece of cotton twine (visible in Figure 4.5).  The sensor was attached to the twine 

using four equal length pieces of nylon fishing line.  The single tether-line was 

attached to the system at the junction of the nylon fishing line and the cotton twine.  

The tether-line and the receiver antenna have been labelled in Figure 4.5.  This 

configuration was utilised as the UAV pilot was unavailable to fly the plane on this 

occasion.  During the mission, 25 images were captured on each camera.  However, 

the pairing of the images was inconsistent due to several colour images not having a 

corresponding NIR image and vice versa.  An example of a corresponding pair of 

images collected is shown as Figure 4.6. 
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Figure 4.5 The sensor installed underneath the helium balloon, 14 June 2003. 

 

As the wheat crop was at a very early growth stage (pre-tillering), indicated by the 

reflectance from the soil and displayed in high resolution images collected closer to 

the ground, little information could be used from this mission.  The mission was, 

however, a test of the use of the sensor system suspended underneath the helium 

balloon.  This method of deployment of the sensor required no flying experience, had 

less risk (compared to take-off and landing of the aircraft) and provided a stable 

platform (weather dependent).  When using the He balloon system, a slight breeze 

was beneficial when acquiring images as it raked the system over at an angle 

allowing the sensor to swing underneath the tether line.  A second mission was 

planned for a month later when the crop was more advanced.   
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Figure 4.6 The colour (top) and NIR (bottom) image collected from the helium 

balloon at Argyle, 14 June 2003. 
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The second mission occurred on 1 August 2003 and utilised the ‘Hannibal’ UAV as 

the platform (see Figure 4.7).  The UAV, prior to take-off, is shown in Figure 4.8.  

To make the identification and orientation of images easier, images were only 

acquired when over target and flying in one direction.  Although 60 colour images 

were successfully captured over the area-of-interest, no infrared images were 

recorded from the flight—only during the pre-flight taxiing period.  This had not 

been encountered on other missions and appeared to be a powering issue with the 

cameras.  On the previous missions, images were acquired at a comparatively high 

frequency (an image every 30–60 s).  On the current mission, there was several 

minutes delay from the point of being readied for take-off, until the system was over 

target and ready to acquire images.   

 

 

2 camera sensor

 

 

Figure 4.7 The 2-camera sensor installed under the 'Hannibal' UAV during the 

‘Argyle’ mission, 1 August 2003. 
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Figure 4.8 The 'Hannibal' UAV ready for take-off, 1 August 2003. 

 

Following this mission, an investigation into the operation of the cameras showed 

that after a duration of inactivity, the cameras would power down.  This duration was 

2 min 20 sec for the NIR and 2 min 40 sec for the colour camera.  This powered-

down state prevented the cameras from being able to be triggered remotely, resulting 

in images not being collected.  The frequency of attempted image acquisition was 

sufficient to ensure the colour camera’s operation, however, it was not frequent 

enough to ensure the continued operation of the NIR camera.  This resulted in no 

useful NIR images collected from this mission. 

 

Overcoming the problem of cameras timing-out 

 

To overcome the above mentioned issues of one or both cameras failing to trigger, a 

feedback and re-initialisation system was developed.  The system monitored the 

condition of each camera at each image request to ensure successful image 

acquisition.   The system, based on a micro-controller, two photo-transistors, and two 
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relays, detected the state of the light emitting diode (LED) on the rear of the camera 

that indicated the operational state of the cameras.  The LED has three states: 

1. LED is continuously energised—camera is ready for image acquisition,  

2. LED is intermittently energised (at a frequency of approximately 1 Hz)—

camera is processing and storing an image, and  

3. LED is not energised—camera is not powered, the memory is full, or some 

other problem.  

 

A photo-transistor was positioned over this LED on each camera and a micro-

controller used to monitor the state of each LED, and hence the camera readiness.  

The additional electronics associated with this micro-controller were installed on an 

electronic prototyping board, along with the double-pole double-throw relays 

described at the start of section 4.2.2.  If the micro-controller encountered a problem 

(i.e. anything other than a ready signal), power would be disconnected from both 

digital cameras and the video camera for four seconds.  This provided a visual 

feedback to the operator (via a break in video transmission) that the cameras were 

not functioning in the normal mode of operation.  This disconnection of power 

allowed the cameras to power down and reboot ready for the next image acquisition 

and ensured matching images from the pair of cameras.  The refined and modified 2-

camera sensor is shown in Figure 4.9. 
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Figure 4.9 The 2-camera sensor with camera-status detection. 

 

The images captured were stored to the 64 Mb CompactFlash™ card inserted into 

each camera. The video camera transmitted footage to the ground to aid in 

positioning with the receiver being used to trigger the cameras to initiate image 

acquisition. One camera records the visible wavelengths (approximately 400–700 

nm) and the other camera captures the near-infrared information (700–1050 nm).  

The total weight of the system was 1.0 kg.  It had a run time of two hours and could 

store 200 images (each image approximately 300 KB) per camera.   

 

Data collection events 

 

Imaging events that coincided with extensive agronomic evaluations were conducted 

at ‘Colonsay’ in 2003 and at ‘Nindigully’ in 2004.  The data collected from these two 

sites was extensively analysed and will be discussed in the following chapters.  An 

additional site at ‘Tullona’ was also imaged in 2004, however during the mission, 

both tether-lines to the helium balloon broke and the sensor and platform were lost, 

preventing a retrieval of sensed data. 
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In order to regain the ability to capture LCLA remotely sensed data, the system 

needed to be replaced.  As the DC3200 cameras were superseded and no longer 

available, an opportunity existed to upgrade the system with newer and higher 

resolution sensors.  Section 4.2.3 details this development with the results discussed 

in section 5.4.1. 

 

 

4.2.3 5.0 Megapixel Digital Camera Sensor System 

 

The camera technician who originally modified the DC3200 cameras was consulted 

regarding current camera models that would meet the requirements for a LCLA 

remote sensing system.  These requirements included: compact and low weight, 

ability to be remotely triggered, and most importantly, sensitivity to near-infrared 

light (once the NIR cutout filter is removed).  The Kodak Easyshare CX7525 (see 

Figure 4.10) Digital Zoom Camera (Eastman Kodak Company, Rochester NY) was 

recommended and the details of this camera are included in Table 4.3.   

 

 

Figure 4.10 The Kodak CX7525 digital zoom camera. 
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Table 4.2 The specifications for the Kodak CX7525 digital camera. 

CCD resolution 1/2.5 inch type (5.36 M total pixels)

Image resolution 5.0 MP (2560 x 1920 pixels)

5.0 MP - best 

4.4 MP - best 3:2 

3.1 MP - better

1.7 MP - good 

15X total zoom

3X optical zoom -- 5.6-16.8 mm (35 mm equivalent: 34-102 mm)

5X advanced digital zoom

Aperture f/2.7-5.2 (wide); f/4.6-8.7 (tele)

Shutter speed 1/2 - 1/1400 seconds

Display 4 cm indoor/outdoor color display

Burst mode 2.4 fps, up to 5 pictures

Click to capture 0.6 seconds

Shot to shot 1.3 seconds

Movie mode continuous MPEG-4 video with audio capture/playback

VGA (640 x 480 pixels) at 13 fps

QVGA (320 x 240 pixels) at 20 fps

Movie file format Still: JPEG/EXIF v2.21; Movie: QuickTime MOV (MPEG-4 compression)

Auto focus TTL-AF, multi-zone, center-zone

Standard - 60 cm  to infinity

Landscape - 10 m to infinity

Close-up wide - 13-70 cm

Close-up tele - 22-70 cm 

ISO equivalent 80-160 (automatic) and 80, 100, 200, 400 (manual)

White balance auto, daylight, tungsten, fluorescent

Light metering method TTL-AE, selectable: multi-pattern, center-weighted, center spot

Exposure control programmed AE

Long time exposure 0.7-4 seconds

Flash range wide - 0.6-3.6 m ; tele - 0.6-2.1 m

Auto-orientation auto picture-rotation

Storage 16 MB internal memorySD/MMC card expansion slot

Self-timer 10 seconds

Power options 2 AA KODAK MAX Digital Camera Batteries; 2 AA lithium or Ni-MH 
batteries or 1 CRV3 lithium battery; 3 volt DC

Weight without batteries - 178 g

Dimensions 103 (w) x 65 (h) x 38 (d) mm 

Standard Features

Picture quality 

Zoom 

Ease of Use Features

Additional Features

Performance Features

Movie image resolution 

Focus distance 
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Two of the CX7525 cameras were purchased and modified to be remotely triggered 

(see Figure 4.11). The NIR cut-out filter of one camera was removed and replaced 

with clear glass to improve the sensitivity to near-infrared light (as was performed on 

the DC3200 cameras, refer section 3.3.2).  Table 4.3 compares the improved features 

of the CX7525 to those of the DC3200. 

 

connected to 
shutter release 
button

shutter trigger 
cable

 

Figure 4.11 The CX7525 that has been modified to increase sensitivity to near-

infrared light and to enable electronic triggering. 

 

Table 4.3 Comparison between the DC3200 and CX7525 digital cameras. 

 

Feature DC3200 CX7525 

CCD sensor 1152 x 864 = 1.0 Megapixel 2160 x 1920 = 5.0 Megapixel 

Power 4 x AA 2 x AA 

Image storage CompactFlash Secure Digital 

Dimensions 113 (w) x 53 (d) x 81 (h) mm 103 (w) x 38 (d) x 65(h) mm 

Weight 215 g without batteries 178 g without batteries 
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Not only was the CX7525 smaller and lighter than the DC3200, it also had a greater 

resolution and required two less batteries to power it.  In storing the images, it also 

recorded the image details (i.e. time taken—helpful for sequencing images) and 

cameras settings (i.e. F-stop, exposure time, focal length and program mode). In 

addition, the CX7525 was able to be continuously energised by pulsing the pre-

release on the shutter.  With the camera set on the ‘Best’ setting, the Joint 

Photographic Experts Group (JPEG) compressed images varied in size from 400–900 

Kb depending on the subject.  The larger images required larger data cards, thus 512 

Mb cards were utilised for this study. 

 

A 2-camera sensor configuration, similar to that used with the DC3200 cameras, was 

developed and is shown in Figure 4.12.  Rather than the low-end 29 MHz radio 

control equipment, as used with the DC3200 (detailed in section 3.3.2), higher 

performance 36 MHz equipment was utilised.  As with all radio control equipment, 

the output was a 50 Hz square wave (a pulse every 20 ms) with a pulse width of 0.9–

2.1 ms, depending on the position of the radio control stick.  The output of the 36 

MHz equipment was much cleaner than that of the 29 MHz equipment and was 

monitored by the use of a micro-controller (PICAXE-08, details at 

http://www.picaxe.co.uk).  The logic in the programmable chip was used to monitor 

the pulse width on the designated channel of the radio equipment. 

 

When image acquisition was initiated (by ‘flicking-up’ the elevator stick) the 

changed pulse width was detected and determined to be greater than a pre-

programmed value (1.6 ms) resulting in a pulse being output from the PICAXE to 

trigger the cameras.  In order to prevent the cameras going to sleep (one of the 

problems encountered with the DC3200s) a pulse of 2 s duration was sent every 25 s 

to the pre-shutter-release of the cameras to keep the cameras awake.  As with the 

DC3200s, the cameras were mounted in balsa frame.   

 



Chapter 4                   Developing a Low-Cost Low-Altitude Remote Sensing System 
 

 98

digital cameras

electronics
battery pack

receiver

 

Figure 4.12 The 2-camera sensor utilising the CX7525 cameras (top view). 

 

As the lens extends from the camera when powered, adapters were machined to 

accommodate this extension.  The adapters were also used to securely attach the 58 

mm diameter ‘Hoya R72’ filter for the NIR-sensitive cameras and the ‘Fotar ultra-

violet (UV)’ filter for the colour camera (see Figure 4.13).  The UV filter had no 

affect on the sensitivity of the colour camera and was used primarily to keep foreign 

objects off the camera lens and to making cleaning easier. 
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Figure 4.13 The underside view of the 2-camera sensor and the radio control 

transmitter. 

 

Aerial testing 

 

The sensor (mounted on the ‘Milne’ UAV) was test flown on 20 September 2005 at 

‘Daybreak’ Dalby.  The installation of the sensor in the UAV is shown in Figure 4.14 

and the UAV prior to take-off in Figure 4.15.  This particular UAV was specifically 

constructed as a low-cost low-altitude remote sensing platform by Milne Industries, 

Dalby.  The UAV, a shoulder wing monoplane, was designed for slow stable flight, 

with a fuselage of sufficient size to carry the additional payload (courtesy of the 2-

camera sensor).  The UAV was powered by a 35 cc methanol glow motor, which 

combined with the 2.5 m ‘Clark Y’ lifting section wing, provide ample lift to 

mobilise the sensor and plane (gross mass 10 kg).  The UAV was also equipped with 

a video camera downlink (to aid in positioning) and a live telemetry system.  The 

telemetry system provided ground staff with 10 s updates of the platforms airspeed, 

engine condition, altitude and heading. 
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Figure 4.14 The CX7525 2-camera sensor installed in the ‘Milne’ UAV. 

 

 

Figure 4.15 The ‘Milne’ UAV being prepared for takeoff, 20 September 2005. 
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Two separate missions were conducted on this day.  The first mission was to collect 

some images and to check that the sensor system was functioning as expected, while 

the second mission was intended to acquire images.  Over a 25 minute window, 100 

images were collected on both the colour and the near-infrared cameras.  Images 

were taken throughout each flight whenever the aircraft was over areas-of-interest, 

such as natural and man-made features.  An example of a matched pair of images 

collected on this mission is displayed as Figure 4.16 (near-infrared) and Figure 4.17 

(colour).  The high reflectance in the NIR of the green grass and the trees in the 

orchard / around the residence is clearly visible in Figure 4.16.  The complete 

absorbance of the NIR light by the pool is evident in the centre bottom of the images.  

The green grass, trees and infrastructure around the residence are also clearly shown 

in the colour image (Figure 4.17).  

 

Figure 4.16 The near-infrared image collected on the ‘Daybreak’ mission, 20 

September 2005. 
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Figure 4.17 The matching colour image for Figure 4.16. 

 

Data collection events 

 

This 5 megapixel low-cost low-altitude sensing system has since been used on 

numerous other occasions with two of these having application to precision 

agriculture in crops: 

• The first application was a continuation of investigations into cereal crops 

with the configuration used at ‘Lundavra’ to acquire images over a wheat 

variety trial on 4 October 2005 (Mission #24), and 

• Finally, a trial was conducted, with researchers from the Australian Research 

Centre for Aerospace Automation (ARCAA) - Queensland University of 

Technology (QUT) (Mission #29), on the ability of UAV autopilot to 

accurately trigger the 2-camera sensor when at a desired location. 
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One of the limitations of the existing system was that a great number of images look 

alike and unless a large number of natural features or artificial targets are present at 

the location, it was hard to identify and orientate the images.  This situation was 

overcome on the second application mentioned above.  On this mission, images were 

automatically obtained at predetermined locations by a UAV being controlled by an 

autopilot.  The 5.0 megapixel sensor system was used to capture the images.   

 

The two advances–the use of the 5.0 megapixel sensors and the use of the 

autopilot— are discussed in Chapter 5.4 and the results discussed in Chapter 6.4. 

 

 

4.2.4 Tasking and Deployment 

 

Site considerations  

 

In order to have the best opportunity of quantifying the parameters being 

investigated, sufficient within-field spatial variability should exist in that parameter 

in the target area.  Best management practises should also be employed to ensure that 

this variability is not masked by other parameters such as poor nutrition, poor pest 

management or compaction.  In order to overcome some of these limitations, 

controlled traffic farming enterprises were used wherever possible.  In addition, to 

aid in the analysis and understanding of the results, other agronomic datasets were 

collected, whenever possible. 

 

Deployment checklist  

 

The set of procedures detailed in Table 4.4 was reviewed prior to every mission to 

capture LCLA remotely sensed imagery in an attempt to ensure the success of the 

activity.  This includes the initial acquisition and any follow-up missions. 
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Table 4.4 Deployment checklist for completion before each mission. 

 

Operational Procedures  

Weather conditions conducive to imagery collection □ 
Crop at appropriate stage of growth □ 
Permission of landowner □ 
Pre-mission planning (wind direction and direction of strips) □ 
Good agronomic practises undertaken (i.e. so weeds etc. do not hinder associations) □ 
  
Sensor (camera)  

Spare batteries and batteries in camera charged and unit working correctly □ 
Appropriate filters selected □ 
Video down link working □ 
Image storage sufficient for area to be covered □ 
Access to picture card adaptor □ 
Sufficient space on laptop hard disc to store images □ 
Laptop batteries charged and appropriate cables / adapters to download images □ 
Height of image capture determined by ground pixel resolution required  □ 
  

Platform (plane)  

Access to experienced remote control aircraft operator □ 
Take off and landing areas identified, emergency landing area also identified. □ 
Visually inspect aircraft for damage in transit. □ 
Fuelled up □ 
Radio communications batteries charged and working □ 
CASA approval if near airstrip □ 
Check each control surface on the aircraft moves freely and in the correct sense □ 
Let engine warm-up and check pick-up from idle to full power is satisfactory □ 
Under full power, recheck all flying controls □ 
  

Platform (balloon)  

Sufficient consumables (He gas and latex balloons) □ 
Check integrity of tether lines □ 
Double check attachments of all equipment □ 
  

Ground Control  

If images to be georeferenced, DGPS required.  Check operation of GPS. □ 
Are there sufficient natural features in image able to be used for georeferencing (e.g. 
End of paddock, trees, roads etc.)? 

□ 

If insufficient natural features, insert man-made features  □ 
Ensure good field notes to easily identify location of GCP in image □ 
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4.2.5 Costings for the LCLA System 

 

The minimal requirements for a LCLA remote sensing system are detailed below.  

The components are split into sensor and platform, with each being detailed 

separately. 

 

Sensor 

 

When the original 1.0 megapixel digital cameras were purchased in 2001, they cost 

the same as the 5.0 megapixel cameras purchased in 2005. 

 

 

 

 

 

Platform 

 

The various costing for the components that constitute the platform are listed below. 

 

Helium Balloon  

1.7 m diameter latex balloon 40 

Helium gas to fill 200 

Total (per mission)  $240 

  

Hobbyist Remotely Controlled Aircraft  

Nearly ready to fly 1/6th scale model (2.3 m wingspan) kit 330 

90 size (0.9 cubic inch) 2 stroke glow motor 300 

6 channel radio 400 

Total (capital cost) $1030 

  

Autonomous UAV  

A platform and radio equipment similar to above 1500 

Autopilot (minimum $3000, as tested approximately $8000) >3000 

Total (capital cost) >$4500 

 

2 x Modified camera including batteries and memory card @ $400 ea 800 

1 x Hoya R72 filter 50 

Total (capital cost) $850 
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The operating cost ranges from approximately $10 (depending on flying time) to 

cover the fuel used by the UAV to $240 / mission for the He balloon platform (the 

gas and balloon are consumables).  However, there is no capital expenditure for the 

balloon platform and ranges from $1000 upwards, depending on the sophistication of 

the UAV.  Low-cost low-altitude remote sensing can be performed for under 

AUD$2000.  However, if a fully autonomous system is preferred, the expense will be 

in excess of AUD$5500.  Note price current in 2007. 

 

 

4.3 Conclusions 

 

 

This chapter detailed the development of the two components that make up the 

LCLA remote sensing system—the sensor and the platform. 

 

The 1.7 m diameter helium balloon platform provided enough lift to mobilise the 

sensor system.  The ability to position the balloon over the target, at varying heights, 

with no flying skills, made for a valuable imaging tool.  If the mission did not suit the 

use of helium balloon, hobbyist remotely controlled aircraft were also utilised as the 

platform with purpose built UAV utilised on the latest missions.  

 

The 1.0 megapixel cameras provided good information and set the minimum 

resolution requirement for a LCLA remote sensing system.  However, using 5.0 

megapixel cameras resulted in a halving of the pixel size for the same height of 

image acquisition, or keeping the same pixel size and acquiring the images from a 

greater height.  This increased the extent of the images and proved the better 

alternative. 

 

The evaluations undertaken during the development of the LCLA remote sensing 

system indicated that it had the potential to meet the spectral, spatial, temporal and 

cost prerequisites detailed in Chapter 1.  Very fine levels of detail could be detected 

by the system and the portion of the spectrum covered by sensor provided 

information that would be useful to agriculture.  The NIR bands provided good 
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differentiation between crop and soil allowing planting misses and overlaps to be 

detected in a cropping field.  In addition, lawn, pasture and different tree species are 

all spectrally discernable.   

 

Both the UAV and the helium balloon had the capacity to be used on a regular basis.  

All of this was achieved with modified low-cost consumer digital cameras and 

readily available platforms (hobbyist remotely controlled aircraft or helium balloon), 

with the skill level to fly the RCA higher than that of the balloon.  This can all be 

achieved for under AUD$2000. 

 

In order to evaluate the application of the LCLA remote sensing system, testing and 

mapping of cereal crops was required.  The materials and methods undertaken to 

perform these tasks were detailed in Chapter 5, while the analysis and discussion of 

the results were detailed in Chapter 6. 



Chapter 5 

 

Crop Mapping Methods using the LCLA System 
 

 

Preliminary testing of the low-cost low-altitude (LCLA) remote sensing system 

indicated the system possessed appropriate spatial, spectral and temporal resolutions 

for use in precision agricultural studies.  This chapter describes the methods used in 

evaluating the classification and prediction accuracies, when mapping cereal crop 

attributes, to confirm the applicability and usefulness of the LCLA remote sensing 

system. 

 

 

5.1 Introduction 

 

 

The methods used in the evaluation of the LCLA remote sensing system that is 

appropriate for use in precision agriculture comprises the following sections: 

a) Selection of trial sites and auxiliary data layers; 

b) Deployment of the system for data collection ; 

c) Extraction of information (using image processing, statistical analysis and 

geographic information systems) from the images acquired from the LCLA 

remote sensing system to: 

• Map grain yield, protein and maturity, and  

• Discriminate different crop types; 

d) Evaluation of the unmanned aerial vehicle (UAV) autopilot for use in a 

LCLA remote sensing system. 

The methods undertaken to analyse the acquired images are shown in Figure 5.1. 
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Figure 5.1 The sequences for digital image analysis adopted in this research. 

 

 

Capture digital images 

Select those to be processed 

Is geo-
referencing 
necessary 

 
Collect GCPs 

Orthorectification 

Preprocessing 

Information extraction 

Statistical analysis Classification 

Auxiliary data Ground truth 
data gathering 

DA 
analy

PLS 
analy

Correlation 
analysis 

Pixel-based 
analysis 

Object orientated 
analysis 

Output 

Unsupervised Supervised 

Output Output 

Accuracy assessment and 
comparison 

Improved knowledge 

Analysis 

Y N 

refining method 

SPSS 

SPSS 
Unscrambler 

Imagine 

ECognition 

LCLA RS 
system 

GPS 

GPS 
GPS 



Chapter 5                                          Crop Mapping Methods using the LCLA System 
 

110 

 

5.2 Grain Yield and Protein Mapping 

 

 

5.2.1 Study Area 

 

The study area was located at the ‘Colonsay’ fertiliser trial site, in the Cecil Plains 

district of south-eastern Queensland (-27.501º, 151.392º), Australia (see Figure 5.2).  

This site was established to monitor the long-term effects of varying nutrient 

applications with fertiliser treatments being imposed at this location since 1985.  The 

soil at the site is described as a deep self-mulching black vertosol (Isbell 1996) 

described as a Waco soil series (Harris et al. 1999). 
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Figure 5.2 Location of the Colonsay trial in the Central Darling Downs region of 

Queensland.  
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Cereal wheat (Triticum aestivum cv. Strzelecki) was sown on 13 June 2003 into plots 

that received varying rates of nitrogen (N), phosphorus (P), and sulphur (S) fertiliser.  

The crop row spacing was 250 mm.  Two experiments were operating concurrently, 

an N x P experiment and an S experiment.  There were 20 treatments with three 

replicates in a split plot experimental design (see Figure 5.3).  The split plot was to 

allow the N fertiliser to be applied pre-plant and at sowing.  This pre-plant 

application was not possible in 2003, so both sub-plots were treated the same, with 

the N being side-dressed with the seed at sowing.  Each sub-plot is 2.5 m wide and 

50 m in length.  The N x P experiment consisted of a combination of 4 N rates (0, 40, 

80 and 120 kg/ha) and 4 P rates (0, 5, 10 and 20 kg/ha) applied with the seed at 

sowing.  The N was applied as urea (46% N) and P as triple super-phosphate (20.7% 

P). 

 

As the fertiliser rate for each plot had not been varied since the treatments were 

imposed in 1985, there was a diverse range of nutrition levels retained in this trial 

that could be used for comparison and evaluation purposes (refer to Figures 5.4, 5.5 

and 5.6). Figure 5.4 shows a close-up oblique photo taken from the ground of several 

rows of plants in both a low and in a high nutrition plot.  Figure 5.5, a close to 

ground aerial shot shows a close-up of five plots with nutrition levels ranging from 

low to high, while Figure 5.6 shows an overhead view of a majority of the trial site, 

both acquired from the LCLA system.   

 

The starting moisture (immediately prior to planting in 2003) was uniform across all 

plots tested.  Pre-plant available N rates varied from between 1.0 kg/ha, where no 

fertiliser was applied, to over 150 kg/ha being available at the high (120 kg/ha) 

nutrition plots.  Plots of plant available water and plant available N are shown in 

Figures 5.7 and 5.8.  Depending on the season, maintenance levels for crop 

production in this region and on this soil type ranged between 40–60 kg/ha for N and 

between 5–8 kg/ha for P.  This is evident by depletion of N in subsoil layers (below 

30cm) with the lower (0 kg/ha) rate, break even with the 40 kg/ha rate and 

accumulation with the higher (80 and 120 kg/ha) N application rates.  Had the 

rainfall in the preceding season not been below average, these dryland crops may 

have needed a higher annual N rate (greater than 40–60 kg/ha) to maintain supply. 
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Figure 5.3 Schematic layout of 'Colonsay' site for 2003. 
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Figure 5.4 Example of a plot with low nutrition levels (left) and high nutrition levels 

(right). 

 

 

Figure 5.5 The range of nutrition levels in adjacent plots as captured by the LCLA 

remote sensing system. 
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Figure 5.6 The range of nutrition levels evident in two-thirds of the trial site as 

captured by the LCLA remote sensing system. 

 

A large range of agronomic measurements was taken at this site on which public and 

private research was being conducted.  Some of these measurements included the 

following: the amount of fertiliser applied, plant cut information (chemical analysis, 

tiller number and leaf area index) during the growing season, soil analysis at planting 

(nutritional information, water content) and harvest parameters (yield and protein 

content).  The analysis conducted as part of this research focused on the relationship 

between these ‘at-harvest’ parameters and imagery.  
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Figure 5.7 The range of plant available water contents for the various soil depths 

across the range of nitrogen treatment plots, immediately prior to planting in 2003. 

 

The crop was machine-harvested at 155 days after sowing (DAS).  The grain was 

weighed and a sub-sample taken for further analysis.  Moisture and protein were 

determined from this sub-sample using the routine methods of near infrared (NIR) 

spectroscopy and Kjeldahl digest (Reyns et al. 2001; Wang et al. 2004).  The values 

of grain yield and protein were thus an average of the whole plot, and were corrected 

to the Australian industry wheat standard of 12% (Kelly et al. 2004).  
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Figure 5.8 The range of available nitrogen for the various soil depths across the 

range of nitrogen treatment plots, immediately prior to planting in 2003. 

 

 

5.2.2 System Deployment  

 

The LCLA system was deployed at the ‘Colonsay’ site on two separate occasions (2 

September and 14 October 2003) during the growing season of the wheat crop.  On 

both occasions, the system was deployed below a 1.7 m (72 inch) diameter ‘Prestige’ 

latex balloon (manufactured by Tilco International Inc, St-Jean, Quebec, Canada) 

that was inflated with balloon-grade helium (containing 97% He – details at 

http://www.boc.com.au/) to provide sufficient lift to carry the 1.0 kg sensor.  The 

balloon was tied off with a soft cotton string (the process being undertaken at a 

football stadium in Figure 5.9).  What differed between the September and October 

imaging dates was the attachment of the sensor to the balloon and tether-line. 
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Figure 5.9  Tieing-off the inflated latex balloon with soft cotton string. 

 

Deployment 2 September 2003 

 

The system (see Figure 5.10) utilised the 2-camera sensor detailed in section 4.2.2.  

In order to suspend the sensor below the balloon, a doubled-up length of cotton twine 

was looped over the twisted neck of the balloon before it was doubled back on itself 

and tied.  Both the tether-line and four even lengths of nylon fishing line, which were 

secured to each corner of the sensor, were attached to the twine.  The sensor hung 

under the force of gravity below the balloon.   

 

On the day of image acquisition, 2 September 2003 (81 DAS), there were a few 

scattered clouds and a gentle to light breeze blowing.  The balloon was deployed by 

playing out the tether-line by releasing the brake on the Alvey® sidecast fishing reel. 
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The sensor system was positioned above the area of interest by viewing the video 

footage (that was being transmitted from the sensor system to a receiver and monitor 

on the ground) and adjusting the tether-line accordingly.  The majority of the trial 

site was in view with the sensor positioned at approximately 400 m (derived from the 

lens geometry and ground pixel resolution) above ground level. A total of 75 images 

were acquired with each camera in the hour either side of solar noon.  

neck of balloon twisted and 
doubled back on itself

 tetherline

 sensor

 soft cotton 
twine

 1.7 m latex balloon

Figure 5.10 A schematic representation of the sensor as deployed on 2 September 

2003. 

 

Due to the gentle breeze, the sensor was generally positioned directly overhead, 

resulting in the tether-line contacting and interfering with the suspended sensor.  This 

contact caused the sensor to rotate uncontrollably.  When the captured images were 

reviewed on the ground, this rotation resulted in blurring of a large number of the 

images.  The system is shown prior to deployment in Figure 5.11 and airborne in 

Figure 5.12. 
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Figure 5.11  Preparing for sensor deployment at 'Colonsay'. 

 

 

Figure 5.12 The sensor is airborne. 
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Although some of the images were blurred, several image pairs (see Figures 5.13 and 

5.14) show the potential of the system if the amount of movement of the sensor could 

be reduced.  These images collected were not analysed due to the motion blur and 

because they were collected quite early in the growing season.  

 

 

Figure 5.13 Colour image of the NW corner of the trial site. 

 

 

Figure 5.14 The NIR image that matches with the colour image shown in Figure 

5.13. 
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Deployment on 14 October 2003 

 

On the second image acquisition at the trial site, the rotation / motion of the sensor 

had been reduced.  As with the previous acquisition, soft cotton twine was looped 

over the twisted neck of the balloon.  Rather than attaching the balloon directly to the 

four nylon lines, it was hooked onto 2 x 25 kg breaking strain ‘Halco Supa Snap 

Trace’ wires (details at http://www.halcotackle.com/) that were fixed to a stabilising 

frame.  The frame was constructed of balsa wood and served to attach the tether-line 

to the balloon.  The frame also provided a location where the sensor was suspended 

and could hang under the force of gravity.  To stop the sensor from rotating freely 

beneath the frame, the rotation was restricted to ± 15° by the use of a slack light 

nylon line that was treaded through the sensor and attached to the two stabiliser arms. 

 

Also attached to each stabiliser arm was a trace wire (25 kg breaking strain).  A 

single tether-line (25 kg breaking strain nylon fishing line), was attached to the 

joined trace wires.  This configuration is shown schematically in Figure 5.15 and 

prior to deployment (at a football stadium) in Figure 5.16.  Depending on the wind 

direction and sensor orientation, there were some instances where the tether-line and 

trace wires were visible in the acquired images, as in Figure 5.17 (left hand corner).   

 

The day of image acquisition, 14 October 2003 (123 DAS), had clear skies and only 

a light breeze blowing.  The balloon was deployed by playing out the tether-line by 

releasing the brake on the Alvey® sidecast fishing reel.  As the line was run out, the 

person controlling the line moved into the wind so as to position the sensor above the 

trial site. The sensor was again positioned at 400 m (as in the September acquisition) 

to cover the site and approximately 200 images were acquired with each camera in 

the hour either side of solar noon.   
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 stabiliser arm

 sensor

neck of balloon twisted and 
doubled back on itself  1.7 m latex balloon

 soft cotton 
twine

 tetherline

 

Figure 5.15 A schematic representation of the sensor as deployed on 14 October 

2003. 
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Figure 5.16 The balloon attached to the stabilising frame with the sensor suspended 

underneath prior to deployment at a football stadium. 

 

 

5.2.3 Image Processing and Analysis 

 

On both image acquisition events, the images captured during the deployment were 

stored on the memory cards in each of the cameras.  The images were viewed using 

the procedures detailed in section 4.2.2 to ensure sensor operation and that images 

were acquired from across the entire trial site.  The images were later transferred to a 

desktop computer for analysis.  One of these images is shown in Figure 5.17.   
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Figure 5.17  The colour image that was further processed. 

 

A total of 29 global positioning system (GPS) locations were recorded throughout 

the trial site (see Figure 5.18), to be used in later analysis.  Locations such as corner 

of trial block, missing rows, corner post etc. were identified and position recorded 

using a Compac Aero 2130 (Windows CE based) pocket computer that was running 

FieldRover II GIS software (SST 2000). The pocket computer was connected to the 

CSI LGBX Pro (details at http://www.csi-dgps.com/) differential GPS receiver, 

receiving the differential correction from the Australian Maritime Safety Authority 

(AMSA–details at http://www.amsa.gov.au/) guidance beacon (located in Brisbane – 

294 kHz frequency).  In order to obtain the best possible GPS fix, locations were 

only logged when the age of the differential correction was less than three seconds 

and more than six satellites were used to provide the solution, thus providing the sub-

metre accuracy.  
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Figure 5.18  The ground control points used to geo-reference the image. 

 

An ESRI shapefile of the GPS locations was exported from the FieldRover II (SST 

2000) software and imported into ERDAS Imagine 8.6 (ERDAS 2002), the software 

that was used to perform the image analysis.  The images that were transferred to the 

desktop computer were scrutinised in an image-viewing package for trial site 

coverage, clarity and compatibility between the colour and infrared images.  The 

most appropriate images were chosen to be imported into the image analysis 

software.   

 

The NIR image was chosen for geo-referencing due to the relatively clearer 

definition in the image.   The green growing crop was clearly defined from the soil 

and stubble due to the fact that chlorophyll is extremely reflective of NIR and that 

soil / stubble is not.  Geo-referencing was performed using 17 of the 29 locations that 

were recorded with the differentially corrected GPS at the time of image acquisition.  

Locations that were outside of the image extent or not able to be clearly defined in 

the image were not used.   The geometric correction, using a polynomial model of 
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the second order, was performed using 8 check points, and 9 control points.  This 

resulted in a root mean squared (RMS) error (total) of 20.3 pixels.  Using the nearest 

neighbour resampling method gave an output cell size of 0.25 m and hence an RMS 

error of 5.07 m.  This was much greater than the accuracy of the differential GPS, 

and with the plots only being 2.0 m wide, could have resulted in there being a 

misalignment of over two and a half plots.  This was not acceptable. 

 

The procedures were reviewed and it was found that during conversion from the 

proprietary format in Field Rover software to the shapefile format, two significant 

figures were lost from the longitude and three significant figures were lost from the 

latitude.  This was rectified by importing the proprietary files into Microsoft Excel 

and manipulating the data and saving as a text file.  This *.txt file was imported in 

ArcView 3.1 (ESRI, Redlands CA USA) and saved as a shapefile.  The shapefile was 

accessed and the geometric correction was redone: this time using 18 GPS locations.  

The control point error (using 7 points) was reduced to 3.60 with an output cell size 

of 0.248 m, equating to an RMS error of 0.895 m.  This error was comparable to the 

sub metre accuracy of the differential GPS and was considered acceptable. 

 

The colour image was registered to the already geo-referenced NIR image (described 

above) using the image-to-image registration function of the software.  Using 24 

ground control points (GCP) selected from throughout the image, the control point 

error (seven points) was 0.958, with an output cell size of 0.254 m using nearest 

neighbour resampling (see Figure 5.19).   

 

Several attempts were made to use this spatial information (GPS location points and 

georeferenced images) to register the images collected on 2 September.  Firstly, a 2 

September near-infrared image was registered to the geo-rectified 14 October near-

infrared image. This resulted in a control point error of 1.7 m.  Using the swipe 

feature of the analysis software, the extent of this error was highlighted.  The road 

was positioned a full road width out and there was overlap in the plots.  In an attempt 

to improve this error, the same NIR image was registered to the ground control 

points collected on 14 October.  The control point error increased to over 2.0 m. 
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The clearly defined features evident in the 14 October ground control point 

collection were not as evident in the image from 2 September.  This may have been 

due to differential crop growth and mowing around the periphery of the plots.  This 

made the selection of GCP more ambiguous and resulted in the increased error of 

registration.  These ambiguous features, as well as the blurring in the images caused 

by the sensor rotation, hindered the image-to-image registration.  Thus, analysis 

efforts were concentrated on 14 October acquired images. 

 

 

Figure 5.19 Ground control points chosen to register the colour to the NIR image. 

 

With the colour image registered to the NIR image, the process of extracting pixel 

values was undertaken by defining areas of interest (AOI).  No radiometric 

rectifications were performed on the images with the raw digital number (DN) values 

being exported to be analysed.  This is the same process as used in other studies 

using digital cameras as an image acquisition tool (Staggenborg & Taylor 2000; 

Yang et al. 2000).  Initially, the whole treatment (containing two adjacent plots) was 

defined.  The whole treatment plots were compared with six ‘5x5 kernels’ randomly 

defined at uniform areas within the trial (see Figure 5.20).   
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Figure 5.20 Selecting the areas of interest for the whole treatment and the ‘5x5 

kernel’ study. 

 

The box-plot results of the AOI study are shown in Figure 5.21. The outliers are 

shown as “o” (values between 1.5 and 3.0 box lengths from the upper or lower edge 

of the box), with the extreme cases (those with values more than 3.0 box lengths 

from the upper or lower edge of the box) are displayed as a “*”.  The box length is 

the inter-quartile range. 
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Figure 5.21 Box-plots of the digital numbers for the various bands*, selected using 

the ‘5 x 5’ kernel (left) and whole plot (right) AOIs (subplots 45 and 46). 

*Colour camera (R-red sensor, G-green, B-Blue), NIR camera (NIRR-red sensor, NIRG-green, NIRB-blue) 

 

Graphically, there is very little difference between each method.  Reviewing the 

summary statistics indicated that although the ranges were greater in the ‘whole’ 

plot, the differences in averages between the two selection methods ranged from less 

than 0.1 % for the green sensor in the colour camera to just less than 4.0 % for the 

green sensor in the NIR camera (NIRG).  As the ‘whole’ plot consisted of two 

identical plots side by side, treating each individually added statistical rigour.  A two-

pixel buffer around each plot also reduced the number of mixed pixels and this was 

the method utilised for further analysis (see Figure 5.22).  This method of analysis 

was in line with the primary interest of this investigation, the crop attributes of yield 

and protein, which were measured for the whole plot. 

 

The pixel values (DN) for the whole plot (except for a two-pixel buffer around the 

edge of the plot and around any other anomaly encountered) were extracted.  This 

resulted in an average of 1300 pixels that were exported for each plot.  Box-plot 

examples showing band values for a 0, 40, 80 and 120 kg/ha of applied nitrogen are 

shown in Figures 5.23 and 5.24.  The average values for each of the 120 plots were 

formulated into a table on which statistical analysis could be conducted.  
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Figure 5.22 Selecting the area of interests (AOIs) for each of the plots (note the two 

pixel margin around each plot). 
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Figure 5.23 Box-plot of the digital numbers for all six bands for plot 41 (0 kg/ha N 

applied–left) and plot 51 (40 kg/ha N applied–right). 

Figure 5.24 Box-plot of the digital numbers for all six bands for plot 57 (80 kg/ha N 

applied–left) and plot 43 (120 kg/ha N applied–right). 
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5.2.4 Statistical Analysis 

 

The statistical analysis included correlation and discriminant function analysis using 

SPSS for Windows® Version 12.0.1 (SPSS 2003) and partial least squares regression 

using Unscrambler 9.1 (CAMO 2004).  The correlation analysis and partial least 

squares regression were performed on the raw digital camera bands and the 

vegetation indices that could be derived using these bands.  The discriminant 

function analysis (DA) was performed on the raw camera bands. 

 

Correlation analysis estimates the coefficients of the linear equation that best 

predicts the value of the dependant variable and measures the strength of the 

relationship between the two variables (SPSS 2003).  This procedure was used to 

investigate relationships between the bands and indices obtained with the LCLA 

remote sensing system and crop parameters (yield and protein).   

 

Discriminant function analysis (DA) is a technique for combining independent 

variables into a new variable, on which each case in the study gets a score.  This new 

variable, known as a discriminant function, is constructed in such a way that the 

score separates and/or discriminates among other cases in the different categories of 

the dependent variable (Kinnear & Gray 2004).  A statistic called Wilks’ lambda is 

use to test the efficacy of the discriminant function in producing significant 

differences among the target groups.  The smaller the Wilks’ Lambda, the more 

important the independent variable is to the discriminant function. 

 

In SPSS there are two types of discriminant analysis: direct and stepwise.   In direct 

DA, all variables are entered into the equation at once.  With stepwise DA, statistical 

criteria alone determine the order of entry.  The later procedure selects variables for 

inclusion within each step, however, before choosing a new variable to include, it 

checks to see if all of the variables previously selected remain significant (Johnson 

1998).  The stepwise DA is the most generally used (Kinnear & Gray 2004), 

especially where the number of variables is large (Johnson 1998). 
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When there are only two groups on which to perform a stepwise DA, there is just one 

discriminant function.  However, with more than two groups, there can be several 

functions.  It is unusual for more than the first three discriminant functions to be 

statistically robust, with the first function providing the best means of predicting 

group membership.  Later functions may or may not contribute reliably to the 

prediction process (Kinnear & Gray 2004).   

 

Stepwise DA was performed to quantify the ability of the sensor to accurately 

discriminate between the various fertiliser regimes present at this site, and has been 

used elsewhere to: a) evaluate nitrogen status in wheat (Filella et al. 1995) and in 

corn (Strachan et al. 2002), b) discriminate weeds (Piron et al. 2008), and c) provide 

an objective means of defining the minimal set of parameter necessary to evaluate 

malting quality in barley (Gianinetti et al. 2005). 

 

Partial least squares regression (PLS) was implemented to assess the predictive 

power of the relationship between grain yield / protein and imagery values.  PLS 

regression is a bilinear modelling method for relating the variations in one or several 

response variables (Y-variables) to the variations of several predictors (X-variables), 

with explanatory or predictive purposes (Esbensen 2002). Unlike the classical 

multiple regression technique, PLS performs particularly well when the various X-

variables have high correlation (which is often the case for multispectral data). 

Information in the original X-data is projected onto a small number of underlying 

(“latent”) variables called PLS components. 

 

Aside from the raw imagery data, the set of derived vegetation indices was also 

calculated and analysed using the full cross-validation (leave-one-out) technique. 

The root mean squared error of prediction (RMSEP) was calculated, which gave the 

measurement of the average difference between predicted and measured response 

values.  It can be interpreted as the average prediction error, expressed in the same 

unit as the original response value (CAMO 2004).  The RMSEP values between 

datasets can be compared to determine which PLS regression model is better than 

others.  The statistical procedures undertaken will be expanded on and the results 

discussed in Chapter 6.2. 
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5.3 Crop Type Discrimination and Mapping 

 

 

5.3.1 Study Area 

 

The study area was located at ‘Dunkerry South’, a farming systems trial site, near 

Nindigully (approximately 400 km WSW of Brisbane) in south-western Queensland 

(-28.476º, 148.724º), Australia (see Figure 5.25).  During the 2004 winter crop 

season, various plots within the trial were planted with cereal wheat (Triticum spp cv. 

Baxter), barley (Hordeum spp. cv. Mackay), canola (Brassica rapa cv. Hyola 43), 

chickpeas (Cicer arietinum cv. Jimbour) and faba beans (Vicia faba minor cv. Fiord).  

Areas of the trial site (see Figure 5.26) were also set-aside for lucerne, grain legumes 

and medics.  These however, were not present when the images were acquired, as 

they had failed during the growing season. 
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Figure 5.25 Location of the ‘Dunkerry South’ trial, near Nindigully, in south-western 

Queensland.  
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The site was set up in 1996 to assess the effect of contrasting “crop-following-crop” 

and “crop-following-pasture” strategies in a 600 mm sub-tropical rainfall zone 

(Thomas et al. 1998).  The site was a grey vertisol (Isbell 1996) that had been under 

cultivation since 1956. 

 

In 2004, all commodities were sown with a small plot seeder which consisted of 9 

rigid spear-point tines followed by solid, centre–ribbed press wheels, at a row 

spacing of 0.25 m. Sowing depth was 3–8 cm.  In the nitrogen fertiliser treatments, 

urea was applied at sowing in the centre of alternate seed rows.  A basal application 

of 40 kg/ha of fertiliser containing 20.5% P, 9.4% N, 2.5% Zn and 2.2% S was 

banded with the seed at sowing.  All species were sown on 13 May 2004 at the 

appropriate seeding rate for the district.  

 

Each of the eight main plots within the trial was 40 m long and 36 m wide (16 runs 

of a 2.25 m wide planter) and replicated 3 times in a randomised block design. The 

main plots were split into sub-plots with treatments being different ‘Crop x N 

application x Farming Systems’ combinations.  Due to this diversity of treatments, 

image acquisition efforts were concentrated on areas containing a variety of species 

and N application rates, those being: ‘System 9’ (plot 27, 38 and 41) and ‘System 11’ 

(plot 29, 39 and 46) areas (refer to Figure 5.26). 

 

 

5.3.2 System Deployment  

 

Separate image acquisitions were attempted at this site on 12 August 2004 and 13 

September 2004.   

 

Deployment on 12 August 2004 

 

The same sensor configuration and stabilising bar as was used in the ‘Colonsay’ trial 

(refer to Figure 5.15) was utilised at this site.  However, rather than a single tether-

line, two tether-lines were used to increase sensor stability and to aid in positioning. 
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Figure 5.26 Schematic representation of the 'Dunkerry South' farming systems trial 

showing the treatments and plot layout. 
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The winds on the day were strong (see Figure 5.27) and the balloon could not be 

launched higher than 20 m. Had the distance travelled to the trial site not been large 

(800 km round trip), the acquisition of imagery would have been delayed due to the 

inclement weather conditions.  The breeze made taking images difficult, and 

eventually resulted in the sensor being whipped around by the wind.  Eventually, the 

digital cameras were dislodged from the balsa box and fell to ground.  Repairs could 

not be carried out to continue the mission.  No useful images were captured. 

 

 

Deployment on 13 September 2004  

 

The second attempt at image acquisition, 13 September 2004 (123 days after 

sowing), had clear skies and a moderate breeze.  The balloon and sensor 

configuration was the same as used on 12 August and is shown schematically in 

Figure 5.28.  The LCLA remote sensing system ready for deployment is shown in 

Figure 5.29. 

 

 

Figure 5.27 The sensor being retrieved at Nindigully (note the breeze blowing the 

balloon). 
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Figure 5.28 A schematic representation of the sensor as deployed, 13 September 

2004. 

 

The balloon and sensor were deployed by playing out the tether-lines by releasing the 

brakes on the Alvey® sidecast fishing reels. As the line was run out, the persons 

controlling the lines moved further apart giving the sensor increased stability.  With 

two fixed points, the balloon and sensor could now only move in an arc.  The sensor, 

consisting of the two digital cameras and video camera, was positioned above the 

area of interest by viewing the video footage that was being transmitted from the 

sensor and by adjusting the tether-lines accordingly. The areas targeted for imaging 

included the plots containing wheat along with a range of other species (‘System 9’ 

and ‘System 11’ plots as detailed in section 5.3.1). 
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Figure 5.29 The sensor ready to be deployed at Nindigully, with two tether-lines for 

increased stability. 

 

The first mission undertaken on the day was with the balloon at approximately 150 m 

(to capture the whole plot, refer to Figure 5.30) and the later mission at 

approximately 400 m (an attempt to capture the whole trial area, refer to Figure 

5.31).  The colour camera failed at the start of the second mission resulting in only 

83 images captured, while 163 images were captured with the NIR camera on both 

missions in the hour either side of solar noon.  The failure of the colour camera was 

diagnosed afterwards as a loose connector and was rectified prior to subsequent 

missions. 
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Figure 5.30 An image captured on the first mission covering adjacent plots showing 

a range of species present, as captured by the LCLA remote sensing system. 

 

 

Figure 5.31 The NIR image showing the majority of plots 41-48, as captured by the 

LCLA remote sensing system. 
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The images were transferred and viewed on a laptop computer while at the location.  

All images were later copied into a desktop computer where the most appropriate 

images were chosen for further processing.  The colour image that was chosen for 

further analysis, with labels added, is shown as Figure 5.32, while the matching NIR 

image is shown as Figure 5.33.  The judgement criteria for image selection were 

based on plot coverage, species present, orientation, and the clarity of the image.   

 

Using the criteria detailed above, two pairs of images were chosen to be imported 

into ERDAS Imagine 8.7 (ERDAS 2003) and analysed.  The first pair of images 

covered the majority of plot 38 and contained the following treatments: wheat (0, 40, 

50 and 80 kg/ha N applied), canola (0 and 50 kg/ha N applied), barley and chickpeas.  

The second pair of images covered the majority of plot 41 and contained the same 

treatments as in plot 38.  The analysis conducted on each plot was slightly different 

and so will be detailed individually (refer to Chapter 5.3.3). 

 

Due to the large range of species at this site, the primary objective of this acquisition 

was to assess the ability of the sensor to differentiate between these different species.  

Of the two approaches taken to analyse the data, the first was to use a statistical 

package to perform the analysis.  The second one was to use image analysis software 

to perform the classifications. 
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Figure 5.32 The species present in plot 38, as captured by the LCLA RS system. 

 

Figure 5.33 The NIR image that matches with the colour image shown in Figure 

5.32. 
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5.3.3 Pixel-based Image Processing and Analysis 

 

GPS co-ordinates were not recorded for this trial, as the available GPS (the same as 

used at Colonsay) utilised the AMSA beacons for the differential correction.  As the 

distance to the nearest beacon (Brisbane) was over 400 km, the differential correction 

was intermittent, and hence, unreliable.  As the objective at this trial was to perform 

crop-type discrimination using spectral data, geo-referencing was not essential as 

relative location and size still enabled this type of analysis to be conducted. 

 

Plot 38 

 

In analysing the images covering plot 38, two approaches were taken.  One approach 

was to use a statistical package, SPSS Version 12.0.1 (SPSS 2003), to investigate the 

potential of the LCLA remote sensing system to discriminate between different crop 

types.  The other method was to use the image analysis software ERDAS Imagine 

8.7 (ERDAS 2003) to look for relationships between the spectral signatures obtained 

from the images and the crop attributes.  The analysis conducted on images covering 

plot 38 was the first one undertaken for the ‘Nindigully’ trial.  The colour image was 

registered to the near infrared image using 10 ground control points resulting in a 

checkpoint error of 1.7 pixels.  With a pixel resolution of 40 mm, this equates to a 

checkpoint error of less than 70 mm.  As the resolution of the imagery is so fine, 

these GCPs were based on the centre of an area rather than an individual pixel, and 

may have contributed to this checkpoint error. 
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Statistical Analysis 

Two approaches were taken to statistically analyse the data for this plot: 

a) The first procedure was the same as performed to evaluate the ‘Colonsay’ 

data (detailed in section 5.2.4), where areas of interest (AOIs) were created 

around the sub-plot and the data analysed.  Within plot 38, there were a 

number of subplots (see Figure 5.32), those being: 2 x barley; canola (50 N); 

canola (0 N); 4 x chickpea; 2 x wheat (0 N); wheat (40 N); and wheat (80 N).   

b) The second method undertaken was to extract several AOIs within each 

subplot.  SPSS Version 12.0.1 (SPSS 2003) was used to perform discriminant 

function analysis (DA) on the digital number (DN) values to see if the sensor 

could accurately discriminate between the species present in the trial (i.e. if 

the plots that were planted to wheat could be differentiated from the canola, 

barley and chickpea plots).  The DA procedure generates one or more 

discriminant functions based on linear combinations of the predictor variables 

that provide the best discrimination between groups. It has been used 

successfully in spectral discrimination studies (Strachan et al. 2002).  The 

entire sample set was used in the DA calculations and was cross-validated. 

 

In method (a) above, AOIs were defined around the perimeter of each sub-plot (see 

Figure 5.34).  This resulted in >40 000 pixels selected for each of the six bands for 

the sub-plot.  Box-plots of the data exported for selected treatments are displayed in 

Figure 5.35.  A large range of DN values (from less than 50 to approaching 250) are 

evident for each band.  The chickpea crop in this trial was shorter than the other 

species, and as a result, the image was less affected by shadow.  As it was also closer 

to canopy closure, there was less reflectance from the bare soil in the inter-row.  This 

is evident in Figure 5.35 by the tighter range of values across all bands compared 

with the wheat 40 N graph.  With the wheat being a taller crops and less uniform in 

growth habit, there was more influence from shadows within and between rows 

resulting in more contrasting reflectance and a greater ranges of values.   

 

By having a large AOI around the whole treatment, the potential to approximate the 

texture of the crop, its growth habits, establishment and degree of canopy closure is 

enhanced. 
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Figure 5.34 Selecting AOIs for each of the subplots within plot 38. 
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Figure 5.35 Box-plots for wheat 40 N (left) and chickpeas (right) for the 6 bands. 

 

Shown in Figure 5.36 are the average DN values for all bands for each of the 

treatments within plot 38.  As the nutrition levels increased, the crops’ health status 

improved.  Healthy plants lead to increased vigour, which means more 

photosynthesis.  The process of photosynthesis absorbs light in the visible portion of 
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the spectrum (particularly the R and B) and reflects light in the NIR.  As the red 

sensor in the CCD is the most sensitive to NIR (indicated by the area under the curve 

above 700 nm in Figure 3.7), the DN values for NIRR is much higher than for both 

the other sensors in the CCD (NIRB and NIRG) of the ‘NIR’ camera. 

 

When a plant is stressed, the spectral characteristics of the leaf change, with the 

changes happening more or less simultaneously in both the visible and NIR regions 

(Campbell 2002).  The spectral change induced by the stress associated with the 

varying nutrition levels is particularly evident in the wheat spectra (the blue lines) in 

Figure 5.36.  The reflectance of the crop increases as the nutrition levels decrease. 
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Figure 5.36 Average digital number values for the sub-plots within plot 38 for the 

various bands. 
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The potential to perform statistical procedures was limited by the number of samples.  

When using the ‘whole sub-plot AOI method’ for the image covering plot 38 (shown 

in Figure 5.34) there were only 19 plots and not a large enough sample size to 

investigate statistical associations.  In order to increase the sample size, each subplot 

representing the different species was split into initially five and then 10 equal sized 

AOIs.  The results were analysed using SPSS and will be discussed in section 6.3.1. 

 

Image Classification 

Image classification is the process of sorting pixels into a finite number of individual 

classes, or categories of data, based on their data file values (Leica 2005).  That is, 

the pixels are grouped together with other pixels that have similar brightness across 

multiple bands of an image (Campbell 2002).  These classes have been shown to 

correspond to regions on the ground that have common biological properties. 

 

To perform an image classification, signatures for target classes had to be identified.  

The AOIs chosen for each sub-plot (detailed in the above section) were too broad for 

this purpose as they contained signatures for bare soil, shadows, crop etc.  To provide 

representative pixels for the signatures, pixels were selected by positioning polylines 

down the middle of uniform rows of the target species.  This resulted in 

approximately 150 pixels selected per species present.  These pixels had little 

influence from shadows, soil reflectance and crop misses that were causing the 

scatter in the DN values depicted in Figure 5.35.  The boxplots of the actual DN 

values using this method, for the same species as shown in Figure 5.35, are shown in 

Figure 5.37.   

 

Plotting the DN values for these ‘pure’ polylines shows that it is difficult to truly 

obtain consistent values in variable crops.  The variability is evident by the range of 

values in the ‘wheat 40 N’ spectra.  Where the crop was inherently more uniform, as 

in the chickpeas, this variability is considerably reduced.  The pure signatures were 

exported and the analysis is discussed in section 6.3.2. 
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Figure 5.37  Box-plots of the pixel values for the polyline positioned down the centre 

of the row for each of the six bands for wheat 40 N (left) and chickpeas (right). 

 

Although obtaining pure pixels for a species provides the most accurate data, it does 

not however take into consideration other parameters such as texture, growth habits, 

height (and hence likelihood of shadows), how well the crop established (the 

possibility of missing plants), aspect of the foliage to the sun, position of the sensor 

and whether canopy closure has been achieved.  This could be accounted for by 

having many classes for the same species, but analysis is not possible using 

conventional ‘pixel-based’ analysis.  Object-orientated image analysis is, however, 

better able to handle these phenomena and was investigated in section 5.3.4. 

 

Plot 41 

 

The matching colour and NIR image pair covering plot 41 were used to perform this 

investigation.  The colour image is shown in Figure 5.38.  Within this image, there 

were a number of subplots within the main plot as well as other land management 

features.  The image was split into 12 management classes: bare soil, non-

photosynthetic vegetation, green weeds, vehicle, shadow, chickpeas, three classes of 

wheat (0, 40 and 50 N), two classes of canola (0 and 50 N) and barley.  
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Figure 5.38 Plot 41 and surrounding plots showing different species present. 

 

The infrared image was registered to the colour image utilising the ‘layer stack’ 

function of ERDAS Imagine 8.7 (ERDAS 2003).  A total of 18 ground control points 

were used, resulting in a total checkpoint error of 1.2 pixels (see Figure 5.39).  With 

a 45 mm pixel resolution, this equates to an error of less than 60 mm.  Once again, 

the GCPs were based on the centre of an area rather than a discrete pixel, resulting in 

a slightly larger error than expected.  The image was resampled using the nearest 

neighbour resampling.  The resulting image had 6 bands that are detailed in Table 

5.1. 
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Figure 5.39 The layer stacking procedure of the 2 images in the analysis software. 

 

Table 5.1  The band information for the stacked image. 

Camera Sensor Band 
Colour Blue 1 
 Green 2 
 Red 3 
Near infrared Blue 4 
 Green 5 
 Red 6 

 

Due to the slight misalignment of the colour and IR camera, some areas did not have 

the colour bands whilst other areas did not have the IR bands (approximately 5% of 

the image), particularly around the periphery of the image.  The image was clipped to 

exclude these areas from further analysis.   
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Image Classification 

The approach taken with this dataset was to use the image analysis software ERDAS 

Imagine 8.7 (ERDAS 2003) to perform image classifications.  According to 

Campbell (2002), supervised classification is usually considered appropriate when 

you want to identify relatively few classes, when training sites can be verified with 

ground truth data, and when distinct and homogenous regions can be identified to 

represent each class.  All of these criteria were meet in this dataset. 

 

To perform the supervised classification, spectral signatures that were representative 

of the 12 management classes (detailed above) were selected using the signature 

editor function of the software.  Following the recommendations of Campbell (2002), 

several individual training areas were selected for each class and these areas were 

selected from throughout the image. The total number of pixels selected far exceeded 

the ‘at least 100 pixels for each category’ recommended by Campbell (2002).  In 

some of the classes (car, bare soil and non-photosynthetic material), it was easy to 

select large homogenous areas (>500 pixels) using the polygon area-of-interest 

(AOI) tool.  Four areas were selected for each of these classes.   

 

Conversely, in the cropping areas, it was more difficult to find homogenous areas 

from which to select signatures.  Due to the growth habit and the wider row spacing 

(4 rows across the 2.25 m row) for the chickpeas and canola, they tended to fill-in the 

inter-row space, and made selecting areas possible, albeit smaller in pixel count 

compared to previously mentioned three classes.  Seven areas for each class were 

selected and the pixel count ranged from 50 to over 400.  With the wheat and barley 

planted on 0.25 m row spacing (9 rows per plot), it was difficult to find consistent 

areas.  For the barley signature, 9 areas were chosen with the pixel count ranging 

from 59 to 247.  It was not possible to use the area function for the wheat signatures.  

Instead, the polyline function of the AOI tool was used (see Figure 5.40).  Across the 

three wheat classes, 20 polylines were selected with pixel counts ranging from 10–33 

for each of the classes with approximately 500 pixels being collected for each class. 
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Figure 5.40 A close-up of the polyline area-of-interest for the wheat 50 N plot. 

 

The 12 management classes along with the ‘count’ of pixels making up each class 

are shown in Figure 5.41.  The number of pixels per class ranged from over 400 

pixels for wheat with no N applied to over 4000 pixels for bare soil.  The colours 

used in Figure 5.41 (black for shadow, red for car etc.) will be the same colours used 

in the results and discussion detailed in section 6.3.2.  

 

 

Figure 5.41 Signature editor showing the 12 classes. 
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In addition to the visual examination of the imagery, the data was further explored by 

examining band histogram and statistics, determining correlation of bands using 

scatterplots and calculating correlation of pairs of wavelength bands.  The results of 

the analysis are discussed in section 6.3.2. 

 

 

5.3.4 Object Orientated Image Classification 

 

In section 5.3.3, the image processing and analysis tasks focused on the traditional 

pixel-based classification technique (i.e. supervised classification). In this current 

section, the new generation object-oriented approach (Blaschke et al. 2000) was 

tested and the results compared with the pixel-based method.  In the object-oriented 

paradigm, an object can be defined as a grouping of pixels of similar spectral and 

spatial properties (Navulur 2007).  In addition to spectral values, an object has other 

attributes that can be used in image classification, such as shape, texture, 

morphology, context, etc.  Thus, an object-oriented approach has better potential of 

achieving higher accuracy. 

 

The first step in the object-oriented approach is image segmentation.  Image 

segmentation is a technique that is used to divide a scene or image into regions or 

objects that have common properties.  Two techniques for image segmentation can 

be separately implemented (Navulur 2007): a) region merging according to some 

measure of homogeneity and, b) separation of objects by finding edges using 

gradients of digital numbers between neighbouring pixels.  The user can also specify 

other attribute parameters during the segmentation process. 

 

For this study, the software Definiens Professional 5 (Definiens 2007) was used for 

the object-oriented image processing.  The segmentation algorithm creates image 

segments based on the following four criteria: scale (to determine the maximum 

allowed heterogeneity within an object), colour (to determine overall contribution of 

spectral values to define homogeneity), smoothness (to optimise image objects for 

smoother borders) and compactness (to optimise image compactness).   
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After a series of tests, the following segmentation parameters were finally applied to 

the 6-layer image (Figure 5.42): 

• 30 scale, 0.9 colour, 0.5 compactness 

• 50 scale, 0.9 colour, 0.5 compactness 

• 80 scale, 0.9 colour, 0.5 compactness 

• 100 scale, 0.9 colour, 0.5 compactness 

 

 

Figure 5.42 Segmentation parameters used in the object-oriented approach 

(showing the 30 scale as an example) 

 

The importance of colour over shape was set to 0.9 out of 1.0, while an equal (50%) 

weight was used for compactness and smoothness criteria. The 9-class grouping 

(“class hierarchy”) was used to enable comparison of the results with the pixel-based 

approach (Figure 5.43). Samples were selected and then pre-assessed based on 

“colour” (DN value), shape and texture criteria.  
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Figure 5.43 Classes adopted in the classification 

 

Finally, the image was classified based only on colour and texture, i.e. shape was 

excluded due to its low importance in the segmentation scale used. The nearest 

neighbour technique was utilised. With this approach, it classified image objects in a 

given feature space based on given samples for the classes concerned (Definiens 

2007). The distance in the feature space to the nearest sample object of each class 

was calculated for each image object. The image object was assigned to the class 

represented by the closest sample object. Once classified, accuracy assessment was 

conducted for each output image using the same procedure in the per-pixel based 

approach. 

 

The results of the analysis were discussed in the next chapter, section 6.3.3. 
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5.4 Further Refinement 

 

 

Since the loss of the original 1.0 Megapixel sensor on mission #21 (Table 4.1), the 

LCLA system was refined further with the new 5.0 Megapixel sensor.  The latter was 

used on a number of imaging missions to investigate crop maturity in wheat and 

barley (mission #24), crop uniformity and nodes above cracked boll in cotton 

(missions #25&26), growth rates due to irrigation non-uniformity in lettuce (mission 

#27&28), and an evaluation of the UAV autopilot system (mission #29).  As the 

primary focus of this research is on cereal grain crops, the crop maturity mission was 

further investigated along with the autopilot evaluation.  The autopilot system has the 

potential to overcome the constraints of planning the imaging schedule to ensure 

coverage of the target area—the major constraint to the application of the existing 

LCLA remote sensing system to broader-scale cereal production. 

 

 

5.4.1 Crop Maturity Mapping 

 

Study Area 

 

The study area was located at ‘Lundavra’, a wheat and barley variety trial site in the 

Goondiwindi district of southern Queensland (150.087º, -28,056º), Australia (see 

Figure 5.44).  The site was established to screen both wheat and barley varieties for 

adaptation to a potentially tough season, generally caused by lack of rain and heat 

stress during the early part of the growing season.  In 2005, the trial was high 

yielding due to favourable seasonal conditions.  
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Figure 5.44 The location of the trial site at ‘Lundavra’ in southern Queensland. 

 

The original intention of this investigation was to compare traditional meter-

resolution aerial imagery to that of the updated LCLA remote sensing system.  Due 

to unforseen delays by the commercial imagery provider, the acquired image was 

captured late in the growing season.  In the conventional aerial image of the entire 

trial site (shown in Figure 5.45), little variability is evident due to the mature growth 

stage of the crop.  Even though the site was imaged with the updated LCLA system, 

the planned comparison could not be undertaken due to the maturity of the crop.  The 

potential of using the updated LCLA system to predict the stage of crop maturity was 

however evaluated, and was reported in the following section. 
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Figure 5.45 Conventional aerial image taken of the wheat (top) and barley (bottom) 

variety trial site at ‘Lundavra’, October 2005.  The area indicated in the red box is 

the area analysed.  

 

A schematic representation of the barley trial layout is shown in Figure 5.46.  Each 

plot consisted of four rows of plants, totalling 1.05 m wide and 5.0 m long.  There 

are 192 plots per row and eight rows in total.  The extent of the barley trial was 200 

long x 50 m wide.  The trial was planted on 24 May 2005 and harvested on 26 

October 2005.  The area analysed is indicated by the red box in both Figure 5.45 and 

5.46. 
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Figure 5.46 Schematic layout of the barley variety trial at ‘Lundavra’ showing the 

area analysed in the red box. 

 

Deployment 

 

The crop condition at the trial site is shown in Figure 5.47, and was approaching 

maturity, with noticeable variability evident in the image.  The LCLA remote sensing 

system was deployed on 5 October 2005 (see Figure 5.48).  The sky was nearly cloud 

free.  As problems were initially encountered with the fuel filter, the first images 

were only acquired at 1300 hrs.   
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The flying height during this mission was 150 m (500 ft) with some images collected 

at 300 m (1000 ft).  At the greater height, viewing the aircraft was difficult and 

control was nearly lost.  The system was brought back to the ground and the cameras 

checked.  Each camera had logged 150 photos, however the radio control receiver 

aerial was across some of the images.  This was rectified and a second mission 

undertaken, but staying at 300 m (500 ft).  Images were only taken when heading in a 

northerly direction, and acquired over both the barley and wheat trial areas.  One of 

the images captured over the wheat trial area is shown in Figure 5.49.  Unfortunately, 

the aircraft crashed on landing but only sustained repairable damage. 

 

 

Figure 5.47 Looking into the field towards the wheat trial area (note the advanced 

stage of the crop). 
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Figure 5.48 Preparing the ‘Milne’ UAV for deployment at ‘Lundavra’.  

 

 

Figure 5.49 Some of the variability evident in the wheat trial area. 
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Analysis 

 

Although images were acquired from across both the wheat and barley trial areas, 

particular attention was given to the barley as it was the main focus of this 

investigation.  The most appropriate colour and near-infrared images covering the 

focus area were selected and imported into ERDAS Imagine 9.1 (Leica 2007) for 

analysis.  The near-infrared image covering the focus area was rectified to the 

corresponding colour image with a total control point error of 5.17.  These two 

images were then layer stacked with a total control point error of 2.46 pixels.  This 

stacked image was then rectified to the 1.0 m resolution conventional aerial image 

using a geometric model with 24 ground control points, producing a total control 

checkpoint error of 2.72 pixels and an output cell size equal to 0.0627 m. 

 

One of the replicates in the barley trial area (see Figure 5.50) was the focus of this 

investigation, with 79 areas of interest (AOIs) randomly selected from the 176 

variety plots displayed in this image.  As this was a variety evaluation trial, there 

were varying physiological characteristics that were selected, to enable the plant to 

cope with the contrasting environmental conditions present at this site.  The 

contrasting physiological characteristics made this trial an ideal crop maturity study. 

Maturity assessments were conducted at anthesis (31 August 2005), about four 

weeks prior to the aerial image acquisition.  The range of growth stages varied from 

Zadok 43 to 59, including 14 different classes signifying the range of crop maturities.  

Descriptions of these particular stages are given in Table 5.2. 

 

Statistical analysis was undertaken to evaluate the ability of the updated LCLA 

remote sensing system to predict the growth stage of the crop and was discussed in 

the next chapter, section 6.4.1. 
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Figure 5.50 Selecting the AOIs from the individual plots in the investigated area 

covered by the red box in Figure 5.46.  
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Table 5.2 Explanation of the growth stages describing the barley crop based on 

Zadok et al. (1974). 

Zadok Scale Booting 
40  
41 Flag leaf sheath extending 
43 Boots just visibly swollen 
45 Boots swollen 
47 Flag leaf sheath opening 
49 First awns visible 
 Inflorescence emergence 

50 First spikelet of inflorescence just visible 
53 ¼ of inflorescence emerged 
55 ½ of inflorescence emerged 
57 ¾ of inflorescence emerged 
59 Emergence of inflorescence completed 
 Anthesis 

 

 

5.4.2 Autopilot Evaluation 

 

The purpose of this mission was to evaluate the fully autonomous image acquisition 

system.  To achieve this objective, the ability of the autopilot to trigger the updated 

LCLA remote sensing camera system was tested.  The accuracy of the autopilot (in 

an x y z direction) was also evaluated.  The procedures to perform this testing and 

evaluation are detailed in the following sections. 

 

Study area 

 

The study area was located at Watts Bridge Memorial Airfield, near Toogoolawah in 

South East Queensland, (152.460º, -27.098º), Australia (see Figure 5.51).  The 

airfield was originally built in 1942 as part of the Australian World War II defence 

program.  It is now a centre for all forms of recreational aviation in the South East 

Queensland, and has dedicated areas for use of remotely controlled aircraft.  This 

mission (#29) was undertaken on 5 March 2008. 
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Figure 5.51 Location of the Watts Bridge Memorial Airfield. 

 

Deployment 

 

To undertake this evaluation, a specially modified version of a “Phoenix 

Boomerang” 60 Size Trainer was utilised (details at 

http://www.modelsports.com.au/).  The platform consisted of two 60 size 

Boomerangs merged together.  The platform (shown in Figure 5.52) was powered by 

an “OS Engines” 91FX (16 cc) (details at http://www.osengines.com/) methanol-

glow motor.   

 

The baseline avionics on the platform (see Figure 5.53) included the “MicroPilot 

MP2028g” autopilot (details at http://www.micropilot.com/) and a “microhard 

Systems Inc. Spectra 910A” 900 MHz spread spectrum modem (details at 

http://microhardcorp.com) for communications with the ground control station. 
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Figure 5.52 The QUT UAV ready for take-off. 

 

The updated LCLA sensor system was housed in a streamlined pod attached to the 

underside of the fuselage directly beneath the wing.  The pod was hinged for easy 

access and download of the cameras (see Figure 5.54).  As the sensor had been 

previously triggered using a spare output channel of the radio control equipment, this 

was easily adapted to suit the autopilot system.  When the UAV was within a certain 

distance of the designated location (within a 20 m radius to allow for cross-winds, 

GPS error and misalignment) the autopilot set a spare servo channel to the maximum 

output for 600 ms.  The microprocessor, previously used and discussed in Chapter 

4.2.3, detected this change in state of the servo output to trigger both cameras.  The 

microprocessor also gave both cameras a pulse every 10 s to ensure that they did not 

power down. 
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Figure 5.53 The avionics installed in the QUT UAV. 

 

 

Figure 5.54 The pod opened to remove the SD cards from the LCLA sensors. 
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The UAV was programmed with a flight plan instructing it to do a number of left 

circuits over a series of pre-determined waypoints (see the Horizon Flight Schedule 

software in Figure 5.55).  The waypoints are shown as pink dots in this image.  One 

of the dots is green, indicating that this is the next waypoint that the UAV is heading 

towards.  When passing above the origin point (the target of the image acquisition 

and where the UAV was initialised), the autopilot triggered the cameras.  

 

The takeoff of the UAV was performed manually.  Upon reaching a safe altitude (30 

m – 100 ft), the UAV was switched into autonomous mode and the autopilot started 

guiding the aircraft along the set track, with flight height targeted at 120 m above 

ground level (AGL).  When the UAV approached the imaging target (the 

initialisation point) the UAV was instructed to change altitude to 90 m AGL.  The 

change in altitude was performed so that most of the flight was at a higher (hence 

perceived safer) altitude and likewise to simulate flying over obstructions and 

coming down to image acquisition height.  Once past the target, the UAV resumed 

normal flying height.  After 15–20 minutes of autonomous flying, the UAV was 

manually landed and the flight log was downloaded from the autopilot. 

 

The log contained 52 columns of information, recorded at 5 Hz, about the aircraft’s 

state that includes the following attributes: attitude, position, speed, heading, servo 

values, etc.  Four flights were undertaken on the day of testing with images 

successfully captured on three of these.  The second flight had to be aborted and the 

UAV landed immediately, as conventional aircraft came into the proximity of the 

UAV.  The imagery acquired was analysed to provide flight path accuracies and is 

reported in the next chapter, section 6.4.2. 
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Figure 5.55 The ground control station software showing the path and the flight 

details of the UAV being monitored in the autopilot flight software (note the 

waypoints in pink). 
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5.5 Conclusions 

 

 

The LCLA remote sensing system, following some initial developmental problems, 

proved to have the capabilities to successfully acquire images over targets that meet 

the spectral, spatial and temporal requirements specified in the research objectives of 

this study.  The LCLA system provided imagery datasets needed to investigate 

spectral relationships with cereal crop parameters (including yield, protein, crop 

types and maturity).  The 2-camera system was successfully deployed on a number 

of platforms (including helium balloons, unmanned aerial vehicles and ground based 

platforms), and in addition to targeting cereal crops, was also used in other 

agricultural and plant based studies. 

 

Chapter 6 will quantify how well the LCLA remote sensing system has achieved its 

objectives, as well as how it compares to other studies and technologies. 



Chapter 6 

 

Performance of the LCLA system for Crop 

Mapping 
 

 
6.1 Introduction  

 

 

The previous chapter detailed the methods undertaken (see Figure 5.1) to map the 

various crop attributes of interest.  This included the pre-processing and preliminary 

analysis of the data to eliminate obvious errors, to refine analytical techniques, and to 

extract data and information that were analysed with statistical and image analysis 

software. The results are presented and discussed in this present chapter.   

 

A detailed analysis of the ability of the low-cost low-altitude (LCLA) remote sensing 

system to successfully map grain yield, protein and maturity, and to discriminate 

between different crop types, was presented in this chapter.  Comparisons were made 

with other studies that have endeavoured to map these parameters using remote 

sensing techniques. 

 

 

6.2 Grain Yield and Protein Mapping 

 

 

This section examines the relationship between both grain yield and protein and the 

information recorded by the LCLA remote sensing system.  This investigation 

utilised the ‘Colonsay’ dataset captured by the system in 2003 (detailed in Chapter 

5.2). 
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6.2.1  The Yield-Protein Relationship 

 

Studies have shown that there is a negative association between yield and protein for 

fields with uniform nitrogen treatments (Algerbo & Thylén 1998; Reyns et al. 2001; 

Stewart et al. 2002) and that this negative relationship (R2=0.69) exists on a micro-

scale (<100 m) within fields (Norng et al. 2005).  This negative correlation is 

connected with nitrogen fertilisation near or above optimum, with positive 

correlations possible with below optimum rates (Delin 2004).  The correlation for the 

yield and protein relationship for this trial is shown in Figure 6.1. 
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Figure 6.1 The relationship between yield and protein for the ‘Colonsay’ dataset.  

 

 

6.2.2  Analysis of Variance 

 

An analysis of variance was performed on the data to check for statistical differences 

(at the 0.05 level) between both yield and protein and the amount of N fertiliser 

applied.  As can be seen from Table 6.1, all the results were significant except at the 
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higher application rates (80–120 kg/ha) for both yield and protein.  This plateau in 

protein at the higher N rates indicate that these plots were not limited by N, but some 

other variable such as moisture or other nutritional factors. 

 

Table 6.1  The analysis of variance (ANOVA) conducted to determine statistical 

differences between the classes. 

 

N applied Mean ± standard error  

(kg/ha) 
Protein  

(%) 
Yield 

(kg/ha) 
0 9.92 ± 0.24 (a) 2237 ± 72 (a) 
40 11.69 ± 0.20 (b) 3182 ± 75 (b) 
80 13.77 ± 0.18 (c) 3989 ± 70 (c) 
120 13.76 ± 0.27 (c) 4162 ± 130 (c) 

(a,b,c)Significance at the 0.05 level 

 

 

6.2.3 Correlation Analysis 

 

Correlation analysis was used to quantify the associations between the information 

collected with the LCLA remote sensing system and the at-harvest parameters (yield 

and protein).  A preliminary evaluation of the data was undertaken using scatterplots 

(see Figure 6.2) to display the relationships between the six camera bands and the 

yield / protein.  This figure shows that there is a relationship between the colour 

bands and both yield and protein.  The best relationship exists with the near infrared 

(NIR) bands with an excellent relationship evident with yield, while a good 

relationship with protein was found. 
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Figure 6.2 Scatterplot of the 6 bands* and yield / protein. 

*colour camera (R-red sensor, G-green, B-blue) NIR camera (NIRR-red sensor, NIRG-green, NIRB-blue) 
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Vegetation indices theoretically provide values that are more highly correlated to 

plant parameters than the raw reflectance measurements (Wanjura & Hatfield 1986).  

The indices that are mostly used in the literature and which can be applied to the 

visible (blue-green-red) and near infrared portions of the spectrum were detailed 

previously in Table 2.2.  These were analysed and the four indices found to have the 

best associations are highlighted below.  Scatterplots were once again used as a 

preliminary evaluation method and are shown in Figure 6.3.  The use of indices 

improved the associations evident with the raw bands displayed in Figure 6.2.  The 

bands used in these indices primarily incorporated the red and the near infrared bands 

with one index using the green.   
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Figure 6.3 Scatterplot of the derived indices and yield / protein. 

 

A tabulated form of results displayed in Figures 6.3 and 6.4 are given in Table 6.2.  

A good correlation was found between the near infrared and yield.  The consistency 

between the near infrared bands was due to the similar nature of information 

recorded by the sensor, with correlations ranging from R2=0.835 for NIRB to 

R2=0.807 for NIRR.   
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Table 6.2 Correlations between yield / protein and the 6 bands and 5 indices*. 

Yield R G B NIRR NIRG NIRB RVI NDVI DVI GNDVI PSRI 

Pearsons 0.523 0.403 0.664 0.898 0.911 0.914 0.886 0.894 0.950 0.871 0.923 

R2 0.274 0.162 0.441 0.807 0.831 0.835 0.785 0.799 0.902 0.759 0.853 

 

Protein R G B NIRR NIRG NIRB RVI NDVI DVI GNDVI PSRI 

Pearsons 0.453 0.357 0.544 0.764 0.776 0.787 0.750 0.771 0.813 0.760 0.783 

R2 0.205 0.128 0.296 0.584 0.601 0.620 0.563 0.595 0.660 0.578 0.613 

* notation for above table (R-red, G-green, B-blue, NIRR-near infrared red, NIRG-near infrared green, NIRB-near 
infrared blue, RVI-red ration vegetation index, NDVI-normalised difference vegetation index, DVI-difference 
vegetation index, GNDVI-green normalised difference vegetation index, PSRI-plant senescence reflectance index.) 

 

This study was in agreement with other investigators who found that the correlations 

between yield and imagery are improved by the use of indices based on the red and 

NIR bands (Liu et al. 2006; Yang et al. 2000).  The reported findings in other 

studies, of the yield-image relationship, include the following: the best correlation 

(GNDVI) in sorghum of r=0.720, and in corn (RVI) of r=0.872 (Yang et al. 2001); 

correlations (GNDVI)  in sorghum ranging from r=0.735 to 0.906 for various fields 

(Yang & Everitt 2002); and the best reported correlation that could be found in the 

literature r=0.930 with NDVI and yield in corn (Gopalapillai & Tian 1999).  

 

The single band correlations for yield were improved by combining the red with the 

NIR (DVI index), resulting in a R2=0.902.  This improvement in the relationship, 

when progressing from the NIR band to the DVI index, is shown in Figure 6.4.  The 

higher the N applied rate, the greater the yield.  The magnitude of the correlation 

between grain yield and single date remotely sensed imagery of this study exceeds all 

other studies.   

 

In Figure 6.4, in addition to displaying the yield and image values for each of the 120 

plots, the amount of N applied is also displayed.  The four different rates are 

displayed as different symbols, and give a good visual representation of the grouping 

of the data.  The plots with 0 unit of N applied were suffering from nutrient 

deficiency and resulted in a low crop growth / vigour and with reduced biomass. This 

low fertiliser rate equates to a lower protein and yield, and a corresponding low DVI 

values.  This class is represented by the + sign in the graph and occurs in the bottom 
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left-hand corner of both graphs.  The other three classes (with 40, 80 and 120 units of 

N applied) do not fall into similarly tight clusters.  However, grouping is still evident.   

 

 

Figure 6.4 The relationship between yield and digital number for the NIRR band 

(left) and DVI (right) for the various N application rates. 

 

The correlation between image and protein (displayed in the scatterplots Figures 6.2 

& 6.3 and tabulated in Table 6.2) is not a strong as with yield.  This study is one of a 

few that has endeavoured to find a relationship between single-date remotely sensed 

imagery and grain protein.  Other studies have: 

a) Used a series of Landsat images targeting tillering, booting, anthesis and 

grain-filling stages to look for single date relationships with protein in wheat 

(Zhao et al. 2005).  A total of 48 plots within one Landsat scene was used to 

derive a correlation, with the best (R2=0.455) found between protein and 

RGNDI (calculated at anthesis).  Rather than having the complexity of an 

index, it was also found that a single Landsat band (band 5) had a better 

relationship (R2=0.495) than the index when captured at the same time.  The 

relationship reduced to an R2=0.365 at grain filling. 

b) Found grain protein correlations of r=0.82 for barley with Landsat band 4, 

and r=0.80 with the same Landsat band and wheat (Basnet et al. 2003). 
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Other more complicated studies incorporating modelling, multiple acquisition dates 

and/or complicated sensors have produced comparable results: 

a) Hand-held spectrometer, modelling of temperature during grain filling and 

taking account of plant date were used to predict the ‘at-harvest’ grain protein 

for a specific cultivar of barley with a correlation of R2=0.78 (Pettersson & 

Eckersten 2007).  The complexity of this work precluded it from being used 

over a whole field. 

b) Numerous proximally-sensed (CropScan MSR87) multi-spectral datasets 

were collected throughout the growing season and used in a partial least 

squares regression (PLS) to produce regression coefficients of r=0.754 for 

wheat, and r=0.457 for barley (Hansen et al. 2002). 

c) Strong relationship between leaf N status and grain protein content (R2= 

0.829 to 0.914 depending on variety) were found, and this relationship 

indicated that canopy spectra could be used to predict grain protein content. 

(Xue et al. 2007) 

d) Robust correlations between plant pigment ratio (PPR), leaf chlorophyll 

concentration and leaf N concentration suggested that PPR was a promising 

indicator for wheat grain protein for different genotypes.  To determine the 

correlation reported (R2=0.848, n=14), an agronomic model was combined 

with the hyperspectral model (based on hyperspectral radiometer (ASD) data 

collected 7 times during the growing season) (Wang et al. 2004). 

e) Relationship between protein and remotely sensed data, albeit hyperspectral 

proximally-sensed (ASD), had a strong correlation (R2=0.86) in wheat (Apan 

et al. 2006). 

f) Correlation between grain protein content and a structure insensitive pigment 

index (SIPI)—a combination of Landsat bands 1, 3 and 4) of r=0.53 was 

reported for wheat, with the correlation improved to r=0.75 by incorporating 

the SIPI and Envisat synthetic aperture radar image (Liu et al. 2006). 
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For this study using the LCLA remote sensing system, the grain protein was 

correlated with all the near infrared bands (refer Table 6.2), with correlations ranging 

from R2=0.620 for NIRB to R2=0.584 for NIRR.  The single band correlations for 

protein were improved by combining the red with the NIRR in the form of the DVI 

index.  This improvement in the relationship, when progressing from the NIR band to 

the DVI index, is shown in Figure 6.5.  The DVI was moderately correlated with 

grain protein (R2=0.660). 

Figure 6.5 The relationship between grain protein and digital number for the NIRR 

band (left) and from DVI (right) for the various N application rates. 

 

As with the yield-image relationship, the amount of fertiliser applied to each 

treatment is also indicated in Figure 6.5, allowing the figure to be better interpreted.  

It is evident that higher fertiliser application rates consequently produced higher 

grain protein levels.  Conversely, lower fertiliser application rates produced lower 

protein levels.  When combining this protein relationship with the yield relationships 

(Figure 6.4) an added understanding can be derived.  Work on cereal wheat (Kelly et 

al. 2004; Strong  & Holford 1997) in Northern Australia indicated that there is a high 

likelihood that a yield response would occur to added N, when grain protein is <11.5 

%.  Conversely, there is a low likelihood that a yield response would occur to added 

N when grain protein is >12.5%.  Looking at this relationship in another way: if the 

160 180 200 220 240

NIRR

8.0

10.0

12.0

14.0

16.0

P
R

O
T

E
IN

 (
%

)

N APPLIED (kg/ha)
0

40

80

120

R2=0.584

0 20 40 60 80 100 120

DVI

8.0

10.0

12.0

14.0

16.0

P
R

O
T

E
IN

 (
%

)

N APPLIED (kg/ha)
0

40

80

120

R2=0.660



Chapter 6                                  Performance of the LCLA System for Crop Mapping 
 

 179

final grain protein is <11.5%, then the crop has been limited by nutrition.  However, 

if the final grain protein is >12.5%, then the crop has been limited by moisture. 

Between 11.5–12.5%, the available moisture has matched the amount of nutrition. 

 

These protein thresholds have been shown in Figure 6.5.  This identifies the areas in 

the trial where the yield had been limited by rainfall and stored moisture (that is 

>12.5% protein), and those areas where nutrition had been limiting (where protein 

<11.5%).  It is not surprising that the areas limited by nutrition were the areas where 

the fertiliser application rates were low, with all of the 0 N applied and 

approximately half of the 40 N applied rates falling below this 11.5% protein 

threshold.  In the nutrient-rich areas (80 N applied and above), the yield potential had 

been limited by water. 

 

The limitations, be they water or nutrition, are expressed in the plant as crop stress.  

When the plant is stressed, the spectral characteristics of the leaf change.  These 

changes occur more or less simultaneously in both the visible and near infrared 

regions, but the changes in the near infrared are often more noticeable (Campbell 

2002).  Reflectance in the near infrared region is apparently controlled by the nature 

of the complex cavities within the leaf and internal reflections of infrared radiation 

within these cavities.  Thus, changes in infrared reflectance can reveal changes in 

vegetative vigour with vigour being a good indicator of plant health. 

 

The LCLA remote sensing system was able to differentiate these subtle differences 

to provide the best correlations reported in the literature with relation to yield, as well 

as the best reported for a single-date low-cost method with protein.  This system 

shows great potential for a low-cost, portable and easy-to-use system. 
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6.2.4 Discriminant Function Analysis  

 

A discussion on discriminant analysis (DA) was included in the previous chapter, 

section 5.2.4.  The Discriminant Function Analysis feature of SPSS Version 12.0.1 

(SPSS 2003) was used to predict the amount of fertiliser applied to the crop using the 

raw digital camera values.  Outputs from the package (for this study) are given in 

Appendix 1, with selected outputs following to aid the discussion. 

 

In the ANOVA table (Table 6.3), the Wilks’ Lambda indicated that the NIRB was 

the most important band to the discriminant function, closely followed by the other 

NIR bands.  This is in agreement with the work of Price et al.(2002) who found that 

NIR is always selected in DA as best discriminating variable.  The colour bands are 

of lesser importance, with GREEN being the least important.  The F test indicates 

that the Wilks’ lambda is significant for all variables. 

 

Table 6.3  Tests of equality of group means. 

.588 26.892 3 115 .000

.677 18.311 3 115 .000

.481 41.403 3 115 .000

.435 49.706 3 115 .000

.418 53.387 3 115 .000

.393 59.303 3 115 .000

RED

GREEN

BLUE

NIRR

NIRG

NIRB

Wilks'
Lambda F df1 df2 Sig.

 

 

The covariance matrix (Table 6.4) indicates that there is a strong correlation within 

both the three NIR and three Colour bands, but not between the two groups of three. 

 

In the summary of canonical discriminant functions (Table 6.5), it shows that 95.2% 

of the variance is attributed to function 1, with an additional 3.9% to function 2 with 

both functions being highly significant. 
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Table 6.4  Pooled within-group matrices. 

107.478 97.176 79.804 55.675 24.968 26.310

97.176 89.931 71.856 60.448 27.705 29.160

79.804 71.856 64.662 29.638 12.761 13.699

55.675 60.448 29.638 112.508 54.825 56.544

24.968 27.705 12.761 54.825 27.057 27.753

26.310 29.160 13.699 56.544 27.753 28.682

1.000 .988 .957 .506 .463 .474

.988 1.000 .942 .601 .562 .574

.957 .942 1.000 .347 .305 .318

.506 .601 .347 1.000 .994 .995

.463 .562 .305 .994 1.000 .996

.474 .574 .318 .995 .996 1.000

RED

GREEN

BLUE

NIRR

NIRG

NIRB

RED

GREEN

BLUE

NIRR

NIRG

NIRB

Covariance

Correlation

RED GREEN BLUE NIRR NIRG NIRB

a. 
 

 

Table 6.5  Summary of canonical discriminant functions (Eigenvalues (top) and 

Wilks’ lambda (bottom)). 

7.342a 95.2 95.2 .938

.298a 3.9 99.0 .479

.073a 1.0 100.0 .261

Function
1

2

3

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 3 canonical discriminant functions were used in the
analysis.

a. 

 

.086 277.170 18 .000

.718 37.464 10 .000

.932 7.995 4 .092

Test of Function(s)
1 through 3

2 through 3

3

Wilks'
Lambda Chi-square df Sig.

 

 

In the structure matrix (Table 6.6), the pooled within-group correlations between 

independent variables and the discriminant functions are listed.  The first function is 

positively influenced by the NIR bands, and negatively by the colour bands.  The 

third function is contributed to by all bands but more so by the colour bands.  The 

asterisks mark the correlations with the higher value for each variable. 
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Table 6.6  The structure matrix. 

.457* .002 .393

.434* .033 .348

.419* -.057 .357

-.248 .011 .581*

-.304 -.018 .563*

-.380 .116 .445*

NIRB

NIRG

NIRR

GREEN

RED

BLUE

1 2 3

Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and
any discriminant function

*. 

 

Canonical plots are created by having the first two discriminant functions as the axes 

for the plot.  The farther apart one point is from another on the plot, the more the 

dimension represented by that axis differentiates those two groups. The 0 class is 

quite removed from the 40 class with very little overlap indicating good separation 

between the classes.  The higher applied rates (80 & 120) are well separated from 

both the lower rates (0 & 40); however there is overlap within the grouping (see 

Figure 6.6). 
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Figure 6.6 The canonical plot for the various N application rates. 
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The classification results (Table 6.7) provide an indication of the success rate for 

prediction of membership of the classes.  Of the original grouped cases, 90 of the 119 

plots (75.6%) were correctly classified. However, in the nutrient deficient plots 

where plant available N had run down (the 0 and 40 unit treatments), the sensors 

were able to predict these areas with 92% accuracy.  It was more difficult to predict 

the 80 kg treatments (68% accuracy) and the 120 kg treatments (58% accuracy). The 

80 kg treatments were sufficient to sustain the crop (no build-up or run down of plant 

available N) and the 120 kg treatments had excess nutrients to requirements (N 

building up).  This indicates that the sensor is better at detecting “symptoms” where 

nutrients are limited rather than where they are in excess.  

 

Table 6.7 Predictive accuracy of fertiliser treatment classification using discriminant 

analysis.  
Classification Results

22 2 0 0 24

1 22 1 0 24

0 5 32 10 47

0 0 10 14 24

91.7 8.3 .0 .0 100.0

4.2 91.7 4.2 .0 100.0

.0 10.6 68.1 21.3 100.0

.0 .0 41.7 58.3 100.0

N APPLIED
0

40

80

120

0

40

80

120

Count

%

Original
0 40 80 120

Predicted Group Membership

Total

75.6% of original grouped cases correctly classified.a. 

 

This study agrees with other studies (Filella et al. 1995) that spectral indices based 

on 430, 550 and 680 nm allowed a clear separation within the N-deficient treatments 

(0 & 50 kg N / ha) and between those and the well-fertilised treatments (100, 150 & 

200 kg N / ha).  This same work (Filella et al. 1995) also stated that differentiating 

within the high treatments was difficult, as was the case in this present study. 

 

Regarding the accuracy of the predictions, this study attained comparable accuracy 

with the work of Strachan et al. (2002) who used canonical discriminant analysis to 

accurately classify different levels of crop nutrition using reflectance data.  The 

overall success rate of the classification varied from 70–93 %, depending on timing 

during the season.  This study, however used only three N application rates covering 

a much broader range (17, 99 & 155 N) and used a ground based hyperspectral 
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sensor to capture the spectral data.  This system was much more complicated and 

expensive compared to the LCLA remote sensing system reported in this study, to 

achieve a comparable classification accuracy. 

 

 

6.2.5  Partial Least Squares Regression 

 

To assess the predictive power of the relationship between grain yield / protein and 

imagery values, a Partial Least Squares (PLS) Regression using Unscrambler 9.1 

(CAMO 2004) software was implemented.  PLS performs particularly well when the 

various X-variables have high correlation (which is often the case for multispectral 

data). Information in the original X-data is projected onto a small number of 

underlying (“latent”) variables called PLS components. 

 

Aside from the raw imagery data, the set of derived vegetation indices was also 

calculated and analysed using the full the cross-validation (leave-one-out) technique. 

The root mean squared error of prediction (RMSEP) was calculated, which gave the 

measurement of the average difference between predicted and measured response 

values.  

 

Predicted versus measured values for both the raw camera bands and the derived 

indices were plotted for both yield (Figures 6.7 & 6.8) and for protein (Figures 6.9 & 

6.10).  These results are summarised in Table 6.8. 
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Figure 6.7 Plot of predicted grain yield values vs. measured grain yield values from 

the PLS regression model involving raw imagery values. 

 

 

 
 

Figure 6.8 Plot of predicted grain yield values vs. measured grain yield values from 

the PLS regression model involving vegetation index values. 



Chapter 6                                  Performance of the LCLA System for Crop Mapping 
 

 186

 
 

Figure 6.9 Plot of predicted grain protein values vs. measured grain protein values 

from the PLS regression model involving raw imagery values. 

 

 

 
 

Figure 6.10 Plot of predicted grain protein values vs. measured grain protein values 

from the PLS regression model involving vegetation index values. 
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The PLS regression results showed that it is possible to predict grain yield using 

digital camera imagery obtained from a balloon platform. Correlations between 

predicted and measured values for the calibrated and validated samples were very 

high (r=0.97 for all models) (Table 6.8). For both raw imagery and vegetation 

indices, the root mean squared error of prediction (RMSEP) values were relatively 

low, equivalent to prediction accuracy of 94.1% and 94.2%, respectively. The 

optimal number of PLS factors (components) was minimal (i.e. one for the raw 

imagery and two for the vegetation indices), but was able to explain the Y-variance 

sufficiently (i.e. over 94%). This is desirable as it is good to have simple models, 

where the total explained variance close to 100% with as few components as 

possible. 

 

Table 6.8 PLS regression results of imagery values and yield and protein 

Data Optimal 

no. of 

PLS 

factors 

Calibration 

 

Cross-Validation 

(leave-one-out) 

R* RMSEC

** 

R* RMSEP 

*** 

Prediction 

Accuracy 

(%) 

% of Y 

Variance 

Explained 

YIELD (n=117)        

1. Raw values 1 0.97 193.0 0.97 197.5 94.1 94.4 

2. Indices 2 0.97 189.1 0.97 194.7 94.2 94.6 

PROTEIN (n=102)        

1. Raw values 4 0.88 0.83 0.86 0.89 88.5 74.2 

2. Indices 3 0.85 0.92 0.83 0.96 87.6 70.1 

*R – Correlation is between predicted and measured values      
** RMSEC – root mean square error of calibration      
*** RMSEP – root mean square error of prediction 
 

For the grain protein, the correlations between predicted and measured values for the 

calibrated and validated samples were also high (i.e. from r=0.83 to r=0.88), 

although they are lower than the grain yield values (Table 6.5).  Consequently, the 

prediction accuracies for the grain protein were lower than the grain yield, i.e. 87.6% 

to 88.5% for the validated model.  The regression models needed three to four PLS 

components to explain 70.1% to 74.2% of the variation in grain protein.  Compared 

with grain yield, these values indicate that imagery has less predictive power for 

grain protein. 
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Based on the regression coefficient plot of grain yield (Figure 6.11), the NIR bands 

(consisting of the NIR values for the blue (NIR-B), green (NIR-G), and red sensor 

(NIR-R)) attained relatively higher coefficient values compared to the visible bands 

(consisting of blue (DC-CB) green (DC-CG) and red (DC-CR)), indicating their 

relatively higher significance in the grain yield prediction.  This agrees with the 

previous findings in the correlation analysis that the response seen in the NIR region 

has a strong relationship with yield (Staggenborg & Taylor 2000; Yang et al. 2000).  

For the vegetation indices (Figure 6.12), the difference vegetation index (DC_DVI) 

produced the highest regression coefficient, indicating that this is the most significant 

predictor variable among the vegetation indices used and is in agreement with the 

correlation study detailed in section 6.2.3. 
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Figure 6.11 Regression coefficients for the cross-calibrated prediction model 

involving grain yield and raw imagery values.  
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Figure 6.12 Regression coefficients for the cross-calibrated prediction model 

involving grain yield and vegetation index values.  

Notation (DC_NDVI-normalised difference vegetation index, DC_DVI-difference vegetation index, DC_GNDVI-green 
normalised difference vegetation index, DC_RVI-red ratio vegetation index) 
 

 

With regards to grain protein, the regression coefficient plots (Figure 6.13) indicated 

that the near infrared band (NIRB) and the visible wavelength green band (G) were 

the most significant predictor variables among the raw imagery.  These results 

further reinforce the importance of the NIR bands in grain protein prediction. These 

findings agree with the results of Basnet et al. (2003) that listed the tasselled cap 

greenness index (a transformation involving the NIR and VIS bands) as among those 

with the highest statistical association with grain protein content. The RVI and DVI 

were the best performing vegetation indices (Figure 6.14).  The simple ratio image 

RVI and the difference image DVI performed better than the normalised ratios. This 

agrees with a study (Wright et al. 2003) of spectral data and grain protein content 

which found that the simple ratio of NIR and red bands achieved the highest 

correlation coefficient (r=0.59) and is in agreement with the correlation analysis 

reported in section 6.2.3. 
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Figure 6.13 Regression coefficients for the cross-calibrated prediction model 

involving grain protein and raw imagery values.  
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Figure 6.14 Regression coefficients for the cross-calibrated prediction model 

involving grain protein and vegetation index values.  
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6.3  Crop Type Discrimination and Mapping 

 

 

As the focus of the ‘Nindigully’ study was on crop type discrimination and mapping, 

two approaches were undertaken to achieve this objective.  In addition to using a 

statistical package to discriminate between different classes (as was done in the 

‘Colonsay’ study detailed in section 6.2.4), image analysis software was used to 

classify various crop types present in the images. 

 

 

6.3.1 Discriminant Function Analysis 

 

Each of the subplots for the different species present in plot 38 were split into 

initially 5 and then 10 equal sized areas.  The average digital number (DN) values 

were recorded and analysed using SPSS 12.0.1 (SPSS 2003).  Discriminant function 

analysis (DA) was used to determine which variables discriminate between the 

naturally occurring groups.  Selected outputs from the package have been included 

below. 

 

Total Sample Size N = 50 

 

A preliminary analysis was carried out where the number of samples for each 

different fertiliser regime was 5 (n=50). 

 

In the ANOVA table (Table 6.9), the Wilks’ Lambda indicated that the NIRR was 

the most important to the discriminant function, closely followed by the other NIR 

bands, with the least important being BLUE.  The F test indicates that the Wilks’ 

lambda is significant for all variables. 
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Table 6.9  Tests of equality of group means 

.447 8.850 6 43 .000

.304 16.425 6 43 .000

.341 13.879 6 43 .000

.196 29.310 6 43 .000

.161 37.415 6 43 .000

.140 44.039 6 43 .000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Wilks'
Lambda F df1 df2 Sig.

 

 

The covariance matrix (Table 6.10) indicates a strong correlation within both the 

three NIR and three Colour band, but not between the two groups of three. 

 

Table 6.10  Pooled within-group matrices 

54.343 60.781 65.052 14.239 12.990 29.982

60.781 69.815 74.157 17.317 15.795 37.025

65.052 74.157 80.916 15.553 14.707 34.228

14.239 17.317 15.553 9.508 7.988 19.217

12.990 15.795 14.707 7.988 6.977 16.836

29.982 37.025 34.228 19.217 16.836 41.055

1.000 .987 .981 .626 .667 .635

.987 1.000 .987 .672 .716 .692

.981 .987 1.000 .561 .619 .594

.626 .672 .561 1.000 .981 .973

.667 .716 .619 .981 1.000 .995

.635 .692 .594 .973 .995 1.000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Covariance

Correlation

BLUE GREEN RED NIRB NIRG NIRR

a. 
 

 

In the summary of canonical discriminant functions (Table 6.11), it shows that 55.3% 

of the variance is attributed to function 1 with an additional 29.0% to function 2, with 

both functions being highly significant.  However, the third function, which adds an 

additional 13.1%, is not significant. 
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Table 6.11 Summary of canonical discriminant functions (Eigenvalues (top) and 

Wilks’ lambda (bottom)). 

13.825a 55.3 55.3 .966

7.256a 29.0 84.4 .937

3.272a 13.1 97.5 .875

.553a 2.2 99.7 .597

.055a .2 99.9 .229

.029a .1 100.0 .167

Function
1

2

3

4

5

6

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 6 canonical discriminant functions were used in the
analysis.

a. 

 

.086 277.170 18 .000

.718 37.464 10 .000

.932 7.995 4 .092

Test of Function(s)
1 through 3

2 through 3

3

Wilks'
Lambda Chi-square df Sig.

 

 

In the structure matrix (Table 6.12), the pooled within-group correlations between 

independent variables and the discriminant functions are listed.  The first function 

has a positive contribution by the NIR bands and a negatively one by the colour 

bands.  The third function is influenced by all bands but more so by the colour bands.  

The asterisks mark the correlations with the higher value for each variable. 

 

Table 6.12  The structure matrix. 

.619* -.062 .489 .221 .571 -.011

.504 -.074 .378 .261 .723* -.077

.215 .167 .332 -.056 .647* .628

.311 .267 .354 -.063 .636* .547

.559 -.083 .500 .172 .634* -.008

.218 .320 .393 -.092 .550 .621*

NIRR

NIRB

BLUE

GREEN

NIRG

RED

1 2 3 4 5 6

Function

Pooled within-groups correlations between discriminating variables and standardized
canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and any discriminant
function

*. 
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Each of the species represented show good separation with chickpea (4) being the 

most coherent group.  There is however, overlap within species groups (canola (2 & 

3) and wheat (5–7)) due to the various spectral responses attributed to the varying 

amounts of applied fertiliser (see Figure 6.15). 
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Figure 6.15 The canonical plot for the various species and fertiliser rates. 

 

The classification results (Table 6.13) provide an indication of the success rate for 

prediction of membership of the classes.  Of the original 50 grouped cases 96.0% 

were correctly classified with only 2 wheat cases being misclassified into a differing 

fertiliser treatment.  In the cross-validated analysis, 78.0% of the cases were correctly 

classified.  Once again, there were problems differentiating fertiliser treatments.  But 

within species, the agreement was high, with only one barley and one canola case 

classified as the wrong species.  
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T
able 6.13  C

lassification results for the n=
50 case study.  

    

Classification Results b,c

10 0 0 0 0 0 0 10

0 5 0 0 0 0 0 5

0 0 5 0 0 0 0 5

0 0 0 10 0 0 0 10

0 0 0 0 8 2 0 10

0 0 0 0 0 5 0 5

0 0 0 0 0 0 5 5

100.0 .0 .0 .0 .0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 .0 100.0 .0 .0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 .0 80.0 20.0 .0 100.0

.0 .0 .0 .0 .0 100.0 .0 100.0

.0 .0 .0 .0 .0 .0 100.0 100.0

9 0 0 0 1 0 0 10

0 5 0 0 0 0 0 5

0 1 3 0 1 0 0 5

0 0 0 10 0 0 0 10

0 0 0 0 6 4 0 10

0 0 0 0 2 3 0 5

0 0 0 0 0 2 3 5

90.0 .0 .0 .0 10.0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 20.0 60.0 .0 20.0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 .0 60.0 40.0 .0 100.0

.0 .0 .0 .0 40.0 60.0 .0 100.0

.0 .0 .0 .0 .0 40.0 60.0 100.0

CROP
1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Count

%

Count

%

Original

Cross-validateda

1 2 3 4 5 6 7

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from
all cases other than that case.

a. 

96.0% of original grouped cases correctly classified.b. 

78.0% of cross-validated grouped cases correctly classified.c. 
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Total Sample Size N = 80 

 

In an attempt to improve the classification accuracy, the number of samples per class 

was increased to 10 (resulting in n = 80).  The accuracy of the canonical discriminant 

function was improved. 

 

In the ANOVA table (Table 6.14), the Wilks’ Lambda indicated that the NIRR was 

the most important to the discriminant function, closely followed by the other NIR 

bands, with the least important being BLUE.  Wilks’ lambda is significant by the F 

test for all variables. 

 

Table 6.14  Tests of equality of group means 

.416 17.104 6 73 .000

.257 35.089 6 73 .000

.290 29.796 6 73 .000

.269 33.096 6 73 .000

.224 42.106 6 73 .000

.200 48.778 6 73 .000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Wilks'
Lambda F df1 df2 Sig.

 

The covariance matrix (Table 6.15) indicates a strong correlation within both the 

three NIR and three Colour band, but not between the two groups of three. 

 

Table 6.15  Pooled within-group matrices 

46.986 50.756 55.328 11.354 10.182 23.402

50.756 57.762 61.739 15.100 13.502 32.045

55.328 61.739 69.222 11.474 10.873 25.349

11.354 15.100 11.474 12.736 10.578 26.009

10.182 13.502 10.873 10.578 9.073 22.369

23.402 32.045 25.349 26.009 22.369 55.708

1.000 .974 .970 .464 .493 .457

.974 1.000 .976 .557 .590 .565

.970 .976 1.000 .386 .434 .408

.464 .557 .386 1.000 .984 .976

.493 .590 .434 .984 1.000 .995

.457 .565 .408 .976 .995 1.000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Covariance

Correlation

BLUE GREEN RED NIRB NIRG NIRR

The covariance matrix has 73 degrees of freedom.a. 
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In the summary of canonical discriminant functions (Table 6.16), it shows that 56.7% 

of the variance is attributed to function 1, an additional 30.6% to function 2 and 9.9% 

to function 3.  The first four functions are significant.  

 

Table 6.16 Summary of canonical discriminant functions (Eigenvalues top and Wilks 

lambda bottom). 
Eigenvalues

11.583a 56.7 56.7 .959

6.252a 30.6 87.4 .928

2.020a 9.9 97.3 .818

.505a 2.5 99.7 .579

.034a .2 99.9 .182

.019a .1 100.0 .138

Function
1

2

3

4

5

6

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 6 canonical discriminant functions were used in the
analysis.

a. 

 

.002 440.837 36 .000

.029 257.241 25 .000

.209 113.602 16 .000

.630 33.480 9 .000

.948 3.840 4 .428

.981 1.395 1 .238

Test of Function(s)
1 through 6

2 through 6

3 through 6

4 through 6

5 through 6

6

Wilks'
Lambda Chi-square df Sig.

 

 

In the structure matrix (Table 6.17), all bands have a negative influence on the first 

function with the largest absolute correlations  between the NIR bands and function 3 

and the colour bands and function 5.  The asterisks mark the correlations with the 

higher value for each variable. 
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Table 6.17  The structure matrix. 

-.485 -.067 .572* .281 .494 -.333

-.534 -.057 .554* .336 .430 -.327

-.256 .243 .357 -.032 .714* .488

-.392 .358 .374 -.008 .671* .358

-.280 .443 .384 -.055 .580* .489

-.437 -.074 .448 .343 .577* -.391

NIRG

NIRR

BLUE

GREEN

RED

NIRB

1 2 3 4 5 6

Function

Pooled within-groups correlations between discriminating variables and standardized
canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and any discriminant
function

*. 

 

 

In the canonical plots, each of the species represented show good separation, with 

chickpea (4) being the most coherent group once again.  As was the case with the 

n=50 analysis, there was overlap within species groups (canola (2 & 3) and wheat 

(5–7)) due to the various spectral responses attributed to the varying amounts of 

applied fertiliser (see Figure 6.16). 
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Figure 6.16 The canonical plot for the various species and fertiliser rates. 
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The classification results (Table 6.18) provide an indication of the success rate for 

predictions of membership of the classes.  Of the original 80 grouped cases, 96.3% 

were correctly classified.  

 

In the cross-validated assessment, there were some misclassifications within species 

due to the differing fertiliser treatment levels.  However, there were only three (of 

80) cases where species were wrongly classified with one barley classified as low-

nutrition wheat, one low-nutrition canola classified as chickpeas, and one low-

nutrition wheat classified as chickpeas.  The greater sample number better 

represented the variability evident in the subplots, enabling a more accurate 

classification indicated by the higher cross-validated classification accuracy. 

 

Other studies have used DA to differentiate between weeds and carrot plants using 

22 bands on a ground-based device for an overall classification accuracy of 72% 

(Piron et al. 2008).  Sugarcane varieties could be discriminated using hyperspectral 

satellite (EO-1 Hyperion) data.  A classification accuracy of 87.5% was reported 

from a single date acquisition (Galvao et al. 2005).  Once again, the results from the 

LCLA remote sensing system study are equal to or better than other reported studies.  

The system, however, is far less expensive and complicated and achieved 

comparable or better results. 
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 T
able 6.18 C

lassification results for the n=
80 case study.  

 

 

Classification Results b,c
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0 0 9 0 1 0 0 10
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.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 10.0 50.0 40.0 .0 100.0

.0 .0 .0 .0 10.0 90.0 .0 100.0

.0 .0 .0 .0 .0 20.0 80.0 100.0

CROP
1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Count

%

Count

%

Original

Cross-validateda

1 2 3 4 5 6 7

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from
all cases other than that case.

a. 

96.3% of original grouped cases correctly classified.b. 

86.3% of cross-validated grouped cases correctly classified.c. 
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6.3.2 Pixel-Based Image Classification 

 

The production of thematic maps using image classification is one of the most 

common applications of remote sensing (Foody 2002).  In classification, individual 

pixels are grouped together with other pixels that correspond to regions that have 

common properties (Campbell 2002).  There are two alternative approaches to image 

classification: supervised and unsupervised. Supervised classification is 

recommended when there are a few areas of known identity to classify the remainder 

of the image.  For this study, supervised classification was conducted due to the 

desire to identify relatively few classes, with training sites that could be verified with 

ground truth data and where distinct homogeneous regions that represent each class 

could be identified (Campbell 2002).   

 

Plot 41 

 

As provided by the software package ERDAS IMAGINE 8.7 (ERDAS 2003), 

various signature separability assessment tools (e.g. histograms, ellipses, descriptive 

statistics, error matrix and divergence measures etc.) were utilised. 

 

Modality and variation evaluation using histograms 

The histogram function was used to check the individual training areas, with selected 

histogram examples shown in Figure 6.17 (chickpea) and Figure 6.18 (wheat 50 N).  

The band assignments in these figures are bands 1–3 (B, G, R) and 4–6 (NIRB, 

NIRG, NIRR).  The histograms were checked to ensure they were homogenous and 

normally distributed, as a bimodal distribution is indicative of more than one spectral 

class being captured.  It is important that the training signatures approximate normal 

distribution to satisfy the assumption of the parametric decision rules used to assign 

pixels from the image to an output class (ERDAS 1999).   
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Figure 6.17 The band histogram information for the training sets for the chickpea 

signature 

 

 

Figure 6.18 The band histogram information for the training sets for the wheat 50N 

signature 

 

The individual training areas were merged to provide a signature for each of the 12 

classes.  The colours used to represent each of the ‘12 signature’ classes are shown in 

Figure 6.19.  These same colours are used throughout the 12-class study.   
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Figure 6.19 The key to the colours used in the histograms and the classification. 

 

The histograms for some of the non-cropped classes are shown in Figure 6.20, while 

the signatures for the cropped areas are shown in Figure 6.21. 

 

 

 

Figure 6.20 The histograms for the merged signatures of the non-cropped areas 
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Figure 6.21 The histograms for the merged signatures of the cropped areas 

 

The signatures all show a good distribution with none having a bimodal pattern that 

is a sign of a non-homogenous signature or two nonrelated signatures being merged.  

The colour bands do not provide much capacity to discriminate between the 

signatures, particularly within the vegetation grouping.  Fortunately, the NIR does 

and this concurs with the results found during the DA analysis. 

 

Separability and Band Correlations Based on Feature Space 

The feature space plot is also know as a 2D histogram.  The frequency of occurrence 

in the image of a pair of values is indicated by the colour.  That is, pairs of values 

that occur least frequently are in magenta, while those that occur most frequently are 

in yellow to red.  The centre of the ellipse is the main value of the signature for the 

two bands displayed and the size of the ellipse (outer boundary) represents two 

standard deviations from the mean.  Signature ellipses that have relatively narrow 

boundaries, do not overlap, and cover different regions of the feature space are ideal.  

The most discrimination was accomplished using the combination of bands 1 and 4 

and their feature space plots are shown as Figure 6.22. 
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Figure 6.22  The feature space plot for the 12 classes. 

 

The car information class is displayed in the top right-hand corner of plot with the 

shadow being in the bottom left.  The bare soil class is fully contained within the 

non-photosynthetic class and there is considerable overlap within the 3 wheat classes 

and the 2 canola classes, with all of the Gramineae being centred around the middle 

of the right hand edge of the scatterplot.  This re-emphasises the difficulty of 

detecting slight nutritional differences within the same species. 
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Quantitative Separability/Confusion Determined by Contingency Matrix 

The purpose of the contingency matrix (see Table 6.19) is to classify the training site 

pixels and assess how many are assigned to the correct class.  Ideally, the output 

class for the pixels will be the same as the input training class, but this is not the case 

in this dataset.  As can be seen from the matrix, there is definite confusion between 

the different fertiliser treatments for both canola and wheat. The chickpeas were 

often confused with wheat and barley, and barley being confused with all of the other 

cereal crops.  The wheat signatures show the most confusion with values ranging 

from 45% for wheat with no N applied to 63% for wheat with 50N applied.  The 

confusion matrix indicates that there is merit in combining some classes, especially 

the fertiliser treatment classes.  
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T
able 6.19  C

ontingency m
atrix for the 12 classes. 

 

 

 

Reference Data
--------------

Classified
      Data   shadow non-photo      car bare soil  chickpeas  canola 0N canola 50N green weed     barley  wheat 40N      wheat  wheat 50N
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
  shadow 461 13 0 0 0 0 0 0 0 0 0 0
non-photo 1 3980 2 181 0 0 0 0 0 0 0 0
     car 0 0 962 0 0 0 0 0 0 0 0 0
bare soil 0 546 0 4084 0 0 0 0 0 0 0 0
 chickpeas 0 0 0 0 1593 19 17 1 69 46 18 16
 canola 0N 0 0 0 0 19 675 422 18 99 1 0 0
canola 50N 0 0 0 0 34 296 1022 20 34 0 0 0
green weed 0 0 0 0 3 11 27 559 10 1 1 0
    barley 0 0 0 0 55 66 37 2 919 6 22 9
 wheat 40N 0 0 0 0 25 0 0 0 36 244 76 74
     wheat 0 0 0 0 44 0 0 0 93 82 192 85
 wheat 50N 0 0 0 0 59 0 0 0 14 111 122 317

Column Total 462 4539 964 4265 1832 1067 1525 600 1274 491 431 501

Reference Data
--------------

Classified
      Data   shadow non-photo      car bare soil  chickpeas  canola 0N canola 50N green weed     barley  wheat 40N      wheat  wheat 50N
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
  shadow 99.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
non-photo 0.2 87.7 0.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
     car 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bare soil 0.0 12.0 0.0 95.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 chickpeas 0.0 0.0 0.0 0.0 87.0 1.8 1.1 0.2 5.4 9.4 4.2 3.2
 canola 0N 0.0 0.0 0.0 0.0 1.0 63.3 27.7 3.0 7.8 0.2 0.0 0.0
canola 50N 0.0 0.0 0.0 0.0 1.9 27.7 67.0 3.3 2.7 0.0 0.0 0.0
green weed 0.0 0.0 0.0 0.0 0.2 1.0 1.8 93.2 0.8 0.2 0.2 0.0
    barley 0.0 0.0 0.0 0.0 3.0 6.2 2.4 0.3 72.1 1.2 5.1 1.8
 wheat 40N 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 2.8 49.7 17.6 14.8
     wheat 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 7.3 16.7 44.6 17.0
 wheat 50N 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 1.1 22.6 28.3 63.3

Column Total 462 4539 964 4265 1832 1067 1525 600 1274 491 431 501
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Quantitative Separability and Band Selection Using Transformed Divergence 

Transformed divergence evaluates the separability between each pair of signatures 

for a given number of image bands (see Table 6.20).  The best average or minimum 

transformed divergence was used to determine how many and which bands to use in 

the classification.  Values greater than 1900 have good separability, while values less 

than 1700 have poor separability (ERDAS 1999).  In the report, rather than giving all 

possible band combinations, the information is only given for the bands that 

produced the best average separability and the best minimum separability, i.e. bands 

1 and 4 in the ‘taken 2 at a time’ case and bands 1, 4 and 6 in the ‘taken 3 at a time’.  

These separability results indicate that bands 1 and 4 would provide good 

discrimination. 

 

As can be seen from Table 6.20, there is good separability between most of the 

signatures except for the different fertiliser treatments for the same species (8 & 9 for 

canola and between 10, 11 and 12 for wheat) which has a very poor separability.   

The separability is improved slightly by taking 3 bands at a time.  This is consistent 

with the contingency matrix in which these classes showed some confusion. 

 

Completeness of Signature Set Using Image Alarm 

The alarm mask function (Figure 6.23) was utilised to perform a quick “pre-

classification” check of the image data.  This function colours all pixels in the image 

that are estimated to belong to a particular class (using the colours from Figure 6.19).  

The areas coloured white indicate signature overlap and confusion between the 

classes.  There is very little green (wheat) and yellow / orange (canola) colour 

evident, emphasising the confusion caused by the various fertiliser levels.  There is 

little confusion with the non-cropped areas (car, bare soil, non-photosynthetic and 

shadow). 
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Table 6.20  Transformed divergence for the 12 classes. 

 

 

 

Figure 6.23  The alarm mask function of ERDAS Imagine 
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Supervised Classification 

Once a reliable set of signatures had been created and evaluated, the next step was to 

perform a classification of the data by using the samples of known identity to classify 

pixels of unknown identity.  ERDAS Imagine 8.7 (ERDAS 2003) has the capacity to 

classify the data both parametrically with statistical representation, and non-

parametrically as objects in feature space.  By initially choosing the parallelepiped 

non-parametric decision rule, the pixels were checked for class membership.  If the 

test resulted in one unique class, then the pixel was assigned to that class.  However, 

if the test resulted in zero class membership, or membership in multiple classes, the 

pixel was then classified by parametric rules (ERDAS 1999). 

 

In this dataset as well as in nature, the classified classes exhibit natural variation in 

their spectral patterns and this is further exacerbated by topographic shadowing, 

system noise and the effects of mixed pixels. It was noted by Campbell (2002, p.342) 

that “remote sensed images seldom record spectrally pure class; more typically, they 

display a range of brightnesses in each band”.  It is for this reason that the maximum 

likelihood (ML) decision rule was chosen for its superior ability to handle this 

situation.  ML classification not only considers the mean / average values in 

assigning a classification, but also the variability in brightness in each class.  This is 

particularly useful when the distribution of spectral values from separate categories 

overlaps.  

 

The image was classified using the 12 predetermined classes and the classification is 

shown in Figure 6.24. 
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Figure 6.24  The classified image using the 12 classes. 

 

The accuracy of the classified image is determined by the ‘accuracy assessment’ tool 

in the software.  Accuracy assessment is the process of comparing the classification 

to ground-truthed data that is assumed to be true in order to determine the accuracy 

of the classification process.  It is not practical to test every pixel of the classified 

image.  The approach taken with this analysis was to have ERDAS Imagine 8.7 

(ERDAS 2003) randomly select the pixels that were used in the accuracy assessment. 

 

Accuracy Assessment of the ‘12 class’ Classification 

The procedures undertaken to perform a supervised classification using the signature 

information for the 12 classes was discussed in section 5.3.3. The accuracy 

assessment was performed with 180 random points equalised within the 12 classes 

(15 points/class) to ensure the smaller classes were not under-sampled.  Several of 

the randomly generated points coincided with areas where some of the data layer 

information was missing, resulting in 171 points being used in the analysis.  A screen 

grab showing the random points and the set up for the accuracy assessment is shown 

in Figure 6.25. 
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Figure 6.25.  Performing an accuracy assessment on the image 

 

The error matrix (Table 6.21) is similar to the contingency matrix (Table 6.19) and is 

the most common way to represent the classification accuracy of remotely sensed 

data (Congalton 1991). The matrix provides a cross-comparison of pixels taken from 

the classified image with corresponding ground reference data, with one dimension 

of the matrix being the reference data and the other being the classified pixels.  

 

As with the contingency matrix for the 12 classes (Table 6.19), the error matrix 

(Table 6.21) confirms that confusion exists between the classes.  This is particularly 

evident when trying to distinguish between the various fertiliser levels, with 

chickpeas being misclassified as wheat and with barley pixels being confused with 

wheat and canola. 

 

 



C
hapter 6                                  P

erform
ance of the LC

LA
 S

ystem
 for C

rop M
apping 

 

 
213

T
able 6.21  T

he error m
atrix for the 12-class accuracy assessm

ent. 

 

ERROR MATRIX

-------------

Reference Data

--------------

Classified Data Unclass shadow bare soil car non-photo chickpeas canola 0N canola 50N green weedbarley  wheat 40N wheat wheat 50N  Row Total

--------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

Unclass 0 0 0 0 0 0 0 0 0 0 0 0 0 0

shadow 0 4 1 0 0 0 0 0 0 0 0 1 0 6

bare soil 0 0 14 0 1 0 0 0 0 0 0 0 0 15

car 0 0 0 15 0 0 0 0 0 0 0 0 0 15

non-photo 0 0 7 0 6 0 0 0 2 0 0 0 0 15

chickpeas 0 0 0 0 0 11 0 0 0 0 0 3 1 15

canola 0N 0 0 0 0 0 5 1 7 0 1 0 1 0 15

canola 50N 0 0 0 0 0 0 5 5 2 1 0 2 0 15

green weeds 0 0 0 0 2 2 1 1 2 2 2 3 0 15

barley 0 1 0 0 0 0 1 1 0 3 3 6 0 15

wheat 40N 0 0 0 0 0 1 0 0 0 0 2 11 1 15

wheat 0 0 0 0 0 2 0 0 0 0 0 13 0 15

wheat 50N 0 0 0 0 0 3 0 0 0 0 2 7 3 15

Column Total 0 5 22 15 9 24 8 14 6 7 9 47 5 171

----- End of Error Matrix -----
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The simplest descriptive statistic is the overall classification accuracy, which is 

calculated by dividing the number correctly classified by the total number of pixels 

in the error matrix.  The overall classification accuracy (see Table 6.22) using the 12 

classes was 46.2%.  This however, does not give any indication of the accuracy in 

each of the classes/categories.  This is accomplished by reviewing the errors of 

inclusion (commission errors) and errors of exclusion (omission errors) present in the 

classification (Congalton 1991). 

 

The error of omission (“producer’s accuracy”) is determined by the total number of 

reference pixels that were not assigned to the correct class, or “omitted”.  This 

accuracy measure indicates the probability of a reference pixel being correctly 

classified.  Corollary, if the total number of correctly assigned pixels in a category is 

divided by the total number of pixels that were classified in that category, then the 

result is a measure of the error of commission, i.e. pixels that were included in a class 

that should not have been there.  This “user’s accuracy” is a measure of reliability 

and is indicative of the probability that a pixel classified on the map/image actually 

represents that category on the ground (Story & Congalton 1986). 
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Table 6.22  The accuracy totals for the 12 class classification. 

ACCURACY TOTALS
----------------

          Class  ReferenceClassified Number Producers Users
           Name     Totals     Totals Correct  Accuracy Accuracy
     ---------- ---------- ---------- ------- --------- -----
   Unclassified 0 0 0       ---   ---
        shadow 5 6 4 80.0% 66.7%
     bare soil 22 15 14 63.6% 93.3%
           car 15 15 15 100.0% 100.0%
     non-photo 9 15 6 66.7% 40.0%
      chickpeas 24 15 11 45.8% 73.3%
      canola 0N 8 15 1 12.5% 6.7%
     canola 50N 14 15 5 35.7% 33.3%
    green weeds 6 15 2 33.3% 13.3%
         barley 7 15 3 42.9% 20.0%
      wheat 40N 9 15 2 22.2% 13.3%
          wheat 47 15 13 27.7% 86.7%
      wheat 50N 5 15 3 60.0% 20.0%

         Totals 171 171 79

Overall Classification Accuracy =     46.20%

----- End of Accuracy Totals -----  

 

Another method of determining accuracy assessment is the kappa coefficient (Cohen 

1960).  Kappa values can range for +1 to -1, however, positive values are expected as 

there should be a positive correlation between the remotely sensed classification and 

the reference data.  Landis & Koch (1977) suggested some possible ranges for kappa 

values: > 0.80 (i.e. 80%) represents strong agreement, 0.40–0.80 (i.e. 40–80%) 

represents moderate agreement and < 0.40 (i.e. 40%) represents poor agreement. 

 

With kappa analysis, it is possible to test whether a classified map generated using 

remotely sensed data is significantly better than a map generated by randomly 

assigning labels to areas.  It is also possible to compare matrices to see whether they 

are statistically significantly different, based on the overall accuracy, to conclude 

which algorithm or method is better.  This indicates that the current classification 

achieved an accuracy that is 41% better than would be expected from chance 

assignment of pixels to categories.   Also evident in Table 6.23 is that skill in 

classifying some of the classes (especially canola 0N, wheat 40N and green weeds) is 
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only slightly better than a random classification.  This result re-emphasises the fact 

that there is considerable overlap in some of the signatures and the classification 

could be improved by removing the different nutrition classes for the same species. 

 

Table 6.23  Kappa statistics for the 12 class classification 
 

KAPPA (K^) STATISTICS
---------------------

Overall Kappa Statistics = 0.4112

Conditional Kappa for each Category.
------------------------------------

Class Name Kappa
                                              ---------- -----

Unclassified 0
shadow 0.6566
bare soil 0.9235

car 1
non-photo 0.3667
chickpeas 0.6898
canola 0N 0.0209
canola 50N 0.2739

green weeds 0.1018
barley 0.1659

wheat 40N 0.0852
wheat 0.8161

wheat 50N 0.1759

----- End of Kappa Statistics -----

 

 

Accuracy Assessment of the ‘9 Class’ Classification 

In reviewing the accuracy assessment report and with the knowledge from the 

discriminant function analysis, determining crop type with varying levels of nutrition 

is difficult.  In an attempt to further improve the classification accuracy, the various 

nutrition levels were dropped for both wheat and canola.  Rather than having various 

signatures for the varying nutrition levels, these signatures were amalgamated to 

provide one signature per species, with the new class being signified as WHEAT (for 

the three combined nutrition levels) and CANOLA (for the two combined nutrition 

levels).  This resulted in 9 classes (see Figure 6.26 for the colour assignments) with 

90 random equalised points chosen on which to perform the assessment.   
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Figure 6.26  The colours chosen and the pixel count for the 9 classes. 

 

As can be seen from the contingency matrix (Table 6.24), merging classes to remove 

the different fertiliser levels has reduced the confusion amongst some of the classes.  

In the 12-class case, the wheat confusion ranged from 45–63% and this has now been 

increased to 85%.  Similar improvements were made with canola.  As with the 12-

class case, confusion still exists between the other cereal crops and between the non-

photosynthetic materials. 
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able 6.24  T

he contingency m
atrix for the 9 classes. 

 

  

Reference Data
--------------

Classified
Data    shadow non-photo car bare soil  chickpeasgreen weed barley wheat canola  Row Total

---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
   shadow 461 13 0 0 0 0 0 0 0 474
non-photo 1 4105 2 487 0 0 0 0 0 4595

car 0 0 962 0 0 0 0 0 0 962
bare soil 0 421 0 3778 0 0 0 0 0 4199

 chickpeas 0 0 0 0 1523 1 60 123 36 1743
green weed 0 0 0 0 2 544 17 2 63 628

    barley 0 0 0 0 130 10 991 84 236 1451
WHEAT 0 0 0 0 103 0 104 1213 0 1420
CANOLA 0 0 0 0 74 45 102 3 2257 2481

Column Total 462 4539 964 4265 1832 600 1274 1425 2592 17953

Reference Data
--------------

Classified
      Data    shadow non-photo car bare soil  chickpeasgreen weed barley wheat canola  Row Total
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

   shadow 99.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 474
non-photo 0.2 90.4 0.2 11.4 0.0 0.0 0.0 0.0 0.0 4595

car 0.0 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.0 962
bare soil 0.0 9.3 0.0 88.6 0.0 0.0 0.0 0.0 0.0 4199

 chickpeas 0.0 0.0 0.0 0.0 83.1 0.2 4.7 8.6 1.4 1743
green weed 0.0 0.0 0.0 0.0 0.1 90.7 1.3 0.1 2.4 628

    barley 0.0 0.0 0.0 0.0 7.1 1.7 77.8 5.9 9.1 1451
WHEAT 0.0 0.0 0.0 0.0 5.6 0.0 8.2 85.1 0.0 1420
CANOLA 0.0 0.0 0.0 0.0 4.0 7.5 8.0 0.2 87.1 2481

Column Total 462 4539 964 4265 1832 600 1274 1425 2592 17953
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The signature overlap that caused the confusion in the above table is also evident in 

the histograms (see Figure 6.27) and in the feature space plots (see Figure 6.28). The 

classified image is shown as Figure 6.29. 

 

Figure 6.27  Histograms for the 9 classes 

 

Figure 6.28  Feature space plot for the 9 classes 
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Figure 6.29  The classification using 9 classes. 

 

The overall classification accuracy (see Table 6.25) increased to 66% by reducing the 

number of classes. The kappa statistic improved to 61% better than would be 

expected from chance assignment of pixels to categories.  There is still some merit in 

further refining the signatures evident by the overlap in the histograms and feature 

space plots.  This will be progressed in the next iteration. 
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Table 6.25  The accuracy totals including kappa statistics for the 9 class 

classification. 

ACCURACY TOTALS
----------------

          Class  Reference Classified Number Producers Users
           Name     Totals     Totals Correct  Accuracy Accuracy
     ---------- ---------- ---------- ------- --------- -----
   Unclassified 0 0 0       ---   ---
          WHEAT 36 20 19 52.78% 95.00%
         CANOLA 19 20 14 73.68% 70.00%
        shadow 6 7 6 100.00% 85.71%
     bare soil 22 20 16 72.73% 80.00%
           car 21 20 20 95.24% 100.00%
     non-photo 19 20 13 68.42% 65.00%
      chickpeas 31 20 16 51.61% 80.00%
    green weeds 3 20 1 33.33% 5.00%
         barley 10 20 5 50.00% 25.00%

         Totals 167 167 110

Overall Classification Accuracy =     65.87%

----- End of Accuracy Totals -----

KAPPA (K^) STATISTICS
---------------------

Overall Kappa Statistics = 0.6135

Conditional Kappa for each Category.
------------------------------------

 Class Name Kappa
                                              ----------          -----

Unclassified 0
WHEAT 0.9363
CANOLA 0.6615
shadow 0.8518
bare soil 0.7697
non-photo 0.6051
chickpeas 0.7544
green weeds 0.0326
barley 0.2022

----- End of Kappa Statistics -----  

 

Accuracy Assessment of the ‘6 Class’ Classification 

On reviewing the contingency matrix, histograms and feature space plots, there were 

several signatures that were very similar and / or overlapped.  To improve the 

classification, wheat, barley and green weeds were merged to form a ‘gramineae’ 

class and the non-photosynthetic and bare soil classes were merged to form a 
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‘fallow’ class.  The classes showing the assigned colours are shown in Figure 6.30 

and the contingency matrix in Table 6.26.  The histograms (Figure 6.31) are showing 

much better separation between the classes.  The output classified image is shown as 

Figure 6.32. 

 

Figure 6.30  The 6-class signatures. 

 

Table 6.26   The contingency matrix for the 6 classes 

Reference Data
--------------

Classified
      Data    shadow       car  chickpeas     CANOLA     fallow  gramineae  Row Total
---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
   shadow 462 0 0 0 20 0 482
      car 0 960 0 0 0 0 960
 chickpeas 0 0 1531 47 0 231 1809
    CANOLA 0 0 60 2293 0 176 2529
    fallow 0 4 0 0 8784 0 8788
 gramineae 0 0 241 252 0 2888 3381

Column Total 462 964 1832 2592 8804 3295 17949
Reference Data
--------------

Classified
      Data    shadow       car  chickpeas     CANOLA     fallow  gramineae  Row Total
---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
   shadow 100 0 0 0 0.23 0 482
      car 0 99.59 0 0 0 0 960
 chickpeas 0 0 83.57 1.81 0 7.01 1809
    CANOLA 0 0 3.28 88.46 0 5.34 2529
    fallow 0 0.41 0 0 99.77 0 8788
 gramineae 0 0 13.16 9.72 0 87.65 3381

Column Total 462 964 1832 2592 8804 3295 17949  
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Figure 6.31  The histograms for the 6 classes. 

 

 

Figure 6.32  The area when classified using 6 classes. 
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The increased separation in the histograms is quantified in Table 6.27 where the 

overall classification accuracy has improved to 82%, with the kappa value increased 

to 78%. 

 

Table 6.27  The accuracy totals including kappa statistics for the 6 class 

classification. 

ACCURACY TOTALS
----------------

          Class  Reference Classified Number Producers Users
           Name     Totals     Totals Correct  Accuracy Accuracy
     ---------- ---------- ---------- ------- --------- -----
   Unclassified 1 0 0       ---   ---
         CANOLA 15 20 14 93.33% 70.00%
         fallow 21 20 19 90.48% 95.00%
      gramineae 21 20 13 61.90% 65.00%
        shadow 4 6 4 100.00% 66.67%
           car 20 20 20 100.00% 100.00%
      chickpeas 24 20 17 70.83% 85.00%

         Totals 106 106 87

Overall Classification Accuracy =     82.08%

----- End of Accuracy Totals -----

KAPPA (K^) STATISTICS
---------------------

Overall Kappa Statistics = 0.7809

Conditional Kappa for each Category.
------------------------------------

Class Name Kappa
                           ----------          -----
Unclassified 0
CANOLA 0.6505
fallow 0.9376
gramineae 0.5635
shadow 0.6536
car 1
chickpeas 0.8061

----- End of Kappa Statistics -----  

 

In one final iteration, the number of class was further reduced to 4 classes 

(photosynthetic material, fallow, car and shadow) with the corresponding colours 

being green, maroon, red and black, respectively. 
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Accuracy Assessment of the ‘4 Class’ Classification 

With only 4 classes, the contingency matrix (Table 6.28) shows a very high level of 

agreement within the classes and there is extremely good separability in the 

histogram plots (Figure 6.33).  The classified image (Figure 6.34) accurately maps 

the cropped (photosynthetic) area from the fallow and other two classes.  This is 

represented in the accuracy table (Table 6.29) where the overall classification 

accuracy is 97%, with a 96% kappa coefficient. 

 

Table 6.28  The contingency matrix for the 4 classes. 

ERROR MATRIX
-------------

Reference Data
--------------

Classified
      Data    shadow car fallow photosynth
---------- ---------- ---------- ---------- ----------

   shadow 462 0 20 0
car 0 960 0 0

fallow 0 4 8784 0
photosynth 0 0 0 7713

Column Total 462 964 8804 7713

----- End of Error Matrix -----

ERROR MATRIX
-------------

Reference Data
--------------

Classified
      Data    shadow car fallow photosynth
---------- ---------- ---------- ---------- ----------

   shadow 100.0 0.0 0.2 0.0
car 0.0 99.6 0.0 0.0

fallow 0.0 0.4 99.8 0.0
photosynth 0.0 0.0 0.0 100.0

Column Total 462 964 8804 7713

----- End of Error Matrix -----  
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Figure 6.33  The histograms for the 4 classes. 

 

Figure 6.34 The area when classified using 4 classes. 
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Table 6.29 The accuracy totals including kappa statistics for the 4-class 

classification. 

ACCURACY TOTALS
----------------

          Class  ReferenceClassified Number ProducersUsers
           Name     Totals     Totals Correct  Accuracy Accuracy
     ---------- ---------- ---------- ------- --------- -----
   Unclassified 0 0 0       ---   ---
photosynthetic 21 20 20 95.24% 100.00%
         fallow 21 20 20 95.24% 100.00%
        shadow 8 10 8 100.00% 80.00%
           car 20 20 20 100.00% 100.00%
         Totals 70 70 68

Overall Classification Accuracy =     97.14%

----- End of Accuracy Totals -----

KAPPA (K^) STATISTICS
---------------------

Overall Kappa Statistics = 0.9609

Conditional Kappa for each Category.
------------------------------------

                   Class Name          Kappa
                   ----------          -----
Unclassified 0
photosynthetic material 1
fallow 1
shadow 0.7742
 car 1

----- End of Kappa Statistics -----  

 

This assessment has taken the refining of the signatures to the extreme, but it does 

prove that the LCLA remote sensing system can provide very useful discrimination 

of crops and the level of accuracy that may be expected depending on the level of 

classification (family, genus, species and variety).  If the purpose is to differentiate 

green plant material from all other features, then this system can provide a near 

perfect discrimination.  If the task is to distinguish different fertiliser regimes (which 

arguably is similar to detecting different varieties within species), then the accuracy 

is 41% better than chance.  Detecting between species, and then genus, is somewhere 

in-between these upper and lower limits. 
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6.3.3 Object-Oriented Image Classification 

 

The image segmentation process at different “scales” produced objects of various 

attributes (Figure 6.35).  As expected, increasing the scale parameter produced fewer 

objects, but each was relatively larger in average area.  Visual interpretation of the 

results showed the detailed or “more pure” aggregation of objects in the 30-scale 

parameter.  Conversely, the 100-scale parameter image produced more generalised 

groupings. 

 

  

   (a)     (b) 

  

   (c)     (d) 

Figure 6.35 Objects created after image segmentation at various scales: (a) 30 

scale, (b) 50 scale, (c) 80 scale, and (d) 100 scale. 
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With the focus on colour (spectral values) and texture, 49 object attributes (e.g. mean 

of red band, standard deviation of NIR_R, grey level co-occurrence matrix (GLCM) 

values, etc.) were included in the assessment.  The use of “feature space 

optimisation” procedure, available in the software, has flagged the best five features 

for each scale parameter (Table 6.30).  While the results show differences in the 

features selected as optimum, the general trend is clear: the use of both spectral 

values and texture (rather than separate) is important in optimising class separation. 

 

The results also showed the effect of scale in the value of the separation distance (i.e. 

the ability of the attributes or features to separate classes based on the five best 

features).  The smallest scale parameter (30 scale) produced the lowest separation 

distance value (0.52), while the 80-scale parameter gained the highest value (0.86).  

This indicates the non-linear relationship between scale parameter and separability 

measure, although an optimum scale can be determined. 

 

Table 6.30 Results of image segmentation and feature optimisation 

Scale for 
Segmentation 

No. of 
Objects 

Best 
Separation 

Distance 

Best 5 Features for Separation 

30 scale 2011 0.52 GLCM Homogeneity NIR_R (0°), 
GLCM Homogeneity Blue (0°), Max 
diff, Mean NIR_R, STD Green 

50 scale 659 0.69 Mean NIR_R, GLCM Homogeneity 
Blue (135°), GLCM Homogeneity (0°), 
Max diff, STD NIR_R 

80 scale 220 0.86 GLCM Homogeneity NIR_R (90°), 
GLCM Homogeneity NIR_G (135°), 
Max diff, Mean NIR_R, Mean NIR_G  

100 scale 146 0.61 Mean Red, GLCM Homogeneity 
NIR_R (90°), STD Red, Mean NIR_R 

GLCM = grey level co-occurrence matrix (a measure of texture) 
Max diff – maximum difference of spectral values 
STD = standard deviation  
0°, 90°, 135° = direction used in GLCM calculation 
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The outputs of image classification using the object-oriented approach are shown in 

Figures 6.36 to 6.39).  From visual inspection alone, it is evident that the 80-scale 

parameter produced the highest classification accuracy.  From the resulting image, 

the main strips of various crop types were adequately classified (Figure 6.38).  The 

following major errors were identified from the 80-scale parameter image: 

• a few patches of canola were misclassified as barley, green weeds or non-

photosynthetic material 

• a few patches of barley were misclassified as wheat or canola 

• some patches of wheat, particularly those located near the edge of strips, were 

misclassified as canola 
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Figure 6.36 Classified image from the 30-scale image segmentation 
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Figure 6.37 Classified image from the 50-scale image segmentation 
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Figure 6.38 Classified image from the 80-scale image segmentation 
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Figure 6.39 Classified image from the 100-scale image segmentation 
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The accuracy assessment for the object-orientated approach used the same ground-

truthing dataset as in the pixel-based analysis.  The same analysis methods (% 

overall accuracy and kappa index) were utilised allowing a directly comparison to be 

made between the two methods.   

 

The results of accuracy assessment indicated that the 80-scale parameter image 

produced the highest accuracy (overall accuracy = 81% and kappa index = 0.76) 

(Table 6.31).  This is higher than the result achieved by the pixel-based approach 

(overall accuracy = 66% and kappa index = 0.61) for the 9-class aggregation (refer to 

section 6.3.2).  This higher accuracy achieved for the object-oriented approach was 

due to texture-related information (e.g. GLCM) incorporated in the classification 

decision rule (see Table 6.30).  This result agrees with previous studies on the 

importance of image-based texture in vegetation mapping from high spatial 

resolution digital imagery (Chubey et al. 2006; St-Onge & Cavayas 1997). 

 

Table 6.31. Accuracy of images classified from the object-oriented approach 

 

Scale for 
Segmentation 

% Overall 
Accuracy 

Kappa Index of 
Agreement 

30 scale 47 0.42 

50 scale 67 0.63 

80 scale 81 0.76 

100 scale 61 0.56 

 

However, it must be noted that not all segmentation parameters achieved better 

results than the pixel-based method.  For instance, the results that deployed 30-scale 

and 100-scale parameters have produced a lower accuracy (47 % and 61 %, 

respectively).  “Extreme” values for scale parameters did not produce better 

accuracy, and thus the optimum parameter should be determined through iterative 

runs. It is apparent that the “best separation distance” (BSD) values generated by the 

feature space optimisation procedure can be a good guide to consider. The BSD 

results are consistent with the results of classification accuracy assessment. 
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6.4 Further Refinements 

 

 

To further refine the LCLA remote sensing system, acquisitions were made to test 

the capacity of the system to detect crop maturity at Lundavra in 2005 and to 

quantify the capacity of an autopilot to control the flight path of a UAV and to 

initiate image acquisition.  The details of these two evaluations were described in 

Chapter 5.4 and the results will be discussed in this section. 

 

 

6.4.1 Crop Maturity Mapping  

 

The 79 area-of-interests (AOIs) that were randomly selected from within one 

replicate of the variety trial were detailed in Chapter 5.  These 79 samples 

corresponded to 14 differing Zadok scale classes, with the histogram of the spread of 

classes being shown in Figure 6.40.  The description of the growth stage associated 

with the Zadok scale classes is detailed in Table 5.2. 

 

The statistical package SPSS version 12.0 was utilised to perform the DA and was 

conducted using a stepwise method of entering a variable based on the Wilks’ 

lambda using the observed group sizes to determine the probabilities of group 

membership.   
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Figure 6.40  The frequency and distribution for the 14 different growth stages. 

 

In the ANOVA table (Table 6.32), the Wilks’ Lambda indicated that the colour 

bands were the most important to the discriminant function, with very little 

difference between the three.  The Wilks’ lambda is significant by the F test for all 

colour bands, but not the NIR.  

 

Table 6.32  Tests of equality of group means 

Tests of Equality of Group Means

.526 4.511 13 65 .000

.534 4.355 13 65 .000

.525 4.530 13 65 .000

.831 1.017 13 65 .446

RED

GREEN

BLUE

NIR

Wilks'
Lambda F df1 df2 Sig.

 

The covariance matrix (Table 6.33) indicates a good correlation within the three 

colour band, but no correlation with the NIR. 
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Table 6.33  Pooled within-group matrices 

Pooled Within-Groups Matrices a

102.511 76.896 96.894 -2.721

76.896 79.998 91.403 13.383

96.894 91.403 121.002 9.447

-2.721 13.383 9.447 25.651

1.000 .849 .870 -.053

.849 1.000 .929 .295

.870 .929 1.000 .170

-.053 .295 .170 1.000

RED

GREEN

BLUE

NIR

RED

GREEN

BLUE

NIR

Covariance

Correlation

RED GREEN BLUE NIR

The covariance matrix has 65 degrees of freedom.a. 

 

 

In the summary of canonical discriminant functions (Table 6.34), the first function 

accounts for 100% of the variance and the function is significant. 

 

Table 6.34  Summary of canonical discriminant functions (Eigenvalues top and 

Wilks’ lambda bottom). 

Eigenvalues

.906a 100.0 100.0 .689
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a. 

 

Wilks' Lambda

.525 45.475 13 .000
Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.

 

 

The structure matrix (Table 6.35) indicates that only the blue band is used in the 

analysis. 
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Table 6.35  The structure matrix. 

Structure Matrix

1.000

.929

.870

.170

BLUE

GREENa

REDa

NIRa

1

Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

This variable not used in the analysis.a. 

 

 

The classification results (Table 6.36) indicated that the predictive power is weak, as 

only 23% of the original grouped classes were correctly classified and only 14% of 

the cross-validated cases correct.  This lack of power was resultant from the large 

number of original classes.  As the classes represent individual growth stages of the 

crop (Zadoks et al. 1974), a difference of one in the Zadok scale can mean as little as 

an extra leaf unfolded or an extra tiller on the plant.  

 

Due to the large number of classes and the minor difference between each class, 

classifying into 14 classes was going to be problematic, resulting in the low accuracy 

of classification.   
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T
able 6.36  T

he classification results for the 14 Z
adoks class study. 

 

      (continued over) 

Classification Results b,c

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 3 1 0 0 0 0 0 0 0 0 0 0 0 4

0 2 1 0 0 0 1 2 0 0 0 1 0 0 7

0 0 0 0 0 0 7 1 0 0 0 0 0 0 8

0 0 0 0 0 0 4 1 0 0 0 0 0 0 5

0 0 2 0 0 0 2 3 0 0 0 0 0 0 7

0 0 1 0 0 0 9 1 1 0 0 0 0 0 12

0 0 1 0 0 0 7 2 0 0 0 0 0 0 10

0 0 1 0 0 0 4 1 0 0 0 1 0 1 8

0 0 0 0 0 0 1 1 1 0 0 1 0 0 4

0 0 0 0 0 0 1 0 0 0 0 2 0 0 3

0 0 0 0 0 0 2 0 1 0 0 2 0 0 5

0 0 0 0 0 0 1 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 0 0 1 2

.0 50.0 50.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 75.0 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 28.6 14.3 .0 .0 .0 14.3 28.6 .0 .0 .0 14.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 87.5 12.5 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 80.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 28.6 .0 .0 .0 28.6 42.9 .0 .0 .0 .0 .0 .0 100.0

.0 .0 8.3 .0 .0 .0 75.0 8.3 8.3 .0 .0 .0 .0 .0 100.0

.0 .0 10.0 .0 .0 .0 70.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 12.5 .0 .0 .0 50.0 12.5 .0 .0 .0 12.5 .0 12.5 100.0

.0 .0 .0 .0 .0 .0 25.0 25.0 25.0 .0 .0 25.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 33.3 .0 .0 .0 .0 66.7 .0 .0 100.0

.0 .0 .0 .0 .0 .0 40.0 .0 20.0 .0 .0 40.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 50.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 .0 .0 .0 .0 .0 .0 50.0 100.0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

ZADOK
43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

Count

%

Count

Original

Cross-validateda

43.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0

Predicted Group Membership

Total
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 T
able 6.36 (continued)  T

he classification results for the 14 Z
adoks class study.. 

 

.0 .0 .0 .0 .0 .0 50.0 .0 .0 .0 .0 .0 .0 50.0 100.0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 3 1 0 0 0 0 0 0 0 0 0 0 0 4

0 3 0 0 0 0 1 2 0 0 0 1 0 0 7

0 0 0 0 0 0 7 1 0 0 0 0 0 0 8

0 0 0 0 0 0 4 1 0 0 0 0 0 0 5

0 0 2 0 0 0 2 3 0 0 0 0 0 0 7

0 0 0 0 0 0 6 4 2 0 0 0 0 0 12

0 0 1 0 0 0 7 2 0 0 0 0 0 0 10

0 0 1 0 0 0 4 1 0 0 0 1 0 1 8

0 0 0 0 0 0 1 1 1 0 0 1 0 0 4

0 0 0 0 0 0 1 0 1 0 0 1 0 0 3

0 0 0 0 0 0 2 0 3 0 0 0 0 0 5

0 0 0 0 0 0 1 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 1 0 0 2

.0 50.0 50.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 75.0 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 42.9 .0 .0 .0 .0 14.3 28.6 .0 .0 .0 14.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 87.5 12.5 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 80.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 28.6 .0 .0 .0 28.6 42.9 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 33.3 16.7 .0 .0 .0 .0 .0 100.0

.0 .0 10.0 .0 .0 .0 70.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 12.5 .0 .0 .0 50.0 12.5 .0 .0 .0 12.5 .0 12.5 100.0

.0 .0 .0 .0 .0 .0 25.0 25.0 25.0 .0 .0 25.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 33.3 .0 33.3 .0 .0 33.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 40.0 .0 60.0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 50.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 .0 .0 .0 .0 50.0 .0 .0 100.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

Count

%

Cross-validateda

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.a. 

22.8% of original grouped cases correctly classified.b. 

13.9% of cross-validated grouped cases correctly classified.c. 

Classification Results b,c

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2
ZADOK
43.0CountOriginal

43.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0

Predicted Group Membership

Total
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As an alternative approach, classes were grouped according to the secondary growth 

stages of the crop (according to Zadoks et al. (1974)).  The new classes (‘Grouped 

Zadok’) are detailed in Table 6.37 and the frequencies of distribution within these 

new classes are shown in Figure 6.41. 

 

Table 6.37  The Zadoks range for the grouped secondary growth stages. 

Grouped 
Zadoks 

Zadok 
range 

Crop growth stage 

1 40-45 Early booting 
2 46-49 Late booting 
3 50-52 First spikelets visible to <¼ of 

inflorescence emerged 
4 53-54 ¼ to <½ of inflorescence 

emerged 
5 55-56 ½ to <¾ of inflorescence 

emerged 
6 57-59 ¾ of inflorescence emerged to 

emergence completed 
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Figure 6.41  The frequency and distribution for the 6 grouped secondary growth 

stages. 
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Using the same parameters as the previous case, this classification (see Table 6.38) 

resulted in an accuracy of 38% of original grouped cases correctly classified, with 

34% of cross-validated grouped cases correctly classified.  This was an improvement 

on the previous classification, but the difference between the growth stages of these 

‘secondary’ classes was still fine.  To further refine the classification, slight 

variations of the principal plant growth stages (as described by Zadok (1974)), were 

used to potentially provide a more accurate classification.  Details of the principal 

growth stages are shown in Table 6.39 with a histogram showing the class numbers 

shown as Figure 6.42. 
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 T
able 6.38  T

he classification accuracy for the grouped secondary grow
th stages. 

 Classification Results b,c

1 1 0 0 0 0 2

1 8 9 0 0 1 19

0 3 20 0 0 1 24

0 3 14 0 0 1 18

0 0 6 0 0 1 7

0 0 8 0 0 1 9

50.0 50.0 .0 .0 .0 .0 100.0

5.3 42.1 47.4 .0 .0 5.3 100.0

.0 12.5 83.3 .0 .0 4.2 100.0

.0 16.7 77.8 .0 .0 5.6 100.0

.0 .0 85.7 .0 .0 14.3 100.0

.0 .0 88.9 .0 .0 11.1 100.0

0 2 0 0 0 0 2

1 8 8 1 0 1 19

0 4 18 1 0 1 24

0 3 14 0 0 1 18

0 0 6 0 0 1 7

0 0 8 0 0 1 9

.0 100.0 .0 .0 .0 .0 100.0

5.3 42.1 42.1 5.3 .0 5.3 100.0

.0 16.7 75.0 4.2 .0 4.2 100.0

.0 16.7 77.8 .0 .0 5.6 100.0

.0 .0 85.7 .0 .0 14.3 100.0

.0 .0 88.9 .0 .0 11.1 100.0

Growth
Stage
1 Z40-45

2 Z46-49

3 Z50-52

4 Z53-54

5 Z55-56

6 Z57-59

1 Z40-45

2 Z46-49

3 Z50-52

4 Z53-54

5 Z55-56

6 Z57-59

1 Z40-45

2 Z46-49

3 Z50-52

4 Z53-54

5 Z55-56

6 Z57-59

1 Z40-45

2 Z46-49

3 Z50-52

4 Z53-54

5 Z55-56

6 Z57-59

Count

%

Count

%

Original

Cross-validateda

1 2 3 4 5 6

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions
derived from all cases other than that case.

a. 

38.0% of original grouped cases correctly classified.b. 

34.2% of cross-validated grouped cases correctly classified.c. 
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Table 6.39  The Zadoks range of the 3 principal growth stage classes. 

Scale Zadok scale Crop growth stage 

1 40-49 Booting  

2 50-54 Early inflorescence emergence 

3 55-59 Late inflorescence emergence 
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Figure 6.42  The frequency and distribution for the 3 principal growth stage classes. 

 

The classification results for the 3 principal growth stages are shown in Table 6.40.  

The results are more encouraging with 65% of the original cases classified correctly 

and 63% of the cross-validated classified correctly.  In the booting class (Z40–49) 

approximately 50% were correctly classified with 50 being classified into both of the 

emergence classes.  The early inflorescence emergence class (Z40–54) has more than 

90% correctly classified.  In the late inflorescence emergence class, over 90% of the 

cases were misclassified as early emergence.   
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Table 6.40 The classification results for the 3 principal growth stages. 

 

To further refine the classification, two classes were attempted based on the primary 

growth stages: booting (Z40–49) and emergence (Z50–59).  The classification results 

for these classes are shown in Table 6.41. 

 

Table 6.41  The classification results for the primary growth stages. 

 

 

The classification results for the classes based on the primary growth stages of the 

crop is quite acceptable, especially considering that the image was taken over a 

month after the growth stages were recorded.  The varieties of the trial that were not 

as advanced when the growth stages were recorded have continued to remain behind 

Classification Results b,c

10 10 1 21

2 39 1 42

0 14 2 16

47.6 47.6 4.8 100.0

4.8 92.9 2.4 100.0

.0 87.5 12.5 100.0

10 10 1 21

2 39 1 42

0 15 1 16

47.6 47.6 4.8 100.0

4.8 92.9 2.4 100.0

.0 93.8 6.3 100.0

Growth
Stage
1 Z40-49

2 Z50-54

3 Z55-59

1 Z40-49

2 Z50-54

3 Z55-59

1 Z40-49

2 Z50-54

3 Z55-59

1 Z40-49

2 Z50-54

3 Z55-59

Count

%

Count

%

Original

Cross-validateda

1 2 3

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each
case is classified by the functions derived from all cases other than that case.

a. 

64.6% of original grouped cases correctly classified.b. 

63.3% of cross-validated grouped cases correctly classified.c. 

Classification Results b,c

10 11 21

2 56 58

47.6 52.4 100.0

3.4 96.6 100.0

10 11 21

2 56 58

47.6 52.4 100.0

3.4 96.6 100.0

Primary
growth
stage
1 Z40-49

2 Z50-59

1 Z40-49

2 Z50-59

1 Z40-49

2 Z50-59

1 Z40-49

2 Z50-59

Count

%

Count

%

Original

Cross-validateda

1 2

Predicted Group
Membership

Total

Cross validation is done only for those cases in the analysis. In cross
validation, each case is classified by the functions derived from all cases
other than that case.

a. 

83.5% of original grouped cases correctly classified.b. 

83.5% of cross-validated grouped cases correctly classified.c. 
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the more advanced varieties, with this being indicated by the cases correctly 

classified.  Greater differentiation may have been possible had the duration between 

the growth stages assessment and the image acquisition been minimised. 

 

 

6.4.2 Autopilot Evaluation 

 

A flight path of the three successful missions is shown in Figure 6.43.  Two circuits 

were completed on both flights one and three, with three circuits being made on 

flight four.  Each dot in the circuit represents the latitude and longitude of the path 

taken by the UAV that was recorded in the flight log, which was updated with GPS 

co-ordinates once per second.  The activity around the target area and the reduced 

distance between consecutive dots in this area indicates that this was the takeoff and 

landing zone.  The flight path is superimposed over a Spot 5 satellite image showing 

the infrastructure of the Watts Bridge Memorial Airfield and other natural features in 

the close proximity.  Also displayed are the waypoints used in determining the flight 

path and the location of the target, over which the images were captured. 

 

An example of two of the images captured on flight four are shown in Figures 6.44 

and 6.45.  These images were taken on the last circuits made by the UAV on the day.  

Even though the images were acquired a little over three minutes apart, there is good 

consistency in the coverage and positioning of the target within both images.  Ideally, 

if the autopilot was doing a perfect job guiding the UAV, the target should be in the 

centre of the image.  As can be seen from Figures 6.44 and 6.45, this was not quite 

the case.   

 

The target and waypoints were arranged so that the UAV should in theory fly 

directly down the centre of the mowed grass runway that ran NE–SW in Figure 6.43.  

This should have resulted in the runway being positioned vertically in the centre of 

each image acquired.  This was not the case.  The misalignment was possibly due to 

a combination of cross-wind, GPS / autopilot error, the UAV not being level when 

the image was acquired, and / or inaccuracies in positioning the LCLA sensors in the 

hinged pod.  These difficulties were not part of this research as they had no direct 

relevance to crop assessment, and were beyond the scope of this work. 
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Figure 6.43 The flight paths and target positioning, Watts Bridge on 5 March 2008. 
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target
centre of 
image

 

Figure 6.44 Image 100_4814 taken at 3:27:44 pm. 

 

targetcentre of 
image

 

Figure 6.45 Image 100_4815 taken just over 3min after image 100_4814 (shown in 

Figure 6.44). 
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Analysis 

 

Details of the various images captured during the flights undertaken are shown in 

Table 6.42.  The inaccuracies in the image acquisition were quantified and detailed in 

this table.  The scale of the images were determined using GPS co-ordinates of 

known features and the distanced measured from the images.  The direction of flight 

of the UAV was from the top of the image to the bottom.  In the image offset column 

in Table 6.42, the X distance is the cross-track distance with a positive value 

indicating that it is to the left and negative to the right of the centre of the image.  

The offset in the direction of flight (undershoot or overshoot) is indicated by the Y 

column with a positive value indicating that the image was captured before the centre 

of the image with a negative value indicating after capture.  The absolute is the direct 

distance from the centre of the image to the centre of the target. 

 

Table 6.42 Details of the errors for the images acquired over the target. 

Image # Time Altitude Heading Image Offset Image Extent Area

(m) (degrees) X (m) Y (m) absolute X (m) Y (m) (ha)

Flight 1

100_4801 1:32:06 157 150 50.4 8.3 51.1 140.4 104.0 1.46

100_4803 1:35:26 83.7 17.8 85.6 133.4 98.8 1.32

100_4805 1:38:32 59.6 10.2 60.5 137.4 101.8 1.40

Flight 2

100_4806  2:36:10 

Flight 3

100_4809 2:57:24 112 146 17.2 -1.9 17.3 103.0 76.3 0.79

100_4810  3:00:42 104 132 19.1 0.3 19.1 92.2 68.3 0.63

Flight 4

100_4812  3:21:48 117 113 39.5 6 40.0 108.7 80.5 0.88

100_4813 3:24:46 38.2 26.6 46.5 92.0 68.2 0.63

100_4814  3:27:44 98 114 -19.3 14.1 23.9 100.4 74.4 0.75

100_4815  3:30:50 72 125 -9.6 4.9 10.8 73.9 54.7 0.40  

 

Capturing the target in the image was achieved on every flight.  However, capturing 

the target in the middle of the image was not as repeatable with the error ranging 

from just under 15% of the image width (the final image on flight four) to just over 

60% of the image width (the second image of flight two).   
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The capacity to accurately acquire images over pre-determined points is essential to 

ensure coverage and to expedite mosaicing of the images.  It will also expand the 

application of these technologies into the broader-scale applications, such as imaging 

in broadacre cereal cropping or imaging along transects (such a river systems etc.). 

 

Also detailed in Table 6.42 are the differing altitudes that were programmed for each 

of the flight.  The first flight was undertaken at 150 m above ground level, with the 

third at 110 m.  The final flight was slightly different.  The first image was acquired 

at the set altitude of 120 m.  The three circuits that followed were flown at this same 

height (120m); however the images were acquired at lower altitudes (100 m for 

images two and three and 75 m for the final image).  These image acquisition heights 

were changed in-flight with the intention of observing the response of the UAV to 

changes of the flight schedule.  An altitude plot of flight 4 is shown in Figure 6.46. 

 

75

100

125

150

175

200

225

250

0 2 4 6 8 10 12 14

A
lt

it
u

d
e

 A
b

o
v

e
 S

e
a

 L
e

v
e

l 
(m

)

Flight Time (min)

take-off

image 2

image 3

image 4

landing

banking

image 1

 

Figure 6.46  Altitude details for flight 4 (note the UAV reduced altitude to acquire 

images). 

 

Figure 6.46 shows the relatively steep climb of the UAV after take-off.  Also evident 

is the loss of altitude, and then correction, due to the banking of the aircraft when 

manoeuvring to align to the next waypoint.  The saw-toothed nature of the plot, due 

to the banking, indicates that the feedback loops to the autopilot to control the flight 
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surfaces are not finely tuned enough to optimise performance and ensure stable 

flight.  

 

This study documents the accuracy of an autopiloted UAV to fly on a predetermined 

path and capture images, something that has not been published in the literature 

(excluding confidential military documents). For the use of this system to be 

expanded in the ‘real world,’ these limitations would have to be overcome.  

However, this study provides proof-of-concept that autopiloted UAV can fly on a 

predetermined path and take images.  This autonomous system has the potential to be 

a highly suitable platform, but needs further development. 
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6.5 Synthesis of Findings 

 

 

The ability of a low-cost low-altitude remote sensing system to detect variations in a 

growing crop has been documented by the research detailed in this thesis.  The 

system, which started as surveillance video cameras on a hobbyist remotely 

controlled aircraft, provided proof-of-concept.  The development of the system has 

progressed into a dual 1.0 megapixel digital camera system suspended beneath a 

helium balloon.  This configuration found application in many and varied 

circumstances: predicting yield and protein, discriminating crop types, quantifying 

hail damage, detailing wet areas in cattle feedlots, spatially referencing pineapples, to 

assessing turf health in football stadium.  Using dual 5 megapixel cameras found 

enhanced application in assessing crop maturity, quantifying lettuce growth rates and 

also as a measure of autopilot accuracy. 

 

The system developed in this research is ideal where the entire area-of-interest or 

investigation can be captured in only a few images, as the system does not have the 

capacity to allow automatic registering and mosaicing of the acquired images.  This 

however, may become a possibility with the further development of the autopiloted 

UAV remote sensing system. 

 

 

6.5.1 Sensor 

 

This research offers proof-of-concept that digital cameras can provide relatively 

cheap and useful data layers that are highly correlated with plant features, such as at-

harvest parameters (yield and protein) and crop maturity, as well as to discriminate 

between different crop types. 
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6.5.2 Platform 

 

Several differing platforms were utilised during this research with each having a 

particular niche.  For trial sites, the balloon is the ideal platform as it is stable and can 

acquire many images in a short period of time over the same target.  It is also very 

easy to alter the pixel resolution of the image by altering the acquisition height.  

However, the utility of the system to broader-scale applications is limited.  An 

autonomous UAV (the final platform tested) holds great promise for extensive use as 

an LCLA remote sensing platform in broadacre agriculture.  A 10 m mast system 

was also found useful for repeated weekly acquisitions in horticultural crops, but 

lacked application with cereal cropping. 

 

 

6.6 Conclusions 

 

 

Low-cost low-altitude remote sensing system can predict the yield and protein of a 

wheat crop with a single image acquired at flowering, and established relationships 

that equalled or were better than any other reported relationships in the literature.  

The excellent ability of this system to differentiate nutritional status of a growing 

crop was also demonstrated. 

 

Statistical methods used to evaluate the potential of the system to differentiate 

between species of cereal crops showed an accuracy of 86%.  Traditional image 

analysis methods (per-pixel approach) performed well (66% accuracy), but the 

capacity of object-orientated analysis to take into consideration other non-spectral 

information (e.g. texture and other spatial considerations) greatly increased the 

accuracy to 81%. 
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The capacity of the system to assess crop maturity was demonstrated by the accuracy 

of determining the primary growth stages of a barley crop, with 84% of the cases 

correctly classified.  Further research is needed to fully investigate the potential. 

 

Finally, preliminary testing of an autonomous UAV, where the autopilot controlled 

the flightpath and the image acquisition, demonstrated the feasibility of using such a 

system as an imaging platform.  With the addition of other sensors, this system has 

great potential to be utilised in broader agricultural applications. 



Chapter 7 

 

Conclusions and Recommendations 

 

 

7.1 Introduction  

 

 

This study dealt with spectral discrimination, mapping and monitoring variations in 

agricultural crops.  Its primary aim was to develop and evaluate a low-cost low-

altitude (LCLA) remote sensing system that can be applied in precision agriculture.  

There were three specific objectives detailed in Chapter 1.3 that were addressed in 

Chapters 3 through 6, to meet this research goal.  This last chapter presents a 

summary of the major findings of this research, and offers conclusions and 

recommendations for future research. 

 

 

7.2 Summary of Findings 

 

 

This study has provided new knowledge and insights on the use of off-the-shelf 

consumer technologies and a low-cost platform, as a remote sensing system, that has 

the ability to provide information for use in agriculture.  It yields fresh information 

on how a low-cost low altitude remote sensing system can be applied to discriminate, 

map and monitor agricultural crops, with a spatial resolution that had not been 

possible with conventional remotely sensed imagery. 
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Chapter 3 scoped the technologies that had potential to be incorporated into a low-

cost low-altitude remote sensing system.  The range of imaging techniques that can 

be utilised as a sensor in the system was also investigated.  Also investigated were 

various methods of mobilising the sensor that enabled the capture of images over a 

target area.  The major findings are as follows: 

• Video cameras, with their low resolution, provided useful images for 

positioning the sensing system over the target. 

• Low-end 1.0 megapixel digital cameras are capable of capturing suitable 

colour images, generally without blur, when mounted under a remotely 

controlled aircraft. 

• Removing the NIR blocking filter increased the digital camera’s sensitivity to 

near-infrared light.  This provided much higher shutter speed that overcome 

the blurring hurdles. 

• Hobbyist remotely controlled aircraft provided a reliable and stable platform 

that had sufficient additional payload capacity to carry the dual camera 

sensor. 

• The dual camera sensor could be successfully triggered using standard radio 

control equipment, without interfering with the UAV operations. 

 

In Chapter 4, the development of the low-cost low-altitude remote sensing system 

was detailed.  The following are the major findings: 

• A dual digital camera sensor system is capable of and was used to capture 

colour and near infrared images simultaneously.  The sensor could be 

externally powered and remotely triggered. 

• A 1.7 m diameter helium balloon has sufficient lift for the 2-camera system of 

about 1.0 kg.  Sensor movement on the balloon platform can be overcome by 

a stabilising bar and dual tether-lines.  

• The 2-camera system possessed sufficient spatial resolution to record very 

fine detail (6 cm pixel resolution) from a moving platform. 

 



Chapter 7                                                            Conclusions and Recommendations 

 258

The methods used in evaluating the low-cost low-altitude remote sensing system to 

map cereal grain attributes are described in Chapter 5.  Several different types of 

platforms were developed and evaluated during this work and have met all the needs 

of the desired applications.  The notable findings are: 

 

• Helium balloons provided a relatively inexpensive and easy-to-set-up and 

deploy platform that could be constrained to acquire imagery at various 

altitudes.  This type of platform was particularly useful where the site was 

accessible and the area to be imaged is relatively small.  The skill level to 

deploy this platform was low. 

• Hobbyist remotely controlled aircraft provided the solution for broader scale 

imagery requirements.  The initial purchase cost was higher (still within the 

targeted capital cost of AUD$2000 for platform and sensor), however the 

running costs were lower than the He balloon platform.  The skill level to 

deploy this platform was considerably greater than the He balloon, but not 

beyond the average remote control hobbyist or for an agronomist to learn. 

• Sensors installed atop a 10 m mast were only suitable to acquire repeated 

(weekly) images of specific small trial plots, with little application to broader 

scale agriculture. 

• The updated 5.0 megapixel 2-cameras sensor provided the same functionality 

as the previous 1.0 megapixel 2-camera sensor but with better resolution that 

allowed finer detailed to be viewed, or larger areas to be imaged. 

• The capacity of an autonomous unmanned aerial vehicle (UAV) to fly a set 

path and trigger the 2-camera sensor over a predetermined location was 

demonstrated.  Although exceeding the cost constraints detailed earlier, the 

system showed considerable utility and development potential, especially for 

broadacre applications. 
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The analysis of the collected data resulted in the following major findings: 

• The relationships derived for yield (R2=0.90) from a single date acquisition 

was equal to, or exceeded all other studies reported in the literature.   

• The relationship developed with grain protein (R2=0.66) was comparable to 

other more sophisticated studies involving multiple acquisitions, complex 

sensors and crop modelling.  As a one-off acquisition system, the relationship 

established using the LCLA gave superior results compared to all other 

reported studies. 

• The LCLA system developed in this study proved to be very effective at 

discriminating between different species of cereal crops.  Performing 

traditional statistical methods (per-pixel approach) on the images acquired by 

the low-cost low-altitude system enabled species to be clearly distinguished 

(with an accuracy of 66%) in a cereal crop trial.  Additional rigour was added 

to the crop-type discrimination ability by the incorporation of textural 

considerations into the object-based image classification (81% accuracy). 

• A crop maturity investigation was undertaken and showed great promise (an 

accuracy of 84%) when predicting primary growth stages of a cereal crop.  

Further investigations are needed to refine the method due to timing issues 

with the collection of the datasets. 

 

 

7.3 Conclusions 

 

 

This research proved the hypothesis that “An off-the-shelf consumer camera 

technologies and low-cost low-altitude platforms can provide selected sets of 

information appropriate for use in precision agriculture” 

 

The system successfully acquired images that enabled relationships to be determined 

between imagery and the following cereal crop parameters: a) yield, b) protein, c) 

crop-type, and d) growth stage.  The relationships derived for yield from a single 

date acquisition was equal too, or exceeded all other studies reported in the literature.  
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The relationship developed with protein was comparable to other more sophisticated 

studies involving multiple acquisitions, complex sensors and crop modelling.  As a 

one-off acquisition, the relationship exceeds all other reported studies. 

 

The LCLA system developed in this study proved to be very effective at 

discriminating between different species of cereal crops.  Performing the traditional 

per-pixel approach on the images acquired by the low-cost low-altitude system 

enabled species to be clearly distinguished in a cereal crop trial.  However, the use of 

texture-related information, through the object-based approach, produced better 

classification accuracy results.  Similarly, the study on crop maturity discrimination 

using the spectral data obtained by the LCLA system showed great promise, 

particularly when a range of growth stages was evident.  However, further 

investigations are needed to refine the method due to timing issues with the 

collection of the datasets. 

 

Several different types of platforms were used during this work with all meeting the 

needs for the purpose to which they were applied.  Helium balloons were relatively 

easy to set up and deploy but could be constrained to acquire imagery at various 

altitudes.  However, this type of platform was particularly useful when the site was 

accessible and the area to be imaged is relatively small.  The sensors were also 

installed atop a 10 m mast that was utilised to acquire repeated (weekly) images of 

specific small trial plots in a horticultural application.  For broader scale imagery 

requirements, and for the ability to image areas that are not readily accessible, the 

hobbyist remotely controlled plane and the sophisticated autonomous unmanned 

aerial vehicle were the platforms of choice. 

 

The LCLA remote sensing system is a simple and inexpensive system to set up that 

is relatively easy-to-deploy with low on-going operational cost.  It has shown great 

utility for agricultural applications. 
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7.4 Recommendations for Future Work 

 

 

Image extent is constrained by the altitude of the low-cost low-altitude remote 

sensing system.  The higher the platform, the greater the extent but the lower the 

ground pixel resolution.  The helium balloon has to be physically moved over the 

area of interest, so areas larger than several hectares are difficult to image.  The UAV 

is limited by the ability of the operator to take-off and land, and to position it above 

the target area.  Additionally, it was constrained to line-of-sight flight.  The majority 

of these constraints were removed in early 2008 when tests were performed on an 

autonomous unmanned aerial vehicle (UAV) using the autopilot to trigger the low-

cost low-altitude sensor when at predetermined locations.  An operator was still 

required for take-off and landing, but the autopilot had the capacity to control the 

UAV beyond the conventional line-of-sight range.  The testing proved the capacity 

of the system to be used as a platform that has applications to broader scale 

agriculture. However, incorporating additional instrumentation and refining the 

autopilot system will be necessary before the full potential of this system can be 

realised. 

 

From an agricultural perspective, the degree of variation that can be managed is 

relatively coarse.  A farmer is not going to modify management decisions for a 5–

10% change in a particular variable being considered (e.g. yield, protein, maturity, 

fertiliser requirement).  Due to the scale being considered, no attempt was made to 

compensate for vignetting or to perform other radiometric corrections on the images 

that were acquired.  Should the detection of finer increments of change, or change 

over time be the focus of the investigation, then these issues will need to be 

addressed. 
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Appendices 
 
 
Appendix 1  Summary of SPSS output–Colonsay 
 
 

Tests of Equality of Group Means

.588 26.892 3 115 .000

.677 18.311 3 115 .000

.481 41.403 3 115 .000

.435 49.706 3 115 .000

.418 53.387 3 115 .000

.393 59.303 3 115 .000

RED

GREEN

BLUE

NIRR

NIRG

NIRB

Wilks'
Lambda F df1 df2 Sig.

 
 

Pooled Within-Groups Matrices a

107.478 97.176 79.804 55.675 24.968 26.310

97.176 89.931 71.856 60.448 27.705 29.160

79.804 71.856 64.662 29.638 12.761 13.699

55.675 60.448 29.638 112.508 54.825 56.544

24.968 27.705 12.761 54.825 27.057 27.753

26.310 29.160 13.699 56.544 27.753 28.682

1.000 .988 .957 .506 .463 .474

.988 1.000 .942 .601 .562 .574

.957 .942 1.000 .347 .305 .318

.506 .601 .347 1.000 .994 .995

.463 .562 .305 .994 1.000 .996

.474 .574 .318 .995 .996 1.000

RED

GREEN

BLUE

NIRR

NIRG

NIRB

RED

GREEN

BLUE

NIRR

NIRG

NIRB

Covariance

Correlation

RED GREEN BLUE NIRR NIRG NIRB

The covariance matrix has 115 degrees of freedom.a. 

 
 
Summary of Canonical Discriminant Functions 
 

Eigenvalues

7.342a 95.2 95.2 .938

.298a 3.9 99.0 .479

.073a 1.0 100.0 .261

Function
1

2

3

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 3 canonical discriminant functions were used in the
analysis.

a. 
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Wilks' Lambda

.086 277.170 18 .000

.718 37.464 10 .000

.932 7.995 4 .092

Test of Function(s)
1 through 3

2 through 3

3

Wilks'
Lambda Chi-square df Sig.

 
Standardized Canonical Discriminant Function Coeffi cients

5.108 -.496 1.178

-8.472 -1.320 2.290

1.987 2.096 -2.457

-1.701 -8.984 -6.538

-4.811 7.478 -3.355

8.755 1.821 9.152

RED

GREEN

BLUE

NIRR

NIRG

NIRB

1 2 3

Function

 
 

Structure Matrix

.457* .002 .393

.434* .033 .348

.419* -.057 .357

-.248 .011 .581*

-.304 -.018 .563*

-.380 .116 .445*

NIRB

NIRG

NIRR

GREEN

RED

BLUE

1 2 3

Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and
any discriminant function

*. 

 
 
 

Functions at Group Centroids

-4.639 .495 -.073

-1.199 -.867 .285

1.625 -.132 -.279

2.655 .630 .335

N APPLIED
0

40

80

120

1 2 3

Function

Unstandardized canonical discriminant functions
evaluated at group means
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-8 -6 -4 -2 0 2 4 6

Function 1

-4

-2

0

2

4

6

F
un

ct
io

n 
2

0

40

80

120

N APPLIED
0

40

80

120

Group Centroid

Canonical Discriminant Functions

 
Classification Results a

22 2 0 0 24

1 22 1 0 24

0 5 32 10 47

0 0 10 14 24

91.7 8.3 .0 .0 100.0

4.2 91.7 4.2 .0 100.0

.0 10.6 68.1 21.3 100.0

.0 .0 41.7 58.3 100.0

N APPLIED
0

40

80

120

0

40

80

120

Count

%

Original
0 40 80 120

Predicted Group Membership

Total

75.6% of original grouped cases correctly classified.a. 
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Appendix 2  Summary of SPSS output–Nindigully 
 
 
N = 50 
 
 

Tests of Equality of Group Means

.447 8.850 6 43 .000

.304 16.425 6 43 .000

.341 13.879 6 43 .000

.196 29.310 6 43 .000

.161 37.415 6 43 .000

.140 44.039 6 43 .000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Wilks'
Lambda F df1 df2 Sig.

 
 

Pooled Within-Groups Matrices a

54.343 60.781 65.052 14.239 12.990 29.982

60.781 69.815 74.157 17.317 15.795 37.025

65.052 74.157 80.916 15.553 14.707 34.228

14.239 17.317 15.553 9.508 7.988 19.217

12.990 15.795 14.707 7.988 6.977 16.836

29.982 37.025 34.228 19.217 16.836 41.055

1.000 .987 .981 .626 .667 .635

.987 1.000 .987 .672 .716 .692

.981 .987 1.000 .561 .619 .594

.626 .672 .561 1.000 .981 .973

.667 .716 .619 .981 1.000 .995

.635 .692 .594 .973 .995 1.000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Covariance

Correlation

BLUE GREEN RED NIRB NIRG NIRR

The covariance matrix has 43 degrees of freedom.a. 

 
 

Eigenvalues

13.825a 55.3 55.3 .966

7.256a 29.0 84.4 .937

3.272a 13.1 97.5 .875

.553a 2.2 99.7 .597

.055a .2 99.9 .229

.029a .1 100.0 .167

Function
1

2

3

4

5

6

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 6 canonical discriminant functions were used in the
analysis.

a. 
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Wilks' Lambda

.001 288.216 36 .000

.017 173.623 25 .000

.139 83.906 16 .000

.593 22.189 9 .008

.921 3.483 4 .480

.972 1.195 1 .274

Test of Function(s)
1 through 6

2 through 6

3 through 6

4 through 6

5 through 6

6

Wilks'
Lambda Chi-square df Sig.

 
 

Standardized Canonical Discriminant Function Coeffi cients

-.663 -5.582 -.688 2.930 -.349 4.286

7.964 1.902 -7.883 -9.894 2.113 -2.116

-6.683 4.281 7.595 6.395 -1.290 -.971

-3.160 2.827 -.541 5.267 2.137 -1.116

-2.230 -3.206 4.709 -12.234 2.676 -4.732

4.793 .064 -2.291 8.453 -4.644 5.101

BLUE

GREEN

RED

NIRB

NIRG

NIRR

1 2 3 4 5 6

Function

 
 

Structure Matrix

.619* -.062 .489 .221 .571 -.011

.504 -.074 .378 .261 .723* -.077

.215 .167 .332 -.056 .647* .628

.311 .267 .354 -.063 .636* .547

.559 -.083 .500 .172 .634* -.008

.218 .320 .393 -.092 .550 .621*

NIRR

NIRB

BLUE

GREEN

NIRG

RED

1 2 3 4 5 6

Function

Pooled within-groups correlations between discriminating variables and standardized
canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and any discriminant
function

*. 

 
 

Functions at Group Centroids

-4.157 3.153 .755 -.471 -.102 -.040

5.623 .692 -2.400 -1.058 .060 -.209

4.330 3.243 -1.159 .868 -.217 .257

2.864 -1.799 2.728 -.214 -.011 .034

-1.175 .136 -.330 .581 .386 -.007

-1.460 -2.709 -.658 1.093 -.317 -.265

-3.557 -4.204 -2.089 -.694 -.072 .244

CROP
1

2

3

4

5

6

7

1 2 3 4 5 6

Function

Unstandardized canonical discriminant functions evaluated at group means
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-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

Function 1

-6

-4

-2

0

2

4

6

F
un

ct
io

n 
2

1

2

3

4

5

6

7

CROP
1 barley

2 canola 50 N

3 canola 0 N

4 chickpea

5 wheat 0 N

6 wheat 40 N

7 wheat 0 N

Group Centroid

Canonical Discriminant Functions
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Classification Results b,c

10 0 0 0 0 0 0 10

0 5 0 0 0 0 0 5

0 0 5 0 0 0 0 5

0 0 0 10 0 0 0 10

0 0 0 0 8 2 0 10

0 0 0 0 0 5 0 5

0 0 0 0 0 0 5 5

100.0 .0 .0 .0 .0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 .0 100.0 .0 .0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 .0 80.0 20.0 .0 100.0

.0 .0 .0 .0 .0 100.0 .0 100.0

.0 .0 .0 .0 .0 .0 100.0 100.0

9 0 0 0 1 0 0 10

0 5 0 0 0 0 0 5

0 1 3 0 1 0 0 5

0 0 0 10 0 0 0 10

0 0 0 0 6 4 0 10

0 0 0 0 2 3 0 5

0 0 0 0 0 2 3 5

90.0 .0 .0 .0 10.0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 20.0 60.0 .0 20.0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 .0 60.0 40.0 .0 100.0

.0 .0 .0 .0 40.0 60.0 .0 100.0

.0 .0 .0 .0 .0 40.0 60.0 100.0

CROP
1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Count

%

Count

%

Original

Cross-validateda

1 2 3 4 5 6 7

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from
all cases other than that case.

a. 

96.0% of original grouped cases correctly classified.b. 

78.0% of cross-validated grouped cases correctly classified.c. 

 
 
N = 80 
 
 

Tests of Equality of Group Means

.416 17.104 6 73 .000

.257 35.089 6 73 .000

.290 29.796 6 73 .000

.269 33.096 6 73 .000

.224 42.106 6 73 .000

.200 48.778 6 73 .000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Wilks'
Lambda F df1 df2 Sig.
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Pooled Within-Groups Matrices a

46.986 50.756 55.328 11.354 10.182 23.402

50.756 57.762 61.739 15.100 13.502 32.045

55.328 61.739 69.222 11.474 10.873 25.349

11.354 15.100 11.474 12.736 10.578 26.009

10.182 13.502 10.873 10.578 9.073 22.369

23.402 32.045 25.349 26.009 22.369 55.708

1.000 .974 .970 .464 .493 .457

.974 1.000 .976 .557 .590 .565

.970 .976 1.000 .386 .434 .408

.464 .557 .386 1.000 .984 .976

.493 .590 .434 .984 1.000 .995

.457 .565 .408 .976 .995 1.000

BLUE

GREEN

RED

NIRB

NIRG

NIRR

BLUE

GREEN

RED

NIRB

NIRG

NIRR

Covariance

Correlation

BLUE GREEN RED NIRB NIRG NIRR

The covariance matrix has 73 degrees of freedom.a. 

 
 

Eigenvalues

11.583a 56.7 56.7 .959

6.252a 30.6 87.4 .928

2.020a 9.9 97.3 .818

.505a 2.5 99.7 .579

.034a .2 99.9 .182

.019a .1 100.0 .138

Function
1

2

3

4

5

6

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 6 canonical discriminant functions were used in the
analysis.

a. 

 
Wilks' Lambda

.002 440.837 36 .000

.029 257.241 25 .000

.209 113.602 16 .000

.630 33.480 9 .000

.948 3.840 4 .428

.981 1.395 1 .238

Test of Function(s)
1 through 6

2 through 6

3 through 6

4 through 6

5 through 6

6

Wilks'
Lambda Chi-square df Sig.

 

Standardized Canonical Discriminant Function Coeffi cients

.716 -4.280 .431 2.028 .712 3.331

-8.065 -.499 -5.236 -7.440 .946 -2.019

6.459 5.112 4.255 5.014 -1.030 -.435

3.621 2.933 -1.982 5.054 2.453 -1.371

1.880 -1.201 5.575 -12.621 1.099 -4.930

-4.348 -1.574 -2.033 9.187 -3.499 5.712

BLUE

GREEN

RED

NIRB

NIRG

NIRR

1 2 3 4 5 6

Function
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Structure Matrix

-.485 -.067 .572* .281 .494 -.333

-.534 -.057 .554* .336 .430 -.327

-.256 .243 .357 -.032 .714* .488

-.392 .358 .374 -.008 .671* .358

-.280 .443 .384 -.055 .580* .489

-.437 -.074 .448 .343 .577* -.391

NIRG

NIRR

BLUE

GREEN

RED

NIRB

1 2 3 4 5 6

Function

Pooled within-groups correlations between discriminating variables and standardized
canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

Largest absolute correlation between each variable and any discriminant
function

*. 

 
 
 

Functions at Group Centroids

3.031 3.134 .109 -.327 -.069 -.018

-5.233 -.484 -1.449 -.940 -.015 -.152

-4.353 1.816 -.748 .953 -.076 .196

-2.333 -1.312 3.279 -.334 -.001 .043

.861 .040 -.157 .493 .440 -.061

1.726 -2.567 -.012 1.019 -.204 -.188

3.270 -3.761 -1.131 -.537 -.006 .197

CROP
1

2

3

4

5

6

7

1 2 3 4 5 6

Function

Unstandardized canonical discriminant functions evaluated at group means
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Classification Results b,c

20 0 0 0 0 0 0 20

0 10 0 0 0 0 0 10

0 0 9 0 1 0 0 10

0 0 0 10 0 0 0 10

0 0 0 0 8 2 0 10

0 0 0 0 0 10 0 10

0 0 0 0 0 0 10 10

100.0 .0 .0 .0 .0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 .0 90.0 .0 10.0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 .0 80.0 20.0 .0 100.0

.0 .0 .0 .0 .0 100.0 .0 100.0

.0 .0 .0 .0 .0 .0 100.0 100.0

19 0 0 0 1 0 0 20

0 10 0 0 0 0 0 10

0 1 8 0 1 0 0 10

0 0 0 10 0 0 0 10

0 0 0 1 5 4 0 10

0 0 0 0 1 9 0 10

0 0 0 0 0 2 8 10

95.0 .0 .0 .0 5.0 .0 .0 100.0

.0 100.0 .0 .0 .0 .0 .0 100.0

.0 10.0 80.0 .0 10.0 .0 .0 100.0

.0 .0 .0 100.0 .0 .0 .0 100.0

.0 .0 .0 10.0 50.0 40.0 .0 100.0

.0 .0 .0 .0 10.0 90.0 .0 100.0

.0 .0 .0 .0 .0 20.0 80.0 100.0

CROP
1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Count

%

Count

%

Original

Cross-validateda

1 2 3 4 5 6 7

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from
all cases other than that case.

a. 

96.3% of original grouped cases correctly classified.b. 

86.3% of cross-validated grouped cases correctly classified.c. 
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Appendix 3  Summary of SPSS output–Lundavra 
 
14 Zadok classes 
 
 

Tests of Equality of Group Means

.526 4.511 13 65 .000

.534 4.355 13 65 .000

.525 4.530 13 65 .000

.831 1.017 13 65 .446

RED

GREEN

BLUE

NIR

Wilks'
Lambda F df1 df2 Sig.

 
 

Pooled Within-Groups Matrices a

102.511 76.896 96.894 -2.721

76.896 79.998 91.403 13.383

96.894 91.403 121.002 9.447

-2.721 13.383 9.447 25.651

1.000 .849 .870 -.053

.849 1.000 .929 .295

.870 .929 1.000 .170

-.053 .295 .170 1.000

RED

GREEN

BLUE

NIR

RED

GREEN

BLUE

NIR

Covariance

Correlation

RED GREEN BLUE NIR

The covariance matrix has 65 degrees of freedom.a. 

 
 

Eigenvalues

.906a 100.0 100.0 .689
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a. 

 
 

Wilks' Lambda

.525 45.475 13 .000
Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.

 
 

Standardized Canonical Discriminant Function Coeffi cients

1.000BLUE
1

Function

 
 



289 
 

Structure Matrix

1.000

.929

.870

.170

BLUE

GREENa

REDa

NIRa

1

Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

This variable not used in the analysis.a. 

 
Functions at Group Centroids

-2.050

-2.177

-.820

.234

.138

-.588

.162

-.223

.531

.948

1.209

1.125

-.239

1.787

ZADOK
43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

1

Function

Unstandardized canonical discriminant
functions evaluated at group means

 
 



290 
 

Classification Results b,c

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 3 1 0 0 0 0 0 0 0 0 0 0 0 4

0 2 1 0 0 0 1 2 0 0 0 1 0 0 7

0 0 0 0 0 0 7 1 0 0 0 0 0 0 8

0 0 0 0 0 0 4 1 0 0 0 0 0 0 5

0 0 2 0 0 0 2 3 0 0 0 0 0 0 7

0 0 1 0 0 0 9 1 1 0 0 0 0 0 12

0 0 1 0 0 0 7 2 0 0 0 0 0 0 10

0 0 1 0 0 0 4 1 0 0 0 1 0 1 8

0 0 0 0 0 0 1 1 1 0 0 1 0 0 4

0 0 0 0 0 0 1 0 0 0 0 2 0 0 3

0 0 0 0 0 0 2 0 1 0 0 2 0 0 5

0 0 0 0 0 0 1 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 0 0 1 2

.0 50.0 50.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 75.0 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 28.6 14.3 .0 .0 .0 14.3 28.6 .0 .0 .0 14.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 87.5 12.5 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 80.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 28.6 .0 .0 .0 28.6 42.9 .0 .0 .0 .0 .0 .0 100.0

.0 .0 8.3 .0 .0 .0 75.0 8.3 8.3 .0 .0 .0 .0 .0 100.0

.0 .0 10.0 .0 .0 .0 70.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 12.5 .0 .0 .0 50.0 12.5 .0 .0 .0 12.5 .0 12.5 100.0

.0 .0 .0 .0 .0 .0 25.0 25.0 25.0 .0 .0 25.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 33.3 .0 .0 .0 .0 66.7 .0 .0 100.0

.0 .0 .0 .0 .0 .0 40.0 .0 20.0 .0 .0 40.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 50.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 .0 .0 .0 .0 .0 .0 50.0 100.0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 2

0 3 1 0 0 0 0 0 0 0 0 0 0 0 4

0 3 0 0 0 0 1 2 0 0 0 1 0 0 7

0 0 0 0 0 0 7 1 0 0 0 0 0 0 8

0 0 0 0 0 0 4 1 0 0 0 0 0 0 5

0 0 2 0 0 0 2 3 0 0 0 0 0 0 7

0 0 0 0 0 0 6 4 2 0 0 0 0 0 12

0 0 1 0 0 0 7 2 0 0 0 0 0 0 10

0 0 1 0 0 0 4 1 0 0 0 1 0 1 8

0 0 0 0 0 0 1 1 1 0 0 1 0 0 4

0 0 0 0 0 0 1 0 1 0 0 1 0 0 3

0 0 0 0 0 0 2 0 3 0 0 0 0 0 5

0 0 0 0 0 0 1 1 0 0 0 0 0 0 2

0 0 0 0 0 0 1 0 0 0 0 1 0 0 2

.0 50.0 50.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 75.0 25.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0

.0 42.9 .0 .0 .0 .0 14.3 28.6 .0 .0 .0 14.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 87.5 12.5 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 80.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 28.6 .0 .0 .0 28.6 42.9 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 33.3 16.7 .0 .0 .0 .0 .0 100.0

.0 .0 10.0 .0 .0 .0 70.0 20.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 12.5 .0 .0 .0 50.0 12.5 .0 .0 .0 12.5 .0 12.5 100.0

.0 .0 .0 .0 .0 .0 25.0 25.0 25.0 .0 .0 25.0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 33.3 .0 33.3 .0 .0 33.3 .0 .0 100.0

.0 .0 .0 .0 .0 .0 40.0 .0 60.0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 50.0 .0 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 50.0 .0 .0 .0 .0 50.0 .0 .0 100.0

ZADOK
43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

43.0

47.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

Count

%

Count

%

Original

Cross-validateda

43.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0

Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.a. 

22.8% of original grouped cases correctly classified.b. 

13.9% of cross-validated grouped cases correctly classified.c. 

 
 
 
Primary classes 
 

Tests of Equality of Group Means

.809 18.126 1 77 .000

.863 12.272 1 77 .001

.854 13.121 1 77 .001

.997 .224 1 77 .638

RED

GREEN

BLUE

NIR

Wilks'
Lambda F df1 df2 Sig.
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Pooled Within-Groups Matrices a

133.235 106.190 134.425 -1.902

106.190 108.978 127.617 14.762

134.425 127.617 166.347 10.845

-1.902 14.762 10.845 25.983

1.000 .881 .903 -.032

.881 1.000 .948 .277

.903 .948 1.000 .165

-.032 .277 .165 1.000

RED

GREEN

BLUE

NIR

RED

GREEN

BLUE

NIR

Covariance

Correlation

RED GREEN BLUE NIR

The covariance matrix has 77 degrees of freedom.a. 

 
 

Eigenvalues

.235a 100.0 100.0 .437
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a. 

 
 
 

Wilks' Lambda

.809 16.172 1 .000
Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.

 
 

Standardized Canonical Discriminant Function Coeffi cients

1.000RED
1

Function

 
 

Structure Matrix

1.000

.903

.881

-.032

RED

BLUEa

GREENa

NIRa

1

Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function.

This variable not used in the analysis.a. 
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Functions at Group Centroids

-.796

.288

prim_growth
1

2

1

Function

Unstandardized canonical discriminant
functions evaluated at group means

 
 

Classification Results b,c

10 11 21

2 56 58

47.6 52.4 100.0

3.4 96.6 100.0

10 11 21

2 56 58

47.6 52.4 100.0

3.4 96.6 100.0

prim_growth
1

2

1

2

1

2

1

2

Count

%

Count

%

Original

Cross-validateda

1 2

Predicted Group
Membership

Total

Cross validation is done only for those cases in the analysis. In cross
validation, each case is classified by the functions derived from all cases
other than that case.

a. 

83.5% of original grouped cases correctly classified.b. 

83.5% of cross-validated grouped cases correctly classified.c. 

 


