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Abstract

The research examines an influence of a platform shape on free surface waves

generated behind a semi-infinite two-dimensional platform moving with a constant

speed on a water surface of a finite depth h. The fluid is assumed to be inviscid,

incompressible and irrotational; the surface tension effect is neglected. The aim

of the research is to find analytically and numerically such platform shape which

minimizes generated waves and reduces wave drug exerting on a moving platform

when the Froude number is relatively small, F < 1. It is shown that for certain

platform shapes, generated waves can be minimised or even eliminated, at least,

within the framework of a linearized theory.

Linearized hydrodynamic equations for a fluid of finite depth are solved ana-

lytically by means of the Fourier transform and Wiener–Hopf technique, as well

as numerically with the help of boundary integral technique. A weakly nonlinear

solution is also obtained for shallow-water approximation within the framework of

the forced Korteweg–de Vries (KdV) equation.

The problem is investigated for steady motion of a platform having a different

stern shape. Then the analysis is performed for unsteady motion of a platform

having a flat shape. The linearized problem for a water of finite depth is solved by

means of the Laplace transform and Wiener–Hopf technique. The linear problem

is formulated by assuming that at the initial instant of time the free surface is

slightly perturbed due to the platform submerging onto the depth d ≪ h beneath

the free surface. It is shown that the unsteady solution approaches the steady state

solution as t → ∞. The dependence of maximum wave perturbation on the fluid

depth is found numerically.
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In the last Chapter 6 the analysis is extended to steady motion of a flat platform

at the interface between two fluids of different density. It is assumed that the lower

layer has a finite depth h, whereas the upper layer is infinite. Results obtained for

internal waves on the sharp density interface depend on the density ratio a = ρ1/ρ2

and in the limit a→ 0 they coincide with the results obtained for surface waves.

The results of this research can help in understanding of the physics of wave

generation past a bluff body (e.g., wide blunt ships) and shed some light on solving

an engineering problem of ship building of an optimal shape.



Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher educational institution. To

the best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made.

Candidate: Osama Nasser Ogilat

Signed:

Date:

ENDORESMENT

Principal supervisor: Associate Professor Yury Stepanyants

Signed:

Date:

iii



Acknowledgements

My first and foremost thanks to ALLAH for the opportunities that He has given

to me throughout my life, especially those that have brought me to the position of

finishing this thesis.

I would like to express my thankfulness and gratitude to my principle supervi-

sor Professor Yury Stepanyants for his invaluable assistance, support, patience and

guidance during the period of my research. My special thanks are addressed to my

associate supervisor Dr Dmitry Strunin for his advice, support and constructive

feedback. Deepest gratitude is also due to Professor Ian Turner, Dr Scott McCue

and Professor John Belward without their knowledge and assistance this study

would not have been successful. Warmest thanks to Dr Ben Binder for his contri-

bution to our joint paper published in Physics of Fluids. I would like to thank all

postgraduate students and staff of the Department of Mathematics and Computing

of USQ for providing a very good scientific environment for mathematical research.

I am indebted to the most important person in my live, my mother “Gazeah”,

for her incredible support, love and patience through my many years in educa-

tion. My special thanks to my wonderful brothers, Khaled, Amjad, Ahmad and

Moa’ath and sisters, Manal, Tharwah, Khawlah, Hend, Wisam and Ebtsam who

always wished my success. I am also thankful to my sisters-in-law and brothers-

in-law who always supported me. I should not forget my relatives (uncles and

cousins), as well as friends.

iv



v

This thesis is dedicated to my mother; and to the soul of my father (ALLAH

bless upon him), that I wish he is alive to see what I have achieved and to share my

happiness for completing this Theses, who encouraged and directed me for education

and provided me with safe financial living before and after he passed away.



Keywords

Boundary integral technique, Wiener–Hopf technique, weakly nonlinear theory,

free surface flow, steady flow, unsteady flow, Fourier transform, Laplace transform,

conformal mapping, Korteweg–de Vries (KdV) equation.

1



List of Publications

O. Ogilat, S. W. McCue, I. W. Turner, J. A. Belward, and B. J. Binder. Minimising

wave drag for free surface flow past a two-dimensional stern. Physics of Fluids,

2011, v. 23, p. 072101.

O. Ogilat, Y. Stepanyants. Transient free surface flow past a two-dimensional flat

stern. (Accepted in Physics of Fluids journal).

O. Ogilat, Y. Stepanyants. Minimising internal wave generation past steadily

moving flat platform in two-layer fluid of finite depth. (To be submitted to the

journal Physics of Fluids).

2



Contents

1 Introduction and Literature Review 15

1.1 Two-dimensional free surface flow past a semi-infinite stern . . . . . 16

1.1.1 Steady flows in fluid of infinite depth . . . . . . . . . . . . . 17

1.1.2 Steady flows in fluid of finite depth . . . . . . . . . . . . . . 18

1.1.3 Unsteady two-dimensional flow . . . . . . . . . . . . . . . . 19

1.1.4 Steady two-dimensional flow for the two-layer model . . . . 19

1.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Wiener–Hopf technique . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Boundary-integral-equation technique . . . . . . . . . . . . . 21

1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Content of this research . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Exact Solution to the Linearised Steady Problem 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Wiener–Hopf technique . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Application Of The Fourier Transform . . . . . . . . . . . . 30

2.3.2 The Wiener–Hopf equation . . . . . . . . . . . . . . . . . . . 33

2.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Numerical Considerations . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Numerical Solution to the Fully Nonlinear Steady Problem 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3



4

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Conformal Mapping . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Boundary Integral equation . . . . . . . . . . . . . . . . . . 61

3.2.3 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 Free Surface Profiles . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Weakly Non-linear Theory 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Weakly Nonlinear Theory . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Results for the Flat Plate Case . . . . . . . . . . . . . . . . . . . . 78

4.4 Geometry Treated By Binder (2010) . . . . . . . . . . . . . . . . . 83

4.5 Results for a Family Of Curved Plates . . . . . . . . . . . . . . . . 94

4.5.1 Upward Pointing Sterns . . . . . . . . . . . . . . . . . . . . 94

4.5.2 Downward Pointing Sterns . . . . . . . . . . . . . . . . . . . 96

5 Linearised Unsteady Flow Problem 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . 108

5.1.2 Linearised Stern Flow Problem . . . . . . . . . . . . . . . . 112

5.2 Wiener–Hopf technique . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Application of the Laplace and Fourier Transforms . . . . . 113

5.2.2 The Wiener–Hopf equation . . . . . . . . . . . . . . . . . . . 116

5.2.3 The Location of the Free Surface η1(x, t) . . . . . . . . . . . 117

5.2.4 Numerical Approximation of the Contour Integral . . . . . . 118

5.2.5 Factorisation of G1(k, s) . . . . . . . . . . . . . . . . . . . . 122

5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Stationary Internal Waves Past a 2D Stern in Two-Layer a Fluid137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.1 Linearised two-layer model . . . . . . . . . . . . . . . . . . . 141



5

6.2.2 Application of Fourier Transforms . . . . . . . . . . . . . . . 142

6.3 The Wiener–Hopf equation . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Factorisation of G2(k) . . . . . . . . . . . . . . . . . . . . . 145

6.4 Calculation of the interface shape η1(x, t) . . . . . . . . . . . . . . . 147

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Conclusion and Future Work 151

7.1 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Relation Between P and ǫ 154

B Consideration of the Infinite Product T (k) 155

C Evaluation I(x, z/t) and The Roots Of f1(k, z/t) For Different Val-

ues Of z 160



List of Figures

2.1 A schematic of the free surface flow past a semi-infinite curved plate

in a finite depth fluid. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Figure (a) shows the strip 0 < Im(k) < τ+. Figure (b) shows the

path of integration in the lower half k-plane. . . . . . . . . . . . . . 31

2.3 Free surface profiles drawn for flat plate shapes given by (2.62) for

different scales, with F = 0.5(red), and F = 0.7(black) by using

Method 1 in Section 2.3.2. These figures are presented exactly by

McCue and Stump [85] on the same scale. . . . . . . . . . . . . . . 49

2.4 The dependence of the wavelength λ on the Froude number F . The

red dashed is computed using dispersion relation and the black solid

line is the asymptotic line. . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Free surface profiles drawn for the plate shape in Case 2 given by

(2.64), with F = 0.5, a = 1 and b = 2 (Figure (a)) and F = 0.7,

a = 1 and b = 2 (Figure (b)), by using Method 1 (circles) and

Method 2 (solid-line) as given by (2.68) and (2.72), respectively, in

Section 2.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6



7

2.6 Figures (a) and (b) show the dependence of the amplitude A on the

parameter a with b = 1(black), 2(red), 3(green), and the dependence

of the amplitude A on b for a = 1(black), 2(red), 3(green), for F =

0.5, respectively, for the plate shape given by (2.64). Figure (c)

shows the free surface for the local minimum of the parameter a,

(a = 1, b = 1, A = 0.298)(black), (a = 1.9, b = 2, A = 0.549)(red),

(a = 2.5, b = 3, A = 0.73)(green). Figure (d) shows the free surface

for the local minimum of the b, (a = 1, b = .9, A = 0.289)(black),

(a = 2, b = 1.8, A = 0.529)(red), (a = 3, b = 2.6, A = 0.749)(green). . 52

2.7 Free surface profile drawn for the plate shape (2.64) with F =

0.5 and a = 0(solid black), 0.5(green dashed), 1(red dot-dashed),

1.5((blue dot)) and b = 1. . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 In figure (a), Free surface profiles are drawn for the plate shape

in Case 3 given by (2.77), with F = 0.5, a = 1, b = 2, L = 3,

using Method 1 in Section 2.3.2. In figures (b), (c) and (d) the

dependence of the wave amplitude A on the parameters a, b and L

respectively, with F = 0.5, b = 1(black), 2(red), 3(blue) and L = 1

in figure (a), a = 1(black), 2(red), 3(green) and L = 1 in figure (b)

and a = −0.5(red), 0(blue), 0.5(green), 1(black) and b = 1 in figure

(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Sketch of the flow and the position of the coordinates . . . . . . . . 56

3.2 This figure shows the flow in the complex f -plane shown in figure . 58

3.3 The flow in the complex zeta-plane shown in figure a . . . . . . . . 60

3.4 This figure shows the complex ζ-plane on the contour γ. . . . . . . 61

3.5 This figure show the relation between the iteration and the error. . 69

3.6 The free surface profile for F = 0.5, P = 0.01, b = 1 . . . . . . . . . 70

3.7 The free surface profile for F = 0.9, P = 0.01, b = 1 . . . . . . . . . 70

3.8 Figure (a) shows the numerical solution for F = 0.8, P = 0.01,

b = 1, a = 0, . . . , 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Figure (a) shows the numerical solution for F = 0.7, P = 0.01,

b = 1, a = 0, . . . , 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



8

3.10 Figure (a) shows the numerical solution for F = 0.6, P = 0.01,

b = 1, a = 0, . . . , 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Figure (a) shows the numerical solution for F = 0.4, P = 0.01,

b = 1, a = 0, . . . , 0.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 This figure shows the relation between the amplitude A and the

parameter a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.13 This figure shows the relation between the amplitude A and the

Froude number F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Figures of the free surface, comparing the numerical (solid-lines),

analytical (dashed-lines), and weakly nonlinear (dot dashed-lines)

solutions for the case of the flat plate, with Froude number F = 0.9,

and ǫ = P/(1− F 2) at (a) P = 0.1, at (b) P = 0.01, (c) P = 0.001,

and (d) P = 0.0001. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Figures of the free surface, comparing the numerical (solid-lines),

analytical (dashed-lines), and weakly nonlinear (dot dashed-lines)

solutions for the case of the flat plate, with Froude number F = 0.5,

and ǫ = P/(1− F 2) at (a) P = 0.1, at (b) P = 0.01, (c) P = 0.001,

and (d) P = 0.0001. Note that, in (a), the numerical solution does

not converge, and thus is not shown. . . . . . . . . . . . . . . . . . 81

4.3 Figures (a) and (b) show the comparison between the numerical so-

lution (solid-line), analytical solution (dashed-line), for the highest

value of P that the numerical solution allows. The Froude number

F = 0.5 (figure (a)) and = F = 0.9 (figure (b)), at P = 0.05, 0.3

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Figures (a) and (b) show the relation between the amplitude A and

the Froude number F for the case of the flat plate at P = 0.01,

for the analytical (dashed-line), numerical (red dots), and weakly

nonlinear solutions (blue dot), for different scale. . . . . . . . . . . . 83



9

4.5 Figures (a) and (b) show the comparison between the numerical so-

lution (dashed-line), analytical solutions in the solid-line for the case

of the flat plate. The Froude number F̃ = 0.5 and ǫ = 0.001, 0.058

respectively, where F = (1− ǫ)F̃ . These figures are as presented by

McCue and Forbes in 2002. In figure (c) and (d) shows the com-

parison between analytical and numerical solutions for F = 0.5 and

P = 0.001, 0.058 respectively. . . . . . . . . . . . . . . . . . . . . . 84

4.6 The nonlinear profile for the case of the flat plate is shown in figure

(a) and the phase trajectories in figure (b), at the Froude number

F = 0.9 and P = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 The weakly nonlinear profile for the case of the flat plate are shown

in figure (a) and the phase trajectories in figure (b), at the Froude

number F = 0.9 and P = 0.01. . . . . . . . . . . . . . . . . . . . . . 85

4.8 The dependence of the wave amplitude A on the parameter α for

F = 0.9, P = 0.01. The red solid curve, black dashed curve and

blue dot-dashed curve correspond to the fully nonlinear, linear and

weakly nonlinear solution, respectively. In (a) the scale is such that

the nonlinear amplitude appears to vanish at a value of α, but the

scale in (b) suggests there is in fact a local minimum for which A is

finite but small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 The nonlinear free surface profiles drawn for different scales, with

F = 0.9, P = 0.01 at α = 0.019(red), 0.0655(red), 0.0427(blue)

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 The weakly nonlinear profiles are shown in figure (a), (c) and (e),

and phase trajectories are shown in figure (b), (d) and (f), with the

Froude number F = 0.9 and P = 0.01 at α = 0.057, 0.019, and

0.038, respectively. These figures are the same as figures drawn by

Binder ([11], 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 This figure shows the relation between the amplitude A and the

parameter α for Froude number F = 0.5 and P = 0.01. The red

solid curve and black dashed curve correspond to the fully nonlinear

and linear solution, respectively. . . . . . . . . . . . . . . . . . . . . 91



10

4.12 Figures (a) and (b) show the free surface profile for the numeri-

cal solution at the Froude number F = 0.5, P = 0.01 and α =

0.0134(local minimum), for a different scale with amplitude A =

1.9220× 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.13 Figures (a) and (b) show the free surface profile for the analyti-

cal solution at the Froude number F = 0.5, P = 0.01 and α =

0.0136(local minimum), for a different scale with amplitude A =

2.6417× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.14 The dependence of the wave amplitude A on the parameter α for

F = 0.5, P = 0.04. The red solid curve, black dashed curve and

blue dot-dashed curved correspond to the fully nonlinear, linear and

weakly nonlinear solutions, respectively. . . . . . . . . . . . . . . . . 92

4.15 The relation between the amplitude A and the Froude number F

at α = 0.0427, P = 0.01 are shown in this figure. The red solid

curve, black solid curve and blue dot-dashed curved correspond to

the fully nonlinear, linear and weakly nonlinear solution, respectively. 93

4.16 Free surface profiles drawn for F = 0.5, P = 0.01, b = 1 and L = 1.

(a) Linear solutions with a = 0 (solid black), 1.5 (green dashed),

3 (red dot-dashed) and 4.5 (blue dot). (b) Nonlinear solutions for

a = 0, . . . , 3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.17 The dependence of the wave amplitude A on the parameter a for

F = 0.5 and P = 0.01. The red solid curve, black solid curve and

blue dot-dashed curved correspond to the fully nonlinear, linear and

weakly nonlinear solutions, respectively. . . . . . . . . . . . . . . . . 97

4.18 This figure shows the comparison between the analytic, numerical

and the weakly nonlinear solution. The free surface profile are shown

in figures (a) and (c) and phase trajectories are shown in figure (b)

and (d) with the Froude number F = 0.5 and P = 0.01 at a = 1, 3.15

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.19 The dependence of the wave amplitude A on the Froude number F

for a = 3.15, b = 1, L = 1 and P = 0.01. . . . . . . . . . . . . . . . 99



11

4.20 The dependence of the wave amplitude A on the parameter a for

F = 0.9 and P = 0.01. The red solid curve, black solid curve and

blue dot-dashed curve correspond to the fully nonlinear, linear and

weakly nonlinear solutions, respectively. . . . . . . . . . . . . . . . . 99

4.21 This figure shows the comparison between the analytic, numerical

and the weakly nonlinear solution. The free surface profile are shown

in figures (a), (c) and (e) and phase trajectories are shown in figure

(b), (d) and (f), with the Froude number F = 0.9 and P = 0.01 at

a = 0.7, 0.45, and 0.4 respectively. . . . . . . . . . . . . . . . . . . . 100

4.22 The dependence of the wave amplitude A on the parameter β for the

nonlinear solution for F = 0.9, P = 0.01, for the values α = 0.03,

0.04, 0.0427 and 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.23 The dependence of the wave amplitude A on the parameter β for

F = 0.5, P = 0.04 and α = 0.0527. The red solid curve and black

dashed curve correspond to the fully nonlinear and linear solution,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.24 Nonlinear free surface profiles drawn for F = 0.5, P = 0.04 and

α = 0.0527 with β = −0.005, 0.0004 and 0.005 with amplitude

A = 0.0029, 0.00005 and 0.0029, respectively. . . . . . . . . . . . . 102

4.25 The dependence of the wave amplitude A on the parameter β for

F = 0.5, P = 0.01 and different values of α, α = −0.008, −0.002,

0, 0.002, 0.00135. (a) nonlinear solution, (b) linear solution. . . . . 103

4.26 Figure (a) and (b), show the free surface profile for different scale, for

the analytical and numerical solution. The Froude number F = 0.5,

P = 0.01, α = 0.00135 with the local minimum β = 0.004. . . . . . 103

5.1 Sketch of free surface flow past a semi-infinite flat plate in a fluid

of finite depth. In figure (a), the plate is located at the level of the

undisturbed free surface, whereas in figure (b) the plate is suddenly

submerged into the fluid for t̃ > 0+. . . . . . . . . . . . . . . . . . . 108



12

5.2 A schematic of the free surface flow past a flat plate with velocity

potential upstream given by Φ = V x̃ and velocity potential down-

stream given by Φ = ( V h
h+d

)x̃. . . . . . . . . . . . . . . . . . . . . . . 110

5.3 A schematic for the non-dimensional unsteady problem for t > 0+,

where ǫ = d/h is the non-dimensional distance between the height

of the plate and the undisturbed free surface. . . . . . . . . . . . . . 112

5.4 The contour of integration consisting of the path Γ′ and path c of

infinitely large radius R. Red dots show the positions of poles in

equation (5.61). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Figure (a) shows plot of the function G1(k) in equation (5.73) at

F = 0.5. Figure (b) shows plot of the function G1(k) in equation

(5.79) at F = 0.5. Figure (c) shows plot of the function G1(k) in

equation (5.73) and (5.79). . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Zero isolines of functions Ref1(k, z/t) (red lines) and Imf1(k, z/t)

(blue lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z1 = 4.0277 + 1.1939i. . . . . . 126

5.7 Free surface profile in dimensionless variables relative to unper-

turbed level y = 1 for t = 1000 as obtained from equation (5.71)

with different numbers of poles in Table 5.1. Dashed line pertains to

N = 8, solid line – N = 10, and dots show the steady-state solution

derived by Ogilat et al. [75]. The plot was generated for P = 0.01,

F = 0.5 and with 60 complex roots of function G+(k, s). . . . . . . 132

5.8 Free surface profile in dimensionless variables relative to unper-

turbed level y = 1 for t = 1000 as obtained from equation (5.71)

with fixed number of poles N = 10 from Table 5.1, but with dif-

ferent numbers of complex roots of function G+(k, s). Dashed line

pertains to 40 roots, solid line – to 60 roots, and dots show the

steady-state solution derived by Ogilat et al. [75]. The plot was

generated for P = 0.01, F = 0.5. . . . . . . . . . . . . . . . . . . . . 133

5.9 The free surface profile for P = 0.01, F = 0.5 and different instants

of time as per equation (5.71). . . . . . . . . . . . . . . . . . . . . . 134



13

5.10 The free surface profile for P = 0.01, F = 0.5 and different instants

of time as per equation (5.71). The steady state solution derived in

Ogilat et al. [75] is shown in this figure for the comparison. . . . . . 135

5.11 Maximal wave amplitude A = ηmax against time as per equation

(5.71). The plot was generated for P = 0.01, F = 0.5. . . . . . . . . 136

6.1 A sketch of the two-layer model with internal waves at the interface. 138

6.2 This figure shows the interface profile for different values of a: black

line – a = 0, blue line – 0.5, red line – 0.7. Panel (a) – Froude

number F = 0.5, and panel (b) – F = 0.7. . . . . . . . . . . . . . . 149

6.3 This figure shows the dependence of wave amplitude (a) and wave-

length (b) on the density ratio for two values of Froude number:

F = 0.5 (red line) and F = 0.7 (black line). . . . . . . . . . . . . . . 150

C.1 Zero isolines of functions Ref1(k, z/t) (blue lines) andImf1(k, z/t)

(red lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z2 = 4.0277− 1.1939i. . . . . . 161

C.2 Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t)

(red lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z3 = 3.2838 + 3.5944i, z4 =

3.2838− 3.5944i in figure (a) and (b) respectively. . . . . . . . . . . 162

C.3 Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t)

(red lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z5 = 1.7154 + 6.0389i, z6 =

1.7154− 6.0389i in figure (a) and (b) respectively. . . . . . . . . . . 162

C.4 Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t)

(red lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z7 = −0.8944 + 8.5828i,

z8 = −0.8944− 8.5828i in figure (a) and (b) respectively. . . . . . . 163

C.5 Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t)

(red lines). Dots indicate intersection points of isolines. The plot

was generated for F = 0.5, t = 1 and z9 = −5.1612 + 11.3752i,

z10 = −5.1612− 11.3752i in figure (a) and (b) respectively. . . . . . 163



List of Tables

3.1 The coordinates of key points in the f -plane. . . . . . . . . . . . . . 58

3.2 The mapping between the z−, f− and ζ−planes . . . . . . . . . . . 59

5.1 The first ten values of poles zj and residues Cj provided by Trefethen

et al.[57] through the Matlab program. . . . . . . . . . . . . . . . . 121

B.1 This table shows calculation of the exact values of the ratio Γ(µm)/Γ(
1
2
+ µm),

and the approximation values by using Stirling’s formula, for differ-

ent values of the integer m, when the Froude number F = 0.5. . . . 156

B.2 This table shows the calculation of the real and imaginary part of

the infinite product T (µR), for different values of the Froude number

F , for the first N terms. . . . . . . . . . . . . . . . . . . . . . . . . 157

B.3 This table shows the calculation of the real and imaginary part of

the infinite product T (µR), for different values of the Froude number

F after N terms, given by equation (2.80). . . . . . . . . . . . . . . 158

B.4 This table shows the calculation of the infinite product T (iπµm),

for different values of the Froude number F , given by (2.81). The

calculation been made after N terms for different values of m. . . . 159

14



Chapter 1

Introduction and Literature Review

When a ship moves in a relatively calm water, one of the most distinctive features

is the wave pattern that forms on the water surface. Such wave patterns, whether

caused by a ship in the sea, or by a duck swimming in a pond, or by a boat crossing

a river, are called ship waves [70]. If the wave pattern does not change in time, it is

referred to as a steady phenomenon; if it does change in time then it is an unsteady

phenomenon. Generation of these patterns creates wave resistance, which in turn

requires greater power from the moving object, e.g., ship engine. Reduction of

wave resistance leads to increase the speed of the ship end higher efficiency of ship

engine.

The aim of this research is to find the shape of the free surface created behind

curved sterns and to design a two-dimensional model of ship stern that minimises,

or completely eliminates, the trailing waves or swirl.

This research deals with two-dimensional problems for free surface and internal

flows in two-layer fluid past a model of a ship stern in a fluid of finite depth. The

problem is treated in two-dimensional formulation because it is too complicated

for study in three-dimensional case. In the meantime, the flow behind a wide ship

can be considered at certain approximation as two-dimensional if the edge effects

are negligible. This research assumes that the fluid is incompressible, the flow is

irrotational, and the effect of viscosity is negligible. Gravity at the free surface is

included, but surface tension is neglected.

15
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The free-surface flow past the stern of two-dimensional semi-infinite plate mod-

elling a wide ship is investigated analytically using the Wiener–Hopf technique [5]

and numerically using the boundary integral technique [27]. These two techniques

have been used successfully by several authors to solve the free-surface flow past a

ship stern (see, e.g., [30, 31, 85, 82, 83, 84, 92, 37]). The weakly nonlinear theory

is also used to describe the flow on the free surface through the application of the

Korteweg–de Vries equation [88]. Furthermore, the two-layer model for the free

surface flow past a semi-infinite flat plate in a fluid with infinite upper layer and

finite-depth lower layer is investigated analytically (see [89, 90]).

In this research we use two aforementioned techniques to examine the problem

earlier considered by McCue & Stump [85] for two-dimensional steady flow past a

semi-infinite flat platform. That problem can be generalised to an arbitrary stern

shape, when Froude number F less than 1, where the Froude number is the ratio

of plate speed V to the speed of long linear surface waves,
√
gh.

1.1 Two-dimensional free surface flow past a semi-

infinite stern

Two-dimensional free surface flow past a semi-infinite ship stern in a fluid of finite

depth is an important research subject, because it can model a real flow near the

stern of the ship. Such a model would need to examine the behavior of the free

surface where it interconnects with the ship stern. Two types of flow where the

free surface detaches from the stern are considered here. The first is when the free

surface detaches from the stern at the stagnation point, and the second is when

the free surface detaches from the stern smoothly (i.e, tangentially).

The problem of wave generation behind the stern of a ship in a fluid of infinite

depth has been treated numerically for the case when the free surface was attached

to the body at the stagnation point (Vanden-Broeck & Tuck [49], Vanden-Broeck,

Schwartz & Tuck [51], Madurasinghe [65], and Farrow & Tuck [13]). Maduras-

inghe [65], Farrow & Tuck [13] and Asavanant & Vanden-Broeck [40] managed to

eliminate surface waves at the stagnation point.
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Less attention was given to the free surface flow in fluids of finite depth. McCue

& Forbes [83] investigated numerically subcritical solutions (F < 1), where the

free surface detaches from the body at the stagnant point. These solutions are

characterised by an upstream train of waves.

In this research it will be studied only the problem when the free surface de-

taches smoothly from the stern. The analysis of steady flow and surface waves

generation will be given in Chapters 2–4, whereas the unsteady flow will be stud-

ied in in Chapter 5. In Chapter 6 the steady flow problem past plane semi-infinite

stern will be generalised for two-layer fluid. The main assumption is that the free

surface detaches from the plate stern at the tangential separation for the subcriti-

cal solution when the Froude number F = V/
√
gh < 1, where V is the velocity of

the fluid downstream, g is acceleration due to gravity, and h is water depth.

1.1.1 Steady flows in fluid of infinite depth

A steady flow past the stern of a ship in a fluid of infinite depth has been in-

vestigated by Schmidt [30], who used the Wiener–Hopf technique to show that

there are no downstream waves for a particular family of curved ship sterns, where

the free surface detaches smoothly from the stern. Schmidt also established two

methods to locate the separation point between the stern and free surface adopted

from Schmidt and Sparenberg [31]. In contrast, Vanden-Broeck [47] numerically

investigated the free surface flow past a semi-infinite flat stern using the bound-

ary integral equation method. Vanden-Broeck generated waves downstream when

the flow separates tangentially from the flat stern. The numerical solution to the

stern flow problem was also investigated by Madurasinghe and Tuck [66], who

found a waveless solution on the free surface, where the flow separated smoothly

from the polygonal body. Additionally, Farrow and Tuck [13] numerically exam-

ined the free surface profile when the flow detaches smoothly from the stern and

found a waveless solution for the free surface flow past the double-flat stern. Zhu

and Zhang [87] considered analytically the time dependent linear problem and

showed that the steady state is asymptotically achievable in the long time limit.

Solving the steady problem by means of the Wiener–Hopf technique the authors
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showed that the closed form solution in the far field zone can be obtained for an

arbitrary hull shape. Haussling [32] treated transient linear and nonlinear prob-

lems numerically for the ship model moving with draught-defined Froude numbers

Fr ≡ V/
√
gd ∈ [1, 4], where V is ship velocity, g is acceleration due to gravity, and

d is the draught of the ship. It was shown that for Fr > 3 the nonlinear effects are

negligibly small for most practical purposes, whereas for Fr < 3 these effects may

be significant.

1.1.2 Steady flows in fluid of finite depth

A steady free surface flow past a semi-infinite flat plate in a fluid of finite depth

was considered by McCue and Stump [85], who assumed that the free surface

detaches smoothly from the edge of the flat plate. The problem was solved using

the Wiener–Hopf technique, and it was shown that there is a family of subcritical

solutions characterised by a train of sinusoidal waves in the far downstream zone.

McCue and Forbes [84] showed numerically using the boundary-integral-equation

method that there is a waveless solution when the surface flow moves past a

semi-infinite flat plate. They also investigated the problem analytically using the

Wiener–Hopf technique and identified that the solution is characterised by a train

of waves on the free surface for the subcritical solutions, when F < 1. On the other

hand, Maleewong and Grimshaw [71] considered the same problem for F ≈ 1. Both

the analytical and numerical solutions show that there are downstream waves when

a free surface leaves the plate smoothly.

Recently Binder [11] derived weakly nonlinear theory and obtained numerical

solutions to the fully nonlinear problem for the free surface flow past a semi-

infinite curved plate in a fluid of finite depth. Using the weakly nonlinear theory,

Binder eliminated the downstream waves for plate shapes that have zero slope at

the detachment with the free surface using a Froude number F = 0.9 and small

pressure P . However, numerical solutions to the fully nonlinear problem appear

to eliminate the waves downstream in scale that includes the flat bottom of the

channel.
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1.1.3 Unsteady two-dimensional flow

In Chapter 5 of this Theses, the unsteady or transient problem is considered for a

two-dimensional free surface flow past a semi-infinite plate in a fluid of finite depth.

This problem was tackled previously by Haussling [32], for the free surface flow

past a plate in a fluid of infinite depth. The author studied the unsteady nonlinear

waves created behind the stern of a semi-infinite plate on surface of a fluid of infinite

depth using the finite difference numerical method. He formulated the problem by

assuming that the stern was moving instantaneously at the free surface in order to

generate an unsteady flow. The problem was solved by mapping the coordinates

from a physical region to a rectangular region and then discretising the problem.

He examined two cases of flat and curved sterns, assuming that the flow separates

smoothly from the stern, and additionally calculated the location of the point of

separation by applying two conditions. The upstream atmospheric pressure p on

the hull must be greater than zero and the separation point downstream on the

free surface must be below the hull.

Zhu and Zhang [87] presented an analytical solution for the free surface flow

past a ship stern. They formulated the problem by assuming that the stern of

a ship moves with constant velocity through the fluid. The linearised problem is

solved using the Fourier transform and Wiener–Hopf technique for different stern

shapes in a fluid of infinite depth. They used a transient model to show that

the steady state is achievable for the large-time limit, and derived the radiation

condition for the steady problem.

1.1.4 Steady two-dimensional flow for the two-layer model

In Chapter 6 the steady problem is considered for the two-layer model. It is

assumed that the flat plate moves with constant speed along the surface of den-

sity interface generating internal waves. Such waves are mostly hidden from eye-

sight, however, sometimes they produce a visible response at the free surface. The

Wiener–Hopf technique is used to solve the problem of the interface flow past a

semi-infinite flat plate in a fluid with a finite depth in the lower layer and infinite

height in the upper layer. The effect of density ratio on the problem of minimi-
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sation of internal waves is studied. It is shown that in the limit when the density

ratio of upper fluid to lower fluid becomes very, the results obtained reduce to the

problem of surface wave minimisation past flat plate.

1.2 Techniques

1.2.1 Wiener–Hopf technique

The Wiener-Hopf method is a mathematical technique used widely in solving two-

dimensional partial differential equations with mixed boundary conditions (Noble;

[5]). The boundary conditions are transformed and these transforms are used

to define a pair of complex functions (denoted with ‘+’ and ‘-’ subscripts) that

are analytic in the upper and lower halves of the complex plane, respectively.

These two functions also coincide on some region of the complex plane, such as a

thin strip. Analytic continuation of these two functions defines a single function

analytic in the entire complex plane. Liouville’s theorem ([18], p. 85) implies that

this function is an unknown polynomial and by analysis of the complex functions

determines the degree of this polynomial. For example, a function, A(k), analytic

in a horizontal strip 0 < Im(k) < τ , the following decomposition into a difference

or quotient of functions A+(k) and A−(k) may be used:

A(k) = A+(k)− A−(k), or A(k) =
A+(k)

A−(k)
.

Here function A+(k) is analytic in the upper-half plane, whereas A−(k) is analytic

in the lower-half plane.

The Wiener–Hopf method has been used by many researcher (among them

Schmidt and Sparenberg [31], Schmidt [30], McCue and Stump [85], and Zhu and

Zhang [87], for solving the stern flow problem namely, because mixed boundary

conditions are used in the formulation of this problem.



Introduction and Literature Review 21

1.2.2 Boundary-integral-equation technique

The boundary-integral-equation (BIE) method is based on the reformulation of the

free surface flow problem to a system of nonlinear integro-differential equations for

the unknown function on the free surface. These equations are then discretised and

the resultant nonlinear algebraic equations are solved by iteration (for example,

by using Newton’s method). The BIE method can be applied in many areas of

science and engineering including fluid mechanics [46].

In this research the BIE method is used to solve the nonlinear free surface

problem numerically by applying the conformal mapping to transform the problem

from a physical plane to the non-physical plane where the free surface is known.

A further mapping of the flow region onto a half-plane enables Cauchy’s integral

theorem to be applied to a function on that region. An integral equation for

the unknown function on the free surface then derived using the boundary integral

technique to produce a system of nonlinear equations solvable by Newton’s iterative

method. The BIE method of solving free surface problems has been adopted and

used successfully by many researches including Forbes and Schwartz ([59], 1982),

Orszag [15], Meiron [14], King and Bloor [1], Ellis [93], Hoffman [43], Andersson

and Vanden-Broeck [12] and Binder [11].

1.3 Research objectives

The main research objectives are;

1 – Determine the shape of the free surface created behind a stern of a

constantly moving plate

The shape of the free surface created behind bodies in a uniform stream is of prac-

tical importance, as it applies to the flow of fluid at the stern of a ship. The shape

of the free surface when it detaches smoothly behind the stern of a ship is found

analytically using the Wiener–Hopf technique, numerically using the boundary in-

tegral equation method, and then analytically for a weakly nonlinear problem.

2 – Design a two-dimensional stern that minimises or completely elimi-
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nates downstream waves

When a ship travels through a water it generates waves. These waves contain

an amount of energy equal to the work done by the ship hull on the fluid. Min-

imisation of energy required to propel a ship requires minimisation of the wave

resistance, by minimising the wave train left behind the ship.

In the steady problem, three different configurations of stern shape are exam-

ined in this research. In the first case it is assumed that the ship stern has a

slope monotonically increasing in x. For this configuration, the linear, nonlinear

and weakly nonlinear solutions are solved and it is found that the wave amplitude

can be minimised for this plate shape. In the second case the stern shapes were

examined by Binder [11]. These shapes are characterised by the zero slope at the

point at which the free surface detaches from the stern. For this configuration,

the amplitude of the waves for the weakly nonlinear solution vanishes completely,

while the linear and nonlinear solutions have a very small wave amplitude. Finally,

its shown in this study that when the stern shape has a downward-angle at the

detachment point, the wave amplitude for the nonlinear solution can be completely

eliminated.

3 – Investigate an asymptotic behavior of a transient solution for surface

waves generated by a flat plate

For the unsteady problem, the shape of the stern is considered flat in this research.

The linear solution is solved and it was found that the solution obtained asymp-

totically approaches the steady solution as t→ ∞ for the case of the flat plate.

4 – Generalise the surface wave problem to internal waves in two-layer

fluid

For the simplest stern shape (flat plate) the steady problem is considered in two-

layer fluid of different density. Assuming that a plate moves with constant speed

along the surface of density interface, the Wiener–Hopf technique is used to find

the profile of generated internal waves in a fluid with a finite depth in the lower

layer and infinite height in the upper layer. The effect of density ratio on the prob-

lem of minimisation of internal waves is studied. It is shown that in the limit when

the density ratio of upper fluid to lower fluid becomes very, the results obtained

reduce to the problem of surface wave minimisation past flat plate.
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1.4 Content of this research

The free surface flow past a semi-infinite curved plate in a fluid of finite depth is

investigated. Past researches on this subject has been primarily dedicated to the

case of flow in a fluid of infinite depth. Binder [11] investigated the free surface flow

past a semi-infinite curved plate in a fluid of finite depth for a particular family

of stern shapes for the nonlinear and weakly nonlinear cases. These results were

developed further for different families of plate shapes for the linear, nonlinear

and weakly nonlinear problems. It was discovered that for the particular family

of stern shapes solutions obtained can provide a minimum of generated waves or

even the motion without downstream waves at all. This study is devoted to further

contribution to this problem. The outline of the research is as follow:

• Chapter 2 – the curved plate problem (depicted in figure 2.1) is solved. After

formulating the problem, the Fourier transform and the Wiener–Hopf technique

are used to solve curve plate problem for the case of subcritical flow, F < 1. The

free surface consists of a sinusoidal component and monotonically decaying portion

for different stern shapes.

• Chapter 3 describe how the problem can solved numerically. A conformal

mapping is proposed and the boundary-integral-equation method is applied. A

numerical scheme is used to solve the nonlinear integral equation, and different

shapes of the plate are examined.

• Chapter 4 contains a comparison between the analytical, numerical and

weakly nonlinear solutions for different stern shapes. A method for manipulat-

ing the shape of the plate to eliminate the downstream waves is demonstrated; a

comparison of results obtained are presented against known from the literature.

• Chapter 5 defines an unsteady problem in the linear approximation for free

surface waves generated behind the flat model of a ship stern. It is shown how the

problem can be solved analytically using the Laplace transform and Wiener–Hopf

technique.

• Chapter 6 presents a solution of the stationary problem of internal waves

generation in two-layer fluid of finite depth in the lower layer and infinite depth in

the upper layer. The problem is solved analytically in the linear approximation for
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different density ratios using the Fourier transform and Wiener–Hopf technique.

• Chapter 7 contains conclusion and discussions of results obtained for the

steady and unsteady two-dimensional free surface flow past a ship stern and high-

lights further avenues of research in this field.



Chapter 2

Exact Solution to the Linearised Steady Problem

2.1 Introduction

In this chapter, free surface flow past a semi-infinite curved plate in a fluid of finite

depth is considered (see figure 2.1). We assume that the free surface separates from

the edge of the plate tangentially. The linearised problem is solved exactly using

a Fourier transform and the Wiener–Hopf technique, for subcritical flow (F < 1),

and for different families of plate shapes. The free surface consists of a sinusoidal

component and monotonically decaying portion.

This problem has been studied by many authors for the case of a flat plate.

For example, McCue and Stump [85] considered the free surface flow past a semi-

infinite flat plate in a fluid of finite depth, where the free surface detaches smoothly

from the edge of the flat plate. The problem was solved using the Wiener–Hopf

technique, and it was shown that there is a family of subcritical solutions charac-

terised by a train of sinusoidal waves far downstream. Maleewong and Grimshaw

[71] and McCue and Forbes [82] solved the fully nonlinear problem numerically

using the boundary integral equation method, when a free surface flows past a

semi-infinite flat plate. They generated waves downstream of the plate edge, in-

cluding gravity but neglecting surface tension. Recently, Binder [11] solved the

problem of the free surface flow past a semi-infinite curved plate in a fluid of fi-

nite depth numerically, using the boundary integral equation method and weakly

nonlinear theory. He showed that using the weakly nonlinear theory the wave am-

25
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plitude vanish completely for Froude number F ∼ 1.

Figure 2.1: A schematic of the free surface flow past a semi-infinite curved plate in a finite

depth fluid.

2.2 Mathematical Formulation

Steady two-dimensional free surface flow past a semi-infinite curved plate in a fluid

of finite depth is shown in Figure 2.1. It is assumed that the curved plate steadily

pushes into the fluid. The fluid is inviscid and incompressible, and the flow is

irrotational. Surface tension is assumed to be negligible.

The distance between the horizontal bottom of the fluid and the curved plate

is indicated by h, the height of the undisturbed free surface is indicated by H ,

and the draft of the ship denoted by d. The fluid far upstream is uniform with a

constant depth h = H − d and speed V . The velocity far upstream, using mass



Exact Solution to Linearised Steady Problem 27

conservation, is given by V = cH
H−d as x̃→ −∞, where c is given by

c =
V h

H
. (2.1)

The Cartesian coordinates are introduced so that the x̃-axis lies at the bottom

of the fluid and the ỹ-axis is vertically upwards. For x̃ < 0 the fluid is bounded

above by a semi-infinite curved plate, and for x̃ > 0, the upper boundary consists

of a free surface (see Figure 2.1).

Since we assumed the flow is incompressible, the velocity potential Φ satisfies

Laplace’s equation

∇2Φ =
∂2Φ

∂x̃2
+
∂2Φ

∂ỹ2
= 0 for −∞ < x̃ <∞, on 0 < ỹ < h+ η̃(x̃), (2.2)

and the x̃ and ỹ components of the velocity, ũ and ṽ, respectively, are given by

ũ =
∂Φ

∂x̃
, ṽ =

∂Φ

∂ỹ
.

The normal component of the fluid velocity at any boundary is zero. As we have

a curved plate, a free surface and a horizontal bottom, we have the following

conditions
∂Φ

∂ỹ
= 0 for −∞ < x̃ <∞, on ỹ = 0, (2.3)

∂Φ

∂ỹ
= η̃′(x̃)

∂Φ

∂x̃
for −∞ < x̃ <∞, on ỹ = h+ η̃(x̃), (2.4)

where η̃(x̃) is the unknown location of the free surface for x̃ > 0 and a specified a

priori for x < 0. An additional condition is found by applying Bernoulli’s equation

on ỹ = h+ η̃(x̃), namely,

1

2

[(

∂Φ

∂x̃

)2

+

(

∂Φ

∂ỹ

)2]

+ gỹ =
1

2
V 2 + gh+

P̃

ρ
for 0 < x̃ <∞, (2.5)

where g is the acceleration due to gravity, ρ is the density, P̃ = P̃−∞ − P̃a is the

difference between the pressure P̃−∞ applied to the plate as x → −∞ and the

atmospheric pressure P̃a on the free surface. The unknown free surface for x̃ < 0

and the known curved plate for x̃ > 0 is described by ỹ.
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This problem is formulated by non-dimensionalising all lengths with respect to

the height h and all velocities with resect to the speed V . Let u = ũ/V , v = ṽ/V ,

x = x̃/h, y = ỹ/h, φ = Φ/V h, P = P̃ /ρgh and η = η̃/h, applying these, equations

(2.2), (2.3), (2.4) and (2.5) become

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0 for −∞ < x <∞, on 0 < y < 1 + η(x), (2.6)

with the boundary conditions

∂φ

∂y
= 0 for −∞ < x <∞, on y = 0, (2.7)

∂φ

∂y
= η′(x)

∂φ

∂x
for −∞ < x <∞ on y = 1 + η(x), (2.8)

1

2
(u2+ v2)+

1

F 2
y =

1

2
+

1

F 2
(1+P ), for 0 < x <∞, on y = 1+η(x), (2.9)

∂φ

∂x
∼ 1 as x→ ∞,

for x > 0, where the two dimensionless parameters in the problem, the Froude

number F and the applied pressure P , are defined as

F =
V√
gH

, P =
P̃−∞ − P̃a
ρgH

. (2.10)

It is assumed that the uniform flow is slightly perturbed, which gives the per-

turbation expansions

φ(x, y) = x+
P

1− F 2
φ1(x, y) +O

(

P 2

(1− F 2)2

)

, (2.11)

and

η(x) =
P

1− F 2
(1 + η1(x)) +O

(

P 2

(1− F 2)2

)

, (2.12)

where the small parameter P/(1−F 2) << 1 is the dimensionless distance between

the height of the plate and the undisturbed free surface. This parameter is chosen

so that the linear problem coincides with McCue and Stump [85] for special case of

a flat plate (recall our problem is nondimensionalised as in Binder [11], not McCue

and Stump [85]).

After nondimensionalising the problem, we now linearise using the perturbation
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expansions given in (2.11) and (2.12). By substituting the expansion into (2.6),

(2.7), (2.8) and (2.9), we obtain

∂2φ1

∂x2
+
∂2φ1

∂y2
= 0, −∞ < x <∞, 0 < y < 1, (2.13)

with the boundary conditions given by

∂φ1

∂y
= 0, −∞ < x <∞, y = 0, (2.14)

F 2∂
2φ1

∂x2
+
∂φ1

∂y
= n(x), x < 0, y = 1, (2.15)

∂φ1

∂y
= m(x), x < 0, y = 1. (2.16)

Here, m(x) = dη1/dx is a known function that describes the shape of the plate for

x < 0, with the assumed behaviour,

|m(x)| ≤ K1e
τ+x as x→ −∞, (2.17)

where K1 and τ+ are constants and m(x) is expected to be periodic in the limit

x → −∞. The function n(x) is unknown and describes the pressure on the plate

for x < 0, and is assumed to decay to zero, satisfying

|n(x)| ≤ K2e
τ−x as x→ −∞,

whereK2 is constant, and τ− < 0. In addition, given condition (2.17), it is expected

that

|n(x)| ≤ K3e
τ+x as x→ −∞, (2.18)

where K3 is a constant. τ+ and τ− determine which part of the complex plane,

upper or lower-half plane, the function n(x) is analytic.

We are particularly interested in the quantity

η1(x) = −F 2

(

1 +
∂φ1

∂x
(x, 1)

)

, for x > 0, (2.19)

which will describe the shape of the free-surface in the generalised solution.

McCue and Stump [85] solved the same problem by considering a flat plate,

i.e., m(x) = 0. In the present work the problem is solved for the case of a curved

plate.
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2.3 Wiener–Hopf technique

2.3.1 Application Of The Fourier Transform

Following McCue and Stump [85], we solve (2.13)-(2.16) with the Wiener–Hopf

technique. From linear water wave theory, we expect the solution for φ1(x, y) to

be oscillatory far downstream with

φ1 ∼ constant × cosh(µRy)× cos(µRx+ ν) as x → ∞,

where µR > 0 is the real positive root of the transcendental equation

tanhµR = µRF
2, (2.20)

and ν is a phase shift (that must be determined as part of the full solution to

(2.13)-(2.16)). Thus, the Fourier transform

φ̂(k, y) =

∫ ∞

−∞
φ1(x, y)e

ikxdx (2.21)

will not converge for real values of k, but instead must hold in the infinitely long

strip 0 < Im(k) < τ+ that can be detected by the far field behaviour of the function

φ1(x, y).

By applying the Fourier transform (2.21) to Laplace’s equation (2.13) and using

(2.14), we find that φ̂ is given by

φ̂(k, y) = A(k) cosh ky. (2.22)

The transformation of the boundary conditions (2.14)-(2.16) give

kA(k) sinh k = m̂(k), kA(k)

[

sinh k − F 2k cosh k

]

= n̂−(k), (2.23)

both of which hold in the strip 0 < Im(k) < τ+(see Figure 2.2(a)). Here m̂(k) and

n̂−(k) are the Fourier transforms of m(x) and n(x), respectively. The equation

(2.23) is solved for the two unknown functions m̂(k) and n̂(k) in the following

subsection. Once m̂(k) is determined, we recover the unknown free surface through

(2.19) and the inverse transform

∂φ1

∂x
(x, 1) =

1

2πi

∫ ∞+iδ

−∞+iδ

m̂(k)

tanh k
e−ikxdk, (2.24)
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(a) (b)

Figure 2.2: Figure (a) shows the strip 0 < Im(k) < τ+. Figure (b) shows the path of

integration in the lower half k-plane.

where δ is a real constant in the range 0 < δ < τ+, forcing the path of integration

to lie in the strip 0 < Im(k) < τ+ as required (Noble[5], 1988).

By differentiating (2.24) with respect to x at y = 1, and using (2.22)-(2.23), it

is found that
∂φ1

∂x
(x, 1) =

1

2πi

∫ ∞+iδ

−∞+iδ

m̂(k)

tanh k
e−ikxdk. (2.25)

where m̂(k) is found in Section 2.3.2, which is given by

m̂(k) =
C0 + C1k

P+(k)(1− k2

µ2
R

)
+
J−(k)

P+(k)
, (2.26)

which together with (2.19) and (2.25), provides an integral expression for the shape

of the free surface η(x) in terms of an inverse Fourier transform. Despite the

complicated nature of m̂(k), we are able to invert the Fourier transform (2.25)

exactly, as shown below.

For x > 0, the integral (2.25) is evaluated by closing the path of integration with

a large semi-circle in the lower half k-plane (see Figure 2.2(b)). An examination

of (2.25) reveals that the integrand has poles inside the closed contour when the
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denominator is zero, which will happen for k = 0. In addition the integrand may

also have poles inside the contour, where m̂(k) is singular. These poles are located

at k = κj, for j = 1, 2.... By summing the residues it is found that

∂φ1

∂x
(x, 1) = −m̂(0)−

∑

j

Resk=κjm̂(k)

tanh κj
e−iκjx, (2.27)

Now, given the solution for m̂(k) in (2.26), we find that m̂(k)/ tanh k has poles

inside the closed contour when k = 0, k = ±µR where µR > 0 is real and satisfies

tanhµR = µRF
2, (2.28)

and also for k = −iπµn for n = 1, 2, . . ., where the µn are real and satisfy

tan πµn = πµnF
2. (2.29)

It follows that, by summing the residues, equation (2.27) can be written as

∂φ1

∂x
(x, 1) = −m̂(0)− 1

2F 2P+(µR)P−(µR)
×

[

P+(−µR)(C0 + C1µR)e
−iµRx + P+(µR)(C0 − C1µR)e

iµRx

]

+
∞
∑

j=1

−πµjµRF 2P−(iπµj)

[

C0 − C1iπµj + (1 +
π2µ2j
µ2
R

)J−(−iπµj)
]

1− F 2 + π2µ2
jF

4
e−πµjx.

It is important to note that this solution is comprised of a constant term −m̂(0),

a sinusoidal term and an infinite sum of terms that decay exponentially fast as

x → ∞. Thus, by substituting the above equation into (2.19), the shape of the

free surface has the behaviour

η1(x) ∼ −F 2 + F 2m̂(0) + A sin(µRx+ ν), (2.30)

as x → ∞, where A is the amplitude of the downstream waves and ν is a phase

shift, both of which depend on F, m(x) and n(x). From linear water wave theory

this behaviour should only include the sinusoidal wavetrain. Thus,

−F 2 + F 2m̂(0) = 0,

and therefore,

m̂(0) = 1. (2.31)
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Putting it together, after some algebra, we find the shape of the free surface is

thus given by

η1(x) =
−F√πcosh(µR)
µRT (µR)T (−µR)

Re

(

T (µR)Γ

(

1− iµR
π

)

Γ

(

3

2
+
iµR
π

)

(C0 − C1µR)e
iµRx

)

+
∞
∑

j=1

µjµRF
3T (iπµj)Γ(µj)

[

C0 − C1iπµj + (1 +
π2µ2j
µ2
R

)J−(−iπµj)
]

√
π(1

2
+ µj)Γ(

1
2
+ µj)[1− F 2 + π2µ2

jF
4]

e−πµjx. (2.32)

A further calculation shows the amplitude A is given by

A =
√
2F

√

C2
0 − C2

1µ
2
R

F 2 + µ2
RF

4 − 1
. (2.33)

Consequently, the amplitude vanishes when C2
0 = C2

1µ
2
R and both C0 = 0 and

C1 = 0.

2.3.2 The Wiener–Hopf equation

In the previous section, the solution of the free surface profile was given in terms of

the unknown function m̂(k). In this section, the unknown function m̂(k) is solved

by eliminating A(k) from (2.23) to give

m̂(k) =
n̂−(k)

(1− F 2k coth k)
, (2.34)

where n̂−(k) is analytic function in the lower-half plane (Im(k) < τ+), which is

given by

n̂−(k) =

∫ 0

−∞
n(x)eikxdx. (2.35)

Anticipating the use of the Wiener–Hopf technique, m̂(k) in (2.34) can be written

as

m̂(k) = m̂−(k) + m̂+(k),

where

m̂−(k) =

∫ 0

−∞
m(x)eikxdx, m̂+(k) =

∫ ∞

0

m(x)eikxdx, (2.36)

are analytic functions in the lower and upper-half plane (Im(k) < τ+), (Im(k) > 0)

respectively.

For our problem, the transform m̂−(k) is an input to the problem (since the slope
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of the plate m(x) = dη1(x)/dx is known for x < 0) while the functions m̂+(k) and

n̂−(k) are two unknowns that physically represent the (transforms of the) slope of

the free surface for x > 0 and the pressure on the plate for x < 0, respectively.

Therefore, it follows that the Wiener–Hopf equation (2.34) becomes:

m̂+(k) + m̂−(k) =
n̂−(k)

G(k)
, (2.37)

in the strip 0 < Im(k) < τ+, where

G(k) = 1− F 2k coth k. (2.38)

The method of solving equation (2.37) depends crucially on a decomposition of

G(k) of the form

G(k) =

(

1− k2

µ2
R

)

P+(k)P−(k), (2.39)

where P+(k) is analytic and non-zero in the upper-half plane (Im(k) > 0), and

P−(k) = P+(−k) is analytic and non-zero in the lower-half plane (Im(k) < τ+).

Here µR > 0 is defined in (2.28), and the actual form of P+(k) is given later in this

section. The details of this factorization will be given later in this Section.

Now, substituting (2.39) into (2.37), we obtain

(

1− k2

µ2
R

)[

P+(k)m̂+(k) + P+(k)m̂−(k)

]

=
n̂−(k)

P−(k)
. (2.40)

To proceed further, the function J(k) is introduced and defined by

J(k) = P+(k)m̂−(k). (2.41)

Splitting these functions into J(k) = J+(k) + J−(k), where J+(k) and J−(k) are

analytic in the half-planes Im(k) > 0 and Im(k) < τ+, respectively. The details of

this splitting are postponed until later in this section.

Substituting (2.41) into (2.40), the Wiener–Hopf equation (2.37) becomes

(

1− k2

µ2
R

)[

P+(k)m̂+(k) + J+(k)

]

=
n̂−(k)

P−(k)
−
(

1− k2

µ2
R

)

J−(k), (2.42)

where all the terms on the left-hand side of (2.42) are analytic in the upper half-

plane Im(k) > 0, and the terms on the right hand-side are analytic in the lower half-

plane Im(k) < τ+. Thus, both sides of (2.42) are equal in the strip 0 < Im(k) < τ+,
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and each must be the analytic continuation of the other. Furthermore both sides

are equal to the as yet unknown function E(k).

To determine the form of E(k) we analyse the behaviour of the left-hand side of

(2.42) as k → ∞ in the upper half-plane (Im(k) > 0), and in the lower half-plane

(Im(k) < τ+) is analysed. Thus, from (2.38) and (2.39), noting P−(k) = P+(−k),
we find P+(k) = O(k−1/2) as k → ∞. Further, by the application of integration

by parts, m̂+(k) = O(k−1) as k → ∞. Finally J(k) is split in such a way that

J+(k) = O(k−1) in the upper half-plane and J−(k) = O(k−1) in the lower half-

plane as k → ∞, (postponed to later on in this section). Together these results

imply that the left-hand side of (2.42) is O(k) as k → ∞ in the upper half-plane

Im(k) > 0. Similarly, the right-hand side of (2.42) is O(k) as k → ∞ in the lower

half-plane Im(k) < τ+. Thus, by Liouvilles’s theorem ([18], pg 85) both sides of

(2.42) must be equal to the polynomial E(k) = C0 + C1k, where C0 and C1 are

constants left to be determined later in this section.

We have now solved the single equation (2.42) for the two unknowns m̂+(k)

and n̂−(k); which are given by

n̂−(k) = P−(k)

[

C0 + C1k +

(

1− k2

µ2
R

)

J−(k)

]

, (2.43)

and

m̂+(k) =
µ2
R

P+(k)(µ
2
R − k2)

[

C0 + C1k

]

− J+(k)

P+(k)
. (2.44)

Factorisation of G(k)

In McCue and Stump [85] the function G(k), defined in (2.38), is factorised as in

(2.39). The details of the factorization of G(k) are handled in the same way to that

presented in McCue and Stump [85]. Let G(k) = f1(k)f2(k), where the functions

f1(k) and f2(k) are given by:

f1(k) =
sinh k

k
− F 2 cosh k, f2(k) =

k

sinh k
. (2.45)

The splitting of the Wiener–Hopf equation (2.42) depends upon the roots of f1(k).

Here the function f1(k) has two real roots and infinitely many imaginary roots.

The real roots are denoted by k = ±µR, for µR > 0. As F → 1, µR → 0, while
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as F → 0, µR ∼ 1
F 2 . The imaginary roots are given by k = ±iπµn, for n = 1, 2, ...

and µn > 0, where µn = n+ 1
2
− 1

π2F 2n
+O(n−2) as n→ ∞.

By applying the Weierstrass infinite product theorem [29], f1 can be factored

into the form

f1(k) = (1− F 2)

(

1− k2

µ2
R

)

∞
∏

n=1

(

1 +
k2

π2µ2
n

)

=

(

1− k2

µ2
R

)

H+(k)H−(k), (2.46)

where

H+(k) =
√
1− F 2

∞
∏

n=1

(

1− ik

πµn

)

e
ik
π
( 1
n
−γ), H−(k) = H+(−k),

and γ is Euler’s constant. The exponential factor in H+(k) is required for the

infinite product to converge. Now by using the result

1

Γ(3
2
− ik

π
)
=

2√
π

∞
∏

n=1

(

1− ik

π(n+ 1)

)

e
ik
π
( 1
n
−γ),

it is found that

H+(k) =
αT (k)

Γ(3
2
− ik

π
)
, (2.47)

is analytic and non-zero in the upper-half k-plane, with,

T (k) =
∞
∏

n=1

(

πµn − ik

π(n+ 1
2
)− ik

)

and α =
√

(1− F 2)

√
π

2

∞
∏

n=1

(

n+ 1
2

µn

)

. (2.48)

The infinite product T (k) is uniformly convergent, as each term has the form

1 + O(n−2). Furthermore, T (k) has simple zeros at k = −iπµn, simple poles at

k = −iπ(n + 1
2
) (n = 1, 2, ...), and has the limit T (k) → 1 as k → ∞.

The value of α can be determined explicitly by considering the behaviour of

f1(k) for large k. Thus, from equation (2.46) we find that

f1(k) =
4α2π(µ2

R − k2)T (k)T (−k) cosh(k)
µ2
R(π

2 + 4k2)
,

where f1 ∼ −πα2ek/2µ2
R as k → ∞. However, from (2.45) it is found that f1 ∼

−F 2ek/2 in this limit, thus, by comparing these two results, the value of α is found

to be

α =
µRF√
π
.
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By applying the Weierstrass infinite product theorem to the function f2, we

find

f2(k) =
k

sinh(k)
=

∞
∏

n=1

(

1− k2

n2π2

)−1

= S+(k)S−(k), (2.49)

where

S+(k) = eiγk/π
∞
∏

n=1

(

1− ik

nπ

)−1

e−ik/nπ = Γ

(

1− ik

π

)

, (2.50)

and S−(k) = S+(−k). The functions S+(k) and S−(k) are analytic and non-zero

in the upper and lower halves of the k-plane, respectively.

In summary, G(k) is split in the form (2.39), with,

P+(k) = H+(k)S+(k), and P−(k) = H−(k)S−(k), (2.51)

where H+(k) = H−(−k) is given by (2.47) and S+(k) = S−(−k) is given by (2.50).

By using Stirling’s formula ([67], pg 257) we find that

P+(k) ∼ α

(

iπ

k

)1/2

as k → ∞ (2.52)

in the upper-half plane Im(k) > 0, and

P−(k) ∼ α

(−iπ
k

)1/2

as k → ∞ (2.53)

in the lower-half plane Im(k) < τ+.

Splitting of J(k)

In this section we describe the key step in the analysis of Section 2.3.2, which is

the manner is that J(k), defined in equation (2.41), is split into the sum

J(k) = P+(k) m̂−(k) = J+(k) + J−(k), (2.54)

where the function J+(k) is analytic in the upper half-plane, Im(k) > 0, while

J−(k) is analytic in the lower half-plane, Im(k) < τ+. The main idea is to apply

Cauchy’s integral theorem to give

J+(k) =
1

2πi

∫ ∞+ic

−∞+ic

J(ζ)

ζ − k
dζ (2.55)

and

J−(k) = − 1

2πi

∫ ∞+id

−∞+id

J(ζ)

ζ − k
dζ, (2.56)
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(see Section 1.3 of Noble [5] for further details), where ζ = ξ+ ic and the constants

c and d are defined so that 0 < c < Im(k) < d < τ+.

There are two possible ways to proceed, depending on the far-field behaviour

of the plate as x→ −∞.

Method 1

In method 1, if the slope of the plate m(x) decays continuously to zero as x → −∞
(i.e., does not have compact support), then m̂−(k) is not analytic in the upper half-

plane, and has singularities at points denoted by κj , for j = 1, 2, ... in Im(k) > 0.

In this case, we can close the contour in (2.55) with an infinitely large semi-circle

in the upper-half ζ−plane to give

J+(k) = J(k) +
∑

j

Resζ=κj
J(ζ)

ζ − k
,

= J(k) +
∑

j

P+(κj)

κj − k
Resζ=κjm̂−(ζ).

For certain form of m̂−(k) this step could be undertaken by inspection.

For later use, we note the far field behaviour of J+(k) is found to be

J+(k) ∼ −
(

∑

j

P+(κj)Resζ=κjm̂−(ζ)

)

1

k
as k → ∞ (2.57)

in the upper half-plane Im(k) > 0.

Method 2

In method 2, we are most interested in the case in which m(x) does have compact

support, so that m(x) = 0 for x < −L, where L > 0 is some constant. Here we

must be careful, as m̂−(k) is analytic everywhere, growing exponentially as k → ∞
in the upper half-plane Im(k) > 0. Thus we cannot close the contour in (2.55) in

the upper half-plane, as the contribution from the infinitely large semi-circle would

not vanish.

Instead, noting from (2.51) that P+(k) has an infinite number of simple poles

in the lower half-plane at ζ = −inπ for n = 1, 2, . . ., we close the contour in (2.55)
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in the lower half-plane to give

J+(k) = −
∞
∑

n=1

Resζ=−inπ
J(ζ)

ζ − k
,

= −
∞
∑

n=1

m̂−(−inπ)
−inπ − k

Resζ=−inπP+(ζ).

Given that

P+(ζ) ∼
µRF√
π

T (−inπ)

Γ(3/2− n)

iπ(−1)n

(n− 1)!(ζ + inπ)

as ζ → −inπ, n = 1, 2, . . ., we can use the identity (formula (6.1.6) in ([67], pg

255)),

Γ

(

3

2
− n

)

=

√
π(−1)n+14n−1(n− 1)!

(2n− 2)!

to show

Resζ=−inπP+(ζ) =
iµRFT (−inπ)(2n− 2)!

4n−1(n− 1)!2

which can be substituted into the above equation to recover J+(k).

Again, for later use we note an alternate form for (2.57) is that

J+(k) ∼
(

∞
∑

n=1

m̂−(−inπ)
iµRFT (−inπ)(2n− 2)!

4n−1((n− 1)!)2

)

1

k
(2.58)

as k → ∞.

Determination of the Constants C0 and C1

The value of C0 is found, by substituting (2.31) into (2.26), as

C0 =
√
1− F 2 − J−(0). (2.59)

The value of C1, in determining its constants, depends on the detail of J+(k).

Thus, we determine C1 by studying the behaviour of the left-hand side of the

Wiener–Hopf equation in (2.42) in the upper half-plane Im(k) > 0.

Using Method 1, and from (2.57), the left-hand side of (2.42) behaves as

−
(

∑

j

P+(κj)Resζ=κjm̂−(ζ)

µ2
R

)

k as k → ∞,

then the value of C1, in this case, is given by

C1 =
∑

j

P+(κj)Resζ=κjm̂−(ζ)

µ2
R

. (2.60)
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Similarly, using Method 2, and from (2.58), if the left-hand side of (2.42) behaves

as
( ∞
∑

n=1

m̂−(−inπ)
iFT (−inπ)(2n − 2)!

µR4n−1(n− 1)!2

)

k as k → ∞,

and thus the value of C1 takes the form

C1 = −
∞
∑

n=1

m̂−(−inπ)
iFT (−inπ)(2n− 2)!

µR4n−1((n− 1)!)2
. (2.61)

The constants C0 and C1 and the two methods that we used to split the function

J(k) in this section is the difference between the free surface presented by McCue

and Stump [85] for the case of the flat plate, and the free surface for the case of

the curved plate that we derived in (2.32). Thus, if we consider C0 = 0, C1 = 0

and J(k) = 0 then we get the same solution presented by McCue and Stump [85]

for the flat plate as will be shown in the next section.

2.4 Case Studies

Case 1:

In 2000, McCue and Stump [85], considered a stern with a shape given by

m(x) = 0 for x < 0, and n(x) = 0 for x > 0.

Using (2.36), we find that

m̂−(k) = 0,

which is analytic in Im(k) < τ+, and

n̂+(k) = 0,

which is analytic in Im(k) > 0.

We find the value of C0 =
√
1− F 2 and C1 = 0. Substituting C0 and C1 in the

shape of the free surface (2.32), it is found that

η1(x) = F
√

π(1− F 2)
−coshµR

µRT (µR)T (−µR)
Re

(

T (µR)Γ(1−
iµR
π

)Γ(
3

2
+
iµR
π

)eiµRx

)

+

∞
∑

j=1

µjµRF
3T (iπµj)Γ(µj)

√
1− F 2

π(1
2
+ µj)Γ(

1
2
+ µj)[1− F 2 + π2µ2

jF
4]
e−πµjx. (2.62)
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Furthermore, the amplitude of the wave downstream becomes:

A = F

√

2(1− F 2)

F 2 + µ2
RF

4 − 1
, (2.63)

which is the same result as derived by McCue and Stump. This verifies that

the solution of the free surface in (2.32) agrees with McCue and Stump for the

solution of the free surface in the case of the flat plate with the attachment point

η1(0) = −1.

In the next cases we will consider different stern shapes to find the free surface

profile by using the two methods given in Section 2.3.2.

Case 2:

By considering that the shape of the stern is given by

m(x) = aebx for x ≤ 0, (2.64)

where a and b are real and positive, and using the integral in (2.36),

m̂−(k) =
a

b+ ik
,

which is analytic in the lower half-plane, Im(k) < τ+. By closing the contour in

the upper-half plane, the value of J+(k) is calculated using Method 1 in Section

2.3.2. Thus m̂−(k) has a pole at k = ib, and the integral of J+(k) becomes

J+(k) = J(k)− aP+(ib)

(b+ ik)
.

This implies that

J−(k) = m̂−(k)P+(ib) =
aP+(ib)

(b+ ik)
. (2.65)

From (2.60), the value of C1 is given by

C1 =
∑

j

P+(κj)Resζ=κjm̂−(ζ)

µ2
R

=
−iaP+(ib)

µ2
R

, (2.66)

and from (2.59), C0 is given by

C0 =
√
1− F 2 − J−(0) =

√
1− F 2 − a

b
P+(ib). (2.67)



Exact Solution to Linearised Steady Problem 42

Also, from (2.51), the value of P+(k) is substituted by (2.65), (2.66) and (2.67)

into (2.32). The shape of the free surface then becomes

η1(x) =
F
√
π

µR

[

−cosh(µR)

T (µR)T (−µR)
Re

(

T (µR)Γ(1−
iµR
π

)Γ(
3

2
+
iµR
π

)

(√
1− F 2 + P+(ib)(

ia

µR
− a

b
)

)

eiµRx

)

+
∞
∑

j=1

µjµ
2
RF

2T (iπµj)Γ(µj)

[√
1− F 2 − aπµj(b2+µ2R)P+(ib)

bµ2
R
(b+πµj )

]

π(1
2
+ µj)Γ(

1
2
+ µj)[1− F 2 + π2µ2

jF
4]

e−πµjx









. (2.68)

By substituting (2.66) and (2.67) into (2.33), the amplitude of the sine wave is

given by

A =
√
2F

√

√

√

√

√

[√
1− F 2 − a

b
P+(ib)

]2

+ a2

µ2
R

P+(ib)

F 2 + µ2
RF

4 − 1
.

Using Method 2 in Section 2.3.2, and closing the contour in the lower half-plane,

J+(k) is given by

J+(k) =
∞
∑

n=1

m̂−(−inπ)
iFµRT (−inπ)(2n− 2)!

4n−1(n− 1)!2
=

∞
∑

n=1

aiFµRT (−inπ)(2n− 2)!

(b+ nπ)(k + inπ)4n−1(n− 1)!2
,

as,

J−(k) = J(k)− J+(k),

then J−(k) becomes

J−(k) =
aP+(k)

b+ ik
−

∞
∑

n=1

m̂−(−inπ)
iFµRT (−inπ)(2n− 2)!

4n−1(n− 1)!2

=

∞
∑

n=1

aiFµRT (−inπ)(2n− 2)!

(b+ nπ)(k + inπ)4n−1(n− 1)!2
. (2.69)

Also, from (2.59) and (2.61),

C0 =
√
1− F 2(1− a

b
) +

∞
∑

n=1

aFµRT (−inπ)(2n− 2)!

(nπ)(b+ nπ)4n−1(n− 1)!2
. (2.70)

and

C1 = −
∞
∑

n=1

aiFT (−inπ)(2n− 2)!

(b+ nπ)µR4n−1(n− 1)!2
. (2.71)
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Finally, substituting (2.69), (2.70) and (2.71) into (2.32), we find that the shape

of the free surface is given by

η1(x) =
F
√
π

µR

[

−cosh(µR)

µRT (µR)T (−µR)
Re

(

T (µR)Γ(1−
iµR
π

)Γ(
3

2
+
iµR
π

)

[√
1− F 2(1− a

b
) +

∞
∑

n=1

aFT (−inπ)(2n− 2)!(µR + inπ)

(nπ)(b+ nπ)4n−1(n− 1)!2

]

eiµRx

)

+

∞
∑

n=1

µnµ
2
RF

2T (iπµn)Γ(µn)

π(1
2
+ µn)Γ(

1
2
+ µn)[1− F 2 + π2µ2

nF
4]

[√
1− F 2(1− a

b
) +

aFT (−inπ)(2n− 2)!(µ2
R − nπ2µn)

(nπµR)(b+ nπ)4n−1(n− 1)!2

+(
µ2
R + π2µ2

n

µ2
R

)

(

aP+(−iπµn)
b+ πµn

− aFµRT (−inπ)(2n− 2)!

π(b+ nπ)(µn − n)4n−1(n− 1)!2

)]

e−πµnx
]

.

(2.72)

The amplitude of the free surface is then found by substituting (2.70) and (2.71)

into (2.33), and is given by

A =
√
2F

√

√

√

√

√

[√
1− F 2(1− a

b
) +

∑∞
n=1

aFµRT (−inπ)(2n−2)!
nπ(b+nπ)4n−1(n−1)!2

]2

−
∑∞

n=1
aFT (−inπ)(2n−2)!

µR(b+nπ)4n−1(n−1)!2

F 2 + µ2
RF

4 − 1
.

From (2.82), we find the attachment point in this case is

η1(0) = −1 +
a

b
, ∀a, b.

The next case cannot be treated using either method given in Section 2.3.2.

Case 3:

Here we consider the shape of the stern is given by

m(x) =











0 if x < −L

a[ebx − e−bL] if −L < x < 0

,

where a, b and L are real and positive. Using the integral in (2.36), we find

m̂−(k) =
a

b+ ik
− ae−L(b+ik)

b+ ik
− ae−bL

ik
+
ae−L(b+ik)

ik
, (2.73)

which is analytic in Im(k) > 0 and has a poles at k = −inπ. By applying Method

2 in Section 2.3.2, we find J+(k) becomes

J+(k) =
∞
∑

n=1

iµRFT (−inπ)(2n− 2)!

(k + inπ)4n−1(n− 1)!2

[

a[1− e−L(b+nπ)]

b+ nπ
+
a[e−L(b+nπ) − e−bL]

nπ

]

.
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This implies that

J−(k) =

[

−P+(k)

(

ak[1− e−bL] + ab[e−L(b+ik) − e−bL]

k(k − ib)

)

−
∞
∑

n=1

iµRFT (−inπ)(2n− 2)!

(k + inπ)4n−1(n− 1)!2

[

anπ[1 − e−L(b+nπ)] + ab[e−L(b+nπ) − e−bL]

nπ(b+ nπ)

]

]

.

(2.74)

Also, from (2.59) and (2.61), C0 and C1 are equal to:

C0 =

[√
1− F 2

(

1 +
a(−1 + (1 + bL)e−bL)

b

)

−
∞
∑

n=1

µRFT (−inπ)(2n− 2)!

(

anπ[1− e−bL] + ab[e−L(b+nπ) − e−bL]

)

(n2π2)(b+ nπ)4n−1(n− 1)!2









, (2.75)

and

C1 = −
∞
∑

n=1

iFT (−inπ)(2n− 2)!

(

anπ[1 − e−bL] + ab[e−L(b+nπ) − e−bL]

)

nπµR(b+ nπ)4n−1(n− 1)!2
. (2.76)

Finally, by substituting (2.74), (2.75) and (2.76) into (2.32), we find that the shape

of the free surface is given by

η1(x) =

[

−F√πcosh(µR)
µRT (µR)T (−µR)

Re

(

T (µR)Γ(1−
iµR
π

)Γ(
3

2
+
iµR
π

)

[√
1− F 2

(

1 +
a(−1 + (1 + bL)e−bL)

b

)

+

∞
∑

n=1

F (inπ − µR)T (−inπ)(2n− 2)!

(

anπ[1− e−bL] + ab[e−L(b+nπ) − e−bL]

)

(n2π2)(b+ nπ)4n−1(n− 1)!2

]

eiµRx

)

+

∞
∑

n=1

µnµRF
3T (iπµn)Γ(µn)√

π(1
2
+ µn)Γ(

1
2
+ µn)[1− F 2 + π2µ2

nF
4]

[√
1− F 2

(

1 +
a(−1 + (1 + bL)e−bL)

b

)

+

FT (−inπ)(2n− 2)!

(

anπ[1− e−bL] + ab[e−L(b+nπ) − e−bL]

)

(b+ nπ)4n−1(n− 1)!2
×

(

µ2
R + π2µ2

n

nπ2µR(µn − n)
− µR + nπ2µn

n2π2

)]

e−πµnx
]

. (2.77)
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The amplitude of the free surface is given by:

A =

[√
2F

[((√
1− F 2

(

1 +
a(−1 + (1 + bL)e−bL)

b

)

−
∞
∑

n=1

(

anπ[1− e−bL] + ab[e−L(b+nπ) − e−bL]

)

µRFT (−inπ)(2n− 2)!

(n2π2)(b+ nπ)4n−1(n− 1)!2

)2

+

(

(

anπ[1− e−bL] + ab[e−L(b+nπ) − e−bL]

)

FT (−inπ)(2n− 2)!

nπ(b+ nπ)4n−1(n− 1)!2

)2)/

(F 2 + µ2
RF

4 − 1)

]1/2









.

(2.78)

From (2.82), the attachment point in this case is given by

η1(0) = −1 +
a

b
[1 + (bL− 1)e−bL],

∀ a, b and L.

2.5 Numerical Considerations

The solution for the free surface given in (2.32) is calculated using the same tech-

nique presented by McCue and Stump [85], using the Maple 12 programming lan-

guage. We start with the imaginary roots of the function f1(k) defined in (2.45),

and by performing a Taylor expansion, we find µn is given by

µn = n+
1

2
− 1

π2F 2n2
+O(n−3) as n→ ∞. (2.79)

Following McCue and Stump, the infinite product T (k), given by (2.48), for the

real roots k = ±µR can be written as

T (µR) = exp

( N
∑

n=1

log

[

µn − iµR/π

(n+ 1
2
)− iµR/π

]

−
∞
∑

n=N+1

[ −1

π2F 2n2
+

1− iµR/π

π2F 2n3

])

.

(2.80)

This product is computed for different values of N , for the first N terms as shown

in Table B.2, and in Table B.3 the infinite product is computed for n > N . For

a fixed values of N the accuracy of the approximation increases as the Froude

number F increase.
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The infinite product T (k) for the imaginary roots k = ±iπµn can be written as

T (iπµm) = exp

[ N
∑

n=1

log

(

1+
µn − (n + 1/2)

µm + (n + 1/2)

)

− −1

π2F 2(N + 1)
+

1 + µm
π2F 2(N + 1)2

]

.

(2.81)

The calculation of this product is shown in Table B.4 for different values of m (for

more details see [85]).
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2.6 Results

The problem of the linearised free surface flow from the edge of a semi-infinite

curved plate in a fluid of finite depth has been solved using the Wiener–Hopf

technique in the case of subcritical flows, (for a Froude number F < 1). The free

surface in (2.32) consists of a sinusoidal component and a monotonically decaying

portion. The data in Appendix B, Tables B.2-B.1, show that the location of the

free surface, given by (2.32), can be computed accurately to seven decimal places

for the case of the flat plate.

In Section 2.4, three families of plate shapes were described. We employ this

family of plate shapes to show the effect of these shapes of eliminating or min-

imising the waves downstream. In Case 1, the free surface profiles are shown in

Figure 2.3, for the case of the flat plate given by (2.62), for F = 0.5 and F = 0.7.

The second part of the free surface in (2.62) is an exponentially decaying term, as

x→ ∞, and effects the height of the first wave crest; so after one wave length the

free surface profiles are sinusoidal. These Figures are also drawn by McCue and

Stump ([85], 2000) with the same scales.

As it is clearly seen from figure 2.3(b), the free surface detaches smoothly from

the plate and the position of the point of separation between the stern and the

free surface is given by

η1(0) = −1 +

∫ 0

−∞
m(x)dx. (2.82)

The relation between the Froude number F and the wavelength λ is shown

in Figure 2.4. We note that, as F → 1, the wavelength λ → ∞, as indicated

by the dashed line. Also, as F → 0, the wavelength behaves like λ ∼ 2πF 2, as

indicated by the solid line. The distance between the height of the plate and the

undisturbed free surface ǫ ≈ P/(1 − F 2) << 1 is very small, and thus we obtain

linear waves, and in this case, from linear water wave theory, the wavelength is

given by the dispersion relation F 2 = tanh(k)/k where k = 2π/λ, independent of

ǫ and dependent on F . But if ǫ is of order one, we obtain nonlinear waves and

here the wavelength is weakly depend on ǫ, and strongly dependent on the Froude

number F .
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In Case 2, Section 2.4, the free surface profiles are calculated using the two

Methods given by (2.68) and (2.72) as shown in Figure 2.5 for different Froude

numbers F = 0.5 (Figure 2.5(a)) and F = 0.7 (Figure 2.5(b)). The free surface

detaches from the curved plate at η1(0) = −0.5, where the values a = 1 and

b = 2 are chosen. Figure 2.6 shows the relation between the amplitude A and the

parameters a and b in Figure 2.6(a) and 2.6(b), respectively. The free surface for

the local minimum of a and b are shown in Figure 2.6(c) and 2.6(d), respectively.

We note that by increasing the slope of the plate the amplitude decreases to a

minimum and then increases again. In Figure 2.7 the free surface profiles are

shown for different families of the stern at F = 0.5, b = 1 and different values of

a, namely a = 0, 0.5, 1 and 1.5. For a fixed value of a and different values of b,

the free surface profiles are the same shape, only stretched in the y-direction.

In Case 3, Section 2.4, the slope of the plate is continuous for all x < 0. this

shape is chosen to illustrate the behavior of the solution for plate shapes whose

slopes are monotonically increasing in x. The free surface profiles are shown in

Figure 2.8(a), where F = 0.5, a = 1, b = 2, and L = 3 using the second method

given by (2.77). The detachment point between the curved plate and the free

surface is η1(0) = −0.5. Figure 2.8(b) shows the relation between the parameter a

and the amplitude A for different values of b = 1, 2, 3, and L = 1. By increasing the

values of a up to the local minimum, a = 2.9, 3.2, 3.3, the amplitude A decreases

and after that the amplitude increases with increasing a.

Figure 2.8(c) shows that, when we increase the parameter b, the amplitude

decreases to a local minimum b = 1.8, 1.8, 1.3, for a = 1, 2, and 3 and L = 1

respectively, and then the amplitude slightly increases as we increase b until we have

the same amplitude. Figure 2.8(d), shows the relation between the amplitude A

and the parameter L for different scales, where a = −0.5, 0, 0.5, 1, with b = 1. The

amplitude decreases when we increase the parameter L up to the local minimum

L = 6, 6.2, 6.3, 8 for a = −0.5, 0, 0.5, 1 and b = 1, respectively, and then the

amplitude slightly increases to become stable. We conclude that for a fixed value

of a and different values of b and L, the results are qualitatively similar.

In conclusion, when we increase the slope of the plate up to critical points, the

amplitude decreases. It is at these critical points we find the optimal stern shape
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that can minimise the waves.
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Figure 2.3: Free surface profiles drawn for flat plate shapes given by (2.62) for different

scales, with F = 0.5(red), and F = 0.7(black) by using Method 1 in Section 2.3.2. These figures

are presented exactly by McCue and Stump [85] on the same scale.
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Figure 2.4: The dependence of the wavelength λ on the Froude number F . The red dashed

is computed using dispersion relation and the black solid line is the asymptotic line.
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Figure 2.5: Free surface profiles drawn for the plate shape in Case 2 given by (2.64), with

F = 0.5, a = 1 and b = 2 (Figure (a)) and F = 0.7, a = 1 and b = 2 (Figure (b)), by using

Method 1 (circles) and Method 2 (solid-line) as given by (2.68) and (2.72), respectively, in Section

2.3.2.
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Figure 2.6: Figures (a) and (b) show the dependence of the amplitude A on the parameter

a with b = 1(black), 2(red), 3(green), and the dependence of the amplitude A on b for a =

1(black), 2(red), 3(green), for F = 0.5, respectively, for the plate shape given by (2.64). Figure (c)

shows the free surface for the local minimum of the parameter a, (a = 1, b = 1, A = 0.298)(black),

(a = 1.9, b = 2, A = 0.549)(red), (a = 2.5, b = 3, A = 0.73)(green). Figure (d) shows the free

surface for the local minimum of the b, (a = 1, b = .9, A = 0.289)(black), (a = 2, b = 1.8, A =

0.529)(red), (a = 3, b = 2.6, A = 0.749)(green).
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Figure 2.7: Free surface profile drawn for the plate shape (2.64) with F = 0.5 and a =

0(solid black), 0.5(green dashed), 1(red dot-dashed), 1.5((blue dot)) and b = 1.
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Figure 2.8: In figure (a), Free surface profiles are drawn for the plate shape in Case 3 given

by (2.77), with F = 0.5, a = 1, b = 2, L = 3, using Method 1 in Section 2.3.2. In figures (b),

(c) and (d) the dependence of the wave amplitude A on the parameters a, b and L respectively,

with F = 0.5, b = 1(black), 2(red), 3(blue) and L = 1 in figure (a), a = 1(black), 2(red), 3(green)

and L = 1 in figure (b) and a = −0.5(red), 0(blue), 0.5(green), 1(black) and b = 1 in figure (c).



Chapter 3

Numerical Solution to the Fully Nonlinear Steady

Problem

3.1 Introduction

After solving the problem by the Wiener–Hopf technique analytically, the same

problem will be solved numerically using the boundary integral equation method.

We consider a two-dimensional flow past a semi-infinite plate in a fluid of finite

depth, such that the free surface separates from the end of the curved plate BC,

as shown in figure 3.1. The stern flow separates tangentially from the edge of the

plate. Furthermore, we assume that the fluid is inviscid and incompressible, and

that the flow is steady and irrotational. This problem has been considered by many

authors. For instance, McCue and Forbes [82] and Maleewomg and Grimshaw [71]

solved the problem numerically using the boundary integral method for the case

of the flat plate. Recently, Binder [11] solved the same problem numerically, using

the same technique, for the case of a curved plate.

55
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3.2 Problem Formulation

We consider two-dimensional flow past a semi-infinite plate in a fluid of finite depth,

assuming that the stern flow separates tangentially from the edge of a curved plate.

The fluid far upstream is taken to be uniform, with a constant depth h and speed

V . The configuration of the flow examined in this work is presented in figure 3.1.

A Cartesian coordinate system is introduced so that the x-axis lies at the

bottom of the plate and the y-axis points vertically upwards (x and y are used in

this chapter instead of x̃ and ỹ for easy notation). The plane geometry consists

of the free surface from the separation point C, extending into the far field D

as x → ∞, and three solid boundaries: a horizontal flat plate AB, located at

y = h, and −∞ < x < xB; a horizontal bottom boundary EF , located at y = 0,

−∞ < x < ∞; and a curved BC at xB < x < 0. The dimensionless boundary

condition is given by

Figure 3.1: Sketch of the flow and the position of the coordinates

v = 0 on y = 0, −∞ < x <∞, (3.1)
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v = u
∂η

∂x
on y = 1 + η(x), −∞ < x <∞, (3.2)

An additional boundary condition from Bernoulli’s equation along the free surface

y = η(x), gives

1

2
F 2(u2 + v2) + y =

1

2
F 2 + 1 + P, on y = 1 + η(x), (3.3)

where P is not a constant for x < 0. u ∼ 1 as x → ∞, the Froude number is

F = V√
gh
.

3.2.1 Conformal Mapping

In the conformal mapping method, the stream function ψ and potential function

φ satisfy
∂φ

∂x
=
∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
. (3.4)

As the stream function ψ is a constant along the free surface, we introduce a

complex function f analytic over z = x+ iy, given by

f = φ+ iψ. (3.5)

The stern flow problem exhibits complicated geometries in the Cartesian z-plane,

as shown in figure 3.1. Thus, we simplified the problem in the f -plane, by trans-

forming from the (x, y)-plane to the (φ, ψ)-plane, as shown in figure 3.2(for more

details see [11]).

By choosing φ = 0 at the separation point C, ψ = 0 along the streamline ABCD,

and ψ = −1 on the bottom (EF ), then the fluid region, is within, −1 < ψ < 0 and

−∞ < φ < ∞. Finally, the kinematic boundary conditions (3.1) and (3.2) can be

written in the f -plane as:

v = 0 on EF, (3.6)

v = 0 on AB. (3.7)

The boundary condition (3.2) can not be expressed in the f -plane, because the

objective is to derive an integral relation that only involves unknowns that are on

the free surface, and this can not be done in the f -plane. However it can be done

by using first the conformal mapping

ζ = α + iβ = e−πf = e−π(φ+iψ) = e−πφ(cos(πψ)− i sin(πψ)). (3.8)
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Figure 3.2: This figure shows the flow in the complex f -plane.

z - plane (x,y) f -plane (φ,ψ)

A(−∞, 1) φ = φA = −∞, ψ = 0

B(1, xB) φ = φB < 0 , ψ = 0

C(xB, 0) φ = φC = 0 , ψ = 0

D(0,∞) φ = φD = ∞, ψ = 0

E(−∞, 0) φ = φE = −∞, ψ = −1

F (0,∞) φ = φF = ∞, ψ = −1

Table 3.1: The coordinates of key points in the f -plane.
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z - plane (x,y) f -plane (φ,ψ) ζ - plane (α,β)

A(−∞, 1) φ = φA = −∞, ψ = 0 α = αA = ∞, β = 0

B(1, xB) φ = φB < 0, ψ = 0 α = αB > 1, β = 0

C(xB, 0) φ = φC = 0, ψ = 0 α = αC = 1, β = 0

D(0,∞) φ = φD = ∞, ψ = 0 α = αD = 0, β = 0

E(−∞, 0) φ = φE = −∞, ψ = −1 α = αE = −∞, β = 0

F (0,∞) φ = φF = ∞, ψ = −1 α = αF = 0, β = 0

Table 3.2: The mapping between the z−, f− and ζ−planes

In the ζ-plane, the curved plate BC and the free surface CD are mapped to

the positive real axis, while the bottom boundary EF is mapped to the negative

real axis. In addition, the streamlines in the fluid are mapped to the region −∞ <

α <∞ and β ≥ 0, as shown in figure 3.3. Table 3.1 has been extended to include

the image of the point in the ζ-plane, as shown in Table 3.2.

Complex velocity components, u− iv, are introduced in terms of the potential φ

and the stream function ψ in (3.4), given by

u− iv =
∂φ

∂x
+ i

∂ψ

∂x
=
df

dz
. (3.9)

The components u and v in (3.3) can be re-written by applying the new complex

function related to the complex velocity given by

u− iv = eτ−iθ. (3.10)

as

u2 + v2 = e2τ (cos2 θ + sin2 θ) = e2τ . (3.11)

Substituting (3.11) into (3.3), we obtain

F 2

2
e2τ + y =

F 2

2
+ 1 + P on the free surface, CD, (3.12)
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Figure 3.3: This figure shows the flow in the complex ζ-plan.

where P is a constant. From (3.2) and (3.10), we defined the shape of the curved

plate as
∂η

∂x
= tan(θ) =M(x) on BC. (3.13)

Additionally, the free surface profile can be determined by integrating the identity

∂x

∂φ
+ i

∂y

∂φ
= e−τ cos θ + ie−τ sin θ, (3.14)

and by integrating the imaginary parts of (3.14). Using α = e−πφ, we find that

y(α) = −1

π

∫ α

0

e−τ sin θ

α
dα+ y(C), 0 < α < 1. (3.15)

Finally, the kinematic boundary conditions (3.6) and (3.7) are mapped to the

ζ-plane to become

θ = 0 for α > αB and β = 0 (3.16)

and

θ = 0 for α < 0 and β = 0. (3.17)
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Figure 3.4: This figure shows the complex ζ-plane on the contour γ.

3.2.2 Boundary Integral equation

In this section, we will use the boundary integral method to derive an integral

relation between τ and θ on the free surface. In the ζ-plane, as shown in figure

3.4, a contour integral is given by

∮

γ

τ(α, β)− iθ(α, β)

ζ − α0

dζ, (3.18)

where 0 < α0 < 1, is a mapped point on the free surface. The path γ consists of

a large semi-circular arc of radius R, centred at the origin, and the real axis with

a circular indentation of radius r about the point α0 and a circular indentation

about the point αB. See Figure 3.4. Therefore, breaking up the contour into its

components, (3.18) becomes

∮

γ

τ(α, β)− iθ(α, β)

ζ − α0
dζ =

∫

γR

τ(α, β)− iθ(α, β)

ζ − α0
dζ +

∫

γ0

τ(α, β)− iθ(α, β)

ζ − α0
dζ

+

∫ R

−R

τ(α, 0)− iθ(α, 0)

α− α0
dα+

∫

γB

τ(α, β)− iθ(α, β)

ζ − α0
dζ. (3.19)
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It should be noted that there is no contribution made by the integral by γB, because

it is a logarithmic singularity which is weaker than a pole. Cauchy’s theorem states

that along any closed contour not enclosing a singularity of an analytic, a single-

valued function is equal to zero. Since γ does not enclose any singularity, then

(3.19) becomes:

∫

γR

τ(α, β)− iθ(α, β)

ζ − α0
dζ+

∫

γ0

τ(α, β)− iθ(α, β)

ζ − α0
dζ+

∫ R

−R

τ(α, 0)− iθ(α, 0)

α− α0
dα = 0.

(3.20)

Integrating (3.20) separately, starting with γ0, it can be simplified further.

Let ζ = α0 + reiκ, so dζ = ireiκdκ. Then

∫

γ0

τ(α, β)− iθ(α, β)

ζ − α0
dζ =

∫ 0

π

τ(α0 + r cosκ, r sin κ)− iθ(α0 + r cosκ, r sin κ)

reiκ
ireiκdκ

=

∫ 0

π

[τ(α0 + r cosκ, r sin κ)− iθ(α0 + r cosκ, r sin κ)]idκ. (3.21)

As r → 0, this implies that

∫ 0

π

[τ(α0, 0)− iθ(α0, 0)]idκ = −iπ[τ(α0, 0)− iθ(α0, 0)]. (3.22)

Substituting this into (3.20), gives

[τ(α0, 0)− iθ(α0, 0)] =
1

iπ

∫

γR

τ(α, β)− iθ(α, β)

ζ − α0

dζ +
1

iπ

∫ R

−R

τ(α, 0)− iθ(α, 0)

α− α0

dα.

(3.23)

As R → ∞, the second integral on the right hand side of (3.23) becomes

lim
R→∞

1

πi

∫ R

−R

τ(α, 0)− iθ(α, 0)

α− α0
dα =

1

πi

∫ ∞

−∞

τ(α, 0)− iθ(α, 0)

α− α0
dα. (3.24)

It can be seen from (3.8) as φ → −∞, the flow becomes a horizontal uniform

stream, with velocity non-dimensionalised to 1, this means u − iv → 1. From

(3.10) it implies that τ− iθ → 0, therefore the limit of the first integral in the right

hand side of (3.23), as R → ∞ is

lim
R→∞

1

πi

∫

γR

τ(α, β)− iθ(α, β)

ζ − α0
dζ = 0. (3.25)
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Now, we reduce the integral in (3.18) to

[τ(α0, 0)− iθ(α0, 0)] =
1

πi

∫ ∞

−∞

τ(α, 0)− iθ(α, 0)

α− α0
dα. (3.26)

By taking the real and imaginary parts of (3.26) we obtain

τ(α0) = −1

π

∫ ∞

−∞

θ(α)

α− α0

dα, (3.27)

and

θ(α0) =
1

π

∫ ∞

−∞

τ(α)

α− α0
dα, (3.28)

where θ(α) = θ(α, 0) and τ(α) = τ(α, 0). Here we choose (3.27) to obtain the

integral relation between τ and θ on the free surface.

The boundary conditions (3.16) and (3.17) can be used to simplify (3.27) into

four parts to give

−1

π

∫ ∞

−∞

θ(α)

α− α0

dα = −1

π

[
∫ 0

−∞

θ(α)

α− α0

dα+

∫ 1

0

θ(α)

α− α0

dα +

∫ αB

1

θ(α)

α− α0
dα +

∫ ∞

αB

θ(α)

α− α0
dα

]

.

Applying (3.16) and (3.17), we find that the first and last integral on the right

equate to zero. Thus, we may write (3.27) as

τ(α0) = −1

π

∫ 1

0

θ(α)

α− α0
dα− 1

π

∫ αB

1

θ(α)

α− α0
dα. (3.29)

Using (3.8) and the fact that ψ = 0 along the free surface, we have

α = e−πφ (3.30)

We perform a change of variable by substituting (3.30) into (3.29) to give

τ(φ0) = −
∫ ∞

0

θ(φ)e−πφ

e−πφ − e−πφ0
dφ+

∫ φB

0

θ(φ)e−πφ

e−πφ − e−πφ0
dφ, (3.31)

where τ(φ0) = τ(e−πφ0), θ(φ) = θ(e−πφ) and φB = e−πφB . The function, θ(φ), in

the second integral of the right hand side is a known function for the curved plate

BC.

Equations (3.12), (3.15) and (3.31) define a nonlinear integral equation for the

unknown function θ(φ) on the free surface.



Numerical Solution to Fully Nonlinear Steady Problem 64

3.2.3 Numerical Procedure

A numerical procedure is used to calculate the solution to the nonlinear integral

equation derived in Section 3.31. This integral equation is used to calculate τ along

the curved plate and the free surface ABCD in terms of θ. In order to calculate τ,

it is necessary to have a discrete point φ0, along the free surface and the plate at

which the τ values may be evaluated. This is done by defining an equally spaced

mesh on the curved plate and the free surface, φB < φ <∞, given by

φj = φj−1 + hj , j = 1, .., N1, (3.32)

and

φ∗
j = φ∗

j−1 + h∗j , j = 1, .., N2, (3.33)

where hj = −φB/N1 is the distance between consecutive mesh points on the free

surface, and h∗j = L/N2 is the distance between consecutive mesh points on the

curved plate. We define N = N1 +N2 to be the total number of mesh points.

It can be seen from the integral part of (3.31) that, for each mesh point, there

would be a singularity in the integrand, to avoid this singularity, it is necessary to

introduce midpoints, at which τ may be calculated, as follows

φI+ 1
2
=
φI−1 + φI

2
I = 1, .., N1, (3.34)

and

φ∗
I+ 1

2
=
φ∗
I−1 + φ∗

I

2
I = 1, .., N2. (3.35)

The integral in (3.31) is approximated by applying the trapezoidal rule, with a

summation over the midpoints φI+ 1
2
to give

τI+ 1
2
= −

N1
∑

j=1

θ(φj)e
−πφjhj

e−πφj − e
−πφ

I+1
2

ωj −
N2
∑

j=1

θ(φ∗
j)e

−πφ∗jh∗j

e−πφ
∗

j − e
−πφ∗

I+1
2

ωj, I = 1.., N, (3.36)

where ωj is the weight of the trapezoidal rule. Next, we evaluate yI = y(φI) at the

midpoints by rewriting (3.15) as

y(φ) = y(0) +

∫ φ

0

e−τ(φ0) sin θ(φ0)dφ0, (3.37)

where y(φ) = y(e−πφ), τ(φ0) = τ(e−πφ0) and θ(φ0) = θ(e−πφ0).
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By applying the trapezoidal rule to (3.37), with y(0) = 1, we obtain

yI = yI−1 + e
−τ

I+1
2 sin θ(φI+ 1

2
)∆, I = 1, .., N. (3.38)

Finally, we calculate θI on the curved plate from (3.13), which is given by

tan(θI)−M(xI ) = 0 for I = 1.., N2. (3.39)

Now, we rewrite equations (3.12), (3.36) and (3.38) as

F 2

2
e
2τ

I+1
2 + yI =

F 2

2
+ 1 + P, I = 1.., N, (3.40)

yI = yI−1 + e
−τ

I+1
2 sin(θI+ 1

2
)∆, I = 1.., N, (3.41)

τI+ 1
2
= −

N1
∑

j=1

θ(φj)e
−πφjhj

e−πφj − e
−πφ

I+1
2

ωj −
N2
∑

j=1

θ(φ∗
j)e

−πφ∗jh∗j

e−πφ
∗

j − e
−πφ∗

I+1
2

ωj, I = 1.., N. (3.42)

By substituting (3.41) and (3.42) into (3.40), evaluated at the midpoints given by

(3.34) and (3.35), a system of N nonlinear equations in N unknowns is obtained,

for θI for I = 1, ..N1 on the free surface and θ∗I for I = N1 + 1..N2 on the curved

plate.

Having derived the system of nonlinear equations (3.40), (3.41) and (3.42)

in terms of θ. we employ Newton’s method to solve this system of equations

(see Hoffman [43], Ellis [93]). Newton’s method is one of the most well known

procedures in numerical analysis. A system of N1 + N2 nonlinear equations with

N1 +N2 unknowns has been derived. Solving this system is describe below.

From equation (3.39) and Bernoulli’s relation (3.40), we have the N coordinate

functions

YI = tan(θI)−M(xI) for I = 1.., N1. (3.43)

and

Y sI =
F 2

2
e
2τ

I+1
2 + yI −

F 2

2
− (1 + P ) for I = N1 + 1.., N2, (3.44)

This system can be rewritten as

Y1(θ1, ..., θN1 , θ
∗
N1+1, ..., θ

∗
N2
) = 0.

Y2(θ1, ..., θN1 , θ
∗
N1+1, ..., θ

∗
N2
) = 0.
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...

YN2(θ1, ..., θN1 , θ
∗
N1+1, ..., θ

∗
N2
) = 0. (3.45)

Newton’s method is an efficient iterative method for estimating solutions to the

system of nonlinear equations.

The technique employed to generate the free surface profile that will be pre-

sented in the next section, after we solved this system to find the unknown θI on

the plate and the free surface.

3.2.4 Free Surface Profiles

In this section the free surface y = 1 + η(x) for x > 0 is parameterised by writing

x = x(φ), y = y(φ) with φ > 0, so that

dx

dφ
+ i

dy

dφ
= e−τ+iθ. (3.46)

By taking the real and imaginary parts of (3.14) to write

∂x

∂φ
= e−τ cos θ and

∂y

∂φ
= e−τ sin θ. (3.47)

Also, the shape of the plate is calculated using (3.47) and (3.13) to give

dy

dx
=
dη

dx
=M(x) for x < 0, (3.48)

where M(x) is described by the shape of the curved plate. Equation (3.46) can be

integrated to obtain the location of the free surface, which we can presented from

the two equation

xI+1 = xI +∆e
−τ

I+1
2 cos θI+ 1

2
, for I = 1...N1 +N2, (3.49)

and

yI+1 = yI +∆e
−τ

I+1
2 sin θI+ 1

2
, for I = 1...N1 +N2. (3.50)
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3.2.5 Results

The nonlinear problem of the free surface flow past a semi-infinite curved plate in a

fluid of finite depth has been solved numerically by using the Conformal mapping

and boundary integral method, for the case of the subcritical flows, F < 1. A

system of nonlinear equation is derived and solved by Newton’s method.

We now investigate the numerical solution for the case in which the shape of

the stern, as described in the third case in Chapter 2, is defined by

M(x) =











0 if x < −L

a[ebx − e−bL] if −L < x < 0

,

where a, b and L are real and positive.

For this stern shape, the solution is characterized by a sinusoidal wave downstream.

The free surface profiles for this family of plate shapes are shown in figures 3.6(a)

and 3.7(a), for F = 0.5 and F = 0.9, for different values of the parameter a =

0, . . . , 0.2 where P = 0.01, b = 1. Figures 3.6(b) and 3.7(b) show the relation

between the amplitude A and the parameter a. We note that, by increasing the

slope of the plate, the wave amplitude decreases up to the local minimum at

a = 0.047 for F = 0.5 and a = 0.042 for F = 0.9. The local minima, a = 0.047

and a = 0.042 minimise the wave amplitude, and thus are optimal.

Furthermore, the free surface profile and the relation between the amplitude A

and the parameter a are shown in figures 3.8-3.11 for different Froude number,

F = 0.4, . . . , 0.8. In addition, the relation between the Froude number F and the

amplitude A is shown in figure 3.13. We note that the amplitude increases with

increasing the Froude number, for a = 0.045, b = 1 and P = 0.01.

For this family of plate shapes the wave amplitude can be minimised, for any given

Froude number, F .

The numerical solutions were computed for N1 = 1100 grid points were used

on the free surface, with the Newton’s method applied until the residual error is

less than 10−9 within four iteration as shown in figure 3.5. The errors occur due to

numerical implementation, via Trapezoidal rule, of the integral in equations (3.42)

and (3.40) as well as the truncation of equation (3.42). The use of Trapezoidal

rule and the application of equation (3.42) at points halfway between mesh points
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allow us to treat the Cauchy Principle Value integral in equation (3.42) as an

ordinary integral. The effect of truncation is not expected to be large, since the

contribution from each half-period of wave train in the far-field is expected to

cancel the next half period; this is particularly the case of small-amplitude waves,

which are sinusoidal in shape. Given the complexity of the system, it is difficult

to quantify the precise size of the numerical errors for a given mesh, also our

quadrature rule offers O(∆φ2) accuracy, where ∆φ is the separation between each

numerical grid point. We note, however, that we have applied the usual test of

doubling the number of gride points until the resulting free surface profiles are

independent of this number within graphical accuracy.

The initial condition chosen to be zero for the case of the flat plate, where

a = 0. By changing the coefficient a slightly, for example, from a = 0 to a = 0.2

with ∆ = 0.01, the plate changed to a curve, Then the previous results from the

flat plate gave such an accurate initial estimate within two iteration to achieve

an accuracy of 10−9. The sensitivity of the starting iteration is due to the initial

condition that we choose as shown in figure 3.5.

The procedure for the steady free surface profile is summarised in the following

algorithm:

Algorithm 1: Steady Free surface flow

INPUT: Mesh points on the plate φj , mesh point on the free surface φ∗

j , number of mesh points

on the plate N1, number of mesh point on the free surface N2, the shape of the plate

M(x), Froude number F , pressure P .

Step 1: Choose the number of data points on the plate and the free surface N = N1 +N2.

Step 2: Calculate the midpoints φj+ 1

2

, φ∗

j+ 1

2

on the plate and free surface given by equation

(3.32) and (3.33) respectively.

Step 3: Solve the system of nonlinear equation, YI , given by equations (3.43) and (3.44), using

Newton’s method with initial condition θ = (0, 0, 0, ..., 0)T and tolerance 10−9.

Step 4: Compute the location of the free surface, xI+1, yI+1, given by equations (3.49) and

(3.50) at the midpoint using the result in step 3.

We investigate the free surface profile for different plate shapes and various

values of the parameter F and P using Algorithm 1. We noticed that the initial

condition has impact on the first iteration. For the case of the flat plate the initial
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condition chosen to be zero on the plate and the free surface, which gives a good

solution and this also had been confirmed by [85]. Moreover, we used the solution

for the flat plate case as an initial condition for the curved plate case and this

provided better solution and convergence within three iteration.

Finally, in this chapter the numerical solution to the nonlinear problem is in-

vestigated, and we note that the wave amplitude can be minimised for this family

of stern shapes. In the next chapter, the comparison between the nonlinear, lin-

ear and weakly nonlinear solutions for different families of plate shapes will be

investigated.
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Figure 3.5: This figure show the relation between the iteration and the error.



Numerical Solution to Fully Nonlinear Steady Problem 70

−1 0 1 2 3 4 5
0.95

1

1.05

1.1

x

y

 

 

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

a

A

(a) (b)

Figure 3.6: The free surface profile for F = 0.5, P = 0.01, b = 1, using N = 1100,

for a = 0, . . . , 0.2, is shown in figure (a). The dependence of the wave amplitude A and the

parameter a is shown in figure (b).
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Figure 3.7: The free surface profile for F = 0.9, P = 0.01, b = 1, using N = 1100,

for a = 0, . . . , 0.2, is shown in figure (a). The dependence of the wave amplitude A and the

parameter a is shown in figure (b).
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Figure 3.8: Figure (a) shows the numerical solution for F = 0.8, P = 0.01, b = 1, a =

0, . . . , 0.2. The relation between the amplitude A and the parameter a at the Froude number

F = 0.8 is shown in figure (b).
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Figure 3.9: Figure (a) shows the numerical solution for F = 0.7, P = 0.01, b = 1, a =

0, . . . , 0.2. The relation between the amplitude A and the parameter a at the Froude number

F = 0.7 is shown in figure (b).



Numerical Solution to Fully Nonlinear Steady Problem 72

0 2 4 6 8 10
0.95

1

1.05

1.1

x

y

 

 

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

a

A

(a) (b)

Figure 3.10: Figure (a) shows the numerical solution for F = 0.6, P = 0.01, b = 1,

a = 0, . . . , 0.2. The relation between the amplitude A and the parameter a at the Froude number

F = 0.6 is shown in figure (b).
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Figure 3.11: Figure (a) shows the numerical solution for F = 0.4, P = 0.01, b = 1,

a = 0, . . . , 0.14. The relation between the amplitude A and the parameter a at the Froude

number F = 0.4 is shown in figure (b).
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Figure 3.12: This figure shows the relation between the amplitude A and the parameter a

for various Froude numbers F = 0.3, . . . , 0.9, for P = 0.01 and b = 1.
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Figure 3.13: This figure shows the relation between the amplitude A and the Froude number

F , for a = 0.045, P = 0.01 and b = 1.



Chapter 4

Weakly Non-linear Theory

4.1 Introduction

The problem of free surface flow past a semi-infinite curved plate in a fluid of

finite depth has been solved analytically by using the the Wiener–Hopf technique

in Chapter 2 and numerically by using the boundary integral technique for the

case of the subcritical solution F < 1, in Chapters 3. In this chapter, the weakly

nonlinear solution will be presented describing the flow of the free surface using

the Korteweg–de Vries equation (KdV). This problem depends on two parameters,

namely the Froude number, F, and the applied pressure P, as defined in (5.16).

We will present a comparison between the analytical, numerical and weakly non-

linear solutions for different stern shapes, and examine the effect of the stern shape

to minimise or even eliminate the wave amplitude, and hence minimise the wave

drag. The results will also be compared with those in the literature.

We consider two kinds of plate shapes, namely, flat and curved plates. For the

curved stern, we will consider three variation of stern shapes; the one treated by

Binder [11], the third case in Chapter 2, Section 2.4, and a new stern shape, to be

introduced in Section 4.5.2.

74
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4.2 Weakly Nonlinear Theory

The Korteweg–de Vries equation (KdV) has been derived to model the flow past

an obstacle. This theory is valid in the weakly–nonlinear, long–wave limit and has

been investigated and applied successfully by many authors including Shen [88],

Binder and Vanden-Broeck [6], Binder et al. [8] and Binder [11]. For the regime

F ∼ 1 and P ≪ 1, the steady free surface is governed by the Korteweg–de Vries

equation (KdV)
d3η

dx3
+ 3[2(1− F ) + 3η]

dη

dx
= 0. (4.1)

Integrating once gives

d2η

dx2
+

9

2
η2 + 6(1− F )η = 3P. (4.2)

Multiplying by dη/dx and integrating again, we obtain

(

dη

dx

)2

+ 6(1− F )η2 + 3η3 − 6Pη = C, (4.3)

where C is a constant of integration that is found by evaluating equation (4.3)

at x = 0. The solution of equation (4.3) can be constructed in the phase plane,

as described in Binder [11]. However, we note that equation (4.3) has an exact

solution, as will be shown below.

The solution to (4.3) will be a wavetrain with amplitude A and wavelength λ.

Let the value of η at the trough be given by ηT , and the value of η at the crest

be given by ηC = ηT + 2A. These two points on the wavetrain are characterised

by zero slope, and from (4.3) we see that ηT and ηC are both positive roots of the

equation

6(1− F )η2 + 3η3 − 6Pη = C. (4.4)

The other real root ηN of this equation is negative. Denoting the three roots of

(4.4) as ηN , ηT and ηC , we have

1

3

(

dη

dx

)2

= (η − ηT )(ηC − η)(η − ηN).

Performing the change of variable

ηC − η = (ηC − ηT )q
2, (4.5)
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we obtain
4

3

(

dq

dx

)2

= (1− q2)(ηC − ηN − (ηC − ηT )q
2).

This equation is separable, and can be written as

dq
√

(1− q2)(1− (ηC − ηT )q2/(ηC − ηN ))
=

√

3(ηC − ηT )

2
dx.

Integrating this equation, we find that

q = sn

(

√

3(ηC − ηN)

2
x+K,

ηC − ηT
ηC − ηN

)

, (4.6)

where sn(z,m) is a Jacobian elliptic function [67], and the constant, K, which fixes

the initial condition is given by

K =

∫

√

ηC−η(0)

ηC−ηT

0

dq
√

(1− q2)(1− (ηC − ηT )q2/(ηC − ηN ))
.

Substituting equation (4.5) into equation (4.6), we obtain

η = ηT + (ηC − ηT )cn
2

(

√

3(ηC − ηN)

2
x+K,

ηC − ηT
ηC − ηN

)

,

where cn is another Jacobian elliptic function [67], with the property cn(z, ℓ) ∼
cos z as ℓ → 0+. The amplitude of the wavetrain is simply found by solving the

cubic equation (4.4) numerically to give

A =
1

2
(ηC − ηT ). (4.7)

We note that this solution for the free surface depends on the values of η and

dη/dx at the single point x = 0, as well as the values of the parameter F and P ,

and does not explicitly depend on the full shape of the plate for x ≤ 0; that is, the

weakly nonlinear theory is only affected by the slope and location of the plate at

the point at which the free surface detaches.

Let M(x) = dη/dx denote the slope of the curved plate. We consider two cases,

namely flow past a flat plate and flow past a curved plate.

For the first case, M(x) = 0, the constant of integration, C, is obtained by substi-

tuting dη/dx = 0 in (4.3) to give

η =
2

3
(F − 1) +

√

4

9
(F − 1)2 +

2

3
P,
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at the center point.

For the curved plate, we consider three families of plate shapes, the first of which

is defined by

M(x) =











0 if −∞ < x < −L
Pa[ebx−e−bL]

1−F 2 if −L < x < 0

,

where a, b and L are real and positive, with η(x) given by

η(x) =
Pa

1− F 2

[

ebx

b
− xe−bL

]

+ C, (4.8)

where C is a constant, obtained by substituting η = 0 at x = −L at the center

point in (4.8) to give

C = − Pa

1 − F 2

[

e−bL

b
+ Le−bL

]

.

Substituting this into equation (4.8), we have

η(x) =
Pa

1− F 2

[

ebx

b
− xe−bL − e−bL

b
− Le−bL

]

. (4.9)

The second stern shape, considered by Binder [11], is given by

M(x) =











0 if −∞ < x < −π

−α
2
sin(x) if −π < x < 0

,

for which η(x) is given by

η(x) =
1

2
α(1 + cos(x)). (4.10)

Generalising the stern shapes considered by Binder to

M(x) =















0 if −∞ < x < −π

−1
2
α sin(x) + β

[

cos(x) + cos(2x)

]

if −π < x < 0
,

noting that for β > 0 the stern has a distinctive downward angle at the detachment

point, we find that η(x) is given as

η(x) =
1

2
α(1 + cos(x)) + β

[

sin(x) + 2 sin(2x)

]

. (4.11)
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4.3 Results for the Flat Plate Case

We begin the comparison between linear, nonlinear and weakly nonlinear solutions

by considering a special case of the flat plate when the value of the parameter

a = 0 or α = 0. The solutions are characterised by a train of sinusoidal waves

downstream as noted for the linear problem in Chapter 2.

In figures 4.1 and 4.2 the comparison between the analytic, numerical and

weakly nonlinear solutions is exhibited for Froude numbers F = 0.5, and F = 0.9,

respectively. In figure 4.1(a), (b), (c) and (d), the free surface profiles are shown

when the shape of the stern is flat for F = 0.9 and P = 0.1, 0.01, 0.001 and 0.0001,

respectively. The numerical solution is depicted as the red solid-line, the analytic

solution is depicted by the black dashed-line and the weakly nonlinear solution

is depicted by the blue dot dashed-line. For these values of the parameters, the

comparison between the analytic and the weakly nonlinear solution for a high

value of P , is not good, as shown in figure 4.1(a), at P = 0.1. However, for much

smaller values of P, the solution for the free surface profile is good as shown in

figure 4.1(d), at P = 0.0001. The numerical solution can be seen to be in excellent

agreement, for the small value of P = 0.0001, with the analytic solution and in

good agreement with the weakly nonlinear solution, as shown in figure 4.1(d). The

numerical solution in these figures was computed with N1 = 1000 grid points on

the free surface.

Figure 4.2(a), (b), (c) and (d) show the free surface profile for the three solution

methods, for F = 0.5 and P = 0.1, 0.01, 0.001 and 0.0001, respectively. We note

that the analytic solution and the weakly nonlinear solution do not agree for F =

0.5, although the weakly nonlinear solution gives a good approximation for F = 0.9

and P = 0.01 as shown in Binder ([11], 2010). Also the numerical solution for

P = 0.1, F = 0.5 doesn’t converge, as shown in figure 4.2(a). However, decreasing

the values to P = 0.01, 0.001, and 0.0001, the analytic and the numerical solution

are in excellent agreement as shown in figure 4.2(b), and (d).

We conclude that an agreement for the three solutions for Froude number F ∼ 1

at a small value of P . And an excellent agreement between the analytic solution

and numerical solution for F = 0.5 and small values of P.
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In addition, the validity of the numerical solution is shown for different Froude

numbers at the highest value of P in figure 4.3. The highest value of P that the

numerical solution allows is at P = 0.05 and P = 0.3 for F = 0.5 and F = 0.9,

respectively. In these figures, as the plate is moved further from the undisturbed

level, y = 1, the amplitude increases while the wavelength decreases, and the waves

develop sharp crests and broad troughs. Beyond this, the numerical solution does

not converge.

The relation between the amplitude, A, and the Froude Number, F, for a fixed

value of P is shown in figure 4.4 for P = 0.01, where it can be seen that increasing

the Froude number, increases the amplitude.

The free surface profiles in figure 4.5 show the comparison between the analytic

solution and the numerical solution at the same scale as that presented by McCue

and Forbes [82], for F = (1−ǫ)F̃ , where F̃ = 0.5, ǫ = 0.001 and 0.058, respectively.

These figures confirm the accuracy of the numerical solution for the case of the

flat plate.

Figure 4.6, shows the nonlinear profile and the phase trajectories presented by

Binder [11] for the case of a flat plate, for F = F̂ = 0.9 and P = 0.01. Figure

4.7 shows the weakly nonlinear profile and the phase trajectories for the flat plate

case. For F = 0.9 and P = 0.01, this figures is presented by Binder ([11], 2010).

The phase planes in figure 4.6(b) and 4.7(b) can be described as follows; we start

at the origin in the phase plane, which represents the flat plate, and then move

along the circle to describe the waves on the free surface.

We conclude the analytical, numerical and weakly nonlinear solutions are in excel-

lent agreement for the free surface flow past a flat plate for F ∼ 1, with a small

value of P = 0.001, producing waves with amplitude A ∼ 0.00105.

In the next section, we will consider the case when the stern of the ship is

curved, as treated by Binder [11]. Binder presented the numerical and weakly

nonlinear solution. Here we will compare our linear solution with the other two

solutions.
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Figure 4.1: Figures of the free surface, comparing the numerical (solid-lines), analytical

(dashed-lines), and weakly nonlinear (dot dashed-lines) solutions for the case of the flat plate,

with Froude number F = 0.9, and ǫ = P/(1− F 2) at (a) P = 0.1, at (b) P = 0.01, (c) P = 0.001,

and (d) P = 0.0001.
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Figure 4.2: Figures of the free surface, comparing the numerical (solid-lines), analytical

(dashed-lines), and weakly nonlinear (dot dashed-lines) solutions for the case of the flat plate,

with Froude number F = 0.5, and ǫ = P/(1− F 2) at (a) P = 0.1, at (b) P = 0.01, (c) P = 0.001,

and (d) P = 0.0001. Note that, in (a), the numerical solution does not converge, and thus is not

shown.
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Figure 4.3: Figures (a) and (b) show the comparison between the numerical solution (solid-

line), analytical solution (dashed-line), for the highest value of P that the numerical solution

allows. The Froude number F = 0.5 (figure (a)) and = F = 0.9 (figure (b)), at P = 0.05, 0.3

respectively.
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Figure 4.4: Figures (a) and (b) show the relation between the amplitude A and the Froude

number F for the case of the flat plate at P = 0.01, for the analytical (dashed-line), numerical

(red dots), and weakly nonlinear solutions (blue dot), for different scale.

4.4 Geometry Treated By Binder (2010)

In 2010, Binder ([11]) investigated the numerical and the weakly nonlinear solutions

of the free surface flow past a curved plate. The slope of the stern was given by

M(x) =











0 if −∞ < x < −π

−α
2
sin(x) if −π < x < 0.

Binder presented the free surface profiles for the numerical and the weakly nonlin-

ear solutions for F = 0.9 and P = 0.01, for different values of α. In this section,

we revisit the stern shapes considered by Binder. For each value of the parameter,

α, the shape of the stern is characterised having a zero slope at the point at which

the free surface detaches. Using the weakly nonlinear theory of Section 4.2, Binder

showed that by carefully choosing the value of α, a trajectory representing the

plate in phase space will terminate at the ‘center’, so that the two positive roots

of (4.4) coalesce, and the amplitude of the waves given by equation (4.7) vanish

completely. As a comparison, Binder also included a numerical solution to the fully
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Figure 4.5: Figures (a) and (b) show the comparison between the numerical solution (dashed-

line), analytical solutions in the solid-line for the case of the flat plate. The Froude number

F̃ = 0.5 and ǫ = 0.001, 0.058 respectively, where F = (1− ǫ)F̃ . These figures are as presented by

McCue and Forbes in 2002. In figure (c) and (d) shows the comparison between analytical and

numerical solutions for F = 0.5 and P = 0.001, 0.058 respectively.
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Figure 4.6: The nonlinear profile for the case of the flat plate is shown in figure (a) and the

phase trajectories in figure (b), at the Froude number F = 0.9 and P = 0.01.
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Figure 4.7: The weakly nonlinear profile for the case of the flat plate are shown in figure (a)

and the phase trajectories in figure (b), at the Froude number F = 0.9 and P = 0.01.
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nonlinear problem and we include here the analytic solution to the linear problem

for different values of Froude number F and α.

In figure 4.8, the relation between the amplitude A and the parameter α for

the fully nonlinear, linear and weakly nonlinear solutions at F = 0.9 and P = 0.01

are investigated. In the weakly nonlinear solution the amplitude goes to zero at

α = 0.0378, which is the value predicted by Binder [11]. However, the curve corre-

sponding to the numerical solution of the fully nonlinear problem appears to have

a nonzero local minimum, at α = 0.0427, although the resulting amplitude is very

small, A = 0.0002. We note that the linear solution in figure 4.8 does not agree

particulary well with the numerical solution, because while P/(1− F 2) is reason-

ably small for these solutions (a requirement for the linear theory to be valid),

F = 0.9 is a large Froude number, and the linear theory breaks down as F → 1−.

To illustrate the size of the minimum wave amplitude noted above, the fully

nonlinear free surface profile for α = 0.0427, as well as for α = 0.019 and 0.0655

are presented in figure 4.9. In figure 4.9(a), the free surface profile is displayed

on a scale that includes the flat bottom of the channel, while figure 4.9(b) shows

the result more clearly. We see that the profiles for α = 0.019 and 0.0655 have

roughly the same amplitude, A = 0.023, yet are out of phase, while the profile for

α = 0.0427 has an amplitude that is so small (A = 0.0002) that the waves do not

appear visible on the scale of figure 4.9(a).

In figure 4.10, the free surface profile and the phase plane for the weakly nonlinear

solution for F = 0.9 and P = 0.01 with α = 0.057, 0.019 and 0.038 are shown. The

phase plane is described as follows: we start at the origin in the phase plane, which

represents the the horizontal flat bottom of the plate and then move along the black

curved part at the separation point between the curved plate and the free surface,

until we reach the periodic wave orbit representing the waves for figures 4.10(b)

and (d). However in figure 4.10(f), we move along the black curve part at the

separation point between the curved plate and the free surface (x, η) = (0, 0.05),

(η, ηx) = (0.05, 0) in the phase plane and by moving along the flat free surface, we

arrive at the same point (η, ηx) = (0.05, 0) in the phase plane, which represents no
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waves.

To explore the issue of eliminating waves further, we show the relationship

between wave amplitude and α for Froude number F = 0.5, P = 0.01 in figure

4.11. We note that the wave amplitude in the linear and nonlinear solution at α =

0.0134 and 0.0136 (the local minimum) respectively, is very small, A = 1.9220 ×
10−4, 2.6417×10−4, as shown in figure 4.12 and 4.13, respectively. Also, for F = 0.5

and P = 0.04, the relation between wave amplitude and α is shown in figure 4.14

(a) and (b) at different scales. This parameter set is chosen such that 1 − F is

not small, but the value of P/(1 − F 2) is roughly the same as in figures 4.8 and

4.9. Again, we note that for the weakly nonlinear theory, the wave amplitude

reduces to zero for some α, yet the fully nonlinear solutions have a very small but

nonzero minimum amplitude, with the minimum amplitude again of the order of

A = 0.0002. In figure 4.15 we show the relation between the amplitude A and

the Froude number F at P = 0.01 and α = 0.0427, which exhibit a decrease in

amplitude with increasing Froude number.

From this, we may conclude that for the one-parameter family of stern shapes

considered by Binder [11], the weakly nonlinear theory predicts that the wave

amplitude will vanish for a single member (corresponding to a single value of the

parameter α) in the limit F → 1− and P/(1−F 2) → 0. However, strictly speaking,

for 1−F and P/(1−F 2) finite, the downstream waves can be minimised, but not

entirely eliminated. The weakly nonlinear theory of Binder [11] does, however,

provide a relatively simple and elegant way to predict what shape of stern will

generate small or large downstream waves.
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Figure 4.8: The dependence of the wave amplitude A on the parameter α for F = 0.9,

P = 0.01. The red solid curve, black dashed curve and blue dot-dashed curve correspond to the

fully nonlinear, linear and weakly nonlinear solution, respectively. In (a) the scale is such that

the nonlinear amplitude appears to vanish at a value of α, but the scale in (b) suggests there is

in fact a local minimum for which A is finite but small.
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Figure 4.9: The nonlinear free surface profiles drawn for different scales, with F = 0.9,

P = 0.01 at α = 0.019(red), 0.0655(red), 0.0427(blue) respectively.
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Figure 4.10: The weakly nonlinear profiles are shown in figure (a), (c) and (e), and phase

trajectories are shown in figure (b), (d) and (f), with the Froude number F = 0.9 and P = 0.01 at

α = 0.057, 0.019, and 0.038, respectively. These figures are the same as figures drawn by Binder

([11], 2010).
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Figure 4.11: This figure shows the relation between the amplitude A and the parameter α

for Froude number F = 0.5 and P = 0.01. The red solid curve and black dashed curve correspond

to the fully nonlinear and linear solution, respectively.
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Figure 4.12: Figures (a) and (b) show the free surface profile for the numerical solution at

the Froude number F = 0.5, P = 0.01 and α = 0.0134(local minimum), for a different scale with

amplitude A = 1.9220× 10−4.
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Figure 4.13: Figures (a) and (b) show the free surface profile for the analytical solution at

the Froude number F = 0.5, P = 0.01 and α = 0.0136(local minimum), for a different scale with

amplitude A = 2.6417× 10−4
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Figure 4.14: The dependence of the wave amplitude A on the parameter α for F = 0.5,

P = 0.04. The red solid curve, black dashed curve and blue dot-dashed curved correspond to the

fully nonlinear, linear and weakly nonlinear solutions, respectively.
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Figure 4.15: The relation between the amplitude A and the Froude number F at α = 0.0427,

P = 0.01 are shown in this figure. The red solid curve, black solid curve and blue dot-dashed

curved correspond to the fully nonlinear, linear and weakly nonlinear solution, respectively.
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4.5 Results for a Family Of Curved Plates

We now examine the effect that two new families of plate shapes have on the

minimisation, or elimination, of the downstream waves.

4.5.1 Upward Pointing Sterns

This family of plate shapes is given by

M(x) =











0 if −∞ < x < −L
Pa[ebx−e−bL]

1−F 2 if −L < x < 0

,

where a, b, L are real and positive.

This stern shape has the property that the slope M(x) = dη/dx is continuous for

all x < 0. This shape is chosen to illustrate the behaviour of the solutions for

plate shapes whose slopes are monotonically increasing in x. The actual form of

this stern shape is not particularly important; however, the advantage of using the

exponential in this stern shape is that it has a straightforward Fourier transform.

For our calculations, we fix b = 1 and L = 1, and observe the effect of varying the

single parameter, a, for a fixed pressure, P, and Froude number, F ; investigation

suggests that the results for other values of b and L are qualitatively similar.

Figure 4.16(a) shows free surface profiles for F = 0.5 and P = 0.01 calculated

using the linear solution, equation (2.30). Note that, because the linear solution

is derived using P/(1− F 2) as the small parameter, linearised free surface profiles

for other values of P/(1−F 2) (with the remaining parameter values fixed) are the

same shape, only stretched in the y-direction. In figure 4.16(a), the special value

a = 0 corresponds to the case of a flat plate considered in McCue and Stump[85].

Note that increasing a from a = 0 increases the slope of the plate. We see that, for

increasing a, the amplitude of the waves first decreases then increases, suggesting

that there is a minimum value of the wave amplitude for a finite value of a > 0.

This dependence is made more explicit in figure 4.17, where the dashed curve is

the amplitude A from equation (2.33) plotted against a for these parameter values.

A local minimum is found at approximately a = 3.725.
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Figure 4.16(b) shows nonlinear free surface profiles computed using the nu-

merical scheme in Section 3.2.3(Chapter 3), while the solid curve in figure 4.17

provides the dependence of the wave amplitude on the parameter a using the same

numerical scheme. The linear and nonlinear curves in figure 4.17 are not in exact

agreement, which is expected, as the linear approximation ignores terms that are

O (P 2/(1− F 2)2). However, there is general qualitative agreement, with the nu-

merical solution to the fully nonlinear problem giving a local minimum in the wave

amplitude of approximately a = 3.15. The free surface profiles in figure 4.16(b)

are plotted for the equally spaced values of a between a = 0, . . . , 3.9, showing that,

as the parameter a passes through a = 3.15, the phase of the waves changes but

the amplitude does not vanish.

Also included in figure 4.17 is a plot of the wave amplitude A versus the parameter

a, computed using the weakly nonlinear theory of Section 4.2. As expected, this

curve does not agree very well with the other two at all, as the weakly nonlinear

theory applies when 1− F ≪ 1, while this figure is for F = 0.5.

The free surface profiles shown in figures 4.18 (a) and (c) are for F = 0.5, P = 0.01,

b = 1, L = 1 and the local minimum, a = 1 and 3.15, respectively. The phase

trajectories are shown in figures 4.18 (b) and (d) for the weakly nonlinear solution.

We note that, as the Froude number decreases the wave amplitude also decreases

for a = 3.3, b = 1, L = 1 and P = 0.01, as shown in figure 4.19.

Figure 4.20 shows the relation between the amplitude A and the parameter a

for F = 0.9 and P = 0.01. For these values of the parameter, the linear solution

does not agree well with the other two solutions, as the linear solution breaks

down as F → 1. The free surface profile for the linear, nonlinear and the weakly

nonlinear solutions at the local minimum, a = 0.7, 0.45 and 0.4, are shown in

figure 4.21 (a), (c) and (e), respectively. In addition, the phase trajectories are

shown in figure 4.21 (b), (d) and (f) for the weakly nonlinear solution, which is

described as follows. We begin at the origin of the phase plane, which represents

the horizontal flat bottom of the plate, and then move along the black curved

part, at the separation point between the curved plate and the free surface, until

we reach the periodic wave orbit.

We conclude, for this family of plate shapes, the wave amplitude from the linear,
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Figure 4.16: Free surface profiles drawn for F = 0.5, P = 0.01, b = 1 and L = 1. (a) Linear

solutions with a = 0 (solid black), 1.5 (green dashed), 3 (red dot-dashed) and 4.5 (blue dot). (b)

Nonlinear solutions for a = 0, . . . , 3.9.

nonlinear and weakly nonlinear solutions can be minimised.

4.5.2 Downward Pointing Sterns

We now consider a plate shape described by

M(x) =















0 if −∞ < x < −π

−1
2
α sin(x) + β

[

cos(x) + cos(2x)

]

if −π < x < 0
,

where α and β are real numbers.

In this family of stern shapes, we generalise the stern shapes treated by Binder

in Section 4.4, noting that, for β > 0, the stern has a distinctive downward-angle at

the detachment point. As with both families of stern shapes that were presented

by Binder in Section 4.4 and the shape in Section 4.5.1, we have specified this

shape such that the slope is continuous for all x. Further, this form of stern shape

is easily amenable to Fourier transform, allowing us to apply the linear theory

(2.30).

In figure 4.22 we show plots of amplitude versus β for the same parameter

values as in figure 4.8. This figure shows that, as β is increased from β = 0, the
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Figure 4.17: The dependence of the wave amplitude A on the parameter a for F = 0.5 and

P = 0.01. The red solid curve, black solid curve and blue dot-dashed curved correspond to the

fully nonlinear, linear and weakly nonlinear solutions, respectively.

wave amplitude decreases until a minimum is reached. In particular, for the values

α = 0.0427 and β = 0 the amplitude is A = 0.00019, but the local minimum is

A = 0.00001, which occurs for roughly β = 0.001. Thus, by allowing the stern

to have a very slightly downward pointing shape at the detachment point, we are

able to reduce the initially small wave amplitude for the shape in Section 4.4 by

an order of magnitude.

Figure 4.23 shows the dependence of amplitude on β for F = 0.5, P = 0.04 and

α = 0.0527. These parameter values correspond to the local minimum amplitude

in the fully nonlinear case in figure 4.14. Again, increasing β from β = 0 introduces

a slightly downward pointing stern shape at the detachment point, and we see that,

for the value β = 0.0004, the amplitude is minimised to be A = 0.00005, which

is considerably smaller in this context. Indeed, the free surface profile for this set

of parameters is illustrated in figure 4.24, showing that, effectively, the wavetrain

has been eliminated entirely. Also for the linear case as shown in figure 4.25(b) for

F = 0.5, P = 0.01, α = 0.00135 and β = 0.004, the minimum amplitude is very
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Figure 4.18: This figure shows the comparison between the analytic, numerical and the

weakly nonlinear solution. The free surface profile are shown in figures (a) and (c) and phase

trajectories are shown in figure (b) and (d) with the Froude number F = 0.5 and P = 0.01 at

a = 1, 3.15 respectively.
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Figure 4.19: The dependence of the wave amplitude A on the Froude number F for a = 3.15,

b = 1, L = 1 and P = 0.01.
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Figure 4.20: The dependence of the wave amplitude A on the parameter a for F = 0.9 and

P = 0.01. The red solid curve, black solid curve and blue dot-dashed curve correspond to the

fully nonlinear, linear and weakly nonlinear solutions, respectively.
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Figure 4.21: This figure shows the comparison between the analytic, numerical and the

weakly nonlinear solution. The free surface profile are shown in figures (a), (c) and (e) and phase

trajectories are shown in figure (b), (d) and (f), with the Froude number F = 0.9 and P = 0.01

at a = 0.7, 0.45, and 0.4 respectively.
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Figure 4.22: The dependence of the wave amplitude A on the parameter β for the nonlinear

solution for F = 0.9, P = 0.01, for the values α = 0.03, 0.04, 0.0427 and 0.05.

small (approximately A = 0.000076425) which is also considerably small in the

context. To illustrate the minimum wave amplitude, the linear and nonlinear free

surface profiles for α = 0.00135 and β = 0.004 are presented in figure 4.26 (a) and

(b) at different scales, with amplitude A = 1.13651× 10−4 and A = 7.6425× 10−5,

respectively.
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Figure 4.23: The dependence of the wave amplitude A on the parameter β for F = 0.5,

P = 0.04 and α = 0.0527. The red solid curve and black dashed curve correspond to the fully

nonlinear and linear solution, respectively.
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Figure 4.24: Nonlinear free surface profiles drawn for F = 0.5, P = 0.04 and α = 0.0527

with β = −0.005, 0.0004 and 0.005 with amplitude A = 0.0029, 0.00005 and 0.0029, respectively.
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Figure 4.25: The dependence of the wave amplitude A on the parameter β for F = 0.5,

P = 0.01 and different values of α, α = −0.008, −0.002, 0, 0.002, 0.00135. (a) nonlinear solution,

(b) linear solution.
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Figure 4.26: Figure (a) and (b), show the free surface profile for different scale, for the

analytical and numerical solution. The Froude number F = 0.5, P = 0.01, α = 0.00135 with the

local minimum β = 0.004.
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Now, we will summaries the three main results of this Chapter. First, the

linear free surface flow problem has mixed boundary conditions, and is therefore

much more difficult to solve than the well-studied problems of flow over a bottom

topography, or flow due to a pressure distribution, for example. Even taking into

account the normal issues arising from applying the Wiener–Hopf technique, a

challenging feature of the present problem is that for plate shapes that have slopes

with compact support (dη/dx = 0 for x < −L with L > 0), we are unable to close

the contour of integration in the more natural upper half-plane, and instead have

to deal with the significant algebra that accompanies closing the contour in the

lower half-plane (note that this aspect was not present in the flat plate problem

considered by McCue and Stump [85], since the function J(k) was identically zero

in that case). Furthermore, an additional subtlety associated with the present

problem is that the term J+(k) provides the leading order behaviour in (2.42) for

large k, being O(k−1) in the limit k → ∞, with the other term P+(k)m̂+(k) =

O(k−3/2). On the other hand, for the case of the flat plate, the scalings change

completely, as the function J+(k) vanishes, and the term P+(k)m̂+(k) transitions

to being O(k−2).

Second, the weakly nonlinear analysis of Section 4.2 (and applied in other free

surface flow problems in [8, 9, 10, 11]) is relatively simple to apply, and gives very

good approximate solutions to the full nonlinear problem provided 1−F ≪ 1 and

P ≪ 1. As shown by Binder [11], the theory can be used to predict plate shapes

that are candidates for eliminating the downstream waves on the free surface.

Upon closer inspection, we find that for these plate shapes, numerical solutions

to the full nonlinear equations do in fact exhibit waves, although with such small

amplitudes that the waves are unable to be detected on a scale that includes the

channel bottom.

Third, by taking these solutions with very small wave amplitudes, we have been

able to reduce the amplitude even further by adjusting the geometry of the plate so

that it points slightly downwards at the point of detachment (as suggested for the

infinite depth problem by Schmidt [30], Madurasinghe and Tuck [66] and Farrow

and Tuck [13]). Indeed, given the inevitable numerical error associated with our

numerical scheme, for these solution we may even claim that the waves are entirely
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eliminated.

Much attention has been devoted to the question of whether or not we can

adjust the shape of the semi-infinite plate to eliminate the waves that appear on

the downstream free surface. For practical purposes, this motivation is linked to the

well-known idea that there is energy associated with wave drag behind ships, and

it is desirable to design stern shapes that minimise this energy loss by minimising

the wave amplitude. For free surface flow problems in two dimensions, there is also

the mathematical interest in discovering particular subcritical solutions that are

non-generic in the sense that they exhibit free surfaces that are flat far downstream,

remembering that the general outcome for that parameter regime is to have a train

of period waves on the surface in the limit. Furthermore, for configurations that

completely eliminate the waves downstream, the flow direction can be reversed

(since the radiation condition would no longer apply), resulting in a bow flow

solution. In this case, a single (isolated) bow flow solution may also be a member

of a completely different family of solutions, such as those with a splash near the

bow, for example.

For the linearised problem of free surface flow past a semi-infinite curved plate

in a fluid of finite depth, we have derived a (rather complicated) formula (2.33)

for the wave amplitude that depends on the shape of the plate as well as the

Froude number F . For the families of plate shapes treated in this chapter, the

amplitude was not eliminated, but this does not preclude the possibility of setting

up more general families of plate shapes, and using optimisation to eliminate the

downstream waves. For the corresponding linear problem in infinite depth, such

an approach is suggested by Zhu and Zhang [87], and even undertaken by Schmidt

[30]. Unfortunately, as Schmidt [30] does not show the corresponding free surface

profiles, it is not clear whether his scheme actually worked.

Regardless of the results of any such linear approach, our experience in the

present study is that care must be given to any prediction from an approximate

linear or weakly nonlinear theory, as it may be that these theories predict solutions

without waves, when the fully nonlinear problems do in fact exhibit waves, albeit

with a very small amplitude. Indeed, even with numerical solutions to the fully

nonlinear equations, it may appear that waves are completely eliminated (as for
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the infinite depth problem studied by Madurasinghe and Tuck [66] and Farrow

and Tuck [13]), when in fact they are just too small to detect using the numerical

resolution available.

In this Chapter, the problem of the free surface flow past a curved plate for

three families of plate shapes was investigated analytically, numerically and using

the weakly nonlinear approximation. Comparison with results in the literature

reported and the results for the new stern shape showed good agreement for the

three solutions. The wave amplitude was eliminated for plate shapes that has a

downward point at the detachment with the free surface for the nonlinear and

weakly nonlinear solutions.

In the next chapter, the unsteady free surface flow past a semi-infinite flat plate

in a fluid of finite depth will be investigated.



Chapter 5

Linearised Unsteady Flow Problem

5.1 Introduction

In the previous chapters, steady two-dimensional free surface flow past a semi-

infinite curved plate in a fluid of finite depth was investigated analytically, numer-

ically and using the weakly nonlinear approximation. In this chapter a transient

free surface flow past a two-dimensional semi-infinite flat plate in a fluid of finite

depth is investigated analytically using Laplace transform and the Wiener–Hopf

technique. The linearised problem is solved under the assumption that the plate

is submerged into the fluid at a small depth d below the free surface at t̃ > 0+.

This unsteady problem has previously been approached analytically by Zhu and

Zhang [87] via the Wiener–Hopf technique, assuming the free surface flow past

a semi-infinite plate in a fluid of infinite depth. Also Haussling [32] treated lin-

ear and nonlinear problems numerically for the ship model with Froude numbers

Fr ≡ V/
√
gd ∈ [1, 4]. (Notice that this definition of the Froude number differs

from the depth-defined Froude number F ≡ V/
√
gh used here, where h is the fluid

depth. The relationship between these two definitions is F = Fr
√

d/h. Therefore

in our notations, the results obtained by Haussling[32] pertain to small Froude

numbers because usually d/h≪ 1.)

107
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(a) (b)

Figure 5.1: Sketch of free surface flow past a semi-infinite flat plate in a fluid of finite depth.

In figure (a), the plate is located at the level of the undisturbed free surface, whereas in figure

(b) the plate is suddenly submerged into the fluid for t̃ > 0+.

5.1.1 Mathematical Formulation

Unsteady two-dimensional free surface flow past a semi infinite plate in a fluid of

finite depth is considered, as shown in figure 5.1(a). We assume that the fluid is

inviscid and incompressible, and that the flow is irrotational. Cartesian coordinates

are introduced so that the x̃−axis lies on the bottom of the plate and the ỹ-axis

is directed vertically upwards. For x̃ < 0, t̃ = 0, the fluid is bounded above by a

semi-infinite flat plate, and for x̃ > 0, t̃ = 0, the upper boundary consists of the

free surface. It is assumed that the flow for x̃ < 0 is that of a uniform stream of

depth H and speed c, as shown in figure 5.1(a).

Now, suppose the plate is depressed into the fluid a distance d below the level

of the undisturbed free surface at t̃ > 0+, as shown in figure 5.1(b). The distance

between the horizontal bottom and the plate is h so that H = h+d. Assuming that

the fluid upstream is uniform with a constant depth h and speed V , the velocity

downstream, by conservation of mass, is V h/(h+ d).

As the flow is irrotational, the x̃ and ỹ components of the velocity field can be
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expressed through the velocity potential Φ:

ũ =
∂Φ

∂x̃
, ṽ =

∂Φ

∂ỹ
, ∀t̃ ≥ 0, (5.1)

Substituting these expressions into the continuity equation, ∇.v = 0, we obtain as

usual the Laplace equation for the velocity potential Φ:

∇2Φ =
∂2Φ

∂x̃2
+
∂2Φ

∂ỹ2
= 0, for −∞ < x̃ <∞, on 0 < ỹ < h+η̃(x̃, t̃), ∀t̃ ≥ 0.

(5.2)

Two boundary conditions are required at the free surface, as the surface position,

η̃, and Φ have to be determined. We obtain one boundary condition by requiring

that the fluid velocity is tangential to the free surface, namely,

∂η̃

∂t̃
+
∂Φ

∂x̃

∂η̃

∂x̃
=
∂Φ

∂ỹ
, for x̃ > 0, on y = h+ η̃(x̃, t̃), ∀t̃ ≥ 0. (5.3)

To obtain the second boundary condition, we apply Bernoulli’s equation along the

free surface,

∂Φ

∂t̃
+
1

2
(ũ2+ṽ2)+gỹ =

1

2
V 2+gh+

P̃

ρ
, for x̃ > 0, on ỹ = h+η̃(x̃, t̃), ∀t̃ ≥ 0,

(5.4)

where ρ is the density, g is the acceleration due to gravity, P̃ = P−∞ − Pa, P−∞

is the constant pressure at x̃ < 0, and Pa is the atmospheric pressure on the free

surface.

At the solid boundaries, namely the flat plate (x̃ < 0) and the bottom of the fluid

(ỹ = 0), the normal component of the fluid velocity must be zero. This gives,

∂Φ

∂ỹ
= 0, for −∞ < x̃ < 0, on ỹ = h, ∀t̃ ≥ 0, (5.5)

∂Φ

∂ỹ
= 0, for −∞ < x̃ <∞, on ỹ = 0, ∀t̃ ≥ 0, (5.6)

with h being constant.

To complete the formulation of the unsteady problem, two initial conditions

are needed. Assuming that the flow is uniform upstream with velocity potential

Φ = V x̃ and downstream with Φ = ( V h
h+d

)x̃ as shown in figure 5.2, we find that the

initial condition for the velocity potential is given by

Φ(x̃, ỹ, t̃) =

[(

V h

h+ d
− V

)

H(x̃) + V

]

x̃, at t̃ = 0, (5.7)
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Figure 5.2: A schematic of the free surface flow past a flat plate with velocity potential

upstream given by Φ = V x̃ and velocity potential downstream given by Φ = ( V h
h+d

)x̃.

where H(x̃) is the Heaviside function.

The initial position of the free surface at y = H can be considered as a perturbation

of a height d << H relative to the level of the plate y = h. Then we obtain the

following initial condition for the free surface, namely,

η̃(x̃, t̃) = dH(x̃) at t̃ = 0. (5.8)

Equations (5.2)–(5.8) form the mixed boundary-value problem with given initial

conditions for the unknown functions, free surface η̃(x̃, ỹ, t̃) and velocity potential

Φ(x̃, ỹ, t̃). To solve this problem, it is convenient firstly to reduce it to the dimen-

sionless form. To this end, let us scale all spatial coordinates by the height h, and

all velocities by the upstream speed V ; that is we let x = x̃/h, y = ỹ/h, η = η̃/h,

v = ṽ/V , u = ũ/V , φ = Φ/V h, t = V t̃/h, and also P = P̃ /ρgh. Then, the Laplace

equation (5.2), as shown in figure 5.3, in the domain

D :



















−∞ < x < 0, 0 < y < 1;

0 ≤ x <∞, 0 < y < 1 + η(x, t)

reads
∂2φ

∂x2
+
∂2φ

∂y2
= 0 for ∀t ≥ 0. (5.9)
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And the boundary conditions (5.3)–(5.4) at the free surface x > 0, y = 1 + η(x, t)

for ∀t ≥ 0 become:
∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂y
; (5.10)

∂φ

∂t
+

1

2
(u2 + v2) +

η

F 2
=

1

2
+

P

F 2
. (5.11)

It is assumed that the thickness of the plate is not zero, but is greater than the

depth of the plate submerging, d (the plate models a submerged platform or a

ship). In this case there is no back flow of fluid into the region above the plate.

The boundary conditions at the rigid plate (5.5) and bottom (5.6) reduce to:

∂φ

∂y
= 0 : −∞ < x < 0, y = 1, ∀t ≥ 0 at the plate, (5.12)

∂φ

∂y
= 0 : −∞ < x <∞, y = 0, ∀t ≥ 0 at the bottom. (5.13)

The initial conditions (5.7)–(5.8) in the dimensionless variables read

φ(x, y, 0) =

[

1− ǫ

1 + ǫ
H(x)

]

x ≈
[

1− ǫH(x)

]

x, (5.14)

η(x, 0) = ǫH(x), (5.15)

where ǫ = d/h ≪ 1 is the small parameter. The other two dimensionless parame-

ters, the Froude number F and the applied pressure P , were introduced as

F =
V√
gh
, P =

P−∞ − Pa
ρgh

. (5.16)

The boundary conditions (5.9)-(5.13) can be reduced to the steady state prob-

lem derived in Chapter 2, if we omit all temporal derivatives letting ∂t = 0.

In the following section we linearise the problem (5.9)–(5.13) and solve it by

means of Laplace transform and Wiener–Hopf technique. The formal solution

can be presented in quadrature in the form of definite integrals. To calculate the

integrals we use numerical approximation of the contour integrals in the complex

plane exploiting the best rational approximation method suggested by Trefethen

et al. [57].
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Figure 5.3: A schematic for the non-dimensional unsteady problem for t > 0+, where ǫ = d/h

is the non-dimensional distance between the height of the plate and the undisturbed free surface.

5.1.2 Linearised Stern Flow Problem

In this section, we linearise the boundary conditions (5.9)-(5.13) under the assump-

tion that P/(1 − F 2) ≪ 1 and solve the resultant linear equations exactly using

the Wiener–Hopf technique.

Note then that without the external pressure exerting on the plate (i.e., when

P = 0) the problem posted above has the trivial unperturbed solution which

represent the uniform stream:

φ = x, η = 0, (5.17)

which is formally valid for all Froude numbers F .

When a small external pressure is applied on the plate, the solution of the

linearised problem (5.9)–(5.13) can be considered as weakly perturbed stationary

solution (5.17):

φ(x, y, t) = x+
P

1− F 2
φ1(x, y, t) +O

(

P 2

(1− F 2)2

)

, (5.18)

η(x, t) =
P

1− F 2
[1 + η1(x, t)] +O

(

P 2

(1− F 2)2

)

. (5.19)

By applying the linearisation (5.18)–(5.19) to equations (5.9)–(5.13), we find the

function φ1(x, y, t) satisfies the Laplace equation in the fluid domain D : −∞ <
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x <∞, 0 < y < 1, ∀t ≥ 0:

∂2φ1

∂x2
+
∂2φ1

∂y2
= 0, (5.20)

and boundary condition at the bottom:

∂φ1

∂y
= 0 : −∞ < x <∞, y = 0, ∀t ≥ 0. (5.21)

The boundary conditions on the free surface and rigid plate in the linear ap-

proximation can be presented as (−∞ < x <∞ and y = 1 for ∀t ≥ 0):

∂φ1

∂y
+ F 2

[

∂2φ1

∂t2
+ 2

∂

∂t

(

∂φ1

∂x

)

− ∂2φ1

∂y2

]

= n(x, t), (5.22)

∂φ1

∂y
= m(x, t), (5.23)

where m(x, t) ≡ 0 at the flat plate, x < 0, and m(x, t) is the unknown function

describing the free surface at x > 0. The function n(x, t) ≡ 0 at the free surface,

x > 0, and n(x, t) ≡ P at x < 0.

The initial conditions (5.14)–(5.15) in the linear approximation become:

φ1(x, y, 0) = −xH(x), (5.24)

η1(x, 0) = −1 +H(x). (5.25)

Finally, given the solution to equations (5.20)–(5.25), the shape of the free

surface can be recovered for x > 0, y = 1 and ∀t ≥ 0 via the equation

η(x, t) =
P

1− F 2

[

1− F 2

(

1 +
∂φ1

∂t
+
∂φ1

∂x

)]

. (5.26)

In the next section, the linearised problem (5.20)–(5.25) is solved using the

Laplace transform method together with the Wiener–Hopf technique.

5.2 Wiener–Hopf technique

5.2.1 Application of the Laplace and Fourier Transforms

The differential system (5.20)-(5.25) is solved using the Wiener–Hopf technique.

Before doing that, we apply the Laplace transform to functions φ1, m and n:

φ̃(x, y, s) =

∫ ∞

0

φ1(x, y, t)e
−stdt, and m̃(x, s) =

∫ ∞

0

m(x, t)e−stdt,

(5.27)
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and

ñ(x, s) =

∫ ∞

0

n(x, t)e−stdt. (5.28)

It is assumed that there is a real number α such that these transforms exist for

Re(s) > α. Application of the Laplace transform to the boundary conditions

(5.20)-(5.21) gives

∇2φ̃ = 0, for −∞ < x <∞, 0 < y < 1, (5.29)

φ̃y = 0, for −∞ < x <∞, y = 0. (5.30)

And Laplace transform of equation (5.22)–(5.23) gives at y = 1 and −∞ < x <∞:

φ̃y + F 2

[

s2φ̃+ 2sφ̃x − φ̃yy + 2xδ(x) + (sx+ 2)H(x)

]

= ñ(x, s), (5.31)

φ̃y = m̃(x, s), (5.32)

where m(x, s) = 0 for x < 0 and n(x, s) = 0 for x > 0, and assume that

m(x, s) = O(eτ+x), n(x, s) = O(eτ+x) as x→ −∞,

where τ+ > 0 is left unspecified.

Next, we define the Fourier transform of φ̃ with respect to x in (5.27) as

ˆ̃φ(k, y, s) =

∫ ∞

−∞
φ̃(x, y, s)eikxdx. (5.33)

This Fourier transform does not converge for real values of k, but instead must

hold in the infinitely long strip 0 < Im(k) < τ+ that can be detected by the far

field behaviour of the function φ̃(x, y, s).

By applying the Fourier transform to (5.29) yields

d2
ˆ̃
φ

dy2
(k, y, s)− k2 ˆ̃φ(k, y, s) = 0, (5.34)

which has general solution

ˆ̃
φ(k, y, s) = A(k, s) cosh ky +B(k, s) sinh ky. (5.35)

The Fourier transform of the boundary condition (5.30) is

∂
ˆ̃
φ

dy
= 0, at y = 0, (5.36)
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which, by substituting (5.36) into (5.35) at y = 0, determines that the function

B(k, s) = 0, therefore solution to (5.35) reduce to

ˆ̃
φ(k, y, s) = A(k, s) cosh ky. (5.37)

The Fourier transform of boundary conditions (5.31) and (5.32) are given respec-

tively by

∂
ˆ̃
φ1

∂y
= ˆ̃m(k, s), (5.38)

and

ˆ̃φy − F 2 ˆ̃φyy + [s2F 2 + 2iF 2ks] ˆ̃φ− F 2(2ik − s)

k2
= ˆ̃n(k, s). (5.39)

Substituting (5.37) into (5.38) and (5.39), we obtain

ˆ̃m(k, s) = kA(k, s) sinh(k), (5.40)

and

ˆ̃n(k, s) = kA(k, s) sinh(k)G1(k, s)−
F 2(2ik − s)

k2
, (5.41)

where

G1(k, s) =

[

1 +
s2F 2 + 2iF 2ks− F 2k2

k tanh(k)

]

, (5.42)

where (5.40) and (5.41) are analytic in the strip 0 < Im(k) < τ+. Here ˆ̃n(k, s) and

ˆ̃m(k, s) are the Fourier transforms of m̃(x, s) and ñ(x, s), respectively. Equations

(5.40) and (5.41) can be reduced to the corresponding equation for the steady-state

problem presented in Chapter 2, if we put s = 0 and omit the last term of equation

(5.41).

Eliminating A(k, s) from equations (5.40) and (5.41), we obtain the equation

of the unknown function ˆ̃m(x, s) in terms of function ˆ̃n(x, s):

ˆ̃m(k, s) =
ˆ̃n(k, s) + F 2(2ik−s)

k2

G1(k, s)
. (5.43)

Also from equation (5.37) and (5.40) we find

ˆ̃
φ(k, y, s) =

cosh ky

k sinh k
ˆ̄m(k, s). (5.44)

Once ˆ̃m(x, s) is determined, we can recover the unknown free surface function

η(x, t) through equations (5.26) and (5.44).
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5.2.2 The Wiener–Hopf equation

The first key step of the Wiener–Hopf technique is to factorise the function G1(k, s)

as

G1(k, s) =
1

k2
K+(k, s)K−(k, s), (5.45)

where K+(k, s) is analytic and non-zero in the upper-half plane, and K−(k, s)

is analytic and non-zero in the lower-half plane (the details of factorisation are

presented in Section 5.2.5).

Anticipating the use of the Wiener–Hopf technique, ˆ̃m(x, s) and ˆ̃n(x, s) can be

split into

ˆ̃m(k, s) = ˆ̃m−(k, s) + ˆ̃m+(k, s), (5.46)

ˆ̃n(k, s) = ˆ̃n−(k, s) + ˆ̃n+(k, s), (5.47)

where

ˆ̃m−(k, s) =

∫ 0

−∞
m̃(x, s)eikxdx, and ˆ̃n−(k, s) =

∫ 0

−∞
ñ(x, s)eikxdx (5.48)

are analytic functions in the lower-half plane, and

ˆ̃m+(k, s) =

∫ ∞

0

m̃(x, s)eikxdx, and ˆ̃n+(k, s) =

∫ ∞

0

ñ(x, s)eikxdx

are analytic functions in the upper-half plane. Since the plate is flat, so that

m(x, t) = 0 for x < 0, then ˆ̃m−(k, s) = 0. Also the atmospheric pressure can be

taken to be identically zero for x > 0; this gives ˆ̃n+(k, s) = 0. taking into account

this prosperities, we can present equation (5.43) in the form

ˆ̃m+(k, s) =
ˆ̃n−(k, s) +

F 2(2ik−s)
k2

G1(k, s)
, (5.49)

which is analytic in the strip 0 < Im(k) < τ+. substituting equation (5.45) into

equation (5.49), we obtain the Wiener–Hopf equation

ˆ̃m+(k, s)K+(k, s) =
k2 ˆ̃n−(k, s)

K−(k, s)
+
F 2(2ik − s)

K−(k, s)
, (5.50)

where the left-hand side represents an analytic function in the upper-half plane,

whereas all terms in the right hand-side are analytic in the lower-half plane. Be-

cause both sides of equation (5.50) are equal in the strip 0 < Im(k) < τ+, then
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the entire function in the left-hand side must be the analytic continuation of the

entire function in the right-hand side and vise-versa.

By studying the behavior of the left-hand side of equation (5.50) as k → ∞
in the upper-half plane and the right-hand side of that equation in the lower-half

plane, we can conclude on a basis of the Liouville’s theorem ([5]) that each side of

the equation must be equal to some constant E. Then equation (5.50) becomes

ˆ̃m+(k, s)K+(k, s) =
k2 ˆ̃n−(k, s)

K−(k, s)
+
F 2(2ik − s)

K−(k, s)
= E. (5.51)

Thus, equation(5.51) for the two unknown functions ˆ̄m+(k, s) and ˆ̄n−(k, s) is split

into two independent equations for each of the functions individually. The equation

for the former function gives

ˆ̃m+(k, s) =
E

K+(k, s)
. (5.52)

It follows from equation (5.44) that the transformed function
ˆ̃
φ(k, y, s) is given by

ˆ̃φ(k, y, s) =
E

K+(k, s)

cosh ky

k sinh k
. (5.53)

5.2.3 The Location of the Free Surface η1(x, t)

In this section the location of the free surface is evaluated as follow:

Substituting equation (5.53) into (5.33), we obtain

ˆ̃
φ(k, y, s) =

∫ ∞

−∞

[
∫ ∞

0

φ1(x, y, t)e
−stdt

]

eikxdx =

[

E

K+(k, s)

]

cosh ky

k sinh k
, (5.54)

and applying then the inverse Fourier and Laplace transforms to equation (5.54),

we can find the integral representation of the exact solution to the linearised prob-

lem for the normalised velocity potential as

φ1(x, y, t) =
1

2πi

∫ γ+i∞

γ−i∞

[

1

2π

∫ ∞+iδ

−∞+iδ

[

E

K+(k, s)

]

cosh ky

k sinh k
e−ikxdk

]

estds, (5.55)

where γ is a vertical contour for the inverse Laplace transform that is located to

the right of all singularities; δ is a real constant in the range 0 < δ < τ+.

To use the formula for the free surface, equation (5.26), we need to determine the

derivative of φ1(x, 1, t) with respect to x, namely

∂φ1

∂x
(x, 1, t) =

1

2πi

∫ γ+i∞

γ−i∞

[

1

2π

∫ ∞+iδ

−∞+iδ

−i
[

E

K+(k, s)

]

coth ke−ikxdk

]

estds, (5.56)
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and the derivative of φ1(x, 1, t) with respect to t, namely

∂φ1

∂t
(x, 1, t) =

1

2πi

∫ γ+i∞

γ−i∞
s

[

1

2π

∫ ∞+iδ

−∞+iδ

[

E

K+(k, s)

]

coth k

k
e−ikxdk

]

estds. (5.57)

We can choose a path of integration in equation (5.55) to lie in the strip 0 <

Im(k) < τ+ as required ([5]). Then, substituting equation (5.56) and (5.57) into

equation (5.26) provides the integral representation for the free surface η(x, t) in

term of the inverse Fourier and Laplace transforms as

η(x, t) =
P

1− F 2

[

1− F 2 +
1

2πi

γ+i∞
∫

γ−i∞

I(x, s)estds

]

, (5.58)

where

I(x, s) =
EF 2

2π

∞+iδ
∫

−∞+iδ

ik − s

K+(k, s)k tanh k
e−ikxdk. (5.59)

Due to complicated nature of the function G1(k, s), it is impossible to calculate

the inverse transforms in equation (5.58) analytically. But this can be done nu-

merically by means of the approximated method for the inverse Laplace transform

proposed by Trefethen et al.[57]. In the next section we will calculate the integral

by that method.

5.2.4 Numerical Approximation of the Contour Integral

In 2006, Trefethen et al. developed an algorithm to approximate contour integrals

of the form

̥ =
1

2πi

∫

Γ

f(z)ezdz, (5.60)

where f(z) is analytic for z 6∈ (−∞ 0], and Γ denotes a Hankel contour that lies

in the region of analyticity of f(z). Suppose the integral (5.60) is approximate by

a quadrature method

̥ =
1

2πi

∫

Γ

f(z)ezdz ≈
N
∑

k=1

Cke
zkf(zk), (5.61)

The sum in equation (5.61) can be interpreted according to residue calculus as

̥ =
1

2πi

∫

c

r(z)f(z)dz, (5.62)
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under the assumption | f(z) |→ 0 as | z |→ ∞, where c is a closed contour in the

region of analyticity of f(z) that winds clockwise around each point of zk and r(z)

is the rational function

r(z) =
N
∑

k=1

Cke
zk

z − zk
.

Now, by letting Γ′ be a contour for the integral in equation (5.60) like Γ, except

lying between R− and the point zk, then Γ′ is equivalent to Γ for the integral (5.60)

of ezf(z). Then, if we define Γ to be the union of Γ′ with a large circular arc of

radius R → ∞, then the integral on such closed contour Γ′ is equivalent to the

integral on the contour c in the integral (5.62) involving r(z)f(z),(see Trefethen et

al.[57], 2006, and figure 5.4). Therefore, equation (5.62) can be replaced by

̥N =
1

2πi

∫

Γ′

r(z)f(z)dz. (5.63)

To obtain the higher accuracy result, many values N are needed, in general. How-

ever Trefethen et al. [57] have shown that much smaller values of N can be used

by exploiting the best rational approximation. According to these authors, if one

suppose that the poles and residues of r(z) are z1, ..., zN and C1, ..., CN , respec-

tively, then the integral in (5.62) is equal to the sum in equation (5.61). This

is a rational function deviation from ez which decreases at the optimal rate as

(9.28903)−N when N → ∞. The Matlab code was provided by Trefethen et al.[57]

for computing the best approximation of the function ez. This yields that the

integral in equation (5.62) can be approximated by the following sum:

1

2πi

∫

Γ

r(z)ezdz ≈
N
∑

j=1

Cjf(zj), (5.64)

where zj and Cj are the poles and residues, respectively, shown in Table 5.1. These

quantities were used in calculating the free surface shown in equation (5.58).

Following Trefethen et al. [57], we let s = z/t; this allows us to express equation

(5.58) as

η(x, t) =
P

1− F 2

[

1− F 2 +
1

2πi

γ+i∞
∫

γ−i∞

I(x, z/t)ezdz

]

, (5.65)

where

I(x, z/t) =
1

2πt

∫ ∞+iδ

−∞+iδ

[

EF 2(ik − z/t)

K+(k, z/t)

]

1

k tanh k
e−ikxdk. (5.66)
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Figure 5.4: The contour of integration consisting of the path Γ′ and path c of infinitely large

radius R. Red dots show the positions of poles in equation (5.61).

Applying the rational approximation given by equation (5.64) allows us to ap-

proximate equation (5.65) as

η(x, t) =
P

1− F 2

[

1− F 2 − 1

2πit

N
∑

j=1

CjI(x, zj/t)

]

, (5.67)

From the numerical investigation performed here, we found that N = 10 provides

quite good approximation of the inverse Laplace transform of the function I(x, z/t).

In equation (5.66), we require K+(k, z/t), which depends upon the roots of f1

for different values of z as shown in Section 5.2.5, so for each value of z we have

different K+(k, z/t), and thus a different I(x, z/t), as shown in Appendix C.

From Section 5.2.5 equation (5.84) we found that K+(k, z/t) can be expressed in

the generalised form

K+(k, z/t) =
z2

t2
F 2e2itk/zΓ

(

1− ik

π

) ∞
∏

j=1

(

1− k

ζj

)

ek/ζj , (5.68)

where ζj are the zeros of the function K+(k, z/t). Using properties of the gamma-

function (see, e.g., Sec. 6.1.31 in ref.[67]),

Γ

(

1− ik

π

)

Γ

(

1 +
ik

π

)

=
k

sinh k
, (5.69)
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j zj Cj

1 4.0277 + 1.1939i −4.8184− 21.0546i

2 4.0277− 1.1939i −4.8184 + 21.0546i

3 3.2838 + 3.5944i 7.1172 + 8.8195i

4 3.2838− 3.5944i 7.1172− 8.8195i

5 1.7154 + 6.0389i −2.5656− 1.2164i

6 1.7154− 6.0389i −2.5656 + 1.2164i

7 −0.8944 + 8.5828i 0.2726 + 0.0142i

8 −0.8944− 8.5828i 0.2726− 0.0142i

9 −5.1612 + 11.3752i 0.0058 + 0.0007i

10 −5.1612− 11.3752i −0.0058− 0.0007i

Table 5.1: The first ten values of poles zj and residues Cj provided by Trefethen et al.[57]

through the Matlab program.
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we can replace the gamma-function Γ (1− ik/π) in equation (5.68) with the func-

tion k/ sinh kΓ (1 + ik/π). Taking into account this property, and substituting

(5.68) into (5.66), I(x, z/t) becomes

I(x, z/t) =
E

2πi

∫ ∞+iδ

−∞+iδ

(ik − z
t
)Γ

(

1 + ik
π

)

cosh(k)e−ikx

k2 z
2

t2
e

2itk
z

∏∞
j=1

(

1− k
ζj

)

e
k
ζj

dk.

This integral can be evaluated by closing the contour in the lower half-plane, to

have zeros at k = 0 and k = ζj, j = 1, 2, ..., using the residue theorem, we obtain

I(x, z/t) = −E
(

Resk=0
d

dk

[(ik − z/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

z2

t2
e2itk/z

∏∞
j=1

(

1− k
ζj

)

ek/ζj

]

+ Resk=ζj

[(ik − z/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

k2 z
2

t2
e2itk/z

∏∞
j=1

(

1− k
ζj

)

ek/ζj

])

,

which may also be written as

I(x, z/t) = −E
(

3 + 0.183755 z
t

z2

t2
F 2

i−
∞
∏

j=1

[(iζj − z/t)Γ

(

1 +
iζj
π

)

cosh(ζj)e
−iζjx

ζj
z2j
t2
e1+2itζj/z

])

.(5.70)

Substituting into function I(x, z/t) ten values of zj instead of z, we obtain from

equation (5.67) the approximate value for η(x, t) is given by

η(x, t) =
P

1− F 2

[

1− F 2 +
E

2πit

10
∑

=1

C

[(

3 + 0.183755 z
t

z2
t2
F 2

i−

∞
∏

j=1

((iζj − z/t)Γ

(

1 +
iζj
π

)

cosh(ζj)e
−iζjx

ζj
z2
t2
e1+2itζj/z

))]]

. (5.71)

The value of E in equation (5.71) can be found by applying the condition that

η(x = 0, t) = 1, for a given F and t.

5.2.5 Factorisation of G1(k, s)

The details of the factorisation G1(k, s) are handled in the same way as that

presented in Chapter 2. Let G1(k, s) = f1(k, s)f2(k, s)/k
2, where the functions



Linearised Unsteady Problem 123

f1(k, s) and f2(k, s) are given by

f1(k, s) = k sinh(k) + F 2(s− ik)2 cosh(k) and f2(k, s) =
k

sinh(k)
. (5.72)

The splitting of the Wiener–Hopf equation depends on the roots of functions

f1(k, s) and f2(k, s). Assuming s = 0, we obtain the same functions for the steady

problem that was presented in Chapter 2. In this case, when s = 0, G1(k, 0) is

given by

G1(k, 0) = 1− F 2k coth(k) = f1(k, 0)f2(k, 0), (5.73)

where

f1(k, 0) =
sinh(k)

k
− F 2 cosh(k), (5.74)

and

f2(k, 0) =
k

sinh(k)
. (5.75)

As the function, f1, has two real poles at k = ±µR and infinitely many imaginary

poles at k = ±iπµn, n = 1, 2, ..., by using the Weierstrass infinite product theorem

[29], f1 can be factorised as

f1(k, 0) = (1− F 2)

(

1− k2

µ2
R

) ∞
∏

n=1

(

1 +
k2

π2µ2
n

)

,

=

(

1− k2

µ2
R

)

H+(k)H−(k), (5.76)

such that

H+(k) =
αT (k)

Γ(3
2
+ ik

π
)

and H−(k) =
αT (−k)
Γ(3

2
− ik

π
)
. (5.77)

We may also determine that

f2(k, 0) = Γ

(

1 +
ik

π

)

Γ

(

1− ik

π

)

. (5.78)

Finally G1(k, 0), by substituting equations (5.76) and (5.78) into equation (5.73) ,

is given by

G1(k, 0) =

(

1− k2

µ2
R

)

α2T (k)T (−k)Γ(1− ik
π
)Γ(1 + ik

π
)

Γ

(

3
2
+ ik

π

)

Γ

(

3
2
− ik

π

) = K−(k, 0)K+(k, 0),

(5.79)
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where

K+(k, 0) =

(

1− k2

µ2
R

)

α2T (k)Γ(1 + ik
π
)

Γ(3
2
+ ik

π
)

, (5.80)

and

K−(k, 0) =
T (−k)Γ(1− ik

π
)

Γ(3
2
− ik

π
)

, (5.81)

are analytic and non-zero in the upper and lower halves of the k-plane, respectively.

This result has been checked numerically to ensure the functionG1(k, 0) in equation

(5.73) and its factorisation in equation (5.79) are in agreement as shown in figure

(5.5).

For the unsteady problem we put s = z/t, where values of z have been found

by Trefethen [57] for the inverse Laplace transform. Equation (5.72) with s = z/t

becomes

f1(k, z/t) = k sinh(k) + F 2(z/t− ik)2 cosh(k). (5.82)

The roots of this equation with complex function f1(k, z/t) of the complex vari-

able k depend on two parameters F and z/t. We investigate further positions of

roots in the complex plane k for ten complex values of zj from Table 5.1. Thus,

complex function f1 actually contains two real parameters F and t. To find roots

of f1(k, zj/t), one can plot zero isolines for functions Ref1(k, z/t) and Imf1(k, z/t)

and find their intersections as shown in figure 5.6.

For each value of zj function f1(k, zj/t) has the infinite number of complex

roots in the upper half-plane denoted by ζ̃l and infinite number of complex roots

in the lower half-plane denoted by ζj. One can show that asymptotically at large

values of indices l and j, the roots are kl ≈ i(π/2 + lπ) and kj ≈ −i(π/2 + jπ).

Using the Weierstrass infinite product theorem [29], f1 can be factorised as

f1(k, z/t) = (z/t)2F 2e2ikt/z
∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l
∞
∏

j=1

(

1− k

ζj

)

ek/ζj ,

and

f2(k, z/t) =
k

sinh(k)
= Γ

(

1 +
ik

π

)

Γ

(

1− ik

π

)

. (5.83)
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(a) (b)

(c)

Figure 5.5: Figure (a) shows plot of the function G1(k) in equation (5.73) at F = 0.5. Figure

(b) shows plot of the function G1(k) in equation (5.79) at F = 0.5. Figure (c) shows plot of the

function G1(k) in equation (5.73) and (5.79).
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Thus, function G1(k, z/t) can be presented in the following forms

G1(k, z/t) =
1

k2
f1(k, z/t)f2(k, z/t)

=
1

k2
Γ

(

1− ik

π

)

Γ

(

1 +
ik

π

)

z2

t2
F 2e2itk/z

∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l

∞
∏

j=1

(

1− k

ζj

)

ek/ζj ,

=
1

k2
K−(k, z/t)K+(k, z/t),

we have

K+(k, z/t) =
z2

t2
F 2e2itk/zΓ

(

1− ik

π

) ∞
∏

j=1

(

1− k

ζj

)

ek/ζj , (5.84)

and

K−(k, z/t) = Γ

(

1 +
ik

π

) ∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l, (5.85)

where K+(k, z/t) is analytic in the upper-half plane and K−(k, k, z/t) is analytic

in the lower-half plane.

Figure 5.6: Zero isolines of functions Ref1(k, z/t) (red lines) and Imf1(k, z/t) (blue lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z1 = 4.0277 + 1.1939i.

For each value of zj we will go through the process of finding the roots of

the function f1(k, zj/t) and derivation of function K+(k, zj/t) for the subsequent
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derivation of the function I(x, z) in equation (5.66) is illustrated below for the

fixed value of zj . Let us fix the time t and use the first value of zj from Table 5.1,

z1 = 4.0277 + 1.1939i, then we find that f1(k, z1/t) has infinitely many complex

roots in the upper half-plane are given by ζ̃l, l = 1, 2, 3, ..., and in the lower half-

plane, ζj, j = 1, 2, 3, ... as shown in figure 5.6.

Then f1(k, z1/t) can be factorised by the following way

f1(k, z1/t) = z21F
2e2ik/z1

∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l
∞
∏

j=1

(

1− k

ζj

)

ek/ζj ,

and

f2(k, z1/t) =
k

sinh(k)
= Γ

(

1 +
ik

π

)

Γ

(

1− ik

π

)

. (5.86)

Then from equation (5.45) and by using the factorisation of f1 and f2 above, we

find

G1(k, z1/t) =
1

k2
f1(k, z1/t)f2(k, z1/t)

=
1

k2
Γ

(

1− ik

π

)

Γ

(

1 +
ik

π

)

z21
t2
F 2e2itk/z1

∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l
∞
∏

j=1

(

1− k

ζj

)

ek/ζj ,

=
1

k2
K−(k, z1/t)K+(k, z1/t),

where

K+(k, z1/t) =
z21
t2
F 2e2itk/z1Γ

(

1− ik

π

) ∞
∏

j=1

(

1− k

ζj

)

ek/ζj , (5.87)

and

K−(k, z1/t) = Γ

(

1 +
ik

π

) ∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l. (5.88)

Now derived function K+(k, z1/t) can be substituted into equation (5.66) for the
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inverse Fourier transform providing function I(x, z1/t) which will be express as

I1(x, z1/t) =
1

2πi

∫ ∞+iδ

−∞+iδ

EF 2(ik − z1/t)

K+(k, z1/t)k tanh(k)
e−ikxdk

=
1

2πi

∫ ∞+iδ

−∞+iδ

EF 2(ik − z1/t)e
−ikx

k tanh(k)Γ

(

1− ik
π

)

z21
t2
F 2e2itk/z1

∏∞
j=1

(

1− k
ζj

)

ek/ζj
dk

=
E

2πi

∫ ∞+iδ

−∞+iδ

(ik − z1/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

k sinh(k)Γ

(

1− ik
π

)

Γ

(

1 + ik
π

)

z21
t2
e2itk/z1

∏∞
j=1

(

1− k
ζj

)

ek/ζj
dk

=
E

2πi

∫ ∞+iδ

−∞+iδ

(ik − z1/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

k2
z21
t2
e2itk/z1

∏∞
j=1

(

1− k
ζj

)

ek/ζj
dk,

which may be evaluated by closing the contour in the lower half-plane, to have

zeros at k = 0 and k = ζj, j = 1, 2, .... Using residue theorem, we find

I1(x, z1/t) = −E
(

Resk=0
d

dk

[(ik − z1/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

z21
t2
e2itk/z1

∏∞
j=1

(

1− k
ζj

)

ek/ζj

]

+ Resk=ζj

[(ik − z1/t)Γ

(

1 + ik
π

)

cosh(k)e−ikx

k2
z21
t2
e2itk/z1

∞
∏

j=1

(

1− k

ζj

)

ek/ζj
])

,

which may be written as

I1(x, z1/t) = −E
(

3 + 0.183755 z1
t

z21
t2
F 2

i

−
∞
∏

j=1

[(iζj − z1/t)Γ

(

1 +
iζj
π

)

cosh(ζj)e
−iζjx

ζj
z21
t2
e1+2itζj/z1

])

.

Now, from equation (5.67) and using N = 10, we find that

η(x, t) =
P

1− F 2

[

1− F 2 − 1

2πit

(

C1I1(x, z1/t) + C2I2(x, z2/t) + ... + C10I10(x, z10/t)

)]

,(5.89)

where η is the formula to generate the free surface profile, C1, ..., C10, z1, ..., z10 is

a known parameter. I1(x, z1/t) is found above and I2(x, z2/t), ..., I10(x, z10/t) are

evaluated in Appendix C.

The procedure of computing the unsteady free surface profile given by equation

(5.89) is summarised in the following algorithm. We choose the Froude number
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F = 0.5, Pressure P = 0.01, time t = 1, 5, 10, 100, 1000 and the separation point

between the flat plate and the free surface η(x = 0, t) = 1.

Algorithm 2: Unsteady Free surface flow

INPUT: Froude number F , pressure P , time t and the separation point η(x = 0, t) = 1.

Step 1: Compute the poles zj and residues Cj using Trefethen Matlab code presented in [57]

(see Table (5.1)).

Step 2: Approximate the function I(x, z/t) using the contour integral approximation given by

equation (5.66).

Step 3: Evaluate the roots ζj and ζ̃l of the function f1(k, s) given by (5.82) at a fixed time t,

F, P and ten values of zj.

Step 4: For a given time t, Compute the approximation function I(x, zj/t) for ten values of zj

given by equation (5.70).

Step 5: Using the function I(x, zj/t) computed in step 4, calculate the constant E (given in

equation (5.70)), for a given time t, P and F , where η(x, 0) = 1

Step 6: For ten values of zj, and a given time t, compute the elevation of the free surface

η(x, t) given by equation (5.89).
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5.3 Results and Discussions

The problem of transient two-dimensional free surface flow past a semi-infinite flat

plate in a fluid of finite depth is solved analytically using the Laplace transform

and the Wiener–Hopf technique for the subcritical case, F < 1.

The free surface profile η(x, t) is given by equation (5.71) are computed for any

instant of time t with appropriate accuracy using, for instance, ten values of poles

zj and residues Cj from Table 5.1 as given by Trefethen et al. [57] (the accuracy

can be raised if required; then more data should be added into the Table using the

Matlab code provided by Trefethen et al.[57]). To use this formula for different

time moments, function G(k, z/t) should be factorised anew every time and roots

of function f1(k, z/t) should be found as shown in Appendix C.

We studied the dependence of accuracy of calculation of a free surface on the

number of poles taken from Table 5.1. It is expected that after the transient

process, when t → ∞, the free surface in the near-field zone behind the stern

should be stationary. Hence, it shape can be compared with the steady state

solution obtained by Ogilat et al.[75] for the same parameters. Figure 5.7 illustrates

the comparison of free surface shape obtained in this study at t = 1000 with the

steady-state solution. As one can see, solution obtained with only 8 poles does

not match with the steady-state solution, whereas solution obtained with 10 poles

does match and is practically indistinguishable from the steady-state solution.

Figure 5.8 illustrates the influence of the number of roots of function G+(k, s)

on the accuracy of solution. In this case N = 10 poles were chosen but number

of roots were taken 40 and 60. As follows from figure 5.8, 40 roots is not enough

to obtain accurate solution. Only the first period of wave can be satisfactorily

described with the help of 40 roots. Wave amplitude is reproduced with fairly

good accuracy, but not the wave period.

Thus,it was concluded that the optimal number of poles is N = 10 and number

of roots is 60. In further studies these number were used.

The transition to the steady-state regime is illustrated by figure 5.9. As one

can see from that figure, in the near-field zone, the transient solution approaches

stationary solution by t = 1000. At early times, the maximal splash may be sig-
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nificantly greater than the stationary wave amplitude.

As one can see from figure 5.9, the waves are evolving at relatively short times,

and the free surface approaches the horizontal flat level at large x. At large time,

the free surface eventually attains the steady state, at least, at the near-field zone

close to the flat stern as shown in figure 5.10.

As one can see from figure 5.9, the waves are undeveloped in relatively short

times, and the free surface approaches the unperturbed horizontal level at large

x. After elapsing some time, generated waves become stationary, at least, at

the near-field zone just behind the stern. In the transient period large amplitude

splash is generated, as one can see in figure 5.10. The dependence of maximal wave

amplitude on time is shown in figure 5.11. As follows from this figure, after the first

splash, maximal wave amplitude drops down, increases again and only after that

it gradually decreases to the steady-state value. For the considered parameters

(see figure caption), maximal amplitude of the splash is 3.4 times greater than the

amplitude of stationary wave.

5.4 Conclusion

In this chapter we investigated the transient problem of wave generation past the

flat stern which is suddenly submerged at the initial instant of time into the moving

water at small depth d which is much less than the total fluid depth h. It is assumed

that the Froude number is less than the critical one, F ≡ V/
√
gh < 1. Solution

to the linearised problem has been obtained in the analytic form, equation (5.71),

and then calculated numerically. The traditional methods to this class of mixed

boundary problems were used: Laplace transform on time, Fourier transform on

x and Wiener–Hopf technique. It was shown that in the transient period high

amplitude splash is generated, then the amplitude of highest wave drops down and

quickly increases again. After that the wave amplitude gradually approaches the

stationary state which is characterised by a constant amplitude quasi-sinusoidal

trailing wave. The time dependence of the free-surface perturbation behind the

plate was found numerically and presented graphically.
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The problem of the stern shape optimisation to reduce generated waves was

not considered in this chapter, whereas for the steady-state problem it has been

shown [75] that optimal shapes do exist such that the trailing waves can be almost

completely eliminated. We leave this problem for the impeding study.

In the next chapter the steady problem for the two-layer model in a fluid of

finite depth will be investigated.
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Figure 5.7: Free surface profile in dimensionless variables relative to unperturbed level y = 1

for t = 1000 as obtained from equation (5.71) with different numbers of poles in Table 5.1.

Dashed line pertains to N = 8, solid line – N = 10, and dots show the steady-state solution

derived by Ogilat et al. [75]. The plot was generated for P = 0.01, F = 0.5 and with 60 complex

roots of function G+(k, s).
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Figure 5.8: Free surface profile in dimensionless variables relative to unperturbed level y = 1

for t = 1000 as obtained from equation (5.71) with fixed number of poles N = 10 from Table

5.1, but with different numbers of complex roots of function G+(k, s). Dashed line pertains to

40 roots, solid line – to 60 roots, and dots show the steady-state solution derived by Ogilat et al.

[75]. The plot was generated for P = 0.01, F = 0.5.
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Figure 5.9: The free surface profile for P = 0.01, F = 0.5 and different instants of time as

per equation (5.71).
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Figure 5.10: The free surface profile for P = 0.01, F = 0.5 and different instants of time as

per equation (5.71). The steady state solution derived in Ogilat et al. [75] is shown in this figure

for the comparison.
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Figure 5.11: Maximal wave amplitude A = ηmax against time as per equation (5.71). The

plot was generated for P = 0.01, F = 0.5.



Chapter 6

Stationary Internal Waves Past a 2D Stern in

Two-Layer a Fluid

6.1 Introduction

In two-layer fluid may exist internal waves that propagate beneath the free surface

on the interface between the layers of different density. Such waves are usually

hidden from eyesight, however, sometimes they produce a visible response on the

surface (for details see [101, 41]). In this Chapter we study internal wave generation

past a two-dimensional (2D) semi-infinite flat plate in a fluid of a finite depth. The

linearised problem is solved analytically using a Fourier transform and the Wiener–

Hopf technique. Our main interest is in the possibility to minimise trailing waves

past the stern or eliminate them at all, as well as to study the influence of the

density aspect ratio on the generated waves.

6.2 Mathematical formulation

We consider a 2D flow in two-layer fluids of a finite depth as shown in figure 6.1.

As before, the fluid is assumed to be inviscid and incompressible and the flow is

irrotational; the density of upper layer is ρ1 and the density of lower layer is ρ2 > ρ1,

whereas the layers depths are h1 and h2, respectively. The velocity potential in

the upper and lower layers are, respectively, Φ1 and Φ2.

137
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Figure 6.1: A sketch of the two-layer model with internal waves at the interface.
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As the flow is irrotational, the x̃ and ỹ components of the velocity field can be

presented as

ũi =
∂Φi
∂x̃

, w̃i =
∂Φi
∂ỹ

, i = 1, 2, (6.1)

where ũi is the horizontal velocity and w̃i is the vertical velocity of the fluid.

The fluid far upstream is uniform with the speed V and the speed far down-

stream in the upper and lower layers are the same. The downstream speeds in

both layer should be the same as the tangential discontinuity of the velocity will

appear. This leads to hydrodynamic instability, which is far from our interest here.

The Cartesian coordinates are introduced such as shown in Fig. 6.1. It is

assumed that there is a thin flat plate at x̃ < 0, which is submerged onto depth d

below the interface between the layers.

Since we assumed that the fluid is incompressible, the governing equations are

∇2Φ1 = 0, ∇2Φ2 = 0, (6.2)

in the upper and lower layers, correspondingly. To eliminate the influence of sur-

face waves and simplify the mathematical formulation of the problem, we will use

further the “rigid lid approximation” traditionally used in the study of internal

waves. Two boundary conditions can be used then for the vertical velocity com-

ponents in each layer:

∂Φ1

∂ỹ
|ỹ=H = 0,

∂Φ2

∂ỹ
|ỹ=0 = 0, −∞ < x̃ <∞, (6.3)

where H = h1 + h2. Other two boundary conditions are used at the rigid plate, at

x̃ < 0:
∂Φ1

∂ỹ
= 0,

∂Φ2

∂ỹ
= 0, ỹ = h2, x̃ < 0. (6.4)

At the interface between two layers, ỹ = h2+ η̃(x̃), x̃ > 0, two kinematic boundary

conditions are used (fluid particles on both sides of the interface move vertically

together with the interface):

∂Φ1

∂x̃

∂η̃

∂x̃
=
∂Φ1

∂ỹ
,

∂Φ2

∂x̃

∂η̃

∂x̃
=
∂Φ2

∂ỹ
. (6.5)

One more dynamical boundary condition can be expressed in terms of the



Internal Waves in Two-Layer Fluid 140

Bernoulli equations:

1

2

[(

∂Φ1

∂x̃

)2

+

(

∂Φ1

∂ỹ

)2]

+ gỹ =
1

2
V 2 + gh2 +

p̃1
ρ1
, at ỹ = (h2 + η̃)+, (6.6)

1

2

[(

∂Φ2

∂x̃

)2

+

(

∂Φ2

∂ỹ

)2]

+ gỹ =
1

2
V 2 + gh2 +

p̃2
ρ2
, at ỹ = (h2 + η̃)−. (6.7)

where symbols ‘plus’ and ‘minus’ stand for that the corresponding quantities should

be taken either just above the interface or just below the interface.

As follows from these equations, the pressure difference at the interface is:

∆p ≡ p̃1 − p̃2 = ρ1

{

1

2

[(

∂Φ1

∂x̃

)2

+

(

∂Φ1

∂ỹ

)2]

+ gỹ − 1

2
V 2 − gh2

}

−

ρ2

{

1

2

[(

∂Φ2

∂x̃

)2

+

(

∂Φ2

∂ỹ

)2]

+ gỹ − 1

2
V 2 − gh2

}

. (6.8)

At the interface between two fluids, x > 0, the pressure difference is zero as the

pressure is continuous across the interface, whereas the pressure difference across

the plate, x < 0, is not zero, in general, and may be a function of x. This function

can be determined from the solution of the problem.

It is convenient to formulate the problem in dimensionless variables to minimise

the number of free parameters. To this end we scale all lengths and velocities with

respect to the depth of the lower layer h2 and speed V respectively. Thus, we

introduce the dimensionless variables as follows:

x = x̃/h2, y = ỹ/h2, φ̃1 = Φ1/V h2, φ̃2 = Φ2/V h2,

p1 = p̃1/gh2, p2 = p̃2/gh2, η = η̃/h2, b = h1/h2.

Then, the Laplace equations in each layers and boundary conditions (6.2)–(6.7)

become

∇2φ̃1 = 0; ∇2φ̃2 = 0, 0 < y <∞, −∞ < x <∞, (6.9)

∂φ̃1

∂y
|y=1+b = 0,

∂φ̃2

∂y
|y=0 = 0, −∞ < x <∞. (6.10)
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At y = 1, x < 0:
∂φ̃1

∂y
= 0,

∂φ̃2

∂y
= 0. (6.11)

At y = 1 + η(x) x > 0:

∂φ̃1

∂x

∂η

∂x
=
∂φ̃1

∂y
,

∂φ̃2

∂x

∂η

∂x
=
∂φ̃2

∂y
, (6.12)

a

{

F 2

2

[(

∂φ̃1

∂x̃

)2

+

(

∂φ̃1

∂ỹ

)2

− 1

]

+ y − 1

}

−

F 2

2

[(

∂φ̃2

∂x̃

)2

+

(

∂φ̃2

∂ỹ

)2

− 1

]

− y + 1 = n1(x), (6.13)

where a = ρ1/ρ2, F = V/
√
gh2 and n1(x) = ∆p/ρ2, and n1(x) ≡ 0 at x > 0.

6.2.1 Linearised two-layer model

Further we will consider the linearised problem assuming that all perturbations are

small enough (their smallness will be specified later). For the velocity potentials

we put

φ̃1 = x+ ǫφ1, φ̃2 = x+ ǫφ2, η(x) = ǫη1(x), n1(x) = ǫn(x), (6.14)

where ǫ = d/h2 ∼ F 2/(1 − a) ≪ 1. Then the main equation and boundary

conditions (6.9)–(6.13) become

∇2φ1 = 0, ∇2φ2 = 0, (6.15)

∂φ1

∂y
|y=1+b,

∂φ2

∂y
|y=0 = 0, −∞ < x <∞, (6.16)

∂φ1

∂y
= m(x),

∂φ2

∂y
= m(x), y = 1, −∞ < x <∞, (6.17)

where m(x) is the known function describing the shape of the plate for x < 0

and unknown function describing the interface between layers for x > 0. Since we

assume here that the plate is flat, then we have m(x) ≡ 0 when x < 0, whereas

when x > 0 we have

∂η1
∂x

=
∂φ1

∂y
,

∂η1
∂x

=
∂φ2

∂y
, y = 1. (6.18)

Linearised equation (6.13) reads

η1(x) =
F 2

1− a

(

a
∂φ1

∂x
− ∂φ2

∂x

)

− n(x)

1− a
, (6.19)
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where n(x) ≡ 0 for x > 0. Then the location of the interface for x > 0 becomes

η1(x) =
F 2

1− a

(

a
∂φ1

∂x
− ∂φ2

∂x

)

. (6.20)

To solve the derived set of linear differential equations (6.15)–(6.19), we apply

the Fourier transform.

6.2.2 Application of Fourier Transforms

The linear set of differential equations (6.15)–(6.19) can be solved by means of

the Fourier transform and Wiener–Hopf technique. The Fourier transform of the

velocity potentials in each layer are given by

φ̄1(k, y) =

∞
∫

−∞

φ1(x, y)e
ikxdx, φ̄2(k, y) =

∞
∫

∞

φ2(x, y)e
ikxdx. (6.21)

By applying the Fourier transform to equation (6.15) we find

∂2φ̄1(k, y)

∂y2
− k2φ̄1(k, y) = 0, (6.22)

and
∂2φ̄2(k, y)

∂y2
− k2φ̄2(k, y) = 0. (6.23)

The general solutions to these equation subject to boundary conditions (6.16) are

φ̄1(k, y) = A(k) [cosh ky − tanh k(1 + b) sinh ky] , (6.24)

φ̄2(k, y) = C(k) cosh ky. (6.25)

Also, the Fourier transform of the boundary conditions (6.17) and (6.19) gives

∂φ̄1

∂y
= m̄(k),

∂φ̄2

∂y
= m̄(k), y = 1, −∞ < x <∞, (6.26)

η̄1(k) =
ikF 2

1− a

(

aφ̄1 − φ̄2

)

− n̄(k)

(1− a)
=

ikF 2

1− a
{aA(k) [cosh k − tanh k(1 + b) sinh k]− C(k) cosh k} − n̄(k)

1− a
. (6.27)

From equation (6.18) we have

ikη̄1 = m̄(k). (6.28)
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By substituting equation (6.24) and (6.25) into (6.26), we find that

A(k) =
m̄(k)

k [sinh ky − tanh k(1 + b) cosh ky]
, C(k) =

m̄(k)

k sinh ky
, (6.29)

By substituting A(x) and C(k) from (6.29), at y = 1, into (6.27), we find

η̄1(k) =
iF 2m̄(k)

1− a

[

a
1− tanh k(1 + b) tanh k

tanh k − tanh k(1 + b)
− 1

tanh k

]

− n̄(k)

1− a
. (6.30)

Combining now equations (6.28) and (6.30), we derive
{

F 2

1− a

[

a
1− tanh k(1 + b) tanh k

tanh k − tanh k(1 + b)
− 1

tanh k

]

+
1

k

}

im̄(k) =
n̄(k)

1− a
, (6.31)

or alternatively

m̄(k) = −ikn̄(k)
G2(k)

, (6.32)

where

G2(k) = 1− a− F 2k

[

1

tanh k
+ a

tanh k(1 + b) tanh k − 1

tanh k − tanh k(1 + b)

]

. (6.33)

Unfortunately, the expression for G2(k) in its general form is such that the appli-

cation of the Wiener–Hopf technique used in the previous Chapters is not possible

here. Therefore, we will consider further a particular case of infinitely deep upper

layer when b → ∞. In this case equation (6.33) reduces to

G2(k) = 1− a− kF 2

(

a+
1

tanh k

)

. (6.34)

When the density ratio vanishes, i.e. a ≡ ρ1/ρ2 = 0, this expression reduces to the

case of surface waves studied in Chapter 2:

G2(k) = 1− F 2k coth k. (6.35)

6.3 The Wiener–Hopf equation

Thus, we have found the function m(x) can be determined with the help of inverse

Fourier transform from equation (6.32), where function G2(k) is given by equation

(6.34).

Anticipating the use of the Wiener–Hopf technique, m̄(k) and n̄(k) can be split

into

m̄(k) = m̄−(k) + m̄+(k), (6.36)



Internal Waves in Two-Layer Fluid 144

n̄(k) = n̄−(k) + n̄+(k), (6.37)

where

m̄−(k) =

0
∫

−∞

m(x)eikxdx, and n̄−(k) =

0
∫

−∞

n(x)eikxdx, (6.38)

are analytic functions in the lower-half plane, and

m̄+(k) =

∞
∫

0

m(x)eikxdx, and n̄+(k) =

∞
∫

0

n(x)eikxdx, (6.39)

are analytic functions in the upper-half plane. Since the plate is flat then m̄−(k) =

0, and the pressure for x > 0, giving n̄+(k) = 0. This implies that the Wiener–Hopf

equation, (6.32), becomes

m̄+(k) =
−ikn̄−(k)

G2(k)
. (6.40)

The method of solving (6.40) depends on the decomposition of G2(k) in the form

G2(k) =W+(k)W−(k), (6.41)

where W+(k) is analytic and non-zero in the upper-half plane, and W−(k) is ana-

lytic and non-zero in the lower-half plane. The Wiener–Hopf equation from (6.40)

becomes

m̄+(k)W+(k) =
−ikn̄−(k)

W−(k)
, (6.42)

where the left-hand side is analytic and non-zero in the upper-half plane and the

right hand-side is analytic and non-zero in the lower-half plane.

By studying the behavior of the left-hand side of (6.42) as k → ∞ in the upper-half

plane and the right-hand side in the lower-half plane, with the use of Liouville’s

theorem ([18], p. 85) both sides must be equal to some constant E which must be

determined. As such, equation (6.42) becomes

m̄+(k)W+(k) =
−ikn̄−(k)

W−(k)
= E. (6.43)

The solution to equation (6.43) for m̄+(k) is substituted into (6.29), as b→ ∞, to

yield the equation

m̄+(k) = kA(k)(sinh ky − cosh ky) =
E

W+(k)
, (6.44)
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and

m̄+(k) = kC(k) sinh ky =
E

W+(k)
. (6.45)

It follows from equations (6.24) and (6.25), as b → ∞, that the transformed

functions φ̄1(k, y) and φ̄2(k, y) are given by

φ̄1(k, y) = − E

kW+(k)
, (6.46)

φ̄2(k, y) =
E

k tanh kW+(k)
. (6.47)

In the next section we will determine the function W+(k) and then apply the

inverse Fourier transform to equations (6.46) and (6.47) to generate a formula for

the interface profile.

6.3.1 Factorisation of G2(k)

In this section we will factorise the denominator G2(k) given by equation (6.34)

into two functions which are analytic and nonzero in the upper and lower k−planes

following the same way that was presented in the paper by McCue & Stump [85]

and discussed in Section 1.3.2 of Chapter 2.

Let us rewrite function G2(k) from equation (6.34) in the following way:

G2(k) =

[

sinh k

k
(1− a)− F 2(a sinh k + cosh k)

]

k

sinh k
= f1(k)f2(k), (6.48)

where

f1(k) =

[

sinh k

k
(1− a)− F 2(a sinh k + cosh k)

]

, (6.49)

and

f2(k) =
k

sinh k
. (6.50)

Splitting of f1(k) depends upon the value of the Froude number and the density

ratio a. When the Froude number F < 1 and the density ratio a < 1, there are two

real roots denoted by k = ±µ, of f1 and infinitely many imaginary roots denoted

by k = ±iπun for n = 1, 2, 3, .... Then the function f1 is factorised, using the

Weierstrass infinite product theorem [29], into the form

f1(k) =

(

1− a− F 2

)(

1− k2

µ2

) ∞
∏

n=1

(

1− ik

πun

)(

1 +
ik

πun

)

. (6.51)
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Following McCue and Stump [85], f1 can be written as

f1(k) =

(

1− a− F 2

)(

1− k2

µ2

)

R(k)R(−k), (6.52)

where function

R(k) =
µFD(k)

√

π(1− F 2)Γ(3/2− ik/π)
, (6.53)

is analytic every where, with zeros at k = −iπun for n = 1, 2, 3, ... and D(k) is

given by

D(k) =
∞
∏

n=1

(

1 +
un − [n+ 1/2]

n + 1/2− ik/π

)

. (6.54)

Using the properties of gamma function in the complex plane ([67], page 256,

6.1.31), the function f2 is also can be written as

f2(k) =
k

sinh k
= Q(k)Q(−k), (6.55)

where

Q(k) = Γ

(

1− ik/π

)

(6.56)

is analytic and non-zero in the upper-half plane, with poles k = −inπ, for n =

1, 2, .... Then equation (6.48) can be written as

G2(k) = f1(k)f2(k),

=

(

1− a− F 2

)(

1− k2/µ2

)

R(k)R(−k)Q(k)Q(−k),

= W+(k)W−(k),

where

W+(k) =

(

1− a− F 2

)(

1− k2/µ2

)

R(k)Q(k),

this implies that using equations (6.53) and (6.56), W+(k) becomes

W+(k) =

µF

(

1− a− F 2

)(

1− k2/µ2

)

Γ

(

1− ik/π

)

D(k)

√

π(1− F 2)Γ(3/2− ik/π)
(6.57)

and

W−(k) = R(−k)Q(−k) =
µFΓ

(

1 + ik/π

)

D(−k)
√

π(1− F 2)Γ(3/2 + ik/π)
. (6.58)
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6.4 Calculation of the interface shape η1(x, t)

In this section the shape of the interface between two layers is calculate as follows.

Substituting equations (6.46) and (6.47) into equation (6.21), we obtain

φ̄1(k, y) =

∞
∫

−∞

φ1(x, y)e
ikxdx = − E

kW+(k)
, (6.59)

and

φ̄2(k, y) =

∞
∫

−∞

φ1(x, y)e
ikxdx =

E

k tanh kW+(k)
. (6.60)

Applying the inverse Fourier transform, the solution for φ1(x, y) and φ2(x, y) can

be expressed as

φ1(x, y) = − 1

2πi

∞+iδ
∫

−∞+iδ

E

kW+(k)
e−ikxdk, (6.61)

and

φ2(x, y) =
1

2πi

∞+iδ
∫

−∞+iδ

E

k tanh kW+(k)
e−ikxdk, (6.62)

where δ is a positive constant so that the poles along the real k-axis lies below the

inversion contour. To use the formula for the interface profile, equation (6.20), we

need to determine the derivative of φ1(x, y) and φ2(x, y) with respect to x, namely

∂φ1

∂x
(x, y) =

1

2π

∞+iδ
∫

−∞+iδ

E

W+(k)
e−ikxdk, (6.63)

and

∂φ2

∂x
(x, y) = − 1

2π

∞+iδ
∫

−∞+iδ

E

tanh kW+(k)
e−ikxdk. (6.64)

Then, substituting equation (6.63) and (6.64) into equation (6.20) gives the loca-

tion of the free surface as

η1(x) =
F 2

1− a

E

2π

∞+iδ
∫

−∞+iδ

a+ coth k

W+(k)
e−ikxdk, (6.65)

where W+(k) is given in equation (6.57) and E can be determined from the sep-

aration point between the flat plate and the free surface, which follows from the

condition η1(x) = −1.
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By examination of the expression for η1(x), we find that η1(x) has a pole at the

origin, two poles at k = ±µ, and infinitely many poles at k = −iπum. By closing

the contour in the lower half-plane and using residue theorem, the location of the

interface as given by equation (6.65) can be presented finally in the form

η1(x) =
E
√

π(1− F 2)

F (1− a− F 2)

[ −µ(1/2− iµ/π)Γ(iµ/π)e−iµx

(1− a− µF 2a)Γ(1/2 + iµ/π)
∞
∏

n=1

(

1 + un−[n+1/2]
n+1/2−iµ/π

)

+
µ(1/2 + iµ/π)Γ(−iµ/π)eiµx

(1− a+ µF 2a)Γ(1/2− iµ/π)
∞
∏

n=1

(

1 + un−[n+1/2]
n+1/2+iµ/π

)

+

umµ
2F 2

∞
∏

n=1

(

1 + un−(n+1/2)
n+1/2+πum

)

Γ(um)e
−πumx

(1− a+ iπumF 2a)(1− F 2 + π2u2mF
4)Γ(1/2 + um)

]

. (6.66)

In the next section we present the calculation of the interface shape for different

parameters and discuss the results obtained.

6.5 Conclusion

The steady two-dimensional flow past a semi-infinite flat plate in a fluid of finite

depth for the two layer model is solved analytically using the Fourier transform

and the Wiener–Hopf technique for the subcritical case, F < 1. This problem can

be considered as a free-surface problem similar to the problem solved in Chapter

2, if we assume that the density ratio ρ1/ρ2 = 0.

The interface profiles given by equation (6.66) are computed for two values of

Froude number and different values of density ratio as shown in figure 6.2 (a) and

(b). When density ratio is small (i.e., the density difference between the layers

is relatively big), wave amplitudes are smaller than in the case when the density

ratio is close to one (i.e., small density difference). It is quite natural as in the

later case even small external force can cause large amplitude perturbation, due

to buoyancy force is rather small when the density difference between the layers is

negligible.

Increase of the Froude number leads to the increase of wave period (cf. panels

(a) and (b) in figure 6.2), whereas the amplitudes remain almost the same.
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Figure 6.2: This figure shows the interface profile for different values of a: black line – a = 0,

blue line – 0.5, red line – 0.7. Panel (a) – Froude number F = 0.5, and panel (b) – F = 0.7.

The relation between the wave amplitude A and the density ratio a = ρ1/ρ2

for Froude numbers F = 0.5 and 0.7 are shown in figure 6.3(a). As one can see

from this figure, the wave amplitude increases when the density ratio a growths.

Similarly the wavelength λ monotonically increases too when the density ratio

growths. This can be seen from figure 6.3(b). In the meantime, the curve A(a)

for F = 0.5 is above the similar curve for F = 0.7, whereas the curve λ(a) for

F = 0.5 is below the similar curve for F = 0.7. The detailed dependence of these

parameters on the Froude number will be a subject of a separate study in the

future.
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Figure 6.3: This figure shows the dependence of wave amplitude (a) and wavelength (b) on

the density ratio for two values of Froude number: F = 0.5 (red line) and F = 0.7 (black line).



Chapter 7

Conclusion and Future Work

7.1 Research Outcomes

This research aimed to design in a perspective a ship stern that may effectively

minimise or eliminate downstream waves. It has been shown in this Theses that

such aim can be achieved for certain models of stern shapes. This has been demon-

strated both numerically and theoretically by means of linear and weakly nonlinear

solutions. For stern shapes that have the downward point separating with the free

surface were determined to have eliminated the wave amplitude downstream.

Within the framework of linearised steady problem, the solution was derived for

the free surface past a curved plate. The free surface was then analysed using the

Fourier transform and Wiener–Hopf methods. The resultant Wiener–Hopf equa-

tion was solved for relatively small Froude numbers F < 1 using the factorisation

method. The derived formula is applicable to a stern of any shape in contrast to

the problem solved by McCue and Stump [85] for the flat plate case only.

The numerical solution to the fully nonlinear problem for the stationary prob-

lem presented in Chapter 2 was solved in Chapter 3, using the conformal mapping.

The problem was transformed from the physical plane to the non-physical plane

where the free surface is known. It enabled Cauchy’s integral theorem to be ap-

plied. The boundary integral equation method was also used to derive an integral

equation for the unknown free surface. A system of nonlinear equations was de-

rived and then solved by Newton’s method. Chapter 3 presents the novel numerical
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algorithm developed in the Theses to generate the free surface profile past different

stern shapes.

The exact solution to the weakly nonlinear problem was derived and presented

in Chapter 4. The solution was constructed with the help of the phase plane.

Comparisons of linear and nonlinear solutions for different families of stern shapes

(curved plates) were also presented. This chapter presents also a comparison of the

results of simulation with the results known from the literature for the flat plate

case. It has been demonstrated that the solution to the free surface flow past a

flat plate in a fluid of finite depth is reasonably accurate.

Chapter 5 contains the solution to the linearised non-stationary problem of

free surface flow development past a flat plate suddenly submerged into the flow at

small depth. The problem formulation is presented under basic assumptions. The

solution for free surface is derived with on the basis of application of the Laplace

and Fourier transforms, as well as Wiener–Hopf method. The method of numerical

solution to the derived equation was developed with the help of the best rational

approximation for the inverse Laplace transform. The free surface profile has been

plotted for short and long times using rather complex and sophisticated formula.

It has been demonstrated that the unsteady solution eventually approaches the

steady state solution as t → ∞. The transition to the steady state has been

studied in details. In particular, it has been shown that the large-amplitude splash

arises at the beginning and then wave amplitude non-monotonically approaches

the steady state value.

Chapter 6 is devoted to problem generalisation to internal waves generation in

two-layer fluid past stationary moving stern. The problem has been formulated for

the case when the lower layer has finite depth, whereas the upper layer is infinite.

The solution to this problem was derived in the linear approximation using the

Fourier transform and Wiener–Hopf method. The influence of the density aspect

ratio has been analysed. It has been confirmed that in the limit of zero density

of the upper layer the solution derived for two-layer model reduces to the solution

for free-surface case.
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7.2 Future Directions

This research examined the effect of different families of stern shapes to eliminate

waves past the stern and hence minimise the wave drag for the ship model. The

results obtained can be used to model the flow near the stern of a wide blunt ship.

While two-dimensional models do not describe real bow and stern flows exactly,

they are useful for understanding the details of wave generation by mowing blunt

body and, to certain extant, can provide valuable information about flow structure

in the near-stern zone. In particular, the results show that the wave amplitude

can be minimised in two-dimensional case and, perhaps, in three-dimensional case

too. The three-dimensional case is much more complicated and is challenging for

future study.

A number of extensions to further research of steady and unsteady problems are

possible. In particular, the solutions obtained in the Theses by means of linear ap-

proximation and within the framework of weakly nonlinear model, apparently, can

be further improved and tested numerically in the original Navier–Stokes equation.

While the linearised unsteady problem of the free surface flow past a semi-infinite

flat plate in a fluid of finite depth has been solved in the Theses, further study

is highly desirable to describe the case of semi-infinite curved plate. The aim is

to find such families of plate shapes which may provide trailing waves of minimal

amplitude. Such a problem may be solved on the basis of technique developed in

this work.

The case of two-layer fluid was only briefly considered in the Theses. However

the problem of wave minimisation on the interface between two layers of a fluid of

different densities is also very interesting and topical. The problem can be even

further generalised for smoothly stratified fluid. Again sterns of different shapes

can be studied both theoretically and numerically. The dependences of results on

the density aspect ratio or character of stratification, as well as the depth layer

ratio should be studied.
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Relation Between P and ǫ

From the Bernoulli equation,

1

2
V 2 + gh+

P̃−∞

ρ
=

1

2
c2 + gH +

P̃a
ρ
,

by using Eq. (2.1) divided by gh, we can be write down

1

2
F 2

(

1− h

H

)

− H

h
+ 1 =

P̃a − P̃−∞

ρgh

where F = V/
√
gh. Defining P = (P̃−∞ − P̃a)/ρgh, we can express the equation

written above as (note that h/H = 1− ǫ):

1

2
F 2
[

1− (1− ǫ)2
]

−
(

1

1− ǫ

)

+ 1 = −P. (A.1)

With the help of Taylor expansion around ǫ = 0, we find

1

2
F 2
[

1− (1− 2ǫ+ ǫ2)
]

− (1 + ǫ+ ǫ2 + ...) + 1 = −P,

which implies that

ǫ =
P

1− F 2
+O(ǫ2),

and hence, for ǫ≪ 1 we can use the approximate relationship

ǫ ≈ P

1− F 2
. (A.2)
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Consideration of the Infinite Product T (k)

This appendix shows the calculation of the infinite product T (k) in Chapter 2.

In Tables B.2 and B.3, the real and imaginary parts of the infinite product T (µR)

are shown for different Froude numbers and integer values, N. Table B.4 shows

the calculation of the infinite product T (iπµm), for different values of the Froude

number, and m = 1, 100 and 1000 as given by (2.81). The result is accurate to 7

significant places when N = 104 and m = 1.

The exact and approximation values of the ratio

Γ(µm)

Γ(1
2
+ µm)

(B.1)

is computed using Maple 12. The approximate values of this ratio are computed

for different values of m via Stirling’s formula [67],

Γ(µm)

Γ(1
2
+ µm)

∼ 1

µ
1/2
m

+
1

8µ
3/2
m

+
1

128µ
5/2
m

. (B.2)

It is very accurate, as can be seen in Table B.1.
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m exact approximate

10 0.312889751 0.312891082

50 0.141079516 0.141079521

100 0.099877087 0.099877087

169 0.076866745 0.076866745

200 0.070666854 0.070666854

1000 0.031618830 0.031618830

Table B.1: This table shows calculation of the exact values of the ratio Γ(µm)/Γ(1
2
+ µm),

and the approximation values by using Stirling’s formula, for different values of the integer m,

when the Froude number F = 0.5.
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Real part of T (µR)

F N = 102 N = 103 N = 104 N = 105

0.35 0.702426646 0.697256224 0.696737560 0.696737665

0.5 0.752736684 0.750023284 0.749750122 0.749750119

0.65 0.814755841 0.813017838 0.812842581 0.812842570

0.8 0.864510225 0.863292569 0.863169352 0.863169351

0.95 0.898969000 0.898071033 0.897980933 0.897980932

0.99 0.906129897 0.905296339 0.905213082 0.905213080

Imaginary part of T (µR)

F N = 102 N = 103 N = 104 N = 105

0.35 −0.183490507 −0.182217505 −0.182082802 −0.182082264

0.5 −0.110048865 −0.109671347 −0.109631580 −0.109631560

0.65 −0.055203066 −0.055092317 −0.055080469 −0.055080354

0.8 −0.025267980 −0.025235292 −0.025231780 −0.025231785

0.95 −0.008096851 −0.008089657 −0.008088816 −0.008088451

0.99 −0.003247759 −0.003245125 −0.003244824 −0.003244320

Table B.2: This table shows the calculation of the real and imaginary part of the infinite

product T (µR), for different values of the Froude number F , for the first N terms.
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Real part of T (µR)

F N = 102 N = 103 N = 104 N = 105

0.35 0.702426646 0.696680400 0.696680117 0.696680114

0.5 0.752736684 0.749719793 0.749719614 0.749719612

0.65 0.814755841 0.812823266 0.812823169 0.812823168

0.8 0.864510225 0.863156163 0.863156095 0.863156094

0.95 0.898969000 0.897970361 0.897970311 0.897970310

0.99 0.906129897 0.905296339 0.905296318 0.905296315

Imaginary part of T (µR)

F N = 102 N = 103 N = 104 N = 105

0.35 −0.183490507 −0.182067833 −0.182067759 −0.182067758

0.5 −0.110048865 −0.109627138 −0.109627116 −0.109627116

0.65 −0.055203066 −0.055079209 −0.055079203 −0.055079203

0.8 −0.025267980 −0.025231340 −0.025231338 −0.025231338

0.95 −0.008096851 −0.008088755 −0.008088755 −0.008088816

0.99 −0.003247759 −0.003245125 −0.003245125 −0.003245124

Table B.3: This table shows the calculation of the real and imaginary part of the infinite

product T (µR), for different values of the Froude number F after N terms, given by equation

(2.80).
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T (iπµm)

F N = 102 N = 103 N = 104 N = 105

m = 1

0.35 0.639707391 0.635043339 0.634519171 0.634519168

0.5 0.780091693 0.777301138 0.776986776 0.776986774

0.65 0.862012932 0.860187780 0.859982098 0.859982095

0.8 0.907656427 0.906387651 0.906244542 0.906244541

0.95 0.934337759 0.933411686 0.933307016 0.933307016

0.99 0.939528969 0.938671464 0.938582240 0.938582235

m = 100

0.35 0.971233847 0.966489626 0.965728921 0.965728914

0.5 0.984641131 0.982281040 0.981902482 0.981902478

0.65 0.990703525 0.989298331 0.989095055 0.989072119

0.8 0.993834642 0.992903949 0.992753941 0.992753940

0.95 0.995626556 0.994965242 0.994858679 0.994858677

0.99 0.995973312 0.995363997 0.995274212 0.995274208

m = 10000

0.35 0.999651731 0.999469070 0.999287045 0.999271106

0.5 0.999817204 0.999727789 0.999639545 0.999630629

0.65 0.999889916 0.999836826 0.999773151 0.999779545

0.8 0.999927143 0.999891889 0.999853915 0.999854263

0.95 0.999948342 0.999923831 0.999898840 0.999896674

0.99 0.999952445 0.999929930 0.999920766 0.999920760

Table B.4: This table shows the calculation of the infinite product T (iπµm), for different

values of the Froude number F , given by (2.81). The calculation been made after N terms for

different values of m.
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Evaluation I(x, z/t) and The Roots Of f1(k, z/t) For

Different Values Of z

Ten values of zj are used here to evaluate the roots of function f1, given by equa-

tion (5.72), at t = 1, F = 0.5 and various values of z.

For each value of zj function f1 has the infinite number of complex roots in

the upper half-plane (they are denoted by ζ̃l, l = 1, 2, 3, . . .) and infinite number

of complex roots in the lower half-plane (they are denoted by ζj, j = 1, 2, 3, . . ..

But the roots ζj and ζ̃l are different for each particular value of zj as shown in the

Figs. C.1 – C.5. This leads to different functions G1(k, z/t) and then, different

functions I(x, z/t), correspondingly.

So we have the general formulae for I(x, z/t) and G1(k, z/t):

Ir(x, zr/t) = −iE
(

Ar + iBr

)

, for r = 1, 2, . . . , 10, (C.1)

where

Ar =
3 + 0.183755(zr/t)

(zr/t)2F 2
, (C.2)

and

Br =
∞
∏

j=1

(iζj − zr/t)Γ

(

1 +
iζj
π

)

cosh(ζj)e
−iζjx

ζj(zr/t)2e1+2itζj/zr
. (C.3)
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G1(k, zr/t) =
1

k2
f1(k, zr/t)f2(k, zr/t)

=
1

k2
Γ

(

1− ik

π

)

Γ

(

1 +
ik

π

)

(zr/t)
2F 2e2itk/zr

∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l
∞
∏

j=1

(

1− k

ζj

)

ek/ζj ,

=
1

k2
K−(k, zr/t)K+(k, zr/t), for r = 1, 2, . . . , 10,

where

K+(k, zr/t) = (zr/t)
2F 2e2itk/zrΓ

(

1− ik

π

) ∞
∏

j=1

(

1− k

ζj

)

ek/ζj , for r = 1, 2, . . . , 10,(C.4)

and

K−(k, zr/t) = Γ

(

1 +
ik

π

) ∞
∏

l=1

(

1− k

ζ̃l

)

ek/ζ̃l, for r = 1, 2, . . . , 10. (C.5)

Figure C.1: Zero isolines of functions Ref1(k, z/t) (blue lines) andImf1(k, z/t) (red lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z2 = 4.0277− 1.1939i.
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(a) (b)

Figure C.2: Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t) (red lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z3 = 3.2838 + 3.5944i, z4 = 3.2838− 3.5944i in figure (a) and (b) respectively.

(a) (b)

Figure C.3: Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t) (red lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z5 = 1.7154 + 6.0389i, z6 = 1.7154− 6.0389i in figure (a) and (b) respectively.
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(a) (b)

Figure C.4: Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t) (red lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z7 = −0.8944+ 8.5828i, z8 = −0.8944− 8.5828i in figure (a) and (b) respectively.

(a) (b)

Figure C.5: Zero isolines of functions Ref1(k, z/t) (blue lines) and Imf1(k, z/t) (red lines).

Dots indicate intersection points of isolines. The plot was generated for F = 0.5, t = 1 and

z9 = −5.1612+ 11.3752i, z10 = −5.1612− 11.3752i in figure (a) and (b) respectively.
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