
A Novel Method for Detecting Outlying Subspaces in High-dim ensional
Databases Using Genetic Algorithm

Ji Zhang, Qigang Gao
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

{jiz, qggao}@cs.dal.ca

Hai Wang
Sobey School of Business
Saint Mary’s University

Halifax, Nova Scotia, Canada
hwang@smu.ca

Abstract

Detecting outlying subspaces is a relatively new research
problem in outlier-ness analysis for high-dimensional data.
An outlying subspace for a given data point p is the sub-
space in which p is an outlier. Outlying subspace detection
can facilitate a better characterization process for the de-
tected outliers. It can also enable outlier mining for high-
dimensional data to be performed more accurately and effi-
ciently. In this paper, we proposed a new method using ge-
netic algorithm paradigm for searching outlying subspaces
efficiently. We developed a technique for efficiently comput-
ing the lower and upper bounds of the distance between a
given point and its kth nearest neighbor in each possible
subspace. These bounds are used to speed up the fitness
evaluation of the designed genetic algorithm for outlying
subspace detection. We also proposed a random sampling
technique to further reduce the computation of the genetic
algorithm. The optimal number of sampling data is speci-
fied to ensure the accuracy of the result. We show that the
proposed method is efficient and effective in handling out-
lying subspace detection problem by a set of experiments
conducted on both synthetic and real-life datasets.

1 Introduction

Outlier detection is an important research problem in
data mining that aims to find a specific number of ob-
jects that are considerably dissimilar, exceptional and in-
consistent with respect to the majority records in the in-
put databases. Numerous research work in outlier detection
has been proposed such as the distribution-based methods
[3][6], the distance-based methods [9][10][12], the density-
based methods [2][8][13] and the clustering-based methods
[1][5][7][11][15][19], etc.

In this paper, we focus on the problem of outlying sub-

space detection for high dimensional data, which is a com-
plementary problem of outlier detection. The major task of
outlying subspace detection is to find the subspaces (subsets
of features) in which each data point exhibits significant de-
viation from the rest of population. An outlying subspace
for a data point is a subspace (a subset of features) in which
this data can be considered as an outlier. The problem of
outlying subspace can be formulated as follows: given a
data point, find the subspaces in which this point is consid-
erably dissimilar, exceptional or inconsistent with respect
to the remaining population in the database [14].

Outlier mining can be benefited from outlying subspace
detection in many aspects. First, outlying subspace detec-
tion can contribute to a better characterization of the outliers
detected. The characterization of outliers mainly involves
presenting the subspaces in which these outliers exist. In
high-dimensional space, it is important to not only mine
outliers but also find the context in which these outliers ex-
ist. In conventional outlier detection methods, each detected
outlier can only be characterized by the subspace chosen by
users that is used for outlier detection. Outlying subspace
detection makes it possible to give a more informative char-
acterization of the outliers detected by finding their outlying
subspaces. Second, outlying subspace detection can enable
outlier mining to be performed more accurately. It can allow
outliers to be detected from more than one subspaces. This
is important to many practical applications. For instance, in
credit card fraud detection, online credit card transactions
are needed to be scanned in order to determine whether each
transaction is legal or fraudulent. The conventional out-
lier detection methods usually rely on a pre-specified fea-
ture subspace to detect outliers, which may cause them to
miss many potential outliers hidden in other feature sub-
spaces and fail to raise necessary alarms. Therefore, outly-
ing subspace analysis plays a crucial role for outlier min-
ing in this sitation to identify the correct feature subspaces
in which outliers can be accurately mined. Finally, outly-

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



ing subspace detection can help outlier detection methods
to mine outliers in high-dimensional space more efficiently.
It is an important intermediate step in example-based out-
lier mining, which detects outliers based on a set of outlier
examples supplied by domain experts [16][17]. The basic
idea of this method is to find the outlying subspaces of these
outlier examples, from which more outliers that have sim-
ilar outlier-ness characteristics to the given examples can
be found more efficiently by only investigating the detected
outlying subspaces.

Unfortunately, due to the exponential growth of the
number of subspaces with respect to the dimension of the
dataset, the problem of outlying subspace detection is NP-
hard by nature. The straightforward exhaustive search is
apparently infeasible to this problem, especially for high-
dimensional datasets. In response to the inherent hardness
of this problem, the state-of-the-art methods were proposed
to employ heuristics in speeding up the search process in
order to render this problem tractable. Zhang et al. pro-
posed a dynamic outlying subspace search algorithm that
utilizes a sample-based learning process to efficiently iden-
tify the outlying subspaces for the given points [14][18].
Two heuristic pruning strategies employing the upward and
downward closure property are devised to reduce search
space. Its major drawbacks, however, lie in the unsatisfac-
tory accuracy of the metric used for measuring outlying de-
gree of points in subspaces, the binary fashion of its result
and the difficulty in specifying the distance threshold. Zhu
et al. draw on a genetic algorithm to solve the example-
based outlier detection problem [16][17]. The major limita-
tion of this method is that it is computationally expensive to
compute the outlying degree of points in subspaces. This is
because that it uses a cell-based partitioning technique that
scales poorly in high-dimensional space.

In this paper, we develop a method based on genetic al-
gorithm to solve the outlying subspace detection problem
that well copes with the drawbacks of the existing methods.
The main contributions of this paper are summarized as fol-
lows:

1. A new metric, called Subspace Outlying Factor (SOF),
is developed for measuring the outlying degree of each
data point in different subspaces. Based on SOF, a new
definition of outlying subspace, called SOF Outlying
Subspaces, is proposed. The parameters used in defin-
ing SOF Outlying Subspaces are easy to be specified,
and do not require any prior knowledge about the data
distribution of the dataset;

2. A genetic algorithm-based method is proposed for out-
lying subspace detection. The upward and downward
closure property is no longer required in our GA-based
method, and the detected outlying subspaces can be
ranked based on their fitness function values;

3. The concepts of the lower and upper bounds of Dk,
the distance between a given point and its kth nearest
neighbor, are proposed. These bounds are used for a
significant performance boost in our method. We pro-
pose a technique to compute these bounds efficiently
using the so-called kNN Look-up Table;

4. The random sampling technique is utilized in our
method to further speed up the computation. The opti-
mal number of sampling data is specified, and a novel
genetic algorithm is developed to combine incremental
data sampling and subspace fitness evaluation;

5. Last but not the least, we show that the proposed
method is efficient and effective in handling outlying
subspace detection problem through experiments con-
ducted on both synthetic and real-life datasets.

2 Problem Formulation

To define outlying subspace, we need to first devise the
metric for measuring outlier-ness of the given data point in
different subspaces. In this work, we use Dk, the distance
between a point and its kth nearest neighbor, in our outlier-
ness metric, called Subspace Outlying Factor (SOF). Math-
ematically, the SOF of a subspace s w.r.t a given point p is
defined as the ratio of Dk(p) in s against the averaged Dk

in s for points in the dataset D, i.e.

SOF (s, p) =
Dk

s (p)

Dk
s (D)

(1)

Intuitively, the higher the ratio is, the higher the Dk of p is
when compared to other points, therefore the higher outlier-
ness of p is and vice versa. Our definition of SOF leads to
the following definition of SOF Outlying Subspaces:

Definition 1. SOF Outlying Subspaces: Given an in-
put dataset D, parameters n and k, a subspace s is a SOF

Outlying Subspace for a given data point p if there are no
more than n− 1 other subspaces s′ such that SOF (s′, p) >

SOF (s, p).
The above definition is equivalent to say that the top n

subspaces having the largest SOF values are considered to
be outlying subspaces.

3 Lower and Upper Bounds of D
k

As the lower and upper bounds of Dk of data points are
established by means of their respective kNN Lookup Ta-
ble, we therefore first introduce kNN Lookup Table prior to
our discussion on the bounds of Dk.

Definition 2: Full kNN Lookup Table: A Full kNN
Lookup Table of a data p, denoted as T p, is a ϕ × k table

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



Figure 1. Partial kNN Lookup Table of a data
point

containing information about its k nearest neighbors in each
single dimension of full data space with ϕ dimensions. The
entry xij of the table represents the jth nearest neighbor of
p in the ith dimension, where 1 ≤ i ≤ ϕ and 1 ≤ j ≤ k.

It is important to note that the lower and upper bounds of
Dk(p) will vary in different subspaces and only a portion of
T p is actually used to construct the bounds of Dk(p) in a
particular subspace s. That is, only the dimensions relevant
to s are needed to be considered. As such, we propose the
notion of Partial kNN Lookup Table that is defined as a view
of the corresponding full kNN Lookup Table.

Definition 3: Partial kNN Lookup Table: A Partial kNN
Lookup Table of a data p with respect to a subspace s, de-
noted as T p

s , is a |s| × k view (logical table) of the full
kNN Lookup Table of p, with each entry xij being the jth

nearest neighbor of p in the ith dimension, where di ∈ s,
1 ≤ i ≤ |s| and 1 ≤ j ≤ k. |s| is the number of dimen-
sions of s. Apparently, the Partial kNN Lookup Table is a
selection of its corresponding full kNN Lookup Table, i.e.
T p

s = σdi∈sT
p.

3.1 Lower Bound of Dk

Given a subspace s and the number of nearest neighbor
k, we will first calculate the following two constructs, α and
β. These two constructs will be utilized in constructing the
lower bound of Dk of p in s. α and β are defined as follows:

{

α =
⌊

k−1
|s|

⌋

+ 1

β = (k − 1) mod |s|
(2)

where
⌊

k−1
|s|

⌋

denotes the maximum integer that does not

exceed k−1
|s| .

When α and β are available, we sort T p
s based on the

values of Dα
di

(p), the distance between p and its αth nearest
neighbor in di (di ∈ s) and select the β dimensions that

have the lowest Dα
di

(p) values which are presented in set
d′:

d
′ = {d1, d2, . . . , dβ} (3)

Then we define the Lower Bound Set (LBS) of p in s as

LBSs(p) = {e1, e2, . . . , e|s|} (4)

where each element ei (1 ≤ i ≤ |s|) is a positive integer
and specified as follows:

ei =

{

α + 1, if di ∈ d′

α, if di 6∈ d′ (5)

The lower bound of Dk(p) for a point p in s, denoted as
LBs(D

k(p)), is given as

LBs(D
k(p)) =

√

∑|s|
i=1 D

ei

di
(p)2

|s| − 1
, ei ∈ LBSs(p) (6)

where Dei

di
(p) denotes the distance between p and its eth

i

nearest neighbor in dimension di ∈ s.
Figure 1 presents the Partial kNN Lookup Table of a

point. All the elements in LBSs(p) has been highlighted
using darker background in the table. As we discussed ear-
lier, there are |s| elements in LBSs(p); the first |s| − β ele-
ments come from Column α and another β elements come
from Column α + 1. These |s| elements in LBSs(D

k(p))
form a lower bound frontier in the Partial kNN Lookup Ta-
ble.

Lemma 1:

√

∑ |s|
i=1

D
ei

di
(p)2

|s|−1 , ei ∈ LBSs(p) is the lower

bound of Dk(p) for a point p in subspace s.
Proof: Let NNIndex(p,di)(q) be nearest neighbor index
number of point q with respect to p in dimension di of sub-
space s. For instance, if q is the 10th nearest neighbor of p

in the 5th dimension of s, then NNIndex(p,d5)(q) = 10.
The total number of unique points q such that

NNIndex(p,di)(q) < ei for any dimension di in s, 1 ≤
i ≤ |s| (i.e. falling to the left side of the lower bound fron-
tier of the table) is no more than k − 1. Without losing gen-
erality, let us suppose that there are t such unique points,
(1 ≤ t ≤ k − 1).

For any point q satisfying NNIndex(p,di)(q) ≥ ei for
all the dimensions di of s, 1 ≤ i ≤ |s| (i.e. locating
to the right of the lower bound frontier of the table), we
have distdi

(p, q) ≥ Dei

di
(p) for each di ∈ s. Therefore,

dists(p, q) ≥

√

∑ |s|
i=1

D
ei

di
(p)2

|s|−1 .

Suppose, among the t unique points locating to the left
of the lower bound frontier of the table, there are t′ points
q satisfying NNIndex(p,s)(q) ≤ t (0 ≤ t′ ≤ t). Then,
the (t′ + 1)th nearest neighbor of p in s should locate
to the right of the lower bound frontier and Dt′+1

s (p) ≥
√

∑ |s|
i=1

D
ei

di
(p)2

|s|−1 . Since 1 ≤ t ≤ k − 1 and t′ ≤ t, thus,

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



t′ + 1 ≤ k and Dt′+1
s (p) ≤ Dk

s (p). Given Dt′+1
s (p) ≥

√

∑ |s|
i=1

D
ei

di
(p)2

|s|−1 and Dt′+1
s (p) ≤ Dk

s (p), then we have

Dk
s (p) ≥

√

∑ |s|
i=1

D
ei

di
(p)2

|s|−1 , as required.

3.2 Upper Bound of Dk

To compute the upper bound of Dk(p) of p in s, we need
to first obtain the Upper Bound Set (UBS) for p in s. It is
defined as follows:

UBSs(p) = ∪|s|
i=1KNNSetdi

(p), di ∈ s (7)

where KNNSetdi
(p) denotes the set of kNNs of p in di-

mension di and it represents each row of T p
s . Obviously,

we have k ≤ |UBSs(p)| ≤ k|s|. |UBSs(p)| = k when the
kNNs of p in each dimension di ∈ s are identical, whereas
|UBSs(p)| = k|s| when there are no duplicates in T p

s . In
computing the lower bound of Dk(p), UBSs(p) is used to
store the result of union operation on all kNN sets of p in
each single dimension.

Let point q be the kth nearest neighbor of p in UBSs(p).
The upper bound of Dk of p in s is defined as the distance
between p and q in s as

UBs(D
k(p)) = dists(p, q) (8)

Lemma 2. Let point q be the kth nearest neighbor of p in
UBSs(p), then dists(p, q) is the upper bound of Dk of p in
s.
Proof: For two sets set1 and set2 such that set1 ⊆ set2
and |set2| ≥ |set1| ≥ k, if q1 and q2 are the kth near-
est neighbor of p in set1 and set2, respectively, then we
have dists(p, q1) ≥ dists(p, q2). This is because that Dk

is monotonically decreasing as the set of points we examine
gets larger.

Now let set1 and set2 be instantiated as set1 =
UBSs(p) and set2 = D, where D denotes the whole
dataset, we thus have UBSs(p) ⊆ D and |D| ≥
|UBSs(p)| ≥ k. Based on the above discussion, we will
have dists(p, q1) ≥ dists(p, q2), where q1 and q2 are the
kth nearest neighbor of p in UBSs(p) and D, respectively.
Therefore, dists(p, q1) is the upper bound of Dk of p in s,
as desired.

3.3 Approximation of Subspace Outlying Factor
by Using Bounds of Dk

Let LBs(Dk,D) and UBs(Dk,D) be the average lower
and upper bounds of Dk in subspace s for points in dataset
D. We define the minimum and maximum values for SOF
of p in s as follows:

SOFmin(s, p) =
LBs(D

k(p))

UBs(Dk,D)
SOFmax(s, p) =

UBs(D
k(p))

LBs(Dk,D)
(9)

The approximated SOF of s with respect to p is
computed by using the average of SOFmin(s, p) and
SOFmax(s, p) as follows:

SOFapp(s, p) =
SOFmin(s, p) + SOFmax(s, p)

2
(10)

3.4 Performance Improvement Using Approxi-
mation of SOF

As pointed out in [13], kNN search in subspace s for
all the N points in the database requires a complexity of
O(k|s|N2) when s is of a high dimension.

If our approximation scheme of SOF is used, comput-
ing the lower bound of Dk(p) in s only requires sort-
ing the αth column of T p

s and summing up Dei

di
(p)2 for

each di ∈ s, with a complexity of O(|s|log|s| + |s|).
While for computing the upper bound of Dk(p) in s, we
need to find the kthNN of p in UBSs(p) with a maxi-
mum possible size of k|s|. Hence, the complexity will be
O(k|s| ·k|s|) = O(k2|s|2). In sum, the complexity of com-
puting the bounds of Dk for all the points in the database is
O((|s|log|s| + |s| + k2|s|2)N) = O(k2|s|2N).

By using our approximation technique, we are able to
reduce the complexity in computing SOF of a subspace to
a linear order with respect to N , leading to a computation
saving by up to a factor of N

k|s| compared to the case when
no approximation is performed. Since N >> |s| and k is
usually small in most cases, our approximation technique is
thus able to achieve a significant performance improvement.

4 Construction of kNN Look-up Table

The kNN Look-up Table for a data point should be first
constructed before its lower and upper bounds of Dk can
thereby be established. The key task involved in construct-
ing the kNN Look-up Table of a data point is to find its
kNNs in each single dimension of the full data space. To
facilitate construction of the tables, we transform the orig-
inal dataset into a few sorting lists, where the number of
the sorting lists is equal to the number of dimensions of the
dataset. Each sorting list is constructed based on the sorting
order of data in each dimension. The lengths of all sort-
ing lists are identical and equal to the number of data points
in the original dataset. Each element in the sorting list has
two fields: the ID and the value of a particular point in the
related dimension. There can be a few ways to implement
kNN search in the sorting lists. In this work, we will study
three simple yet efficient methods, namely the list-based,
block-based and tree-based methods.

List-based Method . kNN search can be performed directly
on the sorting lists. We need to first locate p in the sorting
list and then perform kNN search for p. The preceding and

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



subsequent k points of p are the candidates of its kNNs,
from which kNNs of p can be found.

Locating a point p in any one sorting list needs a com-
plexity of O(log2N) and finding kNNs in the sorting list
requires another O(k) computation. In sum, the compu-
tational complexity of employing the sorting list will be
O(log2N + k). The space complexity of list-based method
is O(2N).

Lemma 3: If a sorting list is partitioned into blocks with
an equal size b, then at most 3 blocks in the sorting list are
needed to be searched for finding kNNs for any point p if
b ≥ k. These 3 blocks are the block B to which p belong
and the the two adjacent blocks of B.
Proof: Without losing generality, let us suppose that the
sorting list is related to dimension di (1 ≤ i ≤ ϕ) and the
block index number of B to which p belongs is i. For any
point q in Block (i − 2), there are at least k points in Block
i−1 whose distance to p in dimension di is less than or equal
to distdi

(p, q). Likewise, for any point q in Block (i + 2),
there are at least k points in Block (i + 1) whose distance
to p in dimension di is less than or equal to distdi

(p, q).
Therefore, all kNNs of p definitely fall into Block (i− 1), i

or (i + 1).

Block-based Method . kNN search can also be performed
on a block-by-block basis. The basic idea is to partition
a sorting list into a number of blocks. These blocks are
usually of an equal size and contain more than k points.
Each time, only a single block is evaluated. Let Bmin and
Bmax be the minimum and maximum point values in the
current block being loaded, respectively, and p.value be the
value of p in the sorting list. If Bmin ≤ p.value ≤ Bmax,
then this block is the one to which p belongs. We can further
locate p in this block and perform kNN search for p. If
Bmin ≤ p.value ≤ Bmax is not met for the current block,
then another block will be loaded for evaluation.

The computational complexity for finding the block to
which p belongs is O(1) for the best case where p is located
in the first block we evaluate and O(N

b
) for the worst case

where all the blocks in the sorting list are exhausted in the
search. The average-case complexity is thus O(N+b

2b
). Also,

the time complexity for locating p in the block is O(log2b).
Finding kNNs in the sorting list requires another O(k) com-
putation. The total time complexity is O(N+b

2b
+ log2b+k).

Since at most 3 blocks in the sorting list need to be searched,
the space complexity is therefore O(6b).

Tree-based Method. The third alternative is to utilize a
tree structure to further index the data blocks in the sorting
list. For the sake of simplicity, we construct Binary Trees
for performance enhancement in kNN search. Binary tree
is simple in structure yet very efficient in kNN search.

The binary tree we use for each sorting list is a balanced
rooted tree BT =< V, E >, where V is the node set and
E is the edge set. The nodes in V are classified as the

block nodes and the indexing nodes. The block nodes are
the leaves of the binary tree that represent data blocks in a
sorting list that each contains b points, where b ≥ k. Each
data block in the leaf level will be represented by its mini-
mum point value (the first value in the block if the sorting
list is ordered in an ascending order) in the binary tree. The
indexing nodes are other nodes in the tree primarily used for
indexing the data blocks at the bottom level. The immedi-
ate indexing node of a block node takes the smallest value
and the starting address of the data block. Other indexing
nodes (excluding the root) will take the minimum value of
its children, together with the addresses of its left and right
children. The root will only stores the addresses of its two
children.

kNN search for a point p in a binary tree also takes two
major steps. First, the binary tree is traversed top-down
from the root until the block to which p belongs is found.
The moment an intermediate indexing node a is reached,
the following rule is used to decide the sub-tree for further
traversal: If p.value ≥ a.rightchild, then right child of a

is chosen for traversal. Otherwise, the left child is selected
for traversal. When a bottom indexing node (i.e. the im-
mediate parent of a block node) is reached, the block node
to which it is pointing is referred and the whole data block
is fetched. After the block to which p belongs to has been
found, the location of p within the block will be determined
and kNN search can be performed.

It will require O(log2
N
b
) to traverse the binary tree

downward from the root to find the block to which p be-
longs. The complexity of locating p in the block is O(log2b)
and searching for kNNs of p in 3 blocks requires a com-
plexity of O(k). In sum, the time complexity is O(log2

N
b

+
log2b + k) = O(log2N + k).

The total number of indexing nodes in the tree is approx-
imately 2N

b
. We load all the indexing nodes of the binary

tree as they will be frequently used for kNN search. Since
it is not required to load any data blocks until the block to
which p belong has been found and at most 3 blocks are
needed to be loaded for kNN search for p, thus the space
complexity of tree-based method is O(2N

b
+ 6b).

5 Genetic Algorithm for Detecting Outlying
Subspaces

In this section, we will elaborate on the design of the
genetic algorithm for outlying subspace detection.
Representation. Our GA technique uses the standard bi-
nary individual encoding; all individuals are represented by
strings with fixed and equal length ϕ, where ϕ is the num-
ber of dimensions of the dataset. Using binary alphabet
Σ = {0, 1} for gene alleles, each bit in the individual will
take on the value of ”0” and ”1”, indicating whether or not
its corresponding condition is selected, respectively.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



Algorithm: OS Detection(p, P , pc, pm, k, ǫ, nc)
Input: a given point p, population size P , probability of crossover
pc, probability of mutation pm, number of nearest neighbors k,
convergence factor ǫ and number of candidate subspaces nc.
Output: SOF Outlying Subspaces.
1. CompleteSet← ∅; CandidateSet← ∅
2. Spop ← initial population of P subspaces;
3. WHILE (evolution stop criterion=false) DO {
4. FOR each individual s in Spop DO
5. CompFitness(s, p, k, ǫ);
6. CompleteSet ← CompleteSet∪ individuals and their
respective SOF in Spop

7. Spop ← Selection(Spop);
8. Spop ← Crossover(Spop, pc);
9. Spop ←Mutation(Spop, pm); }
10. CandidateSet← top nc subspaces in CompleteSet;
11. CandidateSet← SubspaceRefine(CandidateSet);
12. Return top n individuals in CandidateSet;

Figure 2. Genetic algorithm for outlying sub-
space detection

Fitness Function. The fitness function used in the genetic
algorithm is defined as the approximated SOF of subspace
s with respect to the given point p, as presented in Eq. (10),
i.e.

ffit(s) = SOFapp(s, p) =
SOFmin(s, p) + SOFmax(s, p)

2
(11)

A higher value of ffit(s) indicates a fitter solution and vice
versa. The definition of ffit(s) encourages the genetic algo-
rithm to produce an increasing number of subspaces having
high SOF values as evolution proceeds.
Selection Operator. In our work, fitness-proportionate se-
lection, also known as roulette-wheel selection, is used to
select fitter solutions in each step of the evolution. Fitness-
proportionate selection is a stochastic selection method
where the selection probability of a subspace is proportional
to the value of its fitness function ffit(s).
Search Operators. The crossover and mutation used in this
work is single-point crossover and bit-wise mutation. In our
work, all the new individuals generated by crossover and
mutation are of the same length, i.e. ϕ, as their parent(s),
where ϕ is number of dimensions of the input database.
There are two associated probabilities, pc and pm, used to
determine the frequencies for applying crossover and muta-
tion, respectively. Normally, we have pc >> pm, meaning
that crossover is performed in a much higher frequency than
mutation.
Algorithm. The framework of genetic algorithm for
detecting outlying subspace is presented in Figure 2.
CompleteSet is the set used to maintain all the subspaces,

together with their respective SOF, that have been evalu-
ated in the genetic algorithm and CandidateSet is the set
used to only store the candidates of SOF Outlying Sub-
spaces. The stopping criterion in the WHILE loop is usu-
ally that the number of generations performed has reached
a pre-specified constant. CandidateSet stores the top nc

subspaces in CompleteSet (line 10). In order to achiev-
ing good accuracy of the detected outlying subspaces, nc

should be substantially larger than n. In Line 11, we
perform subspace refinement (will be discussed in the se-
quel) and the top n subspaces from all the candidates in
CandidateSet are returned as SOF Outlying Subspaces.
The Subspace Refinement. Since we approximate SOF in
the genetic algorithm, the accuracy of computation is thus
somehow limited. To address this problem, we can perform
a refinement step on the candidate outlying subspaces in
Line 11 of the genetic algorithm (Figure 2). Instead of us-
ing the lower and upper bounds of Dk for a fast fitness ap-
proximation, the refinement step will compute the accurate
SOF for all subspace candidates in CandidateSet and the
top n outlying subspaces among them will be returned. A
pruning optimization strategy can be devised based on the
maximum value of SOF (i.e. SOFmax) of different sub-
spaces to speed up the computation. The basic idea of this
pruning optimization strategy is that, after n subspace can-
didates have been evaluated, we start to maintain the mini-
mum value of SOF for the top n subspaces we have found
thus far, denoted as MinSOFn. Those subspaces satisfying
SOFmax(s, p) < MinSOFn cannot become the top n sub-
spaces and can therefore be safely pruned. This is because
that the value of MinSOFn is monotonically increasing as
more subspaces are examined in the refinement step.

6 Random Sampling

The most computationally expensive step in our genetic
algorithm lies in the fitness evaluation of individuals. This is
because that the fitness evaluation for each subspace, either
in approximated or accurate manner, involves scanning all
the points in the dataset. This will be slow as the number
of points in the dataset is usually large. To speed up fitness
evaluation, we draw on random sampling technique so as
to evaluate fitness of individuals only based on the random
samples, rather than on the entire dataset.

By using sampling data, the average lower and upper
bounds of Dk in subspace s, used in SOF approximation,
can be computed as follows:

LBs(Dk,S) =
1

NS

NS
∑

i=1

LBs(D
k(spi))

UBs(Dk,S) =
1

NS

NS
∑

i=1

UBs(D
k(spi)) (12)

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



where NS denotes the number of points in the sample S and
spi denotes the ith sampling point in S, 1 ≤ i ≤ NS .

Sampling can help improve the efficiency of our method
significantly, but the quality of the result may be affected.
In what follows, we will discuss convergence of the aver-
aged lower and upper bounds of Dk when the number of
sampling data is increased.

Let X be a variable that can represent the averaged lower
or upper bound of Dk for a set of data points in a subspace.
Let us suppose that there are already i − 1 sampling points
and the ith sampling point is generated. From the conver-
gence perspective, we want to ensure that ∃µ ≥ 2, where µ

is a positive integer, for ∀i ≥ µ, we have

|Xi −Xi−1|

Xi−1

< ǫ (13)

where Xi denotes the average value of X for all the first
i sampling points. ǫ is called convergence factor and is
usually a small positive number (say 0.01). The ratio of
|Xi−Xi−1|

Xi−1

< ǫ measures the degree to which the averaged

value of X changes due to the inclusion of the new (i.e. the
ith) sample point. Eq. (13) intuitively means that, when
each newly generated sampling point does not considerably
change the average value of X after the sample reaches a
certain size µ, then we can claim that a convergence of X

value of data points have been achieved. Xi is defined based
on Xi−1 recursively as follows:

{

X1 = X1;

Xi =
(i−1)·Xi−1+Xi

i
, i ≥ 2

(14)

where Xi denotes the X value of the ith sample point.
Plug Eq. (14) into Eq. (13), we have

| (i−1)·Xi−1+Xi

i
− Xi−1|

Xi−1

< ǫ

After simplification, we can get

| Xi

Xi−1

− 1|

i
< ǫ (15)

Lemma 4: The minimum number for the sampling data

is

⌈

( Xmax

Xmin
−1)

ǫ

⌉

, where

⌈

( Xmax

Xmin
−1)

ǫ

⌉

denotes the minimum

integer that is no less than
( Xmax

Xmin
−1)

ǫ
, Xmin and Xmax de-

note the minimum and maximum values of X for all the
points in the dataset, respectively.
Proof: Based on Eq. (15), we need to have

i >
| Xi

Xi−1

− 1|

ǫ
(16)

to ensure the convergence of |Xi−Xi−1|

Xi−1

. Since we have

| Xi

Xi−1

− 1| ≤ Xmax

Xmin

− 1, therefore if we have i >
Xmax

Xmin
−1

ǫ

then Eq. (15) can always be satisfied. Therefore, the mini-
mum number of sampling points required for X , denoted as
N∗

sample(X), is computed as

N
∗
sample(X) =

⌈

(Xmax

Xmin
− 1)

ǫ

⌉

(17)

As desired.
In order to produce sufficient sampling data to achieve

convergence for both the lower and upper bounds of Dk, the
optimal (minimum) number of sampling data in subspace s

is specified based on Eq (17) as follows:

N∗
sample(s) = max(N∗

sample(LB), N∗
sample(UB))

=









max
(

LBmax(Dk)

LBmin(Dk)
,

UBmax(Dk)

UBmin(Dk)

)

− 1

ǫ









(18)

where LBmax(Dk) and LBmin(Dk) are the maximum and
minimum values of the lower bound of Dk for all the points
in the dataset, UBmax(Dk) and UBmin(Dk) are the maxi-
mum and minimum values of the upper bound of Dk for all
the points in the dataset.

Although the optimal number of sampling points has
been explicitly specified in Eq. (18), we would face the
following dilemma in practice when specifying its value:
On one hand, the objective of performing data sampling is
to achieve performance boost by only working on a small
portion of the original dataset. On the other hand, however,
the optimal number of sampling points cannot be specified
without evaluating the whole dataset in order to find the
global minima and maxima.

Due to the above dilemma, we propose a novel approach
to progressively approximate the optimal sampling points
in parallel with subspace fitness computation. The basic
idea of this progressive approximation approach is to start
with a set of sampling point with a minimum size (can be as
small as 2 sampling points) and incrementally grow this set
when necessary during the course of subspace evaluation
in the genetic algorithm. Specifically, the approximation is
performed progressively in the following two iterative steps:

1. The local minimum and maximum values of the lower
and upper bounds of Dk for the current sampling
points are found and are used to compute the optimal
number of sampling points N∗

sample;

2. If the number of current sampling points Nsample is
less than N∗

sample, then N∗
sample − Nsample new sam-

pling points will be generated.

The above two steps are repeated until N∗
sample >

Nsample is no longer met.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



Having the sampling data for the first subspace, the sam-
pling data to be used for subsequent subspaces will be gen-
erated in an incremental way. The sampling data for one
subspace may or may not be large enough for achieving a
convergence for the bounds of Dk in the sampling data for
another new subspace. To decide this, we need to compute
N∗

sample in the new subspace first and then test whether or
not N∗

sample ≤ Nsample is met. If N∗
sample ≤ Nsample

is met, indicating the current sampling data is sufficient to
reach a convergence of the bounds for this new subspace,
then we will just utilize the current set of sampling data for
this new subspace without introducing any new ones. It is
also possible that the current sampling data are not enough,
thus more new sampling points will be generated for the
new subspace until the convergence can be observed.

7 Experimental Results

We use both synthetic and real-life datasets for per-
formance evaluation in our experiments. In the synthetic
datasets, we are able to specify the number of instances (tu-
ples) (N ) and dimensions (ϕ) of the datasets generated. We
also use four real-life multi- and high-dimensional datasets
from the UCI machine learning repository in our experi-
ments. These four datasets called Letter Image (D1, 16-
dimensional), Image Segmentation (D2, 19-dimensional),
Ionosphere (D3, 34-dimensional) and Musk (D4, 168-
dimensional), respectively. No missing values will occur
in all the synthetic and real-life datasets. As the experimen-
tal setup, we set the number of SOF Outlying Subspaces
returned in the end n = 20, the number of generations for
the GA Ng = 50, the population size in each generation
P = 50, the frequency of applying crossover pc = 0.8 and
the frequency of applying mutation pm = 0.2.

7.1 Experimental Results on Synthetic Datasets

Experiments conducted on synthetic datasets are to test
the effects of number of points N and number of dimen-
sions ϕ of the dataset on the performance of our method.
Effect of N on constructing Full kNN Lookup Table. N

determines the length of the sorting lists obtained from the
original dataset, which will further affect the efficiency of
kNN search of each point in constructing its kNN Lookup
Table. In this experiment, the block size b is set to be 1000
and 5000 for the block-based method and 1000 for the tree-
based method (Note that the time complexity of tree-based
method is independent of the block size b). The time is
averaged over 20 given points for all the methods. Fig-
ure 3 presents the results. It shows that the list-based and
tree-based methods are very close to each other in terms of
running time and are more efficient than the block-based

method. This is because that the time complexities of list-
based and tree-based methods are both logarithmic w.r.t N

while that of the block-based method is approximately lin-
ear w.r.t N . Also, when block size b is increased (say from
1000 to 5000 in this experiment), the complexity of the
block-based method is decreased. In the extreme, when
b approaches N , the time complexity of the block-based
method will become O(log2N + k), which will be equiv-
alent to the complexities of the list-based and tree-based
methods.

Effect of N on SOF computation. N affects the efficiency
of fitness evaluation for each subspace in the GA. When no
approximation of SOF is used, the time complexity of fit-
ness computation using the nested-loop method for kNN
search is quadratic with respect to N . Nevertheless, the
complexity can be reduced to a linear order of N if our ap-
proximation scheme of SOF is employed. Moreover, if we
choose to work on the sampling data for performance boost,
then the execution time is independent of N in any way.
This is because that the number of sampling points we use
in fitness evaluation for subspaces is only depended on the
characteristics of data, as revealed in Eq. (18). This empiri-
cal analysis is confirmed in Figure 4. In this experiment, the
execution time is the average time spent in evaluating each
subspace. The results of this experiment illustrate that SOF
approximation and sampling are very promising in boost-
ing performance of our method. Under different N values,
our algorithm can run 2-20 times faster than the nested-loop
method when using SOF approximation and can run 10-130
times faster when using both SOF approximation and ran-
dom sampling.

Effect of ϕ on the search workload of the GA. ϕ deter-
mines the size of the search workload for subspaces, which
is in an exponential order of ϕ. This does not necessarily
mean that the running time of our algorithm will be expo-
nential with respect to ϕ whatsoever. The actual running
time is depended on how the search workload in the GA
is specified. More precisely, if we use a fixed number of
generations and population size in each generation of the
GA, i.e. a fixed workload, then the total search workload
in the GA will be the same under different ϕ. Yet, using a
fixed search workload in the GA for datasets with different
dimensions may not an effective strategy. A varied work-
load scheme, in contrast, performs a search workload that
is specified by a workload function. The workload function
specified by the users is a monotonically increasing func-
tion of ϕ, reflecting the effect of ϕ on the search workload
of algorithm. The time complexity may now become expo-
nential with respect to ϕ as long as the workload function
is an exponential function w.r.t ϕ. In our experiment, the
search workload under the fixed workload scheme is set to
be 2500 (50 generations with 50 individuals in each gen-
eration) and is stipulated by workload function w = ϕ2 in

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

16

Number of points in the dataset

E
xe

cu
tio

n 
tim

e 
(S

ec
.)

List−based method
Block−based method (b=1000)
Block−based method (b=5000)
Tree−based method

Figure 3. Effect of N

on kNN Lookup Table
Construction

1 2 3 4 5 6 7 8 9 10

x 10
4

0

20

40

60

80

100

120

Number of points in the dataset

E
xe

cu
tio

n 
tim

e 
(S

ec
.)

Nested−loop method
SOF approximation
SOF approximation + random sampling

Figure 4. Effect of N

on SOF Computation

20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Number of dimensions of points

E
xe

cu
tio

n 
tim

e 
(S

ec
.)

Fixed workload search
Varied workload search

Figure 5. Effect of ϕ

on our method

the varied workload scheme. The running time of these two
search schemes for detecting SOF Outlying Subspaces of
20 given data points are presented in Figure 5. The running
time of our algorithm under fixed workload scheme scales
linearly w.r.t ϕ while that under varied workload scheme is
in a quadratic order of ϕ.

7.2 Experimental Results on Real-life Datasets

Using the real-life multi- and high-dimensional datasets
in UCI machine learning repository, we investigate the per-
formance of our method in fitness convergence and sub-
space refinement.
Fitness convergence study. GA tends to produce an in-
creasing number of fitter individuals as evolution proceeds,
referring to as the phenomenon of convergence. In this ex-
periment, we investigate the fitness convergence of our tech-
nique. For each generation, the number of individuals with
relatively high fitness (≥ 2.0) are counted. As we can see
from Figure 6 that the number of individuals with high fit-
ness for the four datasets is increased as the GA evolves,
which indicates a good convergence of our method. A good
convergence is beneficial as this will enable our method to
find good outlying subspaces w.r.t the given point without
exploring a huge number of subspaces.
Fitness boost by performing refinement in the GA. We
study the contribution of the subspace refinement step used
in GA to enhancing fitness of the outlying subspaces de-
tected, compared to the case when no refinement is in-
volved. When no refinement is performed in the GA, the
SOF Outlying Subspaces are the top n subspaces in the
CandidateSet having the highest approximated SOF val-
ues. However, there top n outlying subspaces chosen based
on approximated SOF values may not be the true outlying
subspaces having the high SOF values. The fitness improve-
ment by using the refinement step is due to the extra com-
putations performed on the subspaces in CandidateSet in
order to get their accurate SOF values and the top n sub-

spaces with the highest accurate SOF values are returned
as SOF Outlying Subspaces. Figure 7 presents the results.
The results demonstrate that the fitness gain by performing
the refinement step ranges from 13% and 21% for the four
datasets when compared with the case when no refinement
is performed.

Subspace pruning in refinement step of the GA. In this
experiment, we would like to study the advantage of em-
ploying the subspace pruning strategy, devised based on
the bounds of Dk, in computation saving in the refine-
ment step of the GA. The bounds of Dk of subspaces help
speed up our method by pruning away those subspaces in
CandidateSet that are definitely not relevant to the final
SOF Outlying Subspace in the subspace refinement step.
In this experiment, we set the number of subspaces in
CandidateSet as 1000 and compare it with the number of
subspaces whose SOFs have actually been computed in the
refinement step. From Figure 8, we can see that our prun-
ing strategy is effective in greatly reducing the number of
subspaces to be evaluated in the refinement step and such
saving ranges from 19% to 41% for the four datasets.

8 Conclusions

In this paper, we address the problem of outlying sub-
space detection. Due to the inherent hardness of this prob-
lem, we utilize genetic algorithm as an efficient search
method in this work. We proposed a new definition of out-
lying subspaces called SOF Outlying Subspace. The lower
and upper bounds of Dk for any a data point are revealed
and three efficient methods are presented for computing the
bounds by using the kNN Lookup Tables of data points. We
also employ random sampling to significantly improve the
performance of our method. The optimal number of sam-
pling data ensuring a good approximation of SOF is given,
and a novel genetic algorithm is developed for combining
subspace fitness evaluation and data sampling. We present

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Index number of generations

N
um

be
r 

of
 s

ub
ap

ce
s 

ha
vi

ng
 h

ig
h 

fit
ne

ss

Dataset 1
Dataset 2
Dataset 3
Dataset 4

Figure 6. Fitness
convergence study

1 2 3 4
0

0.5

1

1.5

2

2.5

Index number of datasets

F
itn

es
s

Without refinement
With refinement

Figure 7. Fitness im-
provement by sub-
space refinement

1 2 3 4
0

200

400

600

800

1000

1200

Index number of datasets

# 
of

 s
ub

sp
ac

es
 e

va
lu

at
ed

Without pruning
Using pruning

Figure 8. .of sub-
spaces evaluated in
subspace refinement

the experimental results of our method on both synthetic
and real-life datasets. The results demonstrate the efficiency
and effectiveness of our method in handling outlying sub-
space detection.

Acknowledgment

This research work is supported in part by research grant of
Natural Sciences and Engineering Research Council of Canada
(Grant No.: 312423).

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan. Au-
tomatic subspace clustering of high dimensional data for data
mining applications. SIGMOD’98, pp 94-105, 1998.

[2] M. Breuning, H-P. Kriegel, R. Ng, and J. Sander. LOF: Iden-
tifying Density-Based Local Outliers. SIGMOD’00, Dallas,
Texas, pp 93-104, 2000.

[3] V. Barnett and T. Lewis. Outliers in Statistical Data. John
Wiley, 3rd edition, 1994.

[4] L. Boudjeloud and F. Poulet. Visual Interactive Evolutionary
Algorithm for High Dimensional Data Clustering and Outlier
Detection. PAKDD’05, Hanoi, Vietnam, pp426-431, 2005.

[5] M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A Density-
based Algorithm for Discovering Clusters in Large Spa-
tial Databases with Noise. SIGKDD’96, Portland, Oregon,
USA, pp 226-231, 1996.

[6] D. Hawkins. Identification of Outliers. Chapman and Hall,
London, 1980.

[7] A. Hinneburg, and D. A. Keim. An Efficient Approach
to Cluster in Large Multimedia Databases with Noise.
SIGKDD’98, New York, NY, pp 58-65, 1998.

[8] W. Jin, A. K. H. Tung and J. Han. Finding Top n Local Out-
liers in Large Database. SIGKDD’01, San Francisco, CA, pp
293-298, 2001.

[9] E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-
based Outliers in Large Dataset. VLDB’98, New York, NY,
pp 392-403, 1998.

[10] E. M. Knorr and R. T. Ng. Finding Intentional Knowledge of
Distance-based Outliers. VLDB’99, Edinburgh, Scotland, pp
211-222, 1999.

[11] R. Ng and J. Han. Efficient and Effective Clustering Methods
for Spatial Data Mining. VLDB’94, Santiago, Chile, pp 144-
155, 1994.

[12] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient Al-
gorithms for Mining Outliers from Large Data Sets. SIG-
MOD’00, Dallas, Texas, pp 427-438, 2000.

[13] J. Tang, Z. Chen, A. Fu, and D. W. Cheung. Enhancing Ef-
fectiveness of Outlier Detections for Low Density Patterns.
PAKDD’02, Taipei, Taiwan, 2002.

[14] J. Zhang and H. Wang. Detecting Outlying Subspaces for
High-dimensional Data: the New Task, Algorithms and
Performance. Knowledge and Information Systems(KAIS),
Springer-Verlag Publisher, 2006.

[15] J. Zhang, W. Hsu and M. L. Lee. Clustering in Dynamic Spa-
tial Databases. Journal of Intelligent Information Systems
(JIIS) 24(1): 5-27, Kluwer Academic Publisher, 2005.

[16] C. Zhu, H. Kitagawa and C. Faloutsos. Example-Based
Robust Outlier Detection in High Dimensional Datasets.
ICDM’05, pp 829-832, 2005.

[17] C. Zhu, H. Kitagawa, S. Papadimitriou, and C. Faloutsos.
OBE: Outlier by Example. PAKDD’04, pp 222-234, Sydney,
Australia, 2004.

[18] J. Zhang, M. Lou, T. W. Ling and H. Wang. HOS-
Miner: A System for Detecting Outlying Subspaces of
High-dimensional Data. VLDB’04, pp 1265-1268, Toronto,
Canada, 2004.

[19] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Ef-
ficient Data Clustering Method for Very Large Databases.
SIGMOD’96, Montreal, Canada, pp 103-114, 1996.

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006


