
Ecological Modelling 483 (2023) 110451

Available online 8 July 2023
0304-3800/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Assessing the effect of using different APSIM model configurations on 
model outputs 

Ranju Chapagain a,*, Neil Huth b, Tomas A. Remenyi c, Caroline L. Mohammed a, Jonathan 
J. Ojeda a,d,e 

a Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia 
b Commonwealth Scientific and Industrial Research Organisation (CSIRO), Toowoomba, QLD 4350, Australia 
c School of Geography and Spatial Sciences, University of Tasmania, Hobart, TAS 7005, Australia 
d Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, QLD 4350, Australia 
e Terradot, Standford, CA 94305, United States   

A R T I C L E  I N F O   

Keywords: 
APSIM 
Potato 
Structural uncertainty 
Uncertainty decomposition 
Variance 
Crop modelling 

A B S T R A C T   

The three major sources of uncertainty in crop models are model inputs, structure and parameters. Model 
structure is one of the major contributors to this uncertainty, however, its quantification is difficult due to 
limitations in controlling confounding effects from parameter and input uncertainty. The objective of this study 
was to quantify the contribution of structural uncertainty to the variance in model outputs produced by the 
Agricultural Production Systems sIMulator (APSIM). Outputs investigated were yield, irrigation requirements, 
partial gross margin, drainage and nitrogen (N) leaching. Eight model structures differing in choice of soil water 
model, crop model and irrigation model were developed within a single APSIM version (v.7.10) and tested under 
three contrasting environments (climate × soil) across 120 years. We quantified: (i) the model structure un-
certainty (from soil water, crop and irrigation models) using analysis of variance (ANOVA) and deviation 
analysis; and (ii) the variability of outputs due to model structure and climate using the coefficient of variation. 
Confounding effects from inputs, parameters and model users were controlled. Most structural uncertainty 
resulted from first order effects of the choice of model components (crop model: 12.2–98.9%, irrigation model: 
0–78.4%, soil water model:1–33.7%) rather than second order interactions between components (0.1–18.9%). 
Furthermore, uncertainty from choice of sub-model/model used was not necessarily related to the structural 
complexity of these components. The effects of structural uncertainty on predictions commonly used to inform 
agronomic, ecological or policy decision making were strongly impacted by site and climate conditions i.e., high 
rainfall site (~1330 mm year− 1) had less uncertainty and variability as compared to low rainfall site (~610 mm 
year− 1), highlighting the need for any uncertainty assessment to cover the entire range of conditions for model 
application. Here we show the value of a component-based modelling framework for quantifying uncertainty in 
crop modelling studies.   

1. Introduction 

The agricultural ecosystem, which covers a significant portion of the 
Earth’s land, stands as the largest human-made ecosystem (Shah et al., 
2019; Swinton et al., 2007; Zhang et al., 2007). It spans around 40 
percent of the Earth’s terrestrial surface (Foley et al., 2005; Gordon 
et al., 2010). The primary goal of managing agricultural ecosystems is to 
maximize the production of essential ecosystem services like food, fibre 
and fuel. This objective relies on a diverse range of supporting and 

regulating services, such as maintaining soil fertility, nutrient cycling, 
facilitating pollination etc., which directly influence the underlying 
biophysical capacity of agricultural ecosystems (Gordon et al., 2010; 
Reid et al., 2005; Zhang et al., 2007). 

Crop models play a crucial role in agricultural and environmental 
planning by providing valuable guidance and information (Specka et al., 
2015) to farmers, policy-makers and researchers (Meenken et al., 2021; 
Ramirez-Villegas et al., 2017). These models effectively combine 
ecological and agronomic expertise, allowing for the development of 
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ecologically intensive cropping systems and a deeper understanding of 
the complex connections between agriculture, the environment and crop 
responses. They also enable the evaluation of the influence of various 
factors, including climate change, market dynamics, environmental 
variables and management practices on crops (Chapagain et al., 2022; 
Kamali et al., 2018; Manschadi et al., 2021; Porwollik et al., 2017). 
Moreover, crop models are instrumental in assessing the effect of human 
activities or environmental factors on ecosystem services (e.g. biomass 
production, carbon sequestration potential, water availability etc.) 
(Damour et al., 2012; Specka et al., 2015). During the last three decades, 
crop models were increasingly used to simulate crop production (Elliott 
et al., 2014; Folberth et al., 2014; Liu et al., 2013; Müller et al., 2021), 
agro-economic scenarios (Folberth et al., 2019; Müller and Robertson, 
2014; Schneider et al., 2011), resource use efficiency (Hochman et al., 
2009; Hunt et al., 2013; Hunt and Kirkegaard, 2011; Kirkegaard and 
Hunt, 2010) and environmental impacts (Dokoohaki et al., 2021; Liu 
et al., 2018). Various sources of uncertainty exist within crop models 
(Chapagain et al., 2022) which restricts their accuracy to predict the 
behaviour of the agro-ecosystem (Dokoohaki et al., 2021; Ramir-
ez-Villegas et al., 2017). Uncertainty in crop modelling may be due to 
inputs such as climate models (Folberth et al., 2014; Rosenzweig et al., 
2014) or soil characteristics (Folberth et al., 2016), crop management 
practices (Teixeira et al., 2017), model structure (Alderman and Stanfill, 
2017; Sándor et al., 2017), parameterization (Sándor et al., 2017) and 
users preferences/biases (Confalonieri et al., 2016). To accurately 
interpret model results, it is essential to acknowledge and consider the 
inherent uncertainty associated with them (Specka et al., 2015). 

Structural uncertainty may vary depending on the model, its type (e. 
g., size of sub-units, lumped or distributed) and study area (Capell et al., 
2012; Shoaib et al., 2021). However, there are fewer studies on struc-
tural uncertainty when compared to input and parameter uncertainty 
(Chapagain et al., 2022). Recently, efforts have been made to charac-
terise the uncertainty in crop model processes and their configuration 
through collaborative initiatives such as Agricultural Model Intercom-
parison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) 
and Modelling European Agriculture with Climate Change for Food 
Security (MACSUR) (König et al., 2014). As part of these initiatives, a 
range of crop models with different structures were used, where either 
different modelling groups run the same crop model (Asseng et al., 2015; 
Kuhnert et al., 2017; Porwollik et al., 2017; Sándor et al., 2017) or 
multiple models are run by a single group (Cammarano et al., 2017; 
Wallach et al., 2017). Additionally, several approaches used to model 
different processes determining crop growth (Kimball et al., 2019; 
Rettie et al., 2022) have been investigated. However, to date, there are 
few studies which have tried to quantify uncertainty in processes and 
structure under the same modelling platform (Ramirez-Villegas et al., 
2017). Besides, structural uncertainty may often be confounded with 
that from inputs, parameters, and users when running crop models. 
Generally, agile systems approaches which use pair programming 
methods (Chen and Rea, 2018) can be used for quality control in such 
cases. However, to the best of our knowledge, this has not been applied 
in previous studies on structural model uncertainty. 

Model uncertainty analysis has been focused mainly on crop yield 
and phenology outputs (Chapagain et al., 2022). There is a lack of crop 
modelling uncertainty analysis on economic and environmental x crop 
management (such as irrigation, nitrogen (N) fertilizer) indicators. The 
rapidly growing population along with climate change put increasing 
pressures on irrigation systems to ensure food security and social, 
environmental and economic sustainability (Fernández et al., 2020; 
Koech and Langat, 2018). In addition, the burning challenge is to ensure 
that the irrigation management allows rational economic gains to the 
growers and meets the food demand, while ensuring environmental 
needs are not comprised (Cosgrove and Loucks, 2015; Rockström et al., 
2017). In this regard, growers must take prudent decisions about irri-
gation systems, methods, strategies and scheduling amongst other fac-
tors to manage in-field water effectively for which there is a need to 

weigh the implications of different options (Fernández et al., 2020). 
Besides water, nitrogen is needed for sustainable agriculture pro-

duction and growth (Tang et al., 2021; Zhang et al., 2015). However, N 
leaching from agricultural soils causes direct and indirect impacts to the 
environment and human settlements (Bouwman et al., 2013; Galloway 
et al., 2003, 2008; Griffis et al., 2013; Reay et al., 2012; Steffen et al., 
2015). Therefore, these environmental and economic variables need to 
be assessed, along with agronomic variables (yield, biomass, phenology) 
when conducting model uncertainty studies. 

In order to evaluate the sustainability of agroecological cropping 
systems, it is important to take a holistic approach, taking into account 
the various functions of the system, including agronomic, economic and 
ecological aspects (Chabert and Sarthou, 2020; Craheix et al., 2016; 
Garbach et al., 2017). Therefore, the aim of this research was to measure 
the uncertainty in model structure by analysing simulated agronomic (i. 
e. yield, irrigation requirement), environmental (i.e. water drainage, N 
leaching) and economic (i.e. partial gross margin (PGM)]) outputs in 
three environmentally distinct potato growing regions in Tasmania, 
Australia (Fig. 1). Hence, the authors have tried to isolate or eliminate 
uncertainty due to other sources (i.e. input, parameter). We presented a 
novel approach to identify and quantify the model structural uncertainty 
removing sources of uncertainty arising from inputs, parameters and 
skill of the model user. To achieve our objective, firstly we simulated 
different outputs using eight different model structures that differed in 
choice of soil water model, crop model and irrigation model (2 × 2 × 2 
= 8 model structure combinations) in the same modelling platform - 
APSIM. We considered APSIM as a tool for the experimental design as it 
allows controlled experiment- we controlled everything in the model 
except the structural uncertainty as best as we could. Hence, the two 
models were selected to generate structural uncertainty and the 
inter-comparison of the two crop models is out of scope of this paper. 
Secondly, we quantified the mean proportion of variance (using analysis 
of variance (ANOVA) and coefficient of variation) on simulated model 
outputs from the eight model structures across space (environmentally 
diverse locations) and time (multiple years). Thirdly, we investigated 
the deviation in model outputs for different model structures. Finally, 
we quantified the variability in model outputs due to (i) model structure 
variability (CVmodel) and (ii) inter-annual climate variability (CVclimate) 
to discriminate uncertainty from variability. 

2. Material and methods 

2.1. Study region 

Tasmania, a state of Australia, is located between approximately 
40–44◦S and 144–149◦E and has an area of 68,401 km2. In Tasmania, 
the annual rainfall ranges from 300 mm in the Central Midlands to 3600 
mm in the West Coast (Ojeda et al., 2021b), whereas annual mean 
temperature varies between 6 ◦C (Central Highlands) to 21 ◦C (North-
east Coast) (Corney et al., 2010) and mean annual evapotranspiration 
ranges between 600 and 700 mm (BOM, 2022). For this study, three 
environmentally diverse potato growing regions of Tasmania were 
considered (Fig. 2): Cressy, low rainfall (~610 mm year− 1); Forthside, 
moderate rainfall (~980 mm year− 1); and Gunns Plains, high rainfall 
(~1330 mm year− 1). 

2.2. Uncertainty from model users 

The same two model users (MU1 and MU2) were involved in the 
model simulation configuration and execution. One model user (MU1) 
had collected all relevant input data and agronomic information for the 
study locations. The second model user (MU2) was mainly involved in 
the configuration, implementation and running of APSIM. The entire 
modelling process was undertaken online with sharing of a common 
computer screen and recording of all modelling sessions. A paired pro-
gramming approach (Ayub et al., 2019; Chen and Rea, 2018) was used in 
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each activity. Such an approach is used within agile software develop-
ment processes where one person (the driver) constructs the software 
while the second (the observer or navigator) provides ongoing review 
(Ayub et al., 2019; Chen and Rea, 2018; Wei et al., 2021). In this case, 
MU2 provided the role of driver while MU1 navigated the process. This 
process ensured correct representation of input data and implementa-
tion of model configurations by the same process and modellers for 
every simulation within this study reducing model uncertainty due to 
this source. The main aim of using peer programming for this study was 
not only to minimise errors in the building of the simulations but also to 

remove bias from having different people build different parts of the 
dataset. 

2.3. Model inputs 

An input is the information that is put into a model so that it can 
operate. It is a value, not a decision (Cambridge English Dictionary, 
2022). For example, a given rainfall amount per day is an input to 
APSIM. 

All model simulations were generated using data from the same 

Fig. 1. Components of the structural model uncertainty considered in this study [soil water models (SoilWat and SWIM3), crop models (PMF and nPMF) and 
irrigation models (IM1 and IM2)]. Irrigation, soil water drainage and nitrogen leaching were accumulated from planting to full crop senescence. For details about 
model structure components and design see Section 2.5. 

Fig. 2. Map: Locations used in this study to quantify crop model uncertainty. Observed soil type and mean annual rainfall are indicated after the location name. Right 
panels: Average observed monthly values since the beginning of observed records of: (b) mean monthly temperature, (c) monthly rainfall and (d) monthly observed 
evapotranspiration. 
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source and spatial resolution. Historical daily weather data inputs of 
rainfall, maximum and minimum temperature, solar radiation, potential 
evapotranspiration and vapour pressure were obtained from the Scien-
tific Information for Land Owners (SILO) database (longpaddock.qld. 
gov.au/silo/gridded-data) (Jeffrey et al., 2001). The SILO product uses 
interpolation techniques to fill gaps in space or time in the observational 
records, producing continuous records required for agricultural model-
ling. Soil types vary across the landscapes and topography of the study 
region (Cotching et al., 2009). Data for the dominant soil type at each 
location was used to parameterise the simulations i.e., Grey Kurosol for 
Cressy, Red Ferrosol for Forthside and Red Dermosol for Gunns Plains 
(Isbell, 2016). The soil profiles in the models were created using soil 
sampling farm data from the Water for Profit Project (Hinton et al., 
2018) (Table 1). Potatoes are sown between 15 October to 15 November 
in Tasmania (Ojeda et al., 2021a). We used a fixed planting date (3rd 

November), sowing density (11.55 seeds/m2), row spacing (813 mm) 
and cultivar (Russet Burbank) based on the mean values calculated 
across 112 potato farm districts during the 2003–4, 2004–5, 2005–6 and 
2006–7 growing seasons in Tasmania (Ojeda et al., 2021a). All crops 
were harvested when the crop reached full senescence. 

2.4. Model parameters 

A parameter is a set of facts or a fixed limit that establishes or limits 
how something can or must happen or be done (Cambridge English 
Dictionary, 2022). In APSIM a parameter is static, i.e., you select a 
number, and that number will be used in the entire simulation. For this 
study, by parameters, we identified two types 1- non-fixed parameters 
that are estimated by calibration and 2- fixed parameters not estimated 
using calibration but inherent in the structure which are considered to 
be part of model structure as they are not available for users to be 
changed, i.e., model developers change them as part of a model 
improvement process and then users use the released values. For 
example, dry upper limit (or field capacity), lower limit (or wilting 
point) and bulk density are non-fixed soil parameters in APSIM cali-
brated using ground data, whereas Radiation Use Efficiency (RUE) is a 
fixed parameter which is a part of the model structure. 

In any ideal world, to understand just model structural uncertainty, 
two models which have the same parameters are required but that does 
not happen in a practical scenario. In this study, most parameters are 
kept constant between the different modelling options in APSIM, except 
for parameters that are specific to SoilWAT (Table S2) and SWIM3 
(Table S3). SoilWAT has evaporation parameters which are not in 
SWIM3, and the authors have just taken them as they were in the 
database. Likewise, the authors have used the default values for pa-
rameters in SWIM3. 

Fixed parameters (not estimated using calibration) are considered to 
be part of model structure in this study as they are inherent in model 
structure and not available for the average users to change (only de-
velopers can change them). Hence, the authors have used the default 
values. In case of non-fixed parameters that are same between the 
different modelling options, the authors haven’t changed any of the 
released calibration parameters in this study and treated them as a black 
box. 

2.5. Design of model structures 

In this paper, we defined model structure as the different algorithms 
and processes that explains soil-climate-crop interactions as well as 
values of fixed parameters in the model. For example, SoilWAT and 
SWIM3 in APSIM. 

We generated isolation of the modelling framework using only one 
modelling platform (APSIM) to catch the uncertainty arising from model 
algorithms and equations. This was done to avoid introducing other 
uncertainties that are not part of model structure but due to different 
modelling platforms or the way in which different models input data and 
provide output. Hence, we selected APSIM as the modelling platform for 
this paper. 

APSIM uses a component-based approach for simulating biophysical 
processes in agricultural systems that enables models to interact 
dynamically during a simulation (Holzworth et al., 2014). A suite of 
models is available for more than thirty crop, pasture and tree species 
and for assessing main soil processes that affects agricultural systems 
(for example, soil water; nitrogen, carbon and phosphorus dynamic; and 
erosion). The APSIM allows flexible management of agricultural oper-
ations enabling the users to reproduce decision making processes used 
by land managers (Moore et al., 2014). 

For the purposes of this study, a set of different model structures 
were created within APSIM through the choice of combinations of 
differing soil water, crop and irrigation models. Two model components 
from each category were chosen (2 crop models, PMF and nPMF; 2 soil 
water models, SoilWAT and SWIM3; and 2 irrigation models, IM1 and 
IM2), resulting in 8 independent model structures (Fig. 1). Each of these 
8 permutations were run for each of the 3 locations (i.e., 8 model 
structures × 3 locations = 24 model simulations). Simulations were 
carried out for each season within the long-term weather record from 
1900 to 2020 (i.e., 24 simulations × 120 years = 2880 simulated 
growing seasons). All simulations were undertaken using APSIM Classic 
(v7.10) (Holzworth et al., 2014). 

2.5.1. Crop models 
We selected two potato models available within APSIM Classic v7.10 

Table 1 
Soil parameters by layer used to parametrise the soil water models (BD = bulk density; LL15 = lower limit; DUL = drained upper limit or field capacity; SAT = saturated 
volumetric water content; PAWC = plant available water capacity per soil layer; OC = organic carbon; EC = electrical conductivity; pH = pH in a 1:5 suspension of soil 
in water; * Australian Soil Classification (Isbell, 2016); ** Approximate FAO equivalent (Ojeda et al., 2021a; Schad, 2016)).  

Site Soil type* Texture Depth BD Air Dry LL15 DUL SAT PAWC (mm) OC EC pH 
(cm) (g cm− 3) (mm− 1) (%) (dS/m) 

Cressy  Grey Kurosol (GrK) sandy loam 0–17 1.51 0.043 0.086 0.360 0.415 46.6 1.75 0.166 5.5 
(Alisols)** sandy loam 17–40 1.64 0.053 0.059 0.276 0.355 49.9 0.45 0.125 6.0  

gravelly sandy loam 40–51 1.45 0.257 0.257 0.407 0.453 16.5 0.23 0.070 6.6  
heavy clay 51–115 1.19 0.455 0.455 0.538 0.551 53.1 

166.1 
0.36 0.339 5.7 

Forthside  Red Ferrosol (ReF) heavy clay loam 0–28 1.18 0.148 0.295 0.467 0.554 48.2 3.72 0.075 6.0 
(Ferralsols)** light clay 28–41 1.12 0.333 0.37 0.46 0.576 11.7 2.73 0.083 5.1  

light clay 41–81 1.25 0.328 0.328 0.413 0.527 34.0 0.88 0.201 5.6  
medium clay 81–110 1.39 0.337 0.337 0.432 0.475 27.6 

121.5 
0.86 0.045 5.4 

Gunns Plains  Red Dermosol (ReD) fine sand 0–30 1.25 0.059 0.119 0.430 0.492 93.3 1.90 0.140 6.8 
(Chernozems) ** light clay 30–55 1.43 0.189 0.210 0.380 0.457 42.5 0.75 0.046 7.2  

light clay 55–90 1.61 0.170 0.170 0.356 0.390 65.1 
200.9 

0.52 0.027 7.4  
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to create isolation in the modelling framework to avoid uncertainty 
arising due to modelling platform. The first has been developed using 
the Plant Modelling Framework (Brown et al., 2011) (hereafter PMF) 
and tested in several environment × management combinations in 
Tasmania (Borus et al., 2016, 2018; Lisson and Cotching, 2011). The 
second was developed by Robertson et al. (2002) using a legume-based 
model in the default APSIM Classic v7.10 structure, referred to here as 
the nPMF crop model. These two crop models are implemented into 
different languages and they have several differences in terms of 
evapotranspiration calculation, phenological stages, dry matter pro-
duction and partitioning, nitrogen uptake etc. nPMF uses C++ (Holz-
worth and Huth, 2009), whereas PMF uses C# programming language 
(Brown et al., 2011). Evapotranspiration (ET) is calculated using a 
transpiration efficiency (TE) approach (Wang et al., 2004) in nPMF, 
whereas ET is calculated externally to the crop model in PMF using the 
Micromet module (Snow and Huth, 2004). There are eight phenological 
stages in nPMF vs. six in PMF. Further, these two models differ in ap-
proaches to calculate total dry matter production, biomass partitioning 
and nitrogen uptake (Brown et al., 2011; Ridwan Saleh, 2009). The 
models have been developed and tested using different datasets - nPMF 
model has been developed using datasets from Tasmania, Australia 
(Ridwan Saleh, 2009) whereas PMF model has been developed using 
datasets from Lincoln, New Zealand (Borus et al., 2018; Brown et al., 
2011). The detailed description of nPMF model can be found in Ridwan 
Saleh (2009) and PMF in Brown et al. (2011). However, both models use 
same hydrological parameters for water uptake [lower limit or wilting 
point (LL15), drained upper limit or field capacity (DUL), saturated 
volumetric water content (SAT), root exploration factor (XF) and water 
extraction parameter (KL)]. 

2.5.2. Soil water models 
Two soil water models within APSIM were chosen to provide models 

of differing complexity, SoilWAT and Soil Water Infiltration and 
Movement (SWIM3). SoilWAT (Jones and Kiniry, 1986; Littleboy et al., 
1992) uses a simple cascading water balance model to calculate the soil 
water movement and is a commonly used model in APSIM (Hao et al., 
2021). SWIM3 (Huth et al., 2012) calculates the soil water movement, 
which provides numerical solutions to the Richards’ equation 
(Richards, 1931; Richardson, 1922). SWIM3 has been explicitly 
designed to use the same input parameters for soil water retention and 
runoff processes to assist in its application by users of SoilWAT and use 
of existing soil parameter databases developed for SoilWAT. These 
design features are of great value to this study in minimising any con-
founding of uncertainty by model structure and parameterisation. The 
shared soil parameters between soil water models are described in 
Table 1. The only differences in parameterisation involved soil param-
eters unique to each model (e.g., parameters for numerical integration 
within SWIM3). For example, SWCON (the fraction of water below SAT 
and above DUL that drains each day from each soil layer), is a unique 
parameter to SoilWAT. Whereas, KDUL, the hydraulic conductivity at 
DUL tension, is a unique parameter to SWIM3 (Vogeler et al., 2022). 

2.5.3. Irrigation models 
The two different irrigation models are slightly different codes/ al-

gorithms that describe differing irrigation interventions within an 
APSIM simulation. These different algorithms (Appendix A) have the 
same parameters within them and are part of the model structure un-
certainty because they influence behaviour of the simulated irrigation. 
In this study, the amount of water being applied is not known prior to 
the model execution as the time and amount of water to be applied is 
calculated within the simulation (considering daily rainfall, evapo-
transpiration, etc.) as part of each simulation. 

APSIM has the option to create manager scripts (defined by the user) 
to implement crop management practices. In some cases, subtle differ-
ences can occur between manager scripts developed for the same pur-
pose. Two simple irrigation models (IM1 and IM2) were used to provide 

15 mm of irrigation between the dates of 3rd Nov and 7th Feb based on 
Tasmanian farmer practices reported by Ojeda et al. (2021a). The dif-
ference was in the handling of ‘soil water deficit’ (SWD), which is 
calculated as the difference between soil moisture at field capacity 
(DUL) and simulated soil water content to the maximum rooting depth. 
IM1 had a fixed schedule of irrigating every 3 days but only applied the 
irrigation if the SWD was greater than 15 mm. IM2 differed only slightly 
from IM1. For IM2, SWD is calculated daily and irrigation water is 
applied whenever SWD > 15 mm. The calculations and management 
parameters (irrigation efficiency, amount of irrigation water and pa-
rameters used in SWD) involved as inputs to the decision were the same, 
however the application of those within the ‘decision making logic’ was 
different. Therefore, both IM1 and IM2 represented different models of 
farmers decision making processes. 

2.6. Model outputs 

Model output is the amount of something that is produced (Cam-
bridge English Dictionary, 2022). For this study, it is the result we obtain 
from the model after running the simulations. For example, crop yield 
and drainage are model outputs in APSIM. 

We assessed structural uncertainty in five model outputs: dry potato 
tuber yield at full senescence (yield); cumulative in-season irrigation 
(irrigation); cumulative in-season soil water drainage (drainage); cu-
mulative in-season nitrate leaching (N leaching); and partial gross 
margin (PGM). A season was defined as the period from planting to full 
crop senescence (which varied per year). Yield, irrigation, drainage and 
N leaching are direct outputs from APSIM. PGM was calculated using 
yield, commodity price (a constant in this study) and input costs. All 
other costs and inputs were the same between model structures and 
locations. The PGM was calculated as follows: 

PGM = (Y × P) − (irrigation × IC) (1)  

Where: Y is the dry potato tuber yield (t ha− 1); P is the income per ton of 
potato tubers (342 USD t− 1, a constant in this study); irrigation is the 
cumulaive irrigation from planting to full crop senescence; and IC is the 
irrigation cost, which includes the cost for irrigation water, tractor, plant 
and labour in Tasmania (35 USD ML− 1, a constant in this study). Yield 
and irrigation are APSIM outputs, whereas P and IC have been obtained 
from AgroGrowth Tasmania (2021) (the values were reported in AUD 
and converted to USD using conversion rate of 1 AUD = 0.7USD). 

2.7. Structural uncertainty quantification 

To quantify sources of structural uncertainty, a three-way analysis of 
variance (ANOVA) approach was used (Aryal et al., 2019; Biegler et al., 
2011) to partition the total output variance from various model struc-
tures into different uncertainty sources. The three factors used were, soil 
water (SWM), crop (CM) and irrigation model (IM). 

The total sum of squares (TSS) was calculated using Eq. (2). The 
calculated TSS was divided into two terms: main effects (Eq. (3)) and 
interaction effects (Eq. (4)). 

TSS = Main Effect + Interactions (2)  

Main Effect = SSSWM + SSCM + SSIM (3)  

Interactions = SSSWM∗CM + SSCM∗IM + SSSWM∗IM + SSCM∗SWM∗IM (4)  

where SSSWM, SSCM and SSIM represent the main effect corresponding to 
the soil water model, crop model and irrigation model, respectively. 
Then, we summarize all the interaction terms as SSI. After calculating 
the sum of the squares for all components, the mean proportion of 
variance for each model component (SWM, CM and IM) was determined 
using Eqs. (5), (6), (7) and (8) respectively. 
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VarianceSWM =
1
N

∑N

i=0

SSSWM(i)

TSSi
(5)  

VarianceCM =
1
N

∑N

i=0

SSCM(i)

TSSi
(6)  

VarianceIM =
1
N

∑N

i=0

SSIM(i)

TSSi
(7)  

VarianceSSI =
1
N

∑N

i=0

SSI(i)
TSSi

(8) 

Mean proportion of variance varies between 0 and 1 and corresponds 
to the contribution of an effect to the total ensemble variance (i.e., un-
certainty in this paper). In addition, TSS was separately calculated by 
seasonal rainfall patterns within each location. The rainfall conditions 
were classified into dry, average, and wet categories based on percentile 
thresholds, i.e., the dry period falls below the 33% percentile, an average 
period falls between the 33% and 66% percentiles, and a wet period falls 
above the 66% percentile of climatological distribution. 

2.8. Quantifying deviation of model outputs using different model 
structures 

The variance between model outputs generated using different 
model structures were compared by calculating the deviation (D) be-
tween the model outputs generated using two model structures as fol-
lows: 

D = Ma − Mb (9)  

where Ma was the model output (yield, irrigation, drainage, N leaching 
or PGM) generated by model structure a, and Mb was the model output 
generated with model structure b. In other words, D represents the 
difference in simulated outputs between the different model structures. 
Comparisons between any two model structures were conducted by 
computing the coefficient of determination (R2), Root Mean Square 
Error (RMSE) and Concordance Correlation Coefficient (CCC) calculated 
as follows: 

R2 =

[∑n
i=1

(
Mbi − Mbavg

)(
Mai − Maavg

)]2

∑n
i=1

(
Mbi − Mbavg

)2∑n
i=1

(
Mai − Maavg

)2 (10)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Ma − Mb)2

√

(11)  

CCC =
2r σa σb

(
Maavg − Mbavg

)2
+ σ2

a + σ2
b

(12)  

Where: Mai and Mbi are the simulated values for model a and model b; 
Maavg and Mbavg are the mean of model a (Ma) and model b (Mb), 
respectively; n is the number of years, r is the correlation coefficient 
between model a and b; σa and σb are the standard deviations for model a 
and b, respectively which is calculated using 1/N. CCC varies between -1 
and 1. When CCC was close to 1, the differences between models were 
low. 

2.9. Inter-annual variability of model outputs 

We calculated the coefficient of variation (CV = standard deviation/ 
mean x 100; standard deviation calculated using 1/N) as a measure of 
variability of model outputs. The CV was calculated amongst model 
structures (n = 8) for a given year (CVmodel) and for 8 model structures 
across 120 years (1900–2020) to capture the inter-annual variability 
due to weather conditions (CVclimate). 

3. Results 

3.1. Structural uncertainty quantification 

Overall, the choice of crop model caused the greatest variance in 
simulated model output, followed by choice of irrigation model and soil 
water model (Fig. 3). The structural uncertainty ranged from 12.2 to 
98.9% for crop model, from 0 to 78.4% for irrigation model, from 1 to 
33.7% for soil water model and from 0.1 to 18.9% for interactions. The 
uncertainty due to the choice of crop models was larger in all model 
outputs except irrigation, in which irrigation model contributed the 
highest (31.7–78.4%). A large part of the uncertainty in tuber yield was 
caused by variations in the crop model (79.7–98.8%) followed by irri-
gation model (0–12.7%) and soil water model (1.1–3.9%). Drainage, N 
leaching and PGM followed the similar trend in terms of uncertainty 
contribution. The second order interactions between model components 
contributed the least (0.1–18.9%) to structural uncertainty. Most 
structural uncertainty resulted from first order effects of the choice of 
model components rather than second order interactions between 
components. A similar pattern was observed when decomposing un-
certainty of model outputs between dry, average and wet years 
(Figure S1). The uncertainty coming from choice of model was inde-
pendent of model structure complexity, for example, the choice of irri-
gation model in few cases was as important as choice between soil water 
models or crop models (Fig. 3, Table 2). 

To examine, whether the majority is really the majority in other 
regions too, we analysed the variance in additional two potato growing 
regions, Epping (~ 564 mm year-1) and Devonport (~ 785 mm year-1) 
which have average annual rainfall smaller and greater than Cressy 
(~610 mm year-1) respectively. From our analysis, we found that irri-
gation model contributed the largest for irrigation and nitrogen leaching 
for drier sites (Fig. 3, Figure S2). However, choice of crop model caused 
the largest uncertainty for all other simulated outcomes and sites. 
Hence, we conclude that in general, choice of crop model caused the 
greatest variance in model outputs. 

Although the same set of input data and parameters were used in 
APSIM, simulated model outputs varied between different models in the 
range of 8–18.8 t ha− 1 for yield, 55–495 mm for irrigation, 0–353.4 mm 
for drainage, 0–76.6 kg ha− 1 for N leaching and 2644–6360 USD ha− 1for 
PGM. PMF model predicted slightly higher values of yield, irrigation and 
PGM across the three sites as compared to nPMF model, whereas 
drainage and N leaching showed an opposite trend, where nPMF model 
predicted higher values for drainage and N leaching across all three sites 
(Figure S3). A detailed statistical analysis of the differences between 
model structures is presented in Table S1. 

It is important to diagnose the contributing factors of uncertainty in 
each use case, as they are not the same across space or time (dry vs wet 
years) (Fig. 4, Figure S1). Particularly, Dy, Di and DPGM decreased with 
increase in rainfall, whereas Dd and DN showed opposite trend (Fig. 4). 
The soil water model generated maximum D values for yield (Dy: 6.8 t 
ha− 1) and PGM (DPGM: 2275 USD ha− 1), the irrigation model for irri-
gation (Di: 165 mm) and the crop model for drainage (Dd: 126 mm) and 
N leaching (DN: 51.5 kg ha− 1) (Fig. 4, Table 2). 

3.2. Variability of model outputs due to model (CVmodel) and climate 
(CVclimate) 

The CV of model simulations varied due to model structure and 
climate in different ways for different model outputs (Fig. 5, Fig. 6). In 
general, the CV across model structures (CVmodel) decreased from low- to 
high-rainfall environments. It was extremely high for drainage 
(7.7–152.4%) and N leaching (23.4–160.9%) as compared to yield 
(0.7–20.7%), irrigation (4.8–31%) and PGM (0.6–21.2%). A similar 
pattern was found when analysing climate inter-annual variability 
(CVclimate; Fig. 6). Overall, the CVclimate varied largely for the different 
model structures in the low-rainfall environment (Cressy), whereas 
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there was lower variability of model outputs in the average (Forthside) 
and high-rainfall environment (Gunns Plain). The range of CV for each 
variable is considerable too. For yield and PGM it is <15%, but for the 
drainage and N leaching, it is very high >100%. Hence, when the CV is 
higher, the uncertainty is higher, thus the decisions are less certain. 

CV is dependant on both mean and standard deviation. However, 
higher CV values in our study were mainly driven by higher values of 
standard deviation (Table S4). For example, mean yield for Cressy, 
Forthside and Gunns Plains was 14±2 t ha-1, 14±2 t ha-1 and 15±1 t ha-1 

respectively, resulting lower values of CV. On the other hand, values for 

Fig. 3. Structural uncertainty decomposition (soil water, crop and irrigation model and interaction) represented by the mean proportion of variance for simulated a) 
yield, b) irrigation, c) drainage, d) N leaching and e) partial gross margin (PGM) by location (Cressy, Forthside and Gunns Plains). 
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mean N leaching were 0.78±1.1 kg ha-1 for Cressy, 3.04±3.72 kg ha-1 

for Forthside and 6.73±9.02 kg ha-1 for Gunns Plains resulting in higher 
values of CV. 

4. Discussion 

Structural uncertainty in crop modelling studies have gained recog-
nition in recent years. However, most studies are conducted using 
different crop models operated by different people and research teams. 
There are only a few notable studies which have quantified structural 
uncertainty using the same modelling framework (Ramirez-Villegas 
et al., 2017). In this study, we applied common statistics to quantify the 
uncertainty in various crop model outputs that arises from different 
model structures within the same modelling framework with careful 
safeguards to manage uncertainty from inputs, parameters and model 
users. 

4.1. Structural uncertainty quantification 

Interestingly, uncertainty from choice of the model was not neces-
sarily related to the complexity of the model (Fig. 3, Table 2). For 
example, in many cases, the impact of subtle differences in irrigation 
management was more significant than the choice between soil water 
models differing significantly in numerical complexity. Whilst this is not 
surprising in many ways, much work has focussed on complexity metrics 
involving numbers of parameters or lines of code (Manschadi et al., 
2021). Amongst the different models we considered in this study, vari-
ance due to crop model selection outweighs the variance due to irriga-
tion model or soil water model selection (Fig. 3). Our results align with 
previous studies of uncertainty quantification (Asseng et al., 2013; Li 
et al., 2015; Rettie et al., 2022; Tao et al., 2018). Tao et al. (2018) used 7 
crop models for barley growth and found that uncertainty in crop 
models outweighs other uncertainty sources (climate models and crop 
model parameters). Similarly, Rettie et al. (2022) ran 48 crop growth x 
soil submodel configurations with 10 global climate models and 
compared the uncertainty contribution of the different weather/climate 
inputs on grain yield. These authors found that uncertainties in crop 
model were largest, followed by climate models, soil water flow, soil 
organic matter and soil heat sub-models. Our results also show that 
structural uncertainty varied amongst model outputs, but further high-
light how uncertainty contributions vary across environment (Fig. 3, 
Figure S1). The relatively different trend in various outputs amongst 
locations suggests that uncertainty contribution from different sources 
may be dependant on climate and soil conditions (Li et al., 2015; Rettie 
et al., 2022). There was a substantial amount of uncertainty surrounding 
irrigation and soil water models (Fig. 3). However, structural 

Table 2 
Minimum, maximum, mean and median deviation (D) of model outputs (yield, 
y; irrigation, i; drainage, d; N leaching, N; PGM, partial gross Margin) using 
different soil water, crop and irrigation models.  

Output Model Minimum Maximum Mean Median 

Dy (t ha− 1) Soil water 0 6.8 0.4 0.2 
Crop 0 6.0 2.4 2.3 
Irrigation 0 6.3 0.6 0.3 

Di (mm) Soil water 0 120.0 19.6 15.0 
Crop 5.0 155.0 32.3 25.0 
Irrigation 0 165.0 43.3 30.0 

Dd (mm) Soil water 0 78.8 15.3 11.3 
Crop 0 125.8 21.6 12.7 
Irrigation 0 92.8 9.6 5.8 

DN (kg ha− 1) Soil water 0 16.3 2.0 1.0 
Crop 0 51.5 3.8 1.7 
Irrigation 0 8.7 0.7 0.3 

DPGM (USD ha− 1) Soil water 0 2275 148 70 
Crop 9.0 2025 812 761 
Irrigation 0 2113 206 106  

Fig. 4. Deviation (D) of a) yield (y), b) irrigation (i), c) drainage (d), d) N 
leaching (N) and e) partial gross margin (PGM) generated using two different 
model structures for soil water, crop and irrigation vs. cumulative rainfall (rain) 
from planting to full crop senescence. 
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uncertainty from crop model accounts for the majority of variance 
observed in model outputs across environments (Fig. 3). This is because 
crop models differ the most in their approaches to representing key 
processes such as biomass accumulation and crop phenology (Wöhling 
et al., 2013). For example, the nPMF model uses a transpiration effi-
ciency approach (Wang et al., 2004) for ET calculations whereas PMF 
uses different algorithms driven by Micromet in APSIM (Snow and 
Huth, 2004). These results highlight the need to carefully identify, assess 
and describe the methods of calculation behind each crop model process 
before conducting any uncertainty analysis in future crop modelling 
studies. 

The use of different approaches to estimate a specific process, for 
example- evaporation, frequently results in differences in the outcomes 
generated by the models. This variation becomes evident when 
comparing two crop models, as it emphasizes the disparities in how each 
model calculates different processes, as demonstrated by our two potato 
models. Hence, based on this observation, we believe that if similar 
analyses were carried out for other crops, the findings would probably 
be similar, underscoring that crop model may have the largest contri-
bution to total uncertainty. 

Partial gross margin was calculated using yield and irrigation values. 
The yield price was higher as compared to irrigation cost. Thus, the 
calculated PGM mirrors the yield patterns (Figs. 3–6). Similar results 
have been reported in the study conducted by Tang et al. (2021), where 
the authors investigated potato response under different N fertilizer and 
irrigation levels and found that income trend was similar to potato yield. 
In our study, drainage and N leaching showed similar trends (Figs. 3–6). 
This may be because, N leaching is heavily influenced by soil type, 
rainfall and crop management (Sapkota et al., 2012; Thorup-Kristensen 
et al., 2003) and is directly associated to water drainage (Arauzo and 
Valladolid, 2013) in mechanistic models such as APSIM. Additionally, 
drainage and N leaching are higher in environments with low soil water 

holding capacity and high rainfall, than in those with high water holding 
capacity and low rainfall (Askegaard and Eriksen, 2007; Ojeda et al., 
2018). Our three sites (Cressy, Forthside and Gunns Plains) not only 
differed in terms of rainfall but also in the soil type (therefore in their 
water holder capacity: Table 1) and other climate variables (Fig. 2). The 
highest N leaching was found in the high rainfall, low water holding 
capacity site (Gunns Plains: Figs. 4, 6). This aligns with expectations and 
previous studies, such as the study carried out by Hess et al. (2020), 
which reported that N leaching increases with increased rainfall for 
tilled cropping systems. Our results demonstrated that the inclusion of a 
set of agronomic and environmental variables is a mandatory step of 
uncertainty quantification to assess the potential trade-offs between 
productivity and sustainability using crop models. 

4.2. Spatio-temporal resolution of the analysis 

The effects of structural uncertainty on predictions commonly used 
to inform agronomic or policy decision making were strongly impacted 
by location and seasonal conditions, highlighting the need for any un-
certainty assessment to cover the entire range of conditions for model 
application. For example, the CVmodel and CVclimate were extremely high 
for drainage and N leaching as compared to yield, irrigation and PGM 
(Figs. 5 and 6). Our study underlined the value of long-term climate 
records to capture a wide range of seasonal conditions. Spatial data on 
soils and climate is becoming more readily accessible and these should 
be employed to provide a wide range of conditions in any structural 
uncertainty assessment given the ease of model execution. 

4.3. Ecological implications of this study 

The ecological implication of this study lies in the recognition that 
the selection of a crop model heavily influences the extent and nature of 

Fig. 5. Coefficient of variation amongst model structures (CVmodel) for each year for a) yield (y), b) irrigation (i), c) drainage (d) d) N leaching (N) and e) partial gross 
margin (PGM) vs. cumulative rainfall (rain) from planting to full crop senescence in the low (Cressy), average (Forthside) and high rainfall environment 
(Gunns Plains). 
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uncertainty in simulated model outputs. This finding emphasizes the 
importance of employing a crop model that can accurately simulate 
local farm conditions and produce comparable outputs. 

Our study reveals that uncertainty resulting from choice of crop 
model contributed the largest to the uncertainty of model outputs 
(Fig. 3). When the choice of crop model contributes the largest source of 
uncertainty in simulated model outputs, it can have significant impli-
cations for ecological systems. Uncertainty in models affects the accu-
racy of predictions related to crop yield (Asseng et al., 2013; Tao et al., 
2018), water requirements (Webber et al., 2016), nutrient cycling 
(Kronvang et al., 2009) and other ecological outputs (Joetzjer et al., 
2017; Prentice et al., 2015). This, in turn, can impact the understanding 
and management of ecological systems in several ways. 

The presence of uncertainty in crop models can undermine the 

confidence of decision-makers in using model outputs for informed 
decision-making, highlighting the importance of assessing uncertainty 
to gain a realistic understanding of model outcomes (Burgman, 2005; 
Power and McCarty, 2006) and facilitate consistent and justifiable 
decision-making (Uusitalo et al., 2015). Additionally, accurate crop 
models are essential for effective resource management, such as irriga-
tion scheduling and fertilizer application. If there is a high level of un-
certainty in crop models, it becomes challenging to optimise resource 
allocation, leading to potential inefficiencies or overuse of resources that 
can negatively impact ecological systems, such as water availability and 
nutrient cycling. Furthermore, these models are often used to under-
stand the interactions between agricultural practices and ecological 
processes. Uncertainty in model outputs can affect our understanding of 
these interactions, making it difficult to assess the ecological 

Fig. 6. Coefficient of variation across years (CVclimate) for a) yield (y), b) irrigation (i), c) drainage (d) d) N leaching (N) and (e) partial gross Margin (PGM) vs. mean 
cumulative rainfall [across 120 years (1900–2020)] from planting to full crop senescence (rain) for eight model structures in the low (Cressy), average (Forthside) 
and high rainfall environment (Gunns Plains). Model structures represents each combination of soil water model, crop model and irrigation model. For example, 
SoilWat_nPMF_IM1 combines SoilWat, crop model without plant modelling framework (nPMF) and the fixed schedule irrigation model (IM1). 
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consequences of specific agricultural practices. This can hinder efforts to 
develop sustainable agricultural systems that maintain biodiversity, 
ecosystem services, and overall ecosystem health. Hence, addressing 
and reducing this uncertainty is crucial for improving the understanding 
and management of ecological systems (Rounsevell et al., 2021), pro-
moting sustainability (Diwekar et al., 2021) and minimizing negative 
ecological impacts of agricultural practices (Cardenas and Halman, 
2016). 

This research goes beyond quantifying the impact of different APSIM 
model configurations on outputs by highlighting the importance of 
integrating agronomic, economic and environmental variables in un-
certainty studies, enabling a comprehensive evaluation of trade-offs 
between productivity, profitability and sustainability in agricultural 
ecosystems. For instance, the PMF model yielded slightly higher pre-
dictions for agronomic and economic outputs, while the nPMF model 
exhibited higher values for environmental outputs. Thus, when selecting 
a suitable model, trade-offs between these variables must be considered. 
Additionally, our findings underscore the strong influence of location 
and seasonal conditions on the effects of structural uncertainty, 
emphasizing the need for comprehensive uncertainty assessments that 
cover the full range of environmental conditions relevant to the model’s 
application. 

4.4. Limitations of this study  

1 Our study provides lessons about structural uncertainty in crop 
models generated using different model structures within a single 
crop model version (APSIM Classic 7.10). Although we consider a 
wide range of years (120) to catch the inter-annual variability, we 
only considered three point-based locations for our case-study. 
Future research should include a wider range of environments 
(soil × climate) and spatial resolutions using gridded data to up-scale 
the analysis to regional or national scales.  

2 We developed two irrigation models and used two soil water models 
and crop models in APSIM Classic 7.10. Crop model resulted in the 
largest proportion of uncertainty. However, there is a lack of crop 
model description for the PMF crop model in the literature and 
source code that limited us to deeply compared the crop models in 
this paper. Therefore, future efforts should be concentrated in the 
development of proper metadata about new crop models within 
modelling frameworks such as the latest APSIM version (Next Gen-
eration; https://apsimnextgeneration.netlify.app).  

3 This study focused on three types of model outputs - agronomic 
(yield and irrigation), economic (partial gross margin) and envi-
ronmental outputs (drainage and N leaching). However, there are 
several other model outputs such as evapotranspiration, leaf area 
index, harvest index and others should be considered in future 
structural crop model uncertainty analyses.  

4 The focus of this study was to quantify structural uncertainty; hence 
the authors have tried to isolate other factors of analysis. However, 
often the temporal and spatial variability contribute to large variance 
in model output when compared to model uncertainty. Hence, future 
research should consider comparing the variance contribution of 
uncertainty vs. variability in model outputs which would provide 
more information for further model improvements.  

5 In this study, we used default values for the non-fixed parameters 
that are available when the model was released. These values are 
only one choice amongst possible choices and the selection of other 
different parameter values may lead to different simulated values, 
affecting the differences between APSIM model configurations. 
Since, the focus of this paper was to quantify model structural un-
certainty, the authors have isolated other factors including param-
eter uncertainty. However, parameter uncertainty might also have 
some contribution in the total uncertainty. Hence, practical uncer-
tainty studies should consider all possible sources of uncertainty. 

5. Conclusions 

The results from this study suggest that most structural uncertainty 
resulted from first order effects of the choice of model components 
rather than second order interactions between components. This may be 
due to biases arising from the choice of crop or management models. In 
the case of crop model choice, these biases arose from changes in each 
system’s water balance, due to differences in crop water use, as well as a 
general difference in productivity. Simple differences in assumptions 
about irrigation frequencies were sufficient to strongly influence irri-
gation volumes in response to rainfall patterns. Our study highlights that 
model structures can be accentuated when it affects highly sensitive 
model processes. Models are often used to inform management because 
of the strong links between crop management and model outputs. This 
would suggest that uncertainty from choice of irrigation model is likely 
to be high in many model applications. 

Our study demonstrates opportunities to use component-based 
modelling frameworks to explore the effects of model structural uncer-
tainty in agroecological systems. The common data requirements for 
many models within APSIM also assists researchers in minimising con-
founding effects of uncertainty in parameters or inputs. Further explo-
ration, using a wider range of alternatives available within APSIM, to 
developed within APSIM for this purpose, would allow a richer explo-
ration of crop model uncertainty, especially if combined with other 
uncertainty and sensitivity tools currently available within the APSIM 
modelling framework. 
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Appendix A  

Code for Irrigation Model 1 (IM1) 

using System; 
using ModelFramework; 
using CSGeneral; 
public class Script 
{ 
[Link] Irrigation; 

[Input] DateTime today; 
[Param] string[] irrigDatesStr; //a string array holding the dates as text 
[Param] string sameDays; //if yes, we ignore the year component 
[Param] float amount; //amount of irrigation to apply (mm) 
[Param] float eff; //irrigation efficiency 
private DateTime[] irrigDates; //an array to hold the converted dates 
private bool irrigToday = false; //a variable to hold whether or not we irrigate today 
private int year; 
private string[] split; 
[EventHandler] public void OnInitialised() 
{ 

//convert the date strings to APSIM dates 
irrigDates = new DateTime[irrigDatesStr.Length]; 
for (int i = 0; i < irrigDates.Length; i++) 
{ 

split = irrigDatesStr[i].Split(’-’); 
if (split.Length == 3) 
{ 

year = Convert.ToInt32(split[2]); 
irrigDates[i] = DateUtility.GetDate(irrigDatesStr[i], year); 

} 
else 

irrigDates[i] = DateUtility.GetDate(irrigDatesStr[i]); 
} 

} 
// The following event handler will be called each day at the start of the day 
[EventHandler] public void OnPrepare() 
{ 

irrigToday = false; 
//for every date in our date array 
foreach (DateTime day in irrigDates) 
{ 

if (sameDays.ToLower().Equals("yes") && day.Day.Equals(today.Day) && day.Month.Equals(today.Month)) 
irrigToday = true; 

else if (day.Day.Equals(today.Day) && day.Month.Equals(today.Month) && day.Year.Equals(today.Year)) 
irrigToday = true; 

} 
if (irrigToday && Irrigation.irr_deficit>15) 
{ 

IrrigationApplicationType data = new IrrigationApplicationType(); 
data.Amount = amount; 
Irrigation.Set("irrigation_efficiency", eff); 
Irrigation.Apply(data); 

} 
} 

}  

Code for Irrigation Model 2 (IM2) 

using System; 
using ModelFramework; 
using CSGeneral; 
public class Script 
{ 

[Link] Irrigation; 
[Input] DateTime today; 
[Input] double[] dul_dep; //drained upper limit (field capacity) 

(continued on next page) 
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(continued ) 

Code for Irrigation Model 2 (IM2) 

[Input] double[] sw_dep; //soil water 
[Param] int deficit; //allowable soil water deficit 
[Param] double eff; //irrigation efficiency 
[Param] string start; //no irrigation will be applied before this date 
[Param] string end; //no irrigation will be applied after this date 
[Param] int maxlayer; //calculate soil water deficit to this layer (inclusive) 
[Param] int amount; 
[Output] double totalSWD; //total soil water deficit for given layers 
[EventHandler] public void OnInitialised() 
{ 

if (maxlayer > dul_dep.Length) 
{ 

Console.WriteLine("Warning: max layer is greater than number of layers."); 
Console.WriteLine("Using full profile for soil water deficit calculations."); 
maxlayer = 0; 

} 
} 
// The following event handler will be called each day at the beginning of the day 
[EventHandler] public void OnPrepare() 
{ 

double[] SWD = new double[dul_dep.Length]; 
for (int i = 0; i < (maxlayer > 0 ? maxlayer: dul_dep.Length); i++) 
{ 

SWD[i] = Math.Max(0.0, dul_dep[i] - sw_dep[i]); 
} 
totalSWD = MathUtility.Sum(SWD); 
//if the soil water deficit is higer than the allowed deficit, and today is within the irrigation window 
if (totalSWD > deficit && DateUtility.WithinDates(start, today, end)) 
{ 

IrrigationApplicationType data = new IrrigationApplicationType(); //using a type means we can use defaults for 
values we don’t change 

data.Amount = amount == 0 ? (int) totalSWD: amount; 
Irrigation.Set("irrigation_efficiency", eff); 
Irrigation.Apply(data); 

} 
} 

}  
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Folberth, C., Elliott, J., Müller, C., Balkovič, J., Chryssanthacopoulos, J., Izaurralde, R.C., 
Reddy, A., 2019. Parameterization-induced uncertainties and impacts of crop 
management harmonization in a global gridded crop model ensemble. PLoS ONE 14 
(9), e0221862. https://doi.org/10.1371/journal.pone.0221862. 

Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L.B., Obersteiner, M., 
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