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Highlights

•	 A state of art approach to evaluate the stability of Hoek–Brown rock mass with a spherical cavity.
•	 Rigorous upper bound and lower bound solutions of stability factors are solved using advanced finite element limit 

analysis.
•	 Comprehensive design charts, tables and equations are presented for stability evaluation.
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1  Introduction

A karst cavity is a type of underground cavities in rock 
masses that can be formed from the dissolution of soluble 
rocks such as limestone, dolomite, and gypsum (Huang 
et al. 2017). Collapse of a karst cavity is a serious threat 
to human lives as well as an economic or environmental 
disaster. Therefore, obtaining information about karst 
cavity sizes and locations as well as the stability 
assessment of a spherical opening is of paramount 
importance to assure the safety of the existence of 
underground cavities.

The failure patterns of underground cavities in soils were 
investigated by Craig (1990) and Abdulla (1995) using 
centrifuge model tests as well as numerical and analytical 
techniques (e.g., Drumm et al. 1990; Abdulla and Goodings 
1996; Tharp 1999; Vaziri et al. 2001; Augarde et al. 2003; 
Keawsawasvong and Ukritchon 2019; Shiau and Al-Asadi 
2020; Shiau et al. 2021; Keawsawasvong 2021). The finite 

element limit analysis (FELA) is a powerful numerical 
technique that has been widely used by many researchers 
to determine the upper bound (UB) or the lower bound 
(LB) solutions of plastic collapse load of various stability 
problems based on the plastic bound theorems (Sloan 2013; 
Drucker et al. 1952). By using FELA, exact collapse loads 
can be accurately bracketed from UB and LB solutions. 
For the stability analysis of underground cavities, several 
researchers employed FELA to numerically solve the 
solutions to this problem (Augarde et al. 2003; Shiau and 
Smith 2006, Keawsawasvong and Ukritchon 2019; Shiau 
et  al. 2016a, b; Keawsawasvong 2021). However, their 
solutions are limited to the cases of underground cavities 
in soils obeying the Mohr–Coulomb failure criterion. It is 
well known that rock masses are discontinuous materials 
with joints and fractures. The curved shape of the true 
failure envelope of rock masses cannot be replaced by a 
linear expression of the Mohr–Coulomb failure criterion. 
Consequently, it is seldom used to predict the stability 
of underground cavities in rock masses, in spite that 
the Mohr–Coulomb failure criterion constitutes a good 
approximation of the true failure envelope for some weak 
rock masses (Hoek et al. 2002).

The Hoek–Brown (HB) failure criterion (Hoek et al. 
2002) has been widely accepted and adopted by many geo-
technical engineers to predict the failure of intact rocks. It 
is an empirical failure criterion and the basic idea of the 
Hoek–Brown criterion was to start with the properties of 
intact rock, and then the factors to reduce those properties 
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are added to the equation because of the existence of joints 
in the rock (Hoek et al. 2002). By adopting the HB failure 
criterion into FELA, many researchers have investigated 
the stability of tunnels and underground openings in HB 
rock masses under plane strain conditions (e.g., Fraldi and 
Guarracino 2009; Ukritchon and Keawsawasvong 2019a, b; 
Keawsawasvong and Ukritchon 2020; Rahaman and Kumar 
2020; Xiao et al. 2018, 2019, 2021; Wu et al. 2020; Zhang 
et al. 2019).

Currently, there is no solution or stability criterion 
published for stability assessment of cavities in HB rock 
masses under axisymmetric conditions in the literature. 
This technical note aims to develop and propose a sta-
bility criterion for stability assessment of cavities in HB 
rock masses based on UB and LB solutions obtained from 
axisymmetric FELA. The considered parameters include 
the cover-depth ratio of cavities and the HB material 
parameters that have significant influences on the normal-
ized collapse pressure applied at the rock surface above 
a cavity. Nonlinear regression analysis is employed to 
develop a closed-form approximate equation of this prob-
lem. This developed equation is valuable for engineers in 
practice to estimate the stability of underground cavities 
in rock masses.

2 � Problem Statement and FELA Modelling

Figure 1 shows the problem definition of a spherical cavity 
in a rock mass. The cavity has a diameter (D) and a cover 
depth (C). A uniform surcharge (σs) at the collapse is applied 
over the surface area. The stability problem is investigated 
under 2D axisymmetric conditions. The work stated herein 
used the Hoek–Brown (HB) failure criterion (Hoek et al. 
2002) to investigate the failure of a cavity in a rock mass. 
The Hoek–Brown (HB) parameters for a rock mass include 
σci, GSI, and mi, and a unit weight of γ.

The expression of the HB failure criterion is in the form 
of a power-law relationship between the effective major and 
minor principal stresses (σ1 and σ3) as shown in Eq. (1).

It is to be noted that the compression negative sign con-
vention applies to Eq. 1 and σci denotes the uniaxial com-
pressive strength of intact rock masses. Other parameters 
such as mb, s, and α are expressed in Eqs. (2)–(4).

In the HB failure criterion, GSI is the geological strength 
index describing the quality of an in-situ rock mass. A GSI 
of 10 represents an extremely poor rock mass whilst 100 is 
used for intact rock. mi is the parameter used to describe the 
frictional strength of the intact rock mass. Noting that DF 
is the disturbance factor that has the range of 0–1, an undis-
turbed in-situ rock mass with DF = 0 is studied throughout 
the paper.

Using the concept of dimensionless ratios for practi-
cal design purposes, the stability solutions are determined 
through the use of five dimensionless variables as shown 
in Eq. (5).

where σs/σci is the normalized collapse surcharge; C/D is the 
cover depth ratio; σci/γD is the normalized uniaxial compres-
sive strength.
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Fig. 1   The stability problem under axisymmetry



Stability of Spherical Cavity in Hoek–Brown Rock Mass﻿	

1 3

The computer program OptumG2 (FELA, OptumCE 
2019) is employed to perform the numerical analyses of 
the upper bound (UB) and lower bound (LB) finite element 
limit analysis (FELA). The FELA is based on the plastic 
bound theorems for a perfectly plastic material with an 
associated flow rule in conjunction with the finite element 
discretization and the mathematical optimization (Sloan 
2013). The results from FELA include the UB and LB 
solutions that can bracket the true limit load from above 
and below.

In UB FELA, the rock mass is discretized by using six-
noded quadratic triangular elements to describe the overall 
velocity fields. In LB FELA, the rock mass is modelled 
using three-noded triangular elements to describe the linear 
stress field. The UB and LB solutions of this problem 
are computed by solving the optimization problem that 
minimizes (for the UB method) or maximizes (for LB 
method) the active surface pressure (σs) i.e., the collapse 
pressure at the ground surface. The mesh adaptivity 
technique (e.g., Ciria et al. 2008) is a powerful feature for 
improving LB and UB solutions. By activating this feature, 
more elements are added to the sensitive regions with large 
shear strain gradients at any iteration step, aiming to bridge 
the differences between UB and LB solutions. Five iterations 
of mesh adaptivity were used for all UB and LB simulations 
in the study, with 5000–10,000 elements in all analyses. It 
is interesting to note that the current technique reveals the 
location of a possible failure mechanism at the final stage 
of mesh adaptivity.

Figure 2 shows a typical domain for the analysis of 
a spherical cavity. The left boundary is the plane of 
axisymmetry where only vertical movements can take 
place. The same condition applies to the right boundary. 
Nevertheless, velocities are fixed in both vertical and 
horizontal directions at the bottom boundary. At the rock 
surface, there is a uniform surcharge σs applied over the 
surface area. The size of the domain is chosen to be large 
enough to avoid any interferences due to boundary effects. 
The current model does not allow internal pressure inside 
the cavity.

Fig. 2   A spherical cavity under axisymmetry

Table 1   Selected numerical 
results of σs/σci for cavities in 
rock masses

σci/γD GSI mi C/D σs/σci (LB) σs/σci (UB) σs/σci (Avg) %Diff

100 40 5 1 0.848 0.882 0.865 3.98
100 40 5 5 3.827 4.007 3.917 4.60
100 40 30 1 5.429 5.567 5.498 2.51
100 40 30 5 23.920 24.225 24.073 1.27
100 100 5 1 9.450 9.769 9.610 3.32
100 100 5 5 36.250 37.140 36.695 2.43
100 100 30 1 46.850 46.330 46.590 1.12
100 100 30 5 193.200 196.320 194.760 1.60
1000 40 5 1 0.869 0.897 0.883 3.18
1000 40 5 5 3.898 3.920 3.909 0.56
1000 40 30 1 5.174 5.413 5.294 4.51
1000 40 30 5 23.990 24.288 24.139 1.23
1000 100 5 1 9.506 9.818 9.662 3.23
1000 100 5 5 37.110 37.549 37.330 1.18
1000 100 30 1 44.780 46.410 45.595 3.57
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3 � Results and Discussions

The chosen ranges of dimensionless parameters for the 
study are for σci/γD = 100–∞, GSI = 40 − 100, mi = 5–30 and 
C/D = 1–5. A total of 320 computed LB and UB solutions 
are obtained. Table 1 summarizes sixteen examples of com-
puted LB and UB solutions of the normalized collapse sur-
charge σs/σci. The differences between UB and LB solutions 
with respect to their averages for all cases are also reported. 
These results show that the rigorous UB and LB results can 
bracket the “exact” solution to within 5% for all cases. Other 
numerical results are not shown here for the sake of limited 
space. They are available upon request. Graphically, selected 
LB and UB solutions of σs/σci are presented in Figs. 3, 4, 5, 

and 6 for demonstrating the effects of C/D, GSI, mi, and σci/
γD respectively.

Figure 3a–d show that σs/σci increases as the cover 
depth C/D increases. This trend is for σci/γD = 100 and all 
GSI values presented. In general, the larger the value of mi 
is, the greater the increase rate. The effect of GSI on σs/σci 
is shown in Fig. 4, where σci/γD = 100 and mi = 5, 10, 20, 
and 30. The figure shows a nonlinear relationship between 
GSI and σs/σci. An increase in GSI results in an exponential 
increase in σs/ci, as reflected in the mathematic equations 
of HB failure criterion in Eqs. (2)–(4).

The effect of mi on σs/σci is illustrated in Fig. 5a–d 
for four different values of GSI = 40, 60, 80, and 100. 
The study is for σci/γD = ∞ and five cover depth ratios 
C/D = 1–5. In general, σs/σci increases linearly as mi 
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Fig. 3   Effect of C/D on the normalized collapse pressure σs/σci a GSI = 40, b GSI = 60, c GSI = 80 and d GSI = 100
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increases for all C/D. Note that as C/D increases, the 
gradient of the linear line also increases. Figure  6 
shows the effect of σci/γD on σs/σci. This is for the cases 
of mi = 20. It is clear that the effect σci/γD on σs/σci is 
insignificant for all C/D, given all the horizontal lines in 
the figure. Although it is physically impossible to have a 
weightless rock, the obtained results in Figs. 5 and 6 for 
σci/γD = ∞ are simply representatives of a very “strong” 
rock (i.e., very large strength ratio). Numerically, we can 
either put a very large value of σci or a very small γ to 
achieve the numerical results, which are needed to develop 
the stability criterion in the next section.

Figure 7 presents upper bound adaptive meshes of four 
various cover depth ratios C/D. The chosen rock mass is 

for GSI = 80, mi = 10, and σci/γD = 100. It is important 
to note that the automatic adaptive meshing technique 
utilizes shear power dissipation as the control variable for 
re-meshing estimation. The number of elements in areas 
with very high shear power dissipation is automatically 
increased through successive iterations using the adaptive 
technique. Although the final adaptive mesh so produced 
resembles a so-called failure mechanism, it is common 
to use the contour plots of shear power dissipation to 
depict possible failure mechanisms of a soil structure, as 
it provides a good indicator of the intensity of non-zero 
plastic strains. Technically speaking, the actual values of 
the contour are not important in a perfectly plastic material 
model using FELA, and therefore the contour bars for 
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	 S. Keawsawasvong, J. Shiau 

1 3

these plots are not normally shown in technical documents. 
Figure 8 demonstrates such a contour plot obtained from 
the kinematic solutions (or UB solutions). Both Figs. 7 and 
8 have shown that the larger the cover depth ratio C/D, the 
larger the size of the plastic shear zone, and the greater the 
rock stability (σs/σci). For C/D = 5, the failure zone appears to 
initiate from the invert, whilst for C/D = 1, a more chimney 
type of vertical slippage is observed. The information on 
surface failure extent may be useful in decision making in 
relation to the development of evacuation zone.

4 � Stability Criterion

Design tables and charts of σs/σci have been presented in 
the earlier sections. Nevertheless, in most cases, the limit 
pressure σs is greater than the unconfined compressive 
strength of the intact rock σci. To obtain solutions with 
small values of σs/σci, an approximate expression for 
calculating collapse pressures at the rock surface above a 
cavity is developed by using a curve fitting method. The 
average values of UB and LB are employed to determine an 
appropriate mathematical expression. The proposed stability 
criterion is presented in Eq. (6).
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Fig. 5   Effect of mi on the normalized collapse pressure σs/σci a GSI = 40, b GSI = 60, c GSI = 80 and d GSI = 100
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Both Nc and Nγ are to be determined using Eqs. (7)–(11) 
with known values of C/D, GSI, mi, and σci/γD

(7)Nc = F1 + F2mi
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�
= F3
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D
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(

d2
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where ai, bi, ci, di, ei, fi, and gi are constant coefficients that 
were determined by performing a least square method (Sauer 
2014). The optimum values of these constant coefficients are 
shown in Table 2.

The value of R2 of the proposed new stability criterion 
is about 99.98%, meaning that the approximation from 
Eq. (6) fits the FELA results very well. Figure 9 shows that 
Nγ is a function of C/D only and the relationship between 
the two is linear. Note that Nγ is negative for C/D < 2.5. 
This means that for cavities at relatively small depths, the 
self-weight of the ground has a positive effect on the limit 
load (i.e., σs increases with γ). Intuitively, this is not right. 

(11)F3 = −a1 − a2
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Fig. 7   Upper bound axisymmetric mesh for various cover depth ratios C/D (GSI = 80, mi = 10, σci/γD = 100) a C/D = 1, b C/D = 2, c C/D = 4 and 
d C/D = 5
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Fig. 8   Shear power dissipation contours for various cover depth ratios C/D (GSI = 80, mi = 10, σci/γD = 100) a C/D = 1, b C/D = 2, c C/D = 4 and 
d C/D = 5
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Nevertheless, by taking another look at Eqs. (7, 9, and 10) 
would have explained this. Noting that the values of (F1, 
F2, and Nc) become small when C/D < 2.5, it may result in 

a total decrease of σs (see Eq. 6). On the other note, Fig. 10 
shows that Nc is a function of both C/D and GSI for the given 
values of mi = 5, 10, 20, and 30. In general, Nc increases 
nonlinearly as the cover depth C/D increases for all GSI 
values selected in the figures. The rate of increase is different 
for each GSI value. The curve becomes flattered (gradient 
decrease) as GSI decreases.

5 � Conclusions

This short technical note has successfully studied the sta-
bility of spherical cavity in axisymmetric Hoek–Brown 
rock mass using the rigorous upper and lower bound finite 
element limit analysis. The solution was formulated to find 
the limit normalized surface pressures σs/σci that is a func-
tion of four dimensionless parameters; namely the cover-
depth ratio C/D, the Geological Strength Index GSI, the 
Hoek–Brown mi parameter, and the normalized uniaxial 
compressive strength σci/γD. A new stability criterion 
for predicting the stability of cavities in rock masses is 
developed by using a least square method of the computed 
solutions. The main findings of the present study are sum-
marized as follows.

•	 The limit normalized surface pressures σs/σci increases 
as the cover depth ratio C/D increases. The greater the 
values of GSI and mi, the larger the σs/σci. In addition, the 
effect of σci/γD on σs/σci is insignificant for all considered 
depth ratios in this study.

•	 The failure mechanism of a cavity resembles a chim-
ney type of vertical slippage when C/D is small. The 
lateral size of the failure mechanism extends when C/D 
increases.

•	 The new cavity stability factors Nc and Nγ for the stabil-
ity of cavities in rock masses are proposed in this paper, 
where Nc is a function of C/D only while Nγ is a function 
of C/D, GSI, and mi.

Table 2   Constants for the design equation

a1 a2 b1 b2

8.8310 −3.5150 9.7852 × 10–2 −0.1116
b3 c1 c2 c3

1.7318 × 10–2 −1.1060 × 10–3 1.4627 × 10–3 −2.1621 × 10–4

d1 e1 e2 f1
3.9885 × 10–6 0.3070 −0.4847 −1.5624 × 10–2

f2 f3 g1 g2

3.5499 × 10–2 −6.8341 × 10–4 1.2109 × 10–4 −5.4357 × 10–4
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