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rivers). Floods can cause widespread devastation, includ-
ing significant economic loss, loss of life, and substantial 
damage to public and personal property, agriculture, and 
the environment (Nguyen-Huy et al. 2021). According to 
the Centre for Research on the Epidemiology of Disasters 
(CRED), flooding was the predominant natural disaster, rep-
resenting 43% of all incidents, impacting roughly 2.5 billion 

1 Introduction

Flooding, a global crisis, is a devastating natural disaster 
affecting numerous regions worldwide. Flood occurs when 
excessive water overflows onto land, which is usually dry, 
often due to heavy rainfall, snow melt, storm surges, dam 
release, or water overflow from natural watercourses (e.g., 
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Abstract
Developing flood forecasting techniques at short timescales improve early warning systems to mitigate severe flood risk 
and facilitate effective emergency response strategies at vulnerable sites. In this study, we develop a hybrid deep learning 
algorithm, C-GRU, by integrating Convolutional Neural Networks (CNN) with Gated Recurrent Unit (GRU) model and 
evaluate its effectiveness in forecasting an hourly flood index (SWRI24−hr−S) in five flood-prone, specific study sites 
in Fiji. The model incorporates statistically significant lagged SWRI24−hr−S  with real-time hourly rainfall measure-
ments obtained from rainfall stations, and comparative analysis is performed against benchmark models: CNN, GRU, 
Long Short-Term Memory and Random Forest Regression. The proposed model’s outputs comprise the SWRI24−hr−S  
predicted at each specific site at a lead time of 1-h. The results demonstrate that the proposed hybrid C-GRU model out-
performs all the other models in accurately forecasting SWRI24−hr−S  over a 1-hourly forecast horizon. Across all of the 
study sites, the proposed model consistently generates the highest r (0.996–0.999) and the lowest RMSE (0.007–0.014) 
and MAE (0.003–0.004) in the testing phase. The proposed hybrid C-GRU model also achieves the highest Global 
Performance Index (GPI) values and the largest percentage of forecast errors (FE) (≈ 98.9–99.9%) within smaller error 
brackets (i.e., |FE| < 0.05) across all study sites. Using the methodologies developed, we show the practical application 
of the proposed framework as a decision support system for early flood warning, demonstrating its potential to enhance 
real-time monitoring and early warning systems with broader application to flood-prone regions.
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individuals and resulting in 160,000 fatalities from 1994 
to 2013 (CRED 2015). The estimated economic loss from 
flooding during this period (1994–2013) amounted to 636 
billion USD (CRED 2015).

The consequences of a flood disaster are particularly 
devastating in developing countries like Fiji (Moishin et al. 
2021b), where this study is focused. Such countries do 
not have the advanced infrastructure for monitoring flood 
events, and most, if not all, evaluations of flood risk are 
carried out using accumulated rainfall over days or weeks. 
However, the exact measurement of a flash flood event due 
to a sudden downpour is somewhat unrealistic due to the 
estimated probability of flooding and the lack of an objec-
tive method for risk evaluation. Hence, developing a real-
time flood monitoring and forecasting system that uses 
rainfall data with a time-dependent reduction function can 
offer a new promise for risk management in developing 
nations. This remains a crucial area of research driven by an 
urgent need to enhance early warning systems to mitigate 
the devastating consequences of flooding in Fiji and other 
small Pacific Island nations.

Fiji is a Pacific Small Island Developing State (PSIDS), 
with most of its population and infrastructure situated on 
large floodplains susceptible to long-duration flooding or 
in small catchments prone to flash flooding (Government 
of Fiji 2017). The estimated average annual flood losses 
exceed 400 million FJD, equivalent to 4.2% of Fiji’s Gross 
Domestic Product (GDP) (Government of Fiji 2017). 
Between 1970 and 2016, Fiji experienced 44 major flood 
events, which impacted approximately 563,310 people and 
resulted in 103 fatalities (Government of Fiji 2017). With 
the anticipated substantial increases in rainfall intensity 
due to climate change, flood-related asset losses in Fiji are 
projected to escalate, potentially exceeding 5% of the GDP 
by 2050 (Government of Fiji 2017). This projection under-
scores the long-term economic threat posed by flooding in 
Fiji. Therefore, developing reliable methods for accurate 
flood forecasting and risk assessment is crucial to mitigate 
the severe impacts of flooding in Fiji.

Flood forecasting is essential in flood warning systems 
and remains among the most critical tasks in hydrology 
(Prasad et al. 2021). Flood forecasting is more beneficial 
when done at a shorter timescale (e.g., on an hourly scale) 
with sufficient lead time as it allows for better estimation of 
flood risk and implementation of appropriate flood mitiga-
tion plans, evacuation, and rehabilitation measures (Alexan-
der et al. 2018; Hapuarachchi et al. 2011; Kant et al. 2013; 
Tiwari and Chatterjee 2010). Hydrodynamic models are the 
most widely used tool for simulating detailed flood dynam-
ics (Teng et al. 2017). They can be directly integrated with 
hydrological and river models to facilitate flood risk assess-
ment, real-time flood forecasting, and scenario analysis 

(Teng et al. 2017). However, studies have shown that these 
models are challenging to apply in operational flood fore-
casting, have high data requirements, and are highly com-
putationally expensive (Kabir et al. 2020; Nevo et al. 2022; 
Teng et al. 2017; Pirone et al. 2023).

In many developing nations with limited flood monitor-
ing resources, hydrometeorological datasets, and risk moni-
toring facilities, a mathematically derived flood index based 
solely on rainfall data offers a valuable means to evaluate an 
impending flood risk situation. For instance, the flood index 
(IF ) is one of the most robust flood monitoring indices 
widely applied in various places globally, including Austra-
lia (Deo et al. 2015), Iran (Nosrati et al. 2011), Bangladesh 
(Deo et al. 2019; Ahmed et al. 2023), Myanmar (Nguyen-
Huy et al. 2022), and Fiji (Moishin et al. 2021b), to moni-
tor flood events on a daily scale. Despite its benefits, one 
primary limitation of IF  is its reliance on daily rainfall data, 
which spans a much longer timeframe than necessary for a 
near real-time flood risk monitoring system. Hence, flood 
indices based on shorter-term rainfall data (e.g., hourly) 
can be more practical for real-time assessment of flood 
situations.

In their pilot study, Deo et al. (2018) proposed the 
24-hourly water resources index (WRI24−hr−S) as a real-
time flood risk monitoring tool. This index was applied at 
two study locations, Australia and South Korea, demon-
strating its potential for continuous flash flood risk moni-
toring during sustained extreme rainfall. The WRI24−hr−S  
monitors flood risk by considering the contribution of 
accumulated rainfall in the past 24 h, whereby the rainfall 
contribution from the preceding hours is subjected to the 
time-dependent reduction function that accounts for the 
depletion of water resources through various hydrological 
processes such as evaporation, percolation, seepage, runoff, 
and drainage (Deo et al. 2018). The time-dependent reduc-
tion function is as follows Deo et al. (2018):

PE−hr = Σ24
t=1[Phrt × (−0.0125 + 1.1625)] (1)

However, unlike IF , which is a normalised index, the 
WRI24−hr−S  in its current form is not effective for identify-
ing flood risk or comparing flood risk across geographically 
diverse study sites with significantly different hydro-cli-
matic conditions, as it is unnormalised (Chand et al. 2024). 
To address this limitation, Chand et al. (2024) in their recent 
study proposed a novel hourly flood index (SWRI24−hr−S) 
by normalizing the WRI24−hr−S , initially introduced by 
Deo et al. (2018). The practical utility of SWRI24−hr−S  in 
identifying flood events on an hourly scale and computing 
their characteristics, i.e., the flood volume (V), duration (D), 
and peak (Q) was demonstrated at seven flood-prone sites in 
Fiji (Chand et al. 2024). Their study also developed a vine 
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copula-based probabilistic risk analysis system to model the 
joint distribution of flood characteristics (i.e., D, V, and Q) 
to extract their joint exceedance probability for probabilistic 
flood risk assessment for the study sites (Chand et al. 2024). 
However, it is essential to emphasise that as a food monitor-
ing index, the SWRI24−hr−S  cannot predict the flooded 
state in advance unless a forecasting model for this index is 
developed and thoroughly tested, which is the primary goal 
of this paper for Fiji’s case studies. Accurate and reliable 
forecasting of the SWRI24−hr−S  is crucial for assessing 
flood risk hourly, enhancing decision-support systems for 
early flood warnings and enabling more effective flood risk 
management and mitigation strategies in Fiji.

It is imperative to note that although index-based flood 
forecasting has developed rapidly in recent years, no 
research has developed a forecast model for SWRI24−hr−S  
and explored its implications for hourly flood forecasting 
in a region like Fiji. Notably, Artificial Intelligence (AI)-
based, i.e., Machine Learning (ML), Deep Learning (DL) 
and hybrid models have been developed to forecast IF  for 
daily flood forecasts. For instance, Prasad et al. (2021) in 
their study proposed the hybrid ML by combining the multi-
variate empirical mode decomposition (MEMD) technique 
with the M5 tree model to forecast daily IF  for the flood-
prone Lockyer Valley region of Queensland, Australia.

The present study is also inspired by an earlier study of 
Moishin et al. (2021a) that has developed a hybrid DL algo-
rithm, ConvLSTM, by integrating the predictive capabilities 
of Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) models to forecast IF  across mul-
tiple forecast horizons. The hybrid DL model’s performance 
was compared to benchmark models, including CNN-
LSTM, LSTM, and Support Vector Regression (SVR). All 
the models developed were trained using statistically sig-
nificant lagged values of IF  and real-time daily precipita-
tion data. The study’s results demonstrated the feasibility of 
the ConvLSTM-based IF  forecasting model in determining 
the possibility of flood situations in Fiji on a daily scale. 
Similarly, 

Ahmed et al. (2023) also proposed a hybrid DL model 
that integrated a CNN with a bi-directional long-short term 
memory (BiLSTM) to forecast IF  a week ahead for thirty-
four selected stations in Bangladesh. The results of this 
study also demonstrated the superior forecasting perfor-
mance of the hybrid DL, CNN-BiLSTM model, compared 
to the benchmark models, including SVR and BiLSTM.

While ML models are generally more interpretable and 
computationally efficient, requiring relatively less training 
time than DL models, the latter can automatically learn and 
extract crucial features from raw data without explicit fea-
ture engineering (Sarker 2021). This autonomous feature 
extraction capability enables DL models to capture complex 

patterns and dependencies in the data, often resulting in 
superior performance when provided with sufficient train-
ing data (Sarker 2021). Recurrent Neural Networks (RNNs) 
are a type of DL model known for their capability to capture 
sequential dependencies facilitated by their internal mem-
ory. However, RNNs often suffer from short-term memory 
caused by vanishing and exploding gradient problems, 
which impede their capacity to learn long-term dependen-
cies in the data.

To address this issue, more advanced RNN variants 
have been developed, such as LSTM, initially introduced 
by Hochreiter and Schmidhuber (1997) in 1997 and fur-
ther improved by Graves (2013) in 2013, and the Gated 
Recurrent Unit (GRU), introduced by Cho et al. (2014) in 
2014. The LSTM and GRU models share similar architec-
tures, except that the GRU model features a simplified gat-
ing mechanism compared to the LSTM. Specifically, while 
the LSTM incorporates three gates (i.e., input, forget, and 
output), the GRU utilises only two (i.e., reset and update). 
Consequently, compared to LSTMs, GRUs have simpler 
architecture and fewer trainable parameters, often leading 
to faster training times while effectively capturing long-
term dependencies in sequential data (Kisvari et al. 2021; 
Li 2023; Sharma et al. 2022; Wang et al. 2020; Zhang et al. 
2022).

Considering the advantages of the GRU over an LSTM 
model, the present study proposes a hybrid DL algorithm 
that integrates CNN with GRU algorithms (C-GRU, here-
after) to forecast SWRI24−hr−S  over a 1-hourly forecast. 
This integration is robust, leveraging the CNN algorithm’s 
capability to extract crucial temporal features from sequen-
tial data through convolutional operations (Ghimire et al. 
2019; Joseph et al. 2024), and the GRU algorithm’s profi-
ciency in learning long-term dependencies and effectively 
modelling sequential data. The proposed hybrid C-GRU 
model has been successfully applied in various other stud-
ies, demonstrating its efficacy in areas such as water level 
prediction (Pan et al. 2020), river flooding forecasting and 
anomaly detection (Miau and Hung 2020), short-term resi-
dential load forecasting (Sajjad et al. 2020), soil moisture 
prediction (Yu et al. 2021), short-term wind power fore-
casting (Zhao et al. 2023), wind speed prediction (Ji et al. 
2022), PM10 forecasting (Sharma et al. 2022), evapotrans-
piration forecasting (Ahmed et al. 2021), classification of 
dust sources (Gholami and Mohammadifar 2022), fault 
diagnosis for chiller system (Wang et al. 2020), prediction 
of heart disease (Almulihi et al. 2022), Dysarthria speech 
detection (Shih et al. 2022), and human activity recognition 
(Dua et al. 2023). However, as mentioned earlier, no prior 
study has developed a hybrid C-GRU model and tested its 
capability to forecast SWRI24−hr−S  for hourly flood pre-
dictions in any region, including Fiji.
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methodologies. We also provide an overview of the Bayes-
ian Optimization algorithm used for hyperparameter tuning.

2.1 Convolutional neural network (CNN)

The one-dimensional convolutional neural network 
(Conv1D) was adopted to develop a hybrid C-GRU model 
for SWRI24−hr−S  forecasting. CNN is a popular feedfor-
ward neural network originally introduced by LeCun et al. 
(2015). It has two main features: weight sharing and local 
connections, which reduce the number of trainable param-
eters, thus reducing computations (Ghimire et al. 2022b). 
Another advantage of CNN is its ability to automatically 
learn crucial spatial features without manual intervention 
(Ghimire et al. 2022b). While CNN models are frequently 
employed for image recognition tasks, using the Conv1D 
model for prediction tasks involving time series data has 
emerged more recently (Ghimire et al. 2022a). A notable 
advantage of the Conv1D model lies in its simple and com-
pact design, which facilitates efficient and cost-effective 
implementation due to its operation with one-dimensional 
convolutions (Ghimire et al. 2022a). A standard CNN 
typically comprises two interconnected layers: a feature 
extraction layer and a fully connected (FC) layer. The fea-
ture extraction layer, positioned after the input layer in the 
architecture, consists of multiple layers. Within the feature 
extraction layer, there are two types of layers: the convolu-
tional layer and the pooling layer. Each convolutional layer 
employs several convolutional kernels to extract hidden 
features and generate a feature map. This feature map then 
undergoes a nonlinear activation function f(.) to produce the 
output ci of the ith input as follows (Joseph et al. 2024):

ci = f (wi ∗ xi + bi) (2)

where ∗ represents the convolution operation, and wi,xi, and 
bi are the weight matrix, input, and bias vector, respectively.

The output of the convolutional layer is then reduced 
by the pooling layer, also known as subsampling (Ghimire 
et al. 2022a). The pooling layer in CNNs serves two main 
functions. Firstly, it reduces the spatial dimensions of fea-
ture maps, thereby reducing computational complexity and 
expediting training time (Zhao and Zhang 2024). Secondly, 
it extracts crucial features while reducing redundant infor-
mation, thus enhancing the model’s generalisation capabil-
ity and interpretability (Zhao and Zhang 2024). The pooling 
layer partitions each feature map into fixed-size regions and 
performs operations such as selecting the maximum value 
(max pooling) or computing the average value (average 
pooling) within each region (Ghimire et al. 2022a; Zhao 
and Zhang 2024). In this study, we have used max pooling 
layers for pooling operations. The resulting reduced feature 

The novelty and scientific contributions of this research, 
which specifically focuses on five distinct study sites in Fiji, 
are as follows: 

(a) To design and evaluate the performance of the hybrid 
C-GRU model that can forecast SWRI24−hr−S  repre-
senting flood risk over a short-term, i.e., 1-hourly fore-
cast horizon.

(b) To train the proposed hybrid C-GRU model on statisti-
cally significant lagged SWRI24−hr−S  with real-time 
hourly rainfall data following a similar methodology to 
Moishin et al. (2021a) in such a way that only the rain-
fall data are required to build the model and provide a 
realistic assessment of flood risks.

(c) To enhance the performance of the proposed hybrid 
C-GRU model by adopting the Bayesian Optimization 
(BO) algorithm for efficient hyperparameter selection.

(d) To fully ascertain the proposed hybrid C-GRU model’s 
performance against competing benchmark models: 
CNN, GRU, LSTM, and Random Forest Regression 
(RFR) using a diverse range of performance evaluation 
metrics and visual analysis of forecasted and observed 
(or actual) SWRI24−hr−S  values.

This study, therefore, presents a practical framework using 
the hybrid C-GRU model, which is tested at five key study 
sites in Fiji, with an opportunity for its potential use in deci-
sion support systems for early flood warning and risk evalu-
ation. The outcomes of this study are expected to contribute 
significantly towards disaster risk reduction and mitigation 
strategies by enhancing or strengthening Fiji’s real-time 
monitoring and early warning systems, thus improving 
disaster preparedness, mitigation, and response efforts. 
Overall, the results show that the proposed hybrid C-GRU 
model outperforms all benchmarked models to accurately 
forecast SWRI24−hr−S  over a 1-hourly forecast hori-
zon. Therefore, the methodologies proposed could also be 
explored in other flood-prone regions around the globe.

2 Theoretical overview

This section provides an overview of the proposed hybrid 
C-GRU (objective model) network developed to forecast 
SWRI24−hr−S . This section also provides theoretical 
details of CNN and GRU algorithms used for model bench-
marking. The theoretical details of other benchmark models, 
i.e., LSTM (Chung et al. 2014; Ghimire et al. 2019, 2022c; 
Hochreiter and Schmidhuber 1997; Nguyen et al. 2020; 
Wang et al. 2020) and RFR (Breiman 2001; Chen et al. 
2017; Ghimire et al. 2023a; Liaw et al. 2002), are compre-
hensively elucidated elsewhere since they are well-known 
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where Wrx and Wrh represent the learnable weight matrix 
for the reset gate; br denotes the bias in the reset gate.

Next, the reset gate rt is combined with ht−1 and xt to 
create a candidate memory state ̃ht. The expression for ̃ht is 
as follows (Zhang et al. 2022):

h̃t = tanh
(

W̃hxxt + W̃hh [rt ∗ ht−1] + b̃
h

)
 (5)

where W̃hx and W̃hh represent the learnable weight matrix 
for the candidate memory state; b̃

h
 denotes the bias in the 

candidate memory state.
The current hidden layer state ht is then derived by com-

bining the previous hidden layer state ht−1 with the candi-
date memory state h̃t The expression for ht is as follows 
(Zhang et al. 2022):

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (6)

2.3 Hybrid C-GRU model

This study designs the proposed hybrid C-GRU model 
by combining CNN’s robust feature extraction capability 
with GRU’s powerful nonlinear time sequential predictive 
ability, enhancing its overall predictive performance for 
SWRI24−hr−S  forecasting. Figure 1 illustrates the topo-
logical structure of the proposed hybrid C-GRU model. 
As shown in Fig. 1, the hybrid C-GRU model comprises 
two Conv1D layers, two max-pooling layers, one flattening 
layer, and two GRU layers. The GRU layers have replaced 
the FC layer of CNN. In this configuration, crucial features 
extracted from the CNN are flattened into 1-D arrays and 
then fed into the GRU layers to incorporate these features 
for the low-latency forecasting of the SWRI24−hr−S .

map is then flattened into a one-dimensional (1-D) array 
(using the flattening layer) and passed into one or more FC 
layers. The output of the last FC layer is usually fed into a 
softmax layer (for classification tasks) or a regression layer 
(for regression tasks) to produce the final output.

2.2 Gated recurrent unit (GRU)

GRU, introduced by Cho et al. (2014), is one of the vari-
ants of the RNN algorithm known for capturing long-term 
dependencies and effectively modelling sequential data. 
Unlike traditional RNNs, which suffer from the vanishing 
and exploding gradient problem during backpropagation 
through time, GRUs mitigate this problem through their 
simplified gating mechanisms that control the flow of infor-
mation through the network (Chung et al. 2014; Li 2023; 
Sharma et al. 2022; Zhang et al. 2022). The GRU unit fea-
tures two gates regulating information flow: the reset and 
update gates. The update gate determines the extent to 
which the previous hidden layer state ht−1 is retained in the 
current hidden layer state ht. The update gate first receives 
information from ht−1 and current input vector xt and sub-
sequently processes this information using an activation 
function σ. The update gate zt can be expressed as (Zhang 
et al. 2022):

zt = σ (Wzxxt + Wzhht−1 + bz) (3)

where Wzx and Wzh represent the learnable weight matrix 
for the update gate; bz  denotes the bias for the update gate.

The reset gate determines how much information from 
the previous time step is written into the candidate memory 
state h̃t. Like the update gate, the reset gate processes ht−1 
and xt using an activation function σ. The reset gate rt can 
be expressed as (Zhang et al. 2022):

rt = σ (Wrxxt + Wrhht−1 + br) (4)

Fig. 1 The topological structure of the proposed hybrid C-GRU model for 1-hourly forecasting of SW RI24−hr−S  for flood risk evaluation
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represents the hyperparameter set, y is the corresponding 
value on the response surface (i.e., the validation loss or the 
fitness value), and Ninit is the number of start-up iterations 
(Nguyen et al. 2020). Next, the hyperparameter space is 
partitioned into two groups, namely good and bad samples, 
determined by their fitness values and a predefined thresh-
old value y∗, as follows (Nguyen et al. 2020):

p (θ |y ) =
{

Prgood (θ) if y < y∗

Prbad (θ) if y ≥ y∗  (7)

where Prgood and Prbad are the probabilities that the hyper-
parameter set θ is in the good and bad groups, respectively.

This approach ensures that the selection of optimal hyper-
parameters depends not solely on the best observation but 
on a collection of the best observations and their distribu-
tions. Following this, the algorithm computes an expected 
improvement (EI) as follows (Nguyen et al. 2020):

EI (θ) = Prgood (θ)
Prbad (θ)  (8)

Finally, the hyperparameter configuration θ∗ that maximises 
the EI at each iteration is selected. For more information, 
readers can refer to Feurer and Hutter (2019). This study 
implemented the TPE algorithm using the ‘Hyperopt’ pack-
age, an open-source Python library for hyperparameter opti-
misation using BO, developed by Komer et al. (2014).

3 Materials and method

3.1 Study area and dataset

The proposed hybrid C-GRU model for short-term 
SWRI24−hr−S  forecasting is applied to five distinct geo-
graphically diverse study sites in Fiji. Fiji is an archipelago 
of 332 islands with two main islands (Viti Levu and Vanua 
Levu) in the South Pacific Ocean. It is part of the continent 
of Oceania. The nation experiences two distinct seasons: 
a warm, wet period from November to April and a cooler, 
drier season from May to October. This seasonal varia-
tion is mainly attributed to the South Pacific Convergence 
Zone (SPCZ), the primary rainfall-producing system for the 
region, which typically lies over Fiji during the wet season 
(Feresi et al. 2000; Kumar et al. 2014). River flooding is 
common during almost every wet season in Fiji and occa-
sionally during the dry season, particularly during La Niña 
events (McGree et al. 2010). The current study focuses on 
five sites within the western division of Fiji, which are prone 
to recurrent and severe flooding events. Figure 2 shows the 

2.4 Hyperparameter tuning using Bayesian 
optimization (BO) algorithm

Tuning hyperparameters to enhance prediction accuracy is 
challenging and time-consuming (Ghimire et al. 2022d). 
The performance of numerous ML and DL algorithms 
depends heavily on the values assigned to these hyperpa-
rameters, making it essential to employ an effective method 
of configuring them (Eggensperger et al. 2013; Nguyen 
et al. 2020). Bayesian optimisation (BO) methods have been 
shown to outperform traditional optimisation approaches 
like grid search and random search (Bergstra and Bengio 
2012; Nguyen et al. 2020; Eggensperger et al. 2013).

The primary advantage of BO, which sets it apart from 
traditional optimisation methods, is its ability to achieve 
optimal hyperparameter configuration with fewer func-
tion evaluations (Nguyen et al. 2020). This efficiency ema-
nates from its unique capability to model the distribution 
of hyperparameter configurations and their corresponding 
fitness scores from previous iterations (Nguyen et al. 2020). 
By learning from this distribution, BO strategically selects 
the most promising configurations to evaluate next, thus 
accelerating the search for optimal hyperparameters. Con-
sequently, BO thoroughly evaluates the most promising 
candidates for hyperparameter choices by probabilistically 
guiding and reducing the number of samples drawn from 
the hyperparameter search space (Nguyen et al. 2020). This 
process prioritises evaluating promising candidates, effec-
tively guiding the optimisation process towards regions of 
the hyperparameter space expected to yield better perfor-
mance. Conversely, in the grid and random search, each 
evaluation within their iterations is independent of prior 
iterations, leading to unavoidable assessments of hyperpa-
rameter search space regions with unsatisfactory perfor-
mance, ultimately resulting in high computational costs 
(Prasad et al. 2023).

In this study, we utilise a variant of BO, known as 
Tree-structured Parzen Estimator (TPE) (Bergstra et al. 
2011; Komer et al. 2014), to automatically optimise the 
hyperparameters of both the proposed hybrid C-GRU and 
benchmarking models. TPE has been introduced recently 
to overcome the limitations of conventional BO methods 
when dealing with categorical and conditional parameters, 
aiming to enhance the hyperparameter selection process 
(Bergstra et al. 2011; Komer et al. 2014; Nguyen et al. 
2020). In the TPE algorithm, every sample from the empiri-
cal data defines a Gaussian distribution characterised by a 
mean equivalent to the hyperparameter value and a speci-
fied standard deviation (Nguyen et al. 2020). To initiate 
the optimisation iterations, the TPE algorithm employs a 
random search to initialise the distributions by sampling 
the response surface 

{
θ(i), y(i), i = 1, . . . , Ninit

}
 where θ 
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Table 1 summarises the 1-hourly rainfall datasets and the 
geographic settings of the five key study sites. As depicted 
in Table 1, the average 1-hourly rainfall is spatially differ-
ent. The maximum hourly rainfall of 260 mm was recorded 
for the Nadi site over the study period. The skewness and 
kurtosis of the hourly rainfall data, which describe the shape 
and distribution of the dataset, were found to be greater than 
+1 and +3, respectively, for all study sites. This indicates 
that their distribution is highly right-skewed. Such skew-
ness is primarily attributed to the frequent presence of zero 
values within these datasets. Consequently, extreme hourly 
rainfall values significantly impact the distribution, result-
ing in a highly right-skewed distribution. To visualise this 
better, Fig. 3 illustrates the hourly rainfall trend over a 
5-year period for the five study sites. Furthermore, the spa-
tial correlation of rainfall between the study sites showing 
the Pearson’s correlation coefficient (r) for measured rain-
fall are shown in Fig. 4 with the r values at the 5% level of 
significance. The rainfall data exhibit weak spatial correla-
tion, with nearby sites showing a slight positive correlation 
and distant sites displaying even weaker positive correla-
tions. This suggests that spatial proximity minimally influ-
ences rainfall patterns, indicating that other factors play a 
more significant role in driving rainfall variability.

map map of the study area and the corresponding study sites 
where the rainfall stations are located.

This study utilised rainfall data from five key sites in 
Fiji: Lautoka, Sigatoka, Rakiraki, Nadi, and Tavua. The 
rainfall data, recorded as station measurements from Janu-
ary 1, 2014, to December 31, 2018, covering 5 years, were 
obtained from the Fiji Meteorological Services. The rain-
fall data were provided in 5-min. intervals for Tavua, Raki-
raki, Sigatoka, and Lautoka and in 10-min intervals for the 
Nadi site. During the data pre-processing phase, the rain-
fall data for each study site were aggregated to derive the 
1-hourly rainfall necessary for this study. If at least 66.67% 
of the data points (i.e., at least 4 out of 6 data points for 
a 10-min interval and at least 8 out of 12 data points for 
a 5-min interval) were available within a particular hour, 
they were summed up to calculate the total rainfall for that 
hourly period; otherwise, the rainfall value for that specific 
hour was recorded as missing data. This approach aimed to 
maximise the data recovery. After the aggregation of the 
rainfall data into 1-hourly data, all study sites were found to 
have less than 5% missing values. Following the methodol-
ogy outlined in Oriani et al. (2020), the Iterative K-nearest 
Neighbour (IKNN) technique was employed to backfill all 
the missing data.

Site Location (latitude, 
longitude)

Ave. hourly 
rainfall (mm)

Max. hourly 
rainfall (mm)

Skewness Kurtosis

Lautoka 17.62◦ S, 177.45◦ E 0.19 83.50 16.56 421.51
Nadi 17.78◦ S, 177.44◦ E 0.27 260.00 36.35 2090.02
Rakiraki 17.39◦ S, 178.07◦ E 0.23 68.50 17.00 428.86
Sigatoka 18.14◦ S, 177.51◦ E 0.21 59.00 15.24 316.25
Tavua 17.44◦ S, 177.86◦ E 0.15 57.50 16.40 381.76

Table 1 Geographic settings and 
descriptive statistics of hourly 
rainfall dataset for the five study 
sites

Note that the hourly rainfall 
spans from January 1, 2014, to 
December 31, 2018, with 43,824 
observations

 

Fig. 2 The map of Fiji shows the various 
study sites where rainfall stations are located, 
for which the hybrid C-GRU flood forecast-
ing framework was developed
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SWRI24−hr−S  is implemented using the Python program-
ming language.

The following steps are taken to obtain the SWRI24−hr−S . 
The first step is calculating the WRI24−hr−S . The 
WRI24−hr−S  for the current (ith) hour proposed by Deo 
et al. (2018) is given by the following equation:

WRI
(i)
24−hr−S = P1 + [P2 (W − 1)]

W

+ [P3 (W − 1 − 1/2 )]
W

+ · · ·

+ [P24 (W − 1 − 1/2 − · · · − 1/23)]
W

 (9)

where P1 is the total rainfall recorded an hour before, P2 
is the total rainfall recorded 2 h before, and so on; W is the 
time-reduction weighting factor (W = 3.8) verified by Deo 
et al. (2018) that incorporates the contributions of accumu-
lated rainfall in the latest 24 h. This weighting factor ensures 
that the decay of accumulated rainfall or its potential impact 
on a flood event depends on several hydrological phenom-
ena, including evapotranspiration, percolation, seepage, 
run-off, drainage, etc., as established in prior studies (Deo 
et al. 2018; Lu 2009). The substitution of W = 3.8 into 
Eq. 9 yields (Chand et al. 2024):

WRI
(i)
24−hr−S ≈ P1 + 0.74P2 + 0.61P3 + · · ·

+ 0.02P24
 (10)

It is noted that WRI24−hr−S  for a current (ith) hour is 
expected to accumulate ≈ 100% of rainfall received an 

3.2 Hourly flood index computation

In this study, we develop the proposed hybrid C-GRU 
model to forecast the hourly flood index (SWRI24−hr−S) 
to assess flood risk on an hourly scale. The SWRI24−hr−S  
is a practical tool for real-time flood risk monitoring as it is 
mathematically derived using only the hourly rainfall data, 
which are readily available for the present study sites. The 

Fig. 4 The spatial correlation of rainfall between the study sites show-
ing the Pearson’s correlation coefficient (r) for measured rainfall. Note 
that the calculated r values are significant at the 5% level

 

Fig. 3 Hourly rainfall for the five study 
sites: a Lautoka, b Nadi, c Rakiraki, d 
Sigatoka, and e Tavua, from 2014 to 
2018
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be practically applied to identify flood events at the Nadi 
site in April 2016. As shown in Fig. 5, the flood situation 
at the Nadi site began at 8 a.m. on April 4, 2016, precisely 
when the magnitude of SWRI24−hr−S  first exceeded zero 
and lasted for 20 h. To confirm the occurrence of this flood 
event, we refer to the Fiji Meteorological Services (FMS) 
annual report 2016 (Fiji Meteorological Service 2016), 
which showed indeed that a tropical depression TD14F 
caused heavy rainfall in some parts of the county between 
the 3rd and 5th of April 2016. This led to severe flooding, 
particularly in some major towns in western Viti Levu, 
including Nadi. Therefore, this verification further confirms 
the practicality of the SWRI24−hr−S  in identifying a flood 
situation on an hourly scale, as demonstrated in the earlier 
study (Chand et al. 2024).

3.3 Design of the proposed hybrid C-GRU model

This study used Python programming to implement the 
objective model, i.e., the hybrid C-GRU and all other 
benchmarking models. The implementation was done via 
a Google Colaboratory (Google Colab) platform offering 
a freely available Jupyter Notebook interface supported by 
a Tensor Processing Unit (TPU) and a Graphical Process-
ing Unit (GPU). Google Colab provides an advanced vir-
tual environment for executing ML and DL algorithms. The 
DL models were developed using the Keras (Ketkar 2017) 
and Tensorflow (Abadi et al. 2016) libraries, and the RFR 
model was developed using the Sklearn library (Pedregosa 
et al. 2011). The ’Hyperopt’ library (Komer et al. 2014) was 
used for BO. The R programming language was also used to 
plot the correlograms to determine the relevant model input 
features.

The primary scope of this study is to design a hybrid 
C-GRU model illustrated in Fig. 1 that can forecast the 
SWRI24−hr−S  for each study site over a 1-hourly forecast 
horizon. To accomplish this, we have utilised the real-time 
hourly rainfall and the hourly flood index (SWRI24−hr−S) 
datasets for each study site, following a similar methodol-
ogy outlined in the related study by Moishin et al. (2021a). 
The step-by-step procedure to develop the forecasting mod-
els at each study site is as follows:

Step 1: Using the Augmented Dickey–Fuller test, we first 
checked whether the SWRI24−hr−S  and hourly rainfall 
time series data were stationary for each study site (Cheung 
and Lai 1995). The null hypothesis (H0) of this test must be 
rejected for the data to be stationary. The result showed that 
both datasets were stationary for all the study sites.

Step 2: The partial auto-correlation function (PACF) and 
cross-correlation function (CCF) were statistically assessed 
using the correlogram plots to determine the significant 
time-lagged inputs for the forecasting models at each study 

hour before, ≈ 74% of that received 2 h before, ≈ 61% 
of that received three hours before, and eventually, ≈ 2% 
of that received 24 h before. Following the calculation of 
WRI24−hr−S  for any study period, the mathematical form 
of the novel SWRI24−hr−S  proposed by Chand et al. 
(2024) for a current (ith) hour is calculated as a normalised 
version of WRI24−hr−S :

SWRIi
24−hr−S =

WRIi
24−hr−S −

(
WRImax

24−hr−S

)j

σ
(
WRImax

24−hr−S

)j
 (11)

where WRImax
24−hr−S  is the mean monthly maximum val-

ues of WRI24−hr−S  for the respective study period and 
σ(WRImax

24−hr−S) is the standard deviation of the monthly 
maximum values of WRI24−hr−S  for the respective study 
period, and j refers to the index of a specific month.

Moreover, it must be noted that if the magnitude of 
SWRI24−hr−S  for the current (ith) hour is greater than zero 
(or that the water resources are higher than normal), it is con-
sidered as a flood situation (Chand et al. 2024). For all the 
study sites, the WRI24−hr−S  followed by SWRI24−hr−S  
were computed starting from January 2, 2014, as antecedent 
rainfall data for 24 h (the hourly rainfall data for January 
1, 2014) was required to enable the computation of these 
metrics. Table 2 shows the five-number summary of the 
SWRI24−hr−S  dataset for each of the study sites. Fur-
thermore, Fig. 5 demonstrates how the SWRI24−hr−S  can 

Table 2 The five-number summary of the SW RI24−hr−S  dataset for 
the five study sites
Study sites Minimum Lower 

quartile 
(Q1)

Median 
(Q2)

Upper 
quartile 
(Q3)

Maxi-
mum

Lautoka − 1.079 − 1.079 − 1.079 − 1.075 3.490
Nadi − 0.650 − 0.650 − 0.650 − 0.646 6.803
Rakiraki − 1.029 − 1.029 − 1.029 − 1.016 4.282
Sigatoka − 1.394 − 1.394 − 1.394 − 1.376 2.841
Tavua − 1.042 − 1.042 − 1.042 − 1.040 4.040

Fig. 5 The SW RI24−hr−S  is applied to identify a flood event in April 
2016 at the Nadi study site, demonstrating its ability to monitor the 
flood risk hourly
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site. The correlogram plot of CCF and PACF was used to 
determine the most statistically significant lags of hourly 
rainfall and SWRI24−hr−S  time series, respectively, to 
forecast SWRI24−hr−S  at time t. A 95% confidence band 
was employed in the correlogram plots to assess the sig-
nificance of variable lags, whereby any lags within this 
boundary were deemed insignificant. Both the plots were 
generated by considering only 20 lags (i.e., past 20 h) of 
each input variable.

Figure 6 shows the PACF and CCF plots for the Lautoka 
site. Upon analysing the PACF plot, only the first three lags 
of the SWRI24−hr−S  time series were the most significant 
for the Lautoka site. Similarly, upon examining the CCF plot 
for the Lautoka site, only the most significant lag with the 
highest cross-correlation coefficient (rcross) of the hourly 
rainfall time series was selected. This process was repeated 
for the other study sites to ascertain significant model input 
features, and the results obtained are furnished in Table 3. 
Hence, the features used as model inputs included the ante-
cedent SWRI24−hr−S  and hourly rainfall, and the target 
variable consisted of SWRI24−hr−S  at time t for each 
study site. Subsequently, we concatenated the predictor 
and target variables for each site to form the final dataset to 
develop the forecasting models.

Step 3: The input data for the model were then nor-
malised between 0 and 1 using the min–max scaling tech-
nique provided in the Sklearn library in Python (Pedregosa 
et al. 2011). This was done to ensure that each input vari-
able has the same order of magnitude, leading to faster and 
more efficient training of the forecasting model (Prasad 
et al. 2024). Next, the dataset for model development for 
each study site was partitioned into training, validation, and 
testing subsets. Given the lack of consensus on data splitting 
ratios for training, validation and testing, this study, follow-
ing the approach of a related study (Moishin et al. 2021a), 
allocated the first 80% of the dataset for training the model, 
with 20% of the training data used for validation and utilis-
ing the remaining 20% for testing the model. This train-test 

Table 3 Model input data at each study site, with site-based data partition into training, validation, and testing sets for model development
Study site Model input Data 

points
Training 
data (≈ 80% 
of all data 
points)

Validation 
data (≈ 20% 
of training 
data)

Test 
data (≈ 
20% of 
all data 
points)

Significant lags of the SW RI24−hr−S  series Significant lags 
of the real-time 
hourly rainfall 
series

Lautoka Lag 1, Lag 2, and Lag 3 (SW RI24−hr−S  at t − 1, t − 2, and 
t − 3)

Lag 1 (hourly 
rainfall at t − 1)

43,797 35,038 7008 8759

Nadi Lag 1, Lag 2, Lag 3, and Lag 4 (SW RI24−hr−S  at t − 1, 
t − 2, t − 3, and t − 4)

43,796 35,037 7007 8759

Rakiraki Lag 1, Lag 2, and Lag 3 (SW RI24−hr−S  at t − 1, t − 2, and 
t − 3)

43,797 35,038 7008 8759

Sigatoka Lag 1, Lag 2, and Lag 3 (SW RI24−hr−S  at t − 1, t − 2, and 
t − 3)

43,797 35,038 7008 8759

Tavua Lag 1 and Lag 2 (SW RI24−hr−S  at t − 1 and t − 2) 43,798 35,038 7008 8760

Fig. 6 Significant model input feature selection using (a) the cor-
relogram plot of the partial auto-correlation function (PACF) of the 
SW RI24−hr−S  series showing the three most significant lags for the 
Lautoka site and (b) the correlogram plot of the cross-correlation func-
tion (CCF) for the SW RI24−hr−S  versus the real-time hourly rainfall 
for the Lautoka site
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 ● Dropout (Ghimire et al. 2019): Dropout is employed 
as a regularisation technique to mitigate overfitting and 
enhance training performance. It accomplishes this by 
randomly selecting a fraction of neurons during each 
iteration and preventing them from undergoing train-
ing. This fraction of neurons, termed a dropout rate, is a 
real hyperparameter ranging from 0 to 1. In this study, 
this parameter was set to a fixed value of 0.1 for all DL 
models.

 ● Epochs and early stopping technique (Ghimire et al. 
2019, 2022b, 2023a, 2024a): The number of epochs 
was set to 1000 during model training. However, we 
implemented early stopping as a regularisation method 
to monitor the model’s performance during training. A 
stopping criterion was defined based on the performance 
metric (i.e., mean squared error (MSE)) on the valida-
tion data, such that the training process was terminated 
when the validation loss stopped decreasing for a certain 
number of epochs specified by the “patience” term, or 
when the validation loss started to increase, indicating 
model’s potential overfitting to the training data. The 
training was terminated once the early stopping criterion 
was met, and the model with the lowest validation loss 
was saved. This method helped prevent overfitting and 
saved computational time. In this study, the “patience” 
hyperparameter for early stopping criteria was set to 20.

 ● Backpropagation optimisation algorithm: Optimisa-
tion algorithms are used in backpropagation to update 
a network’s weights during training. In this study, the 

split was consistently applied across all study sites, as out-
lined in Table 3.

The validation dataset served two purposes in this study. 
Firstly, it was used for model hyperparameter tuning. Sec-
ondly, for all DL models developed in this study, the vali-
dation data was used to monitor the model’s performance 
during training using the early stopping technique, which 
is discussed later in this section. The benchmarking DL 
models, i.e., the CNN model was constructed using three 
Conv1D layers; the LSTM model was constructed using 
three LSTM layers; the GRU model was constructed using 
three GRU layers. During training, the hyperparameter opti-
misation for all the forecasting models was executed using 
BO with the TPE algorithm, with a maximum of 40 evalua-
tions. The parameter search space used for BO optimisation 
for each forecasting model is furnished in Table 4. While 
some hyperparameters are specific to the model, four com-
mon hyperparameters used in any DL model, which are also 
utilised in this study, are as follows:

 ● Activation Function: All layers within a network, except 
for the output layer, typically use the same activation 
function, the Rectified Linear Unit (ReLU). The prima-
ry advantage of using ReLU compared to other activa-
tion functions, such as sigmoid and tanh, is that ReLU 
introduces nonlinearities into the model by setting its 
negative values to zero. This helps overcome the issue 
of vanishing gradients, enabling a model to learn faster 
and achieve better performance (Ghimire et al. 2022d).

Table 4 Parameter search space assigned to the Bayesian optimisation (BO) algorithm for developing the proposed hybrid C-GRU and benchmark 
models
Forecasting models Model hyperparameters Hyperparameter search space
Hybrid C-GRU
(Objective Model)

CNN filter 1 {50, 60, 100, 200, 250, 300}
CNN filter 2 {50, 60, 100, 200, 250, 300}
GRU cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

GRU GRU cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
GRU cell unit 3 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

LSTM LSTM cell unit 1 {30, 40, 50, 60, 80, 100, 150, 200}
LSTM cell unit 2 {30, 40, 50, 60, 80, 100, 150, 200}
LSTM cell unit 3 {30, 40, 50, 60, 80, 100, 150, 200}
Batch {64, 128, 256, 512}

CNN CNN filter 1 {50, 60, 100, 200, 250, 300}
CNN filter 2 {50, 60, 100, 200, 250, 300}
CNN filter 3 {10, 20, 30, 40, 50, 80}
Batch {64, 128, 256, 512}

RFR Number of trees in the forest (n_estimators) {50, 100, 150, 200, 250, 300, 350, 400}
Minimum number of samples required to be at the leaf node (min_samples_leaf) Uniform {0, 0.5}
Minimum samples to split an internal node (min_samples_split) Uniform {0, 1}
Maximum features to consider for the best split (max_features) {1, ‘sqrt’,‘log2’, ‘None’}
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EW I =1 −
∑n

i=1 (Si − Oi)2

∑n
i=1

(∣∣Si − O
∣∣ +

∣∣Oi − O
∣∣)2 ,

(0 ≤ EW I ≤ 1)
 (14)

ELM =1 −
∑n

i=1 |Si − Oi|∑n
i=1

∣∣Oi − O
∣∣ , (−∞ < ELM ≤ 1)  (15)

KGE =

√
(r − 1)2 +

(
CVS

CVO
− 1

)2

+
(

S

O
− 1

)2

,

(−∞ < KGE ≤ 1)
 (16)

RMSE =
√

1
n

∑n

i=1
(Si − Oi)2

,

(0 ≤ RMSE < +∞)
 (17)

MAE = 1
n

n∑
i=1

|Si − Oi|, (0 ≤ MAE < +∞)  (18)

sMAPE = 1
n

n∑
i=1

|Si − Oi|
|Si| + |Oi|

× 100,

(0 ≤ sMAPE < +∞)
 (19)

where S is the forecasted SWRI24−hr−S , O is the 
observed (or actual) SWRI24−hr−S , S is the mean of 
forecasted SWRI24−hr−S , O is the mean of the observed 
SWRI24−hr−S , n is the number of values, CVS  is the coef-
ficient of variation of forecasted SWRI24−hr−S  and CVO 
is the coefficient of variation of observed SWRI24−hr−S .

Despite using various performance evaluation metrics to 
compare the proposed hybrid C-GRU model’s performance 
with the benchmark models, ranking the forecasting models 
solely based on such metrics is challenging as each met-
ric has distinct advantages and limitations (Ghimire et al. 
2024b). To overcome this challenge, this study used a robust 
global performance indicator (GPI) (Behar et al. 2015; Ghi-
mire et al. 2022a, c, 2023a, b, 2024b; Joseph et al. 2023, 
2024) to rank and establish overall model performance. The 
GPI combines the outcomes of all eight metrics used in this 
study for a comprehensive model performance evaluation, 
with a higher GPI indicating greater model accuracy. For 
the ith model, the GPI is calculated as (Joseph et al. 2024):

GPI =
N∑

j=1
αj (ȳj − yij), (−∞ < GPI < +∞) (20)

where N is the total number of performance evaluation met-
rics used (i.e., 8 in this study), αj = −1 for Category A met-
rics and αj = +1 for Category B metrics, yij  is the scaled 

Adaptive Moment Estimator (Adam) optimiser with a 
learning rate of 0.001 was used as the backpropagation 
learning algorithm. Adam combines the advantages of 
the Adaptive Gradient Algorithm (AdaGrad) and the 
Root Mean Square Propagation (RMSProp) (Kingma 
and Ba 2014; Zou et al. 2019). This approach calculates 
adaptive learning rates for each parameter based on es-
timates of the first and second moments of the gradients 
(Kingma and Ba 2014). Adam optimiser is computa-
tionally efficient, has low memory requirements, and is 
well-suited for large datasets (Ghimire et al. 2022a).

Step 4: Finally, the various performance evaluation metrics 
(discussed in the next section) were used to compare the 
performance of the proposed hybrid C-GRU model with 
the benchmark models, i.e., CNN, LSTM, GRU, and RFR 
models.

3.4 Model performance evaluation criteria

The performance of the hybrid C-GRU model against the 
benchmark models was evaluated using two sets of statisti-
cal metrics: Category A (ideal value = 1) and Category B 
(ideal value = 0). Different metrics were utilised within each 
category to address limitations and take advantage of vari-
ous statistical metrics available (Joseph et al. 2024).

In this study, within category A, five statistical metrics 
were employed, namely the Pearson’s Correlation Coeffi-
cient (r), Nash–Sutcliffe Efficiency Index (ENS), Willmo-
tt’s Index of Agreement (EW I ), Legate–McCabe Efficiency 
Index (ELM ), and Kling–Gupta Efficiency (KGE). In cat-
egory B, three error metrics were utilised: Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and Sym-
metric Mean Absolute Percentage Error (sMAPE) (%). 
The statistical metrics in Category A assessed the variance 
between forecasted and observed SWRI24−hr−S  values, 
while the error metrics in Category B were utilised to exam-
ine model bias (Joseph et al. 2023). As bias and variance 
contribute to reducible error, the models were compared 
based on their ability to minimise bias and variance (Joseph 
et al. 2023).

The Python package ‘HydroErr’ (Roberts et al. 2018) was 
used to implement these performance evaluation metrics. 
The mathematical expression of these metrics is as follows:

r =
∑n

i=1
(
Oi − O

) (
Si − S

)
√∑n

i=1
(
Oi − O

)2
√∑n

i=1
(
Si − S

)2
,

(−1 ≤ r ≤ 1)

 (12)

ENS =1 −
∑n

i=1 (Si − Oi)2

∑n
i=1

(
Oi − O

)2 , (−∞ < ENS ≤ 1)  (13)
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1.01|0.996 for the Lautoka site, 1.02|0.993 for the Nadi site, 
0.99|0.998 for the Rakiraki site, 0.97|0.998 for the Sigatoka 
site, and 1.01|0.997 for the Tavua site. Alternatively, the 
y-intercept (Ideal value=0) for the hybrid C-GRU model for 
all the study sites was found to be close to naught, i.e., 0.01 
for the Lautoka, Nadi, Rakiraki and Tavua sites and 0.04 
for the Sigatoka site. Among the models tested, RFR con-
sistently performed poorly across all study sites, as shown 
in Fig. 7.

More specifically, Fig. 7 revealed that RFR, compared to 
the other models, was underfitting for SWRI24−hr−S > 0 
across all the study sites. Hence, it is not a very suitable 
forecasting model in this study, as accurately forecasting 
SWRI24−hr−S > 0 is crucial since it indicates a flood situ-
ation. To further visualise the similarity between forecasted 
and observed SWRI24−hr−S  values, we employed a line 
plot, as depicted in Fig. 8, for the Rakiraki site. This plot com-
pares the SWRI24−hr−S  generated by the hybrid C-CGRU 
model with those of benchmark models, i.e., GRU, LSTM, 
CNN, and RFR. The plot illustrates that SWRI24−hr−S  val-
ues forecasted by the hybrid C-CRU model exhibit greater 
similarity to the observed SWRI24−hr−S  values than the 
other models. These primary results already demonstrate 
the superior forecasting capability of the proposed hybrid 
C-GRU model compared to other benchmarking models.

The hybrid C-GRU model’s superior forecasting capabil-
ity against the benchmarking models was further assessed 
using various performance evaluation metrics for each site 
study in the testing phase (Table 5, Figs. 9 and 10). The met-
ric r is a non-dimensional and absolute metric that assesses 
the strength and direction of the linear relationship between 
the observed and forecasted SWRI24−hr−S  values (Joseph 
et al. 2023). The RMSE and MAE measures are derived from 
the aggregating residuals between observed and forecasted 
SWRI24−hr−S  values (Joseph et al. 2023). The value of r 
closer to 1, along with lower values of RMSE and MAE (ide-
ally around 0), indicates the optimal model.

Table 5 shows that the proposed hybrid C-GRU model 
obtained the highest r (0.996–0.999) and the lowest RMSE 
(0.007–0.014) and MAE (0.003–0.004) for all study sites. 
The r metric for three sites (Nadi, Sigatoka, and Tavua) was 
the same for the proposed hybrid C-GRU model, and one 
or two other benchmarking models (i.e., GRU model for 
Nadi, GRU and CNN models for Sigatoka, GRU and LSTM 
models for Tavua). Also, the RMSE of the proposed hybrid 
C-GRU and LSTM models for the Tavua site were the same 
(see Table 5). On the contrary, the MAE at these sites was 
lower for the proposed hybrid C-GRU model than these 
benchmarking models (see Table 5). It should be noted that 
all DL models developed in this study performed excep-
tionally well based on the r metric. Nevertheless, a primary 
drawback of r is its susceptibility to outliers. Also, while r 

value of metric j for model i, and ȳj  is the median value of 
scaled values of metric j.

4 Results and discussion

This section provides an account of the empirical results of 
the modelling experiments carried out and the assessments 
of the hybrid C-GRU model’s performance in forecasting the 
SWRI24−hr−S  over a 1-hourly forecast horizon for each 
study site compared to benchmark models, including CNN, 
LSTM, GRU, and RFR. The proposed hybrid C-GRU mod-
el’s robustness against the benchmark models to forecast the 
SWRI24−hr−S  was comprehensively assessed using vari-
ous performance evaluation metrics given in Sect. 3.4 and 
visual plots using the testing datasets for five study sites. 
In this section, we also propose the practical application of 
the proposed hybrid C-GRU model in the decision support 
system for early flood warnings.

4.1 Forecasting performance of the hybrid C-GRU 
versus benchmark models

The initial evaluation of the hybrid C-GRU model’s fore-
casting capability was based on the scatterplot between the 
forecasted SWRI24−hr−S  (SWRIfor

24−hr−S) and observed 
SWRI24−hr−S  (SWRIobs

24−hr−S) in the testing phase for 
all five study sites (Fig. 7).

The scatter plots also include the coefficient of determina-
tion R2, the 1:1 line and the equation of the goodness-of-fit 
line; SWRIfor

24−hr−S = m × SWRIobs
24−hr−S + C, where 

m is the gradient, and C is the y-intercept of the goodness-
of-fit line. The 1:1 line represents an exact match between 
observed and forecasted SWRI24−hr−S  values. The closer 
the data points align with this line, the better the model fits 
the data, indicating minimal discrepancies between observed 
and forecasted SWRI24−hr−S  values. Consequently, a per-
fectly fitting regression model should have m = 1, C = 0
, and R2 = 1. While there was generally a good agreement 
between observed and forecasted SWRI24−hr−S  values 
across all tested models, it was observed that the hybrid 
C-GRU model yielded notably more accurate forecasted 
SWRI24−hr−S  values compared to all other models for all 
the study sites.

As depicted in Fig. 7, across all the study sites, the data 
points closely align with the 1:1 line in the scatterplot, and 
the values of m and R2 were close to unity for the hybrid 
C-GRU model. This indicates a high level of agreement 
between the forecasted and observed SWRI24−hr−S  val-
ues compared to other benchmark models. The values of m 
and R2 in pairs (m|R2) for the hybrid C-GRU model were 
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Fig. 7 Scatterplot of the forecasted 
SW RI24−hr−S(SW RIfor

24−hr−S) 
versus observed SW RI24−hr−S  
(SW RIobs

24−hr−S) generated from 
the proposed hybrid C-GRU model, 
compared with the four other bench-
marking models (i.e., GRU, LSTM, 
CNN, and RFR) for the five study 
sites: a Lautoka, b Nadi, c Rakiraki, 
d Sigatoka, and e Tavua, in the test-
ing phase. The scatterplots also show 
the 1:1 line (red dashed line), the 
equation of the goodness-of-fit line, 
and the coefficient of determination 
(R2) displayed in each panel

 

1 3

2216



Stochastic Environmental Research and Risk Assessment (2025) 39:2203–2229

Symmetric Mean Absolute Percentage Error (sMAPE) (%) 
(Fig. 9), to assess model bias across different study sites. 
The sMAPE is a symmetrical measure that avoids the issue 
of division by zero (Ghimire et al. 2024b). Conversely, the 
conventional Mean Absolute Percentage Error (MAPE) 
metric tends to be overinflated when the observed value is 
close to zero (note that we do have observed and forecasted 
SWRI24−hr−S  values around zero for all the study sites), 
whereas sMAPE does not encounter this problem (Ghimire 
et al. 2024b). The model yielding the lowest sMAPE is 
deemed superior.

As illustrated in Fig. 9, the proposed hybrid C-GRU 
model exhibited superior performance by consistently 
achieving lower sMAPE values than all benchmark mod-
els. A closer examination of Fig. 9 revealed that the pro-
posed hybrid C-GRU model, compared with the standalone 
models, i.e., GRU and CNN, demonstrated a significant 

is a scale and offset invariant of the data, it can sometimes 
yield higher values for models that perform only moderately 
well (Joseph et al. 2023). Additionally, squaring residuals in 
RMSE can introduce a bias towards higher SWRI24−hr−S  
values (Joseph et al. 2023). Therefore, these two metrics 
(i.e., r and RMSE) can sometimes be unreliable. The abso-
lute computation of residuals in MAE mitigates biases, mak-
ing it more reliable than r and RMSE. However, while MAE 
is often considered an alternative to RMSE, both are abso-
lute error indicators unsuitable for comparing models across 
geographically diverse sites (Joseph et al. 2023, 2024). This 
is simply because sites with higher SWRI24−hr−S  values 
will essentially yield larger absolute error values than sites 
with lower SWRI24−hr−S  values, regardless of model 
performance.

To overcome the limitations of the absolute measures, 
in this study, we have used the relative error measure, i.e., 

Fig. 7 (continued)
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to unity for all the study site sites (Lautoka: 0.996; Nadi: 
0.992; Rakiraki and Sigatoka: 0.998; Tavua: 0.997), show-
casing its superior forecasting performance compared to 
all benchmarking models. However, like RMSE and MSE, 
which are biased towards larger values, the ENS  tends to 
overestimate larger SWRI24−hr−S  values while neglecting 
lower SWRI24−hr−S  values (Joseph et al. 2023).

The EW I  (Willmott 1984, 1981) addresses this issue 
by examining the ratio of MSE instead of differences. This 
approach proves advantageous in detecting additive and pro-
portional disparities between the forecasted and observed 
means and variances (Joseph et al. 2023, 2024; Prasad et al. 
2019). The EW I  ranges from 0 to 1, where values closer to 
unity indicate a higher agreement between the forecasted 
and observed SWRI24−hr−S  values. Across all five study 
sites, the average EW I  of the proposed hybrid C-GRU model 
demonstrated improvements of 0.16%, 1.34%, 0.34%, and 
8.85% over the benchmark GRU, LSTM, CNN, and RFR 
models, respectively. While the EW I  is an improvement 
over r and ENS , it remains sensitive to peak residuals due 
to the squaring of residuals in the numerator (Joseph et al. 
2024; Krause et al. 2005).

percentage decrease in sMAPE across all the study sites. 
The proposed model achieved significant sMAPE reduc-
tions ranging from −56.5 to −11.6% compared to GRU and 
from −61.4 to −50.4% compared to CNN across all study 
sites. When compared with the poorly performing bench-
mark model RFR, the proposed hybrid C-GRU model also 
demonstrated a significant percentage decrease in sMAPE: 
Lautoka (−84.4%), Nadi (−66.8%), Rakiraki (−83.6%)
, Sigatoka (−81.7%), and Tavua (−74.8%). This clearly 
establishes the proposed hybrid C-GRU model’s superior 
performance compared to all benchmark models developed 
in this study.

Furthermore, Table 5 also provides additional metrics, 
including ENS , EW I , and ELM , to analyse the forecasting 
performance of the proposed hybrid C-GRU model and the 
benchmarking models. The ENS  (Nash and Sutcliffe 1970) is 
a dimensionless metric, which is a scaled version of MSE. It 
assesses the goodness-of-fit between the observed and fore-
casted data by comparing the residual variance and observed 
data variance (Joseph et al. 2023; Prasad et al. 2019). The 
ideal value of ENS = 1, indicating a perfect agreement 
between the forecasted and observed SWRI24−hr−S  val-
ues. The ENS  for the proposed hybrid C-GRU was closer 

Fig. 8 Observed versus forecasted 
SW RI24−hr−S  generated by the a pro-
posed hybrid C-GRU model compared 
to four benchmarking models: b GRU, c 
LSTM, d CNN and e RFR for the Raki-
raki Site in the testing phase (for closer 
examination, the plot displays results for 
only 250 data points from the test set, 
equivalent to 250 h)
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Table 5 Evaluation of the proposed objective model (i.e., C-GRU) versus all other comparative models in the testing phase for all study sites 
using the Pearson’s Correlation Coefficient (r), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Nash–Sutcliffe Efficiency Index 
(ENS), Willmott’s Index of Agreement (EW I ), and Legate-McCabe Efficiency Index (ELM )
Site Forecasting models r RMSE MAE ENS EW I ELM

Lautoka C-GRU 0.998 0.014 0.003 0.996 0.999 0.963
GRU 0.997 0.020 0.006 0.993 0.996 0.940
LSTM 0.942 0.077 0.015 0.887 0.970 0.835
CNN 0.997 0.025 0.007 0.988 0.997 0.929
RFR 0.791 0.413 0.024 0.612 0.847 0.745

Nadi C-GRU 0.996 0.008 0.003 0.992 0.998 0.933
GRU 0.996 0.011 0.006 0.985 0.996 0.868
LSTM 0.932 0.032 0.008 0.888 0.963 0.803
CNN 0.995 0.015 0.005 0.971 0.992 0.879
RFR 0.940 0.031 0.008 0.882 0.967 0.812

Rakiraki C-GRU 0.999 0.008 0.004 0.998 0.999 0.956
GRU 0.994 0.023 0.009 0.985 0.996 0.888
LSTM 0.996 0.017 0.006 0.992 0.998 0.928
CNN 0.998 0.025 0.007 0.982 0.995 0.914
RFR 0.866 0.093 0.018 0.749 0.920 0.782

Sigatoka C-GRU 0.999 0.012 0.004 0.998 0.999 0.965
GRU 0.999 0.015 0.005 0.996 0.999 0.957
CNN 0.999 0.025 0.009 0.991 0.998 0.926
LSTM 0.998 0.026 0.006 0.990 0.997 0.955
RFR 0.828 0.149 0.031 0.673 0.879 0.754

Tavua C-GRU 0.998 0.007 0.003 0.997 0.999 0.946
GRU 0.998 0.009 0.005 0.994 0.999 0.906
LSTM 0.998 0.007 0.004 0.997 0.999 0.926
CNN 0.997 0.014 0.007 0.987 0.996 0.869
RFR 0.951 0.040 0.009 0.899 0.975 0.840

Fig. 9 Evaluation of the proposed objective model (i.e., C-GRU) versus all other comparative models using the Symmetric Mean Absolute Per-
centage Error (sMAPE) (%) for the five study sites: a Lautoka, b Nadi, c Rakiraki, d Sigatoka, and e Tavua, in the testing phase

 

1 3

2219



Stochastic Environmental Research and Risk Assessment (2025) 39:2203–2229

demonstrates superior performance, exemplified by its high 
KGE value close to unity, outperforming all benchmark 
models.

Our proposed hybrid C-GRU model is further appraised 
using the GPI, as depicted in Fig. 11. As previously dis-
cussed, while various performance evaluation metrics were 
employed to compare all the forecasting models developed, 
solely relying on these metrics to identify the best-perform-
ing model can be challenging. Therefore, the GPI, which 
incorporates all the performance evaluation metrics in this 
study, was employed as a more robust metric.

Figure 11 illustrates that the proposed hybrid C-GRU 
model achieved the highest GPI across all study sites com-
pared to the benchmarking models. Therefore, after con-
ducting a comprehensive performance evaluation of all 
forecasting models developed in this study, using various 
performance evaluation metrics, including the GPI met-
ric, it is evident that the proposed hybrid C-GRU model 
outperforms all benchmark models. Hence, it can be con-
sidered the optimal model for accurately forecasting the 
SWRI24−hr−S  over a 1-hourly forecast horizon.

In addition to the model evaluation conducted thus far, 
we further assess our objective model using empirical cumu-
lative distribution functions (ECDF) of absolute forecast 
error (|FE|), as depicted in Fig. 12. Ideally, the |FE| value 
should be close to zero for the best-performing model, with 

Therefore, the EW I  can assign higher values to even 
poor-performing models (Joseph et al. 2024; Krause et al. 
2005). The ELM  (Legates and McCabe Jr 1999) (ideal 
value = +1) addresses these issues by substituting the squar-
ing of the residual term in the numerator with the absolute 
value (Joseph et al. 2023, 2024; Prasad et al. 2019). Conse-
quently, ELM  is not inflated and is unaffected by extreme 
SWRI24−hr−S  values. Hence, ELM  can used as a reli-
able model assessment metric that is also easy to interpret 
(Joseph et al. 2023; Prasad et al. 2019). Table 5 illustrates 
that the proposed hybrid C-GRU model attained the high-
est ELM  values, which were also close to unity across all 
study sites (Lautoka: 0.963; Nadi: 0.933; Rakiraki: 0.956; 
Sigatoka: 0.965; Tavua: 0.946) compared to all benchmark-
ing models.

The efficiency of the proposed hybrid C-GRU model 
was also verified using the Kling–Gupta efficiency (KGE) 
(Gupta et al. 2009; Kling et al. 2012) metric, which also 
overcomes the limitations of ENS . The KGE assigns an 
equal weighting to the three components (i.e., correlation, 
bias, and variability measures) of the observed and fore-
casted SWRI24−hr−S  values to ensure that the bias and 
variability ratios are not cross-correlated (Ghimire et al. 
2019; Joseph et al. 2023). The KGE ranges from −∞ to 
1, where values closer to unity indicate a perfect fit. As 
illustrated in Fig. 10, the proposed hybrid C-GRU model 

Fig. 10 Evaluation of the proposed objective model (i.e., C-GRU) versus all other comparative models using the Kling–Gupta Efficiency (KGE) 
for the five study sites: a Lautoka, b Nadi, c Rakiraki, d Sigatoka, and e Tavua, in the testing phase
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Fig. 12 Empirical cumulative distribu-
tion function (ECDF) of the absolute 
forecasting error (|FE|) generated by 
the proposed C-GRU versus CNN, 
GRU, LSTM and RFR models for the 
five study sites: a Lautoka, b Nadi, c 
Rakiraki, d Sigatoka, and e Tavua, in the 
testing phase

 

Fig. 11 Evaluation of the proposed objective model (i.e., C-GRU) versus all other comparative models using the Global Performance Indicator 
(GPI) for the five study sites: a Lautoka, b Nadi, c Rakiraki, d Sigatoka, and e Tavua, in the testing phase
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significantly better than that of the benchmark models. The 
null hypothesis (H0) and the alternative hypothesis (HA) of 
the DM test were set as follows (Prasad et al. 2022, 2024): 
H0: There is no significant observed difference between the 
performances of the two predictive models, and HA: the 
observed difference is significant. The DM test was per-
formed at a 5% level of significance such that we reject H0 
if the DM test statistic is > 1.96 or < −1.96. The outcomes 
of the DM test for all study sites are presented in Table 6, 
where the DM test statistic is consistently less than −1.96 
across all the study sites. Consequently, we reject H0, con-
cluding that the proposed hybrid C-GRU model has demon-
strated higher forecasting accuracy than all the benchmark 
models across all the study sites. Hence, we assert that the 
our proposed hybrid C-GRU model is optimal for forecast-
ing SWRI24−hr−S  over a 1-hourly forecast horizon.

Overall, the results demonstrate the robustness and effi-
ciency of the proposed hybrid C-GRU model in forecasting 
SWRI24−hr−S  over a 1-hourly forecast horizon compared 
to its counterparts. Various performance evaluation metrics, 
diagnostic plots, and statistical tests were employed to com-
prehensively assess the proposed model’s performance and 
compare it with all benchmark models. The findings reveal 
that our proposed hybrid C-GRU model demonstrated 
superior performance, achieving high R2 values and show-
ing excellent agreement between forecasted and observed 
SWRI24−hr−S  values, as evidenced by the scatterplot 
across all the study sites. The proposed model also registered 
high r and very low MAE and RMSE values. The results also 
demonstrated that the proposed model achieved significant 
reductions in sMAPE compared to all benchmarking models 
across all study sites. The proposed hybrid C-GRU model’s 
superiority was highlighted by its higher values on the most 
stringent and reliable metric, ELM , across all the study 
sites. Moreover, the proposed model consistently attained 
the highest GPI values across all the study sites, showcasing 
its superior performance. Analysis of the empirical cumula-
tive distribution functions (ECDF) of absolute forecast error 
(|FE|) revealed that the proposed hybrid C-GRU model 
exhibited significantly higher percentages (≈ 98.9–99.9%) 
within smaller error brackets (i.e., |FE| < 0.05) across all 
study sites, highlighting its superior forecasting accuracy 
compared to other evaluated models. Additionally, the DM 
statistical test also confirmed the efficiency of the proposed 
hybrid C-GRU model over the benchmark models.

The superior performance of the proposed hybrid C-GRU 
model primarily stems from its integrated architecture, com-
bining CNN and GRU layers. Within the C-GRU algorithm, 
CNN layers extract crucial features from the input data 
while minimising redundant information. Subsequently, the 
salient feature map produced by the CNN is fed to the GRU 
layers, effectively capturing both past and future long-term 

its distribution closely clustered around zero. The ECDF 
plot of |FE| across all the study sites revealed that while 
the profiles for the benchmarking models exhibited simi-
larities, the proposed hybrid C-GRU model demonstrated 
a distinctly narrower distribution across all the study sites. 
This indicates that forecast errors for the proposed C-GRU 
model consistently registered minimal spreads in forecast-
ing errors, which were closer to 0, indicating superior fore-
casting accuracy compared to the other models evaluated.

A detailed analysis of Fig. 12 revealed that for 
|FE| < 0.05, the proposed hybrid C-GRU model registered 
significantly high percentages across all the study sites: 
≈ 99.5% for the Lautoka and Nadi sites, ≈ 99.8% for the 
Rakiraki site, ≈ 98.9% for the Sigatoka site, and ≈ 99.9% 
for the Tavua site. In contrast, the standalone GRU model 
registered a slightly lower percentage, with ≈ 99% for the 
Lautoka site, ≈ 98.9% for the Nadi site, ≈ 98.4% for the 
Rakiraki site, ≈ 98.6% for the Sigatoka site, and ≈ 99.6% 
for the Tavua site. The RFR model, however, recorded the 
lowest percentage for |FE| < 0.05, with ≈ 92.5% for the 
Lautoka site, ≈ 96.4% for the Nadi site, ≈ 92.8% for the 
Rakiraki site, ≈ 89.8% for the Sigatoka site, and ≈ 95.5% 
for the Tavua site. These findings provide additional evi-
dence supporting the efficiency of the proposed hybrid 
C-GRU model over the benchmark models.

Lastly, the Diebold–Mariano (DM) (Diebold and Mariano 
2002) statistical test was used to determine whether the pro-
posed hybrid C-GRU model’s performance is statistically 

Table 6 Evaluation of the proposed hybrid C-GRU model with bench-
mark models using Diebold–Mariano (DM) test at a 5% significance 
level in the testing phase across all the study sites
Site DM test C-GRU 

versus 
GRU

C-GRU 
versus 
LSTM

C-GRU 
versus 
CNN

C-GRU 
versus 
RFR

Lautoka DM test 
statistic

− 11.329 − 16.675 − 14.386 − 14.326

p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Nadi DM test 
statistic

− 34.999 − 18.430 − 18.240 − 18.630

p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Rakiraki DM test 
statistic

− 33.220 − 15.046 − 16.551 − 15.686

p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Sigatoka DM test 
statistic

− 9.683 − 6.459 − 31.061 − 17.838

p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject

Tavua DM test 
statistic

− 37.031 − 18.718 − 37.070 − 14.890

p-value 0.000 0.000 0.000 0.000
Ho Reject Reject Reject Reject
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system periodically replaces the pre-trained online model, 
ensuring accurate and reliable forecasts are consistently 
generated. This decision support system can be imple-
mented in Fiji’s major towns and cities. It aims to enhance 
and strengthen Fiji’s real-time monitoring and early warn-
ing systems for floods, thus improving disaster prepared-
ness, mitigation, and response efforts.

In respect to the practicality of the proposed system, 
we note that the present study has used a fixed time-reduc-
tion weighting factor (W = 3.8) in the calculation of the 
WRI24−hr−S , as per an earlier study of Deo et al. (2018) 
where this time-reduction weighting factor was devised and 
tested for sites in Brisbane, Australia and Dobong Obser-
vatory, South Korea to account for the depletion of water 
resources through various hydrological processes. Conse-
quently, the derivation of the WRI24−hr−S  followed by 
the SWRI24−hr−S  is contingent upon the value of W. To 
provide insights into the constraints of this study to use this 
framework for practical purposes, we show in Table 7, the 
distance of the catchment studied. Note that WRI24−hr−S  
has considered ≈ 100% contribution of the rainfall an hour 
before and, similarly, lesser percentage contribution for 

dependencies in the historical sequential data. The results 
also showed that the RFR model exhibited poor perfor-
mance among all forecasting models due to its limited capa-
bility to capture complex patterns in the time series data. 
Specifically, the results indicated that the RFR model could 
not accurately forecast the value of SWRI24−hr−S > 0 
across all study sites, which is a crucial aspect in this study 
as SWRI24−hr−S > 0 signifies a flood situation.

4.2 Practical application of the proposed 
framework

Considering the promising forecasting results of the pro-
posed hybrid C-GRU model, we have further exemplified 
its potential for real-life application in the decision support 
system for early flood warnings, as illustrated in Fig. 13.

The proposed system is designed to operate through 
both offline and online systems. The online system utilizes 
the optimal pre-trained hybrid C-GRU model to forecast 
SWRI24−hr−S  over a 1-hourly forecast horizon using 
the new input data as it becomes available. An expert end-
user, preferably a flood forecaster, interprets the results 
from the online system. After reviewing the forecasted 
SWRI24−hr−S  value, if SWRI24−hr−S > 0, indicat-
ing a potential flood situation, the public will be promptly 
informed about the risk of floods. Concurrently, the pro-
posed hybrid C-GRU model should be continuously trained 
and fine-tuned through the offline system using historical 
data from the database. The updated model from the offline 

Table 7 The relative distance between the study sites
Sites Distance (km)
Nadi to Lautoka 17.82
Nadi to Sigatoka 40.71
Lautoka to Tavua 47.86
Tavua to Rakiraki 22.96

Fig. 13 Schematic representation of the proposed hybrid C-GRU model for practical application in the decision support system for early flood 
warnings
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across all sites. It also registered the largest percentage of 
forecast errors (≈ 98.9–99.9%) within smaller error brack-
ets (i.e., |FE| < 0.05) amongst all evaluated sites. Fur-
thermore, the DM statistical test confirmed the efficiency 
of the proposed hybrid C-GRU model over the benchmark 
models. Moreover, the practical implementation of the pro-
posed framework in a decision support system for early 
flood warnings is demonstrated, showcasing its potential to 
enhance Fiji’s real-time monitoring and early warning sys-
tems for floods, thereby improving disaster preparedness, 
mitigation, and response efforts.

Nonetheless, it is crucial to recognise that the method-
ologies proposed in this study have certain limitations, and 
therefore, addressing these limitations is a potential for 
future research direction. These limitations are as follows: 

(a) This research was the first to use the SWRI24−hr−S  
and develop the hybrid DL algorithm to forecast the 
SWRI24−hr−S  to assess flood risk hourly for Fiji’s 
case studies. It must be noted that the SWRI24−hr−S  
has been previously applied in Fiji and has shown suit-
ability to monitor flood risk at an hourly scale (Chand 
et al. 2024). Hence, developing a SWRI24−hr−S-based 
forecasting system for Fiji was acceptable. However, a 
comprehensive study must validate the SWRI24−hr−S  
for broader adoption as an hourly flood risk monitor-
ing tool for other flood-prone regions globally, which 
is contingent upon the availability of well-documented 
flood records for validation and hourly rainfall data 
before the development of the forecasting model.

(b) This study, similar to Chand et al. (2024), has con-
sidered every registered value of the SWRI24−hr−S  
greater than zero as a flood event and did not consider 
a threshold value to define the flood possibility, which 
could also be a limitation. However, it must be noted 
that the aforementioned approach for flood risk iden-
tification and monitoring was proposed by Deo et al. 
(2015, 2018, 2019) where an originally devised index 
of flood detection was proposed as a mathematical func-
tion, following a pioneering paper by Byun and Wil-
hite (1999) where drought possibility was based on a 
water resources index. In these studies, the possibility 
of a flood event was a situation where water resources 
were ’above’ normal, compared against a climatologi-
cal mean value. Similarly, in this study, as per Eq. 11, 
a flood event was detected when the SWRI24−hr−S  
exceeded zero. In other words, we considered it a flood 
situation when the normalized water resources were 
higher than normal. In future research, we propose to 
modify the identification of flood possibility by consid-
ering other key causal factors, such as the geographi-
cal location, surface run-off, drainage, seepage and 

preceding rainfall (see Eq. 10). As per Table 7, the maxi-
mum distance for these sites is 47.86 km (between Lautoka 
and Tavua), whereas the minimum distance is 17.82 km 
between Nadi and Lautoka.

Given that the distance between some of the study sites 
is significant, we acknowledge that, ideally, a future study 
must consider modifying the time-reduction weighting fac-
tor so that the hydrological catchment features of the sites 
can be considered. This was beyond the scope of the present 
work because several other variables, such as drainage, sur-
face run-off, flood discharge, river flows, and others in Fiji, 
are required to better define these sites’ geographic forms. 
Due to a lack of such data, which is typical for a devel-
oping nation such as Fiji, we advocate for further studies 
that can bring together such data to enable researchers to 
modify the percentage contribution of preceding rainfall to 
the flood risk. This will increase the practicality of the pro-
posed framework. For instance, the Digital Elevation Mod-
els (DEM) alongside ArcGIS tools can be utilised to extract 
drainage networks accurately. Establishing a standardised 
method for collecting and analysing hydro-meteorological 
data will improve the reliability of flood risk assessments 
and support the development of more robust forecasting 
models.

5 Conclusions, limitation of the study and 
future research directions

This study supports the ongoing efforts to enhance early 
flood warning systems in the Fiji Islands by developing an 
accurate and reliable flood forecasting model for near real-
time forecasting purposes.

In this study, we have proposed a hybrid C-GRU model, 
integrating two powerful deep learning algorithms, i.e., 
CNN integrated with GRU, to forecast the hourly flood 
index (SWRI24−hr−S) over a 1-hourly forecast horizon to 
assess flood risk at an hourly scale at five flood-prone sites in 
Fiji. The proposed model is trained using statistically signif-
icant lagged values of SWRI24−hr−S  and real-time hourly 
rainfall data for each study site. Bayesian optimisation (BO) 
is utilised to efficiently optimise the hyperparameters of the 
proposed model. The performance of the proposed hybrid 
C-GRU model is compared with other benchmarking mod-
els, including CNN, GRU, LSTM and RFR. Various per-
formance evaluation metrics and diagnostic plots confirm 
the excellent forecasting capability of the proposed hybrid 
C-GRU model compared to other counterpart models.

The results demonstrate that the proposed model outper-
forms all benchmarking models with substantial reductions 
in sMAPE observed across all study sites. The proposed 
model also consistently achieved the highest GPI values 
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with physical hydrological models that simulate the 
hydrological processes involved in flooding dynamics 
would create more robust predictive systems capable of 
extrapolating to unobserved conditions. Third, quanti-
fying the uncertainty in the model’s predictions using 
methods such as Bayesian neural networks or ensemble 
learning, providing probabilistic forecasts that indi-
cate the confidence level of the model’s predictions, 
especially under extreme or unobserved conditions. 
Moreover, one also needs to split the available data 
into multiple subsets, train the model on a portion of 
it, and evaluate its performance on the remaining test 
set. For example, cross-validation will provide a more 
robust estimation of the model’s generalisation ability, 
helping in model selection and hyperparameter tuning. 
Feature selection and engineering can play a signifi-
cant role in improving the model’s generalization. The 
model can provide more discriminative and informa-
tive representations by selecting relevant features. This 
involves domain knowledge, careful feature selection, 
dimensionality reduction, and creating meaningful 
transformations to the data. Deep learning models are 
powerful; however, their black-box nature restricts their 
competence and cannot provide the model’s prediction 
explainability and interpretability. Thus, the integration 
of model-agnostic eXplainable Artificial Intelligence 
(xAI) methods like Local Interpretable Model-Agnostic 
Explanations (LIME) and SHapley Additive exPlana-
tions (SHAP) can handle this limitation to implement 
responsible AI with fairness, model explainability and 
accountability. Finally, validating deep learning models 
in diverse environmental conditions is essential beyond 
the original training set. Testing the model’s perfor-
mance in regions or climates with different hydrologi-
cal characteristics can provide valuable insights into its 
robustness and generalizability.

(e) In this study, a single-step forecasting strategy was uti-
lised, which does not forecast SWRI24−hr−S  at a longer 
forecast horizon than 1 h. Forecasting SWRI24−hr−S  
with sufficient lead times is crucial. This is paramount 
for early warning systems, ensuring the effective imple-
mentation of flood mitigation strategies and better 
preparedness for flood risk. Consequently, given the 
excellent performance of the proposed hybrid C-GRU 
model at single-step forecasting, in future studies, a 
multiple-input multiple-output (MIMO) strategy, as 
demonstrated in the related study by Moishin et al. 
(2021a), should be tested to forecast SWRI24−hr−S  at 
a longer forecast horizon. In addition, other DL, such as 
the BiLSTM algorithm and hybrid algorithms, should 
also be tested for SWRI24−hr−S  forecasting. The 

percolation, and hydrological features of the site where 
the hourly flood index is applied. Hence, the inability to 
apply the threshold form of the hourly flood index is a 
limitation and should be a subject of future research.

(c) Several factors, including land topography, land use 
changes, soil conditions, and catchment and drainage 
systems, are crucial for effective flood risk management 
and mitigation strategies. The proposed model was 
trained using only antecedent real-time hourly rainfall 
and SWRI24−hr−S  data. Despite incorporating only 
two features, the forecasting performance was excel-
lent. However, in future studies, enhancing the model’s 
robustness is recommended by identifying and incorpo-
rating additional useful features such as land topogra-
phy, land use changes, soil conditions, and catchment 
and drainage systems. In future studies, it is recom-
mended to also focus on integrating real-time forecast-
ing of inflow (Barbetta et al. 2023) and streamflow 
(Nanda et al. 2019) into flood risk forecasting systems. 
By incorporating these, flood forecasting models can 
become more accurate and responsive. This integration 
will enable timely alerts, improve decision-making, and 
enhance flood management strategies, providing better 
protection for communities vulnerable to flooding.

(d) This study has proposed a hybrid C-GRU model inte-
grating CNN with GRU (as deep learning models) to 
forecast SWRI24−hr−S  for flood risk assessment at 
an hourly scale at five distinct flood-prone sites in Fiji. 
However, it is important to note that the proposed deep 
learning model operates inherently on a data-driven 
approach trained with site-specific model inputs, which 
means that they rely highly on input datasets to train 
and further optimize their architectures. Therefore, 
may not perform as expected beyond the confines of 
the observed datasets used to construct them. In flood 
forecasting, this limitation is especially relevant as cli-
mate variability and change are expected to introduce 
new hydrological patterns, including more frequent 
and intense extreme weather events. Consequently, a 
model trained primarily on historical data may fail to 
predict such events accurately, limiting its utility in 
real-time flood risk assessment and early warning sys-
tems. Several strategies can be employed to address this 
issue and enhance the generalizability of deep learning 
models. First, expanding the training dataset to include 
a broader range of climatic and environmental condi-
tions, either by incorporating global climate datasets or 
simulating synthetic extreme events, can improve the 
model’s ability to handle unobserved scenarios. This 
approach allows the model to learn from a wider vari-
ety of inputs, reducing its reliance on the specific pat-
terns present in the original dataset. Second, integrating 
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