
Phys. Fluids 32, 123106 (2020); https://doi.org/10.1063/5.0033199 32, 123106

© 2020 Author(s).

A microstructure model for viscoelastic–
thixotropic fluids 
Cite as: Phys. Fluids 32, 123106 (2020); https://doi.org/10.1063/5.0033199
Submitted: 15 October 2020 . Accepted: 04 December 2020 . Published Online: 29 December 2020

 K. Le-Cao,  N. Phan-Thien,  N. Mai-Duy,  S. K. Ooi,  A. C. Lee, and  B. C. Khoo

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

A comparative study of quasi-stable sheet cavities at different stages based on fast
synchrotron x-ray imaging
Physics of Fluids 32, 123316 (2020); https://doi.org/10.1063/5.0031433

Turbulent flow and heat flux analysis from validated large eddy simulations of flow past a
heated cylinder in the near wake region
Physics of Fluids 32, 125119 (2020); https://doi.org/10.1063/5.0031831

The perspective of fluid flow behavior of respiratory droplets and aerosols through the
facemasks in context of SARS-CoV-2
Physics of Fluids 32, 111301 (2020); https://doi.org/10.1063/5.0029767

https://images.scitation.org/redirect.spark?MID=176720&plid=1324395&setID=379031&channelID=0&CID=459529&banID=520199776&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=da958ab8fef311db63e1467777e0243ce7e9d341&location=
https://doi.org/10.1063/5.0033199
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0033199
http://orcid.org/0000-0002-4036-4875
https://aip.scitation.org/author/Le-Cao%2C+K
http://orcid.org/0000-0003-3716-7907
https://aip.scitation.org/author/Phan-Thien%2C+N
http://orcid.org/0000-0003-3191-7850
https://aip.scitation.org/author/Mai-Duy%2C+N
http://orcid.org/0000-0003-2360-1418
https://aip.scitation.org/author/Ooi%2C+S+K
http://orcid.org/0000-0002-6454-431X
https://aip.scitation.org/author/Lee%2C+A+C
http://orcid.org/0000-0003-4710-4598
https://aip.scitation.org/author/Khoo%2C+B+C
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0033199
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0033199
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0033199&domain=aip.scitation.org&date_stamp=2020-12-29
https://aip.scitation.org/doi/10.1063/5.0031433
https://aip.scitation.org/doi/10.1063/5.0031433
https://doi.org/10.1063/5.0031433
https://aip.scitation.org/doi/10.1063/5.0031831
https://aip.scitation.org/doi/10.1063/5.0031831
https://doi.org/10.1063/5.0031831
https://aip.scitation.org/doi/10.1063/5.0029767
https://aip.scitation.org/doi/10.1063/5.0029767
https://doi.org/10.1063/5.0029767


Physics of Fluids ARTICLE scitation.org/journal/phf

A microstructure model
for viscoelastic–thixotropic fluids

Cite as: Phys. Fluids 32, 123106 (2020); doi: 10.1063/5.0033199
Submitted: 15 October 2020 • Accepted: 4 December 2020 •
Published Online: 29 December 2020

K. Le-Cao,1 N. Phan-Thien,1,a) N. Mai-Duy,2 S. K. Ooi,3 A. C. Lee,3 and B. C. Khoo1

AFFILIATIONS
1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA 07-08,
Singapore 117575

2School of Mechanical and Electrical Engineering, University of Southern Queensland, 487-535 West Street, Toowoomba,
QLD 4350, Australia

3Tropical Marine Science Institute, National University of Singapore S2S, 18 Kent Ridge Road, Singapore 119227

a)Author to whom correspondence should be addressed: nhan@nus.edu.sg

ABSTRACT
A microstructure model to describe the viscoelasticity and thixotropy properties of complex fluids is proposed. The model is based on the
Lodge–Yamamoto network theory and is an extension of the Phan-Thien–Tanner model, with a kinetic process in which specific forms of
creation and destruction rates are assumed. The final equation is simple with a small number of empirical parameters required and can be
conveniently employed in engineering simulations. The predictions based on the model in a variety of shear and oscillatory shear flows are
given. The stress response obtained from the model prediction agrees well with experiments on both shear and oscillatory flow histories.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033199., s

I. INTRODUCTION

Thixotropy is a general term describing the time-dependent
(and/or flow process dependent) response of the material. A wide
range of complex fluids exhibits thixotropic behavior, including
seabed sediment, coral mucus, concrete mixtures, paints, food, and
some biological and pharmaceuticals products. These complex mix-
tures at quiescent state consist of attractive particles or chains, which
constitute clusters forming a structured network of sufficient link—
this network can resist any applied stress less than a certain level (in
some stress measures) with an elastic response. Conversely, if the
applied stress range is sufficiently large (again, in some stress mea-
sures), the structured network disintegrates and consequently results
in reduced resistance to deform and flow.1,2 The reverse may also
occur, i.e., the mixture may recover some of its network link,3 and
the critical stress value of the restored state may be similar or smaller
than that of the original state. The microstructure network requires
time to build up and to break off, and the rheology of the fluid thus
has a time scale. The forming and destruction of the microstructure
network resulting in thixotropy have been simulated in Ref. 4 in a
dissipative particle dynamics (DPD) framework.

To model microstructure mixtures known to be thixotropic,
approaches based on a structural kinetics theory have been pro-
posed and applied widely. The current published works can be clas-
sified into direct and indirect approaches. In these works, the degree
of microstructure formation is represented by a scalar quantity f.
When f = f 0 (usually, f 0 = 1), the initial structure is said to be fully
developed. On the other hand, f = 0 implies an entirely collapsed
network when a steady state is achieved. A detailed review can be
found in, e.g., Refs. 5–8. In the direct micro-structural approach,
f can be directly linked to the description of the dynamics of the
microstructure network (e.g., a number of network bonds found at
that time).6 Typical studies include the works of Goodeve,3 Storey
and Merrill,9 Liu et al.,10 De Kee and Chan,11,12 and Soong and
Shen.13 In contrast, in the indirect microstructure approach,6 f is
simply a particular microstructure degree description characterized
by a scalar value, for instance, in the works of Moore,14 Cheng and
Evans,15 Tiu and Boger,16 Dimitriou and McKinley,17 and de Souza
Mendes.18

Both types of theories are similar in introducing the thixotropy
via a total time derivative of the structured parameter f in a first-
order rate kinetic process,
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df
dt
= ∂f
∂t

+ ux
∂f
∂x
= K1(f ) − K2(f , γ̇), (1)

where ux is the only x–component of the velocity vector (one-
dimensionality is assumed here for simplicity); K1(f ) and K2(f , γ̇)
are the two (possibly shear-rate dependent) functions for the rate of
build-up and breakdown of the microstructure, respectively.

II. REVIEW OF MICROSTRUCTURAL MODELS
A. Simple thixotropy models

In the simple thixotropy models, the structure evolution
[Eq. (1)] is linked with the mixture viscosity (the most impor-
tant piece of information in engineering calculations), which may
be shear thinning (or thickening), and a yield stress could be
introduced. For example, Toorman19 proposed a model based on
Moore’s.14 The Toorman model has five parameters, four of which
can be found from the fluid equilibrium state. The last one can be
determined by a transient experiment. The model is a useful and
practical mathematical model of cohesive sediments. Another well-
known one is Coussot et al.’s model.20 The authors linked the fluid
microstructure of a clay suspension to its behavior in a gravity-
driven flow and pointed out that the microstructure evolution has
a strong effect on the flow dynamics.21 In Ref. 22, a fitting procedure
was proposed to determine the model parameters. The model has
been shown to successfully predict the flow characteristics. Bekkour
et al.23 investigated the dependence of a bentonite clay microstruc-
ture build-up/breakdown rate on the clay. For food products, such
as a mayonnaise mixture, a phenomenological model of Tiu and
Boger16 has been used and satisfactory results were obtained.

We briefly review the simple “viscous–thixotropy fluid” model
for completeness; here, one has f evolving in time according to
Eq. (1) with K1(f ) = a(f 0 − f ) and K2(f , γ̇) = bγ̇f ,

d
dt
f = a(1 − f ) − bγ̇f = a − (a + bγ̇)f , (2)

where a is the rate of creation of the structure and the rate of destruc-
tion of the structure is proportional to the magnitude shear rate γ̇,
with a proportional constant b. This may be rewritten as

d
dt
f = λ−1

0 − λ−1
0 h(γ̇)f , f (0) = f0, (3)

where λ0 = a−1 is a time constant, h(γ̇) = 1 + βγ̇, and β = b/a.
Of course, h need not be a linear function but can be any positive
function of the shear rate. At equilibrium, the structured parameter
is

fe =
1

1 + βγ̇
= 1
h(γ̇) . (4)

The coupling to the stress is provided via the constitutive assump-
tion that the fluid is a generalized Newtonian fluid, with a viscosity
given by

η(f ) = η∞ + η∞αf , (5)

where α is a constitutive constant. Once the structure is entirely bro-
ken down (f = 0), the fluid has a (low) viscosity of η∞; when the

structure is fully built-up (f = 1), the fluid has a (high) viscosity of
η(f ) = η∞(1 + α). The solution to (3) is

f = 1
h(γ̇)(1 − e

−λ−1
0 h(γ̇)t) + f0e−λ

−1
0 h(γ̇)t . (6)

Thus, there is a relaxation time λ0 in an otherwise Newtonian fluid
due to the built-up/breakdown of the structure.

The shear stress

S12 = η∞αf γ̇ + η∞γ̇ (7)

and its derivative

d
dt
S12 = λ−1

0 η∞γ̇(α + h(γ̇)) − λ−1
0 h(γ̇)S12 (8)

satisfy
λ0

h(γ̇)
d
dt
S12 + S12 =

η∞α
h(γ̇) γ̇, (9)

resembling that of a (linear) Maxwell fluid with a relaxation time of
λ0/h(γ̇).

A yield stress S0 can and has been introduced to the stress
equation (Refs. 19 and 24),

S12 = fS0 + η∞(1 + αf )γ̇. (10)

At f = f e, when the rate of breakdown equals the rate of restora-
tion, the equilibrium flow (EF) curve is described by evaluating
Eq. (10) at the equilibrium point,

Se12 = feS0 + η∞(1 + αfe)γ̇. (11)

References 19 and 25 showed that thixotropic mixtures may
possess a group of stress/strain rate curves named constant struc-
ture curves (CSCs). An ith CSC associates to a (constant) value of
f i, which is the intersection between the CS curve and the EF curve
(Fig. 1). As the EF curve can be expressed by Eq. (11), a scheme

FIG. 1. A typical EFC (solid line) and CSCs (dash lines). I, J, K are the intersection
between EFC and i, j, kth CSCs, respectively; ηp0 and η∞ are low and high shear
viscosity of EFC; and η1 and η2 are viscosities of the jth CSC corresponding to
stresses S1 and S2. The arrow indicates that the structural levels increase.
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providing the calculation of the CS curves was detailed in Ref. 19. For
example, if the fitting equation for equilibrium data is the Bingham
model,

SBH = S0 + μ∞γ̇, (12)

then, equating (11) to Eq. (12), one has

η∞γ̇ = (1 − fe)S0 − η∞αfeγ̇ + μ∞γ̇. (13)

Substituting Eq. (13) into Eq. (10), the rheological equation for a
thixotropic (Bingham) yield stress fluid is

S12 = (1 + f − fe)S0 + (f − fe)η∞αγ̇ + μ∞γ̇. (14)

Using the relation 1 − fe = feβγ̇ [Eq. (4)], Eq. (14) becomes

S12 = fS0 + ((f − fe)η∞α + μ∞ + feβ)γ̇.

Consider a CS curve that has a unique value of the structural
parameter f i, which corresponds to an ith data point of the EF curve.
The value of f i equals to f I at the crossover point I of this CS and the
EF curves. The CS curve of the ith point can be given by substituting
f i into Eq. (14),

S12 = (1 + fI − fe)S0 + (fI − fe)η∞αγ̇ + μ∞γ̇ (15)

or

S12 = (1 + h−1
I − h−1)S0 + (h−1

I − h−1)η∞αγ̇ + μ∞γ̇. (16)

The viscous–thixotropy model does quite well, especially with
cohesive sediments—in particular, it shows a stress overshoot due
to the long time scale of microstructures (and thus of its viscosity)
in a shear flow history. In addition, the incorporation of the model
into flow solvers was also reported.26–31 However, thixotropy affects
not only viscosity but also the whole rheology of the fluid. To illus-
trate this, in a sinusoidal shear flow γ̇ = δω cos(ωt) with the small
strain amplitude δ, one has a constant solution for (3), f = f c. This
leads to

η′ = η0(1 + αfc), η′′ = 0. (17)

In order to find non-trivial G′ = ωη′′, and G′′ = ωη′, some other
models involving viscoelasticity need to be employed.

B. Viscoelastic–thixotropy models
Generally, the reported viscoelastic–thixotropy models start

from the microstructure evolution [Eq. (1)]; it is then coupled
with a continuum viscoelastic model (e.g., Maxwell model). The
approach is thus called the micro-macro approach. Similar to
viscous–thixotropy models, viscoelastic–thixotropy models can be
developed from both direct and indirect approaches.

Many indirect viscoelastic–thixotropy models have been
reported in the literature. For example, in Ref. 32, a constitutive
equation based on a network theory with the relaxation time deter-
mined by structure parameters. The model has been applied for
prediction in some non-linear responses of polymer melts. Cous-
sot et al.33 developed a model composed of a Maxwell model and
the structural kinetic equations to investigate the response of par-
ticle systems suspended in a viscoelastic medium in both steady

and transient flows. In Ref. 34, the rheological model of Coussot
was further investigated and reasonably well predicted the results in
structure build-up experiments. Dullaert and Mewis35 introduced a
general version of the structural kinetics model in which the total
stress comprises of an elastic part (structure-dependent) and a vis-
cous part. Extensions of the Dullaert and Mewis approach to large
amplitude oscillatory shear (LAOS) flows have been presented by
Armstrong et al.36 A viscoelastic–thixotropy model with an elastic
and a viscous part for clay suspension was presented in the work
of Mujumdar et al.5 Using a spring-like interaction between clay
particles, Hermidas et al.37 were able to decrease the amount of
experimental parameters needed by the model of Mujumdar et al.5

from 7 to 4. Yziquel et al.38 introduced a model derived from a
Jeffreys model and a kinetic equation (three types of kinetic equa-
tions were investigated) to model the microstructure evolution for
concentrated colloidal suspensions. Recently, Ramya et al.39 com-
bined a simple yield stress thixotropic model with the Giesekus
model, which is structure dependent to predict the responses of
fumed silica-polyisobutylene/paraffin oil mixtures to various test
flows.

For direct models, Goodeve3 provided a general theoretical
approach combining thixotropy and viscosity. The theory showed
that the non-Newtonian viscosity usually has two distinct parts, one
is Newtonian and the other is the thixotropy which can be thought of
the interactions between particles and the establishment of “bonds.”
The broken and reformed bonds were explained by shear and ther-
mal mechanisms. Later, Storey and Merrill9 modified the theory
of Goodeve3 to study two molecular species of starch solutions. In
Ref. 40, Cross developed a kinetic model in which the structural for-
mation is a result of Brownian movement and the disruption rate is
an even function of strain rate. Doremus and Piau41 presented a dou-
ble network model based on the Yamamoto model42–44 for a complex
material composed of a polymer and a filler. Soong and Shen,13 using
a deterministic expression of the network theory and neglecting the
elastic property, considered a polymer network as a set of random
chains with n average number of entanglements. The loss (break-
up) rate was assumed to be caused by the shear rate, and the gain
(reformation) rate was allowed to depend on the thermal diffusiv-
ity. Later, Liu et al.10 coupled the Soong and Shen13 model and
a Maxwell model and applied it to transient flows. De Kee and
Chan11,45 further combined the Liu model10 with some well-known
rheological models to study a complex mixture behavior including
thixotropy and shear-thinning/(thickening). In Ref. 46, the De Kee–
Chan Man Fong model was further investigated in large amplitude
oscillatory shear flows for a filled polymer melt.

Almost all the reported models share a common feature in
that there are two time scales: (i) a microstructure time scale in
the kinetics equation and (ii) a relaxation time (macro-scale) of the
continuum model. These models are very good in the prediction
of viscoelasticity as well as thixotropy in different flows for multi-
phase mixtures, for example, a mixture of colloidal solid particles
in a viscoelastic matrix where the length/time scale in the suspend-
ing matrix and the length/time scale of the suspended structure are
vastly different. In some cases, if viscoelasticity is mainly induced by
the microstructure evolution (or single-phase), the same length/time
scale should result and depends on the flow process.

In this work, we deal with a specific time dependence of
the stress on the microstructure which is evolving in the flow
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process—thus our model may be regarded as a microstructure-
induced thixotropy and viscoelasticity model. Both the thixotropy
and the relaxation of the viscoelasticity have a marginal differ-
ence in the length/time scale and can be modeled simultaneously
from the microstructure approach (Lodge–Yamamoto network the-
ory).42–44,47 For the materials, we specifically think of a particulate
suspension such as clay sediment, which has been widely studied
in both numerical and experimental works.19,20,48 The interaction
of clay particles includes a short-range repulsive (Born) force and
a long-range attractive (van der Waals) force.49 Depending on inter-
particle distances, the resultant force can be either attraction or
repulsion. When the two forces reach equilibrium, clay particles
create a microstructure network that results in viscoelastic, shear-
thinning, and thixotropic behavior. The particle interactions can
be modeled by a network of springs,37 which is similar to network
strands of polymeric liquids.

The rest of this paper is structured in the following manner.
The proposed constitutive model is described in Sec. II. Section III
then gives a description of model predictions including stress over-
shoot, constant structure curves, viscosity bifurcation phenomenon,
and the structure changing in amplitude oscillation flows for a typ-
ical thixotropic mixture (e.g., clay). Some concluding remarks are
presented in Sec. IV.

III. PROPOSED MODEL
In the proposed model, the relevant microstructure is a net-

work of mechanical links used to model the interaction between any
two junctions. Each link is confined between two temporary junc-
tions and is represented by R (Fig. 2); the probability distribution
function (PDF) f (t,R) is interpreted in the sense that f (t,R)d3R
represents the probability of finding a segment between R and
R + dR at time t. Here, f plays the role of the scalar structure param-
eter of structural kinetics theory; the description is probabilistic in
nature as opposed to structural deterministic represented by Eq. (1);
otherwise the model is the same. Note that f is non-negative and

FIG. 2. A typical microstructure network and the R vector.

vanishes at infinity. This type of description has been used in the
works of Yamamoto,42 Lodge,47 Wiegel,50 Wiegel and de Bats,51

Phan-Thien and Tanner,52 and Phan-Thien,53 to name a few, in
modeling polymeric liquids. The development of the theory follows
that of Phan-Thien and Tanner, which is only briefly described here.

The simplest model for the build-up microstructure is

∂

d∂
f (t,R) + Ṙ ⋅ ∇f (t,R) = g(R) − λ−1

0 h(γ̇)f (t,R), (18)

where the rate of microstructure creation is g, an isotropic function
of R, and the rate of microstructure destruction is λ−1

0 h(γ̇), where λ0
is a time constant and h(γ̇)is a (dimensionless) increasing function
of the strain rate—in the limit of the zero strain rate h → 1; a sim-
ple form for this may beh(γ̇) = (1 + βγ̇), in which β is a parameter,
and γ̇ =

√
2trD2 is the generalized strain rate, where D = (L+LT)/2

is the strain rate tensor and L = ∇uT is the velocity gradient tensor
(u is the velocity) and the superscript T denotes a transpose opera-
tion. The possibility of a multimodal distribution for Ri, i = 1, . . ., N
is envisaged, but not attempted here for simplicity. There are other
formalisms of the model including those of Wiegel,50 Wiegel and de
Bats,51 and Green and Tobolsky,54 and the elegant approach detailed
in the work of Bird et al.55 We prefer this approach. All lead to the
equations of balance.

The equilibrium distribution for f is

fe = λ0h−1(γ̇)g(R). (19)

Equation (18) is sometimes known as the Liouville equation. By mul-
tiplying Eq. (18) by any function Q of the segment vector R and then
integrating over all configuration space, the equation of change for
Q can be derived55 (assuming that f vanishes as fast as required at
infinity),

d
dt
⟨Q⟩ + λ−1

0 h(γ̇)⟨Q⟩ = ⟨Ṙ∂Q
∂R
⟩ + [Q], (20)

where [⋅] denotes an average of “⋅” with respect to f.
We assume that the network junctions move in a non-affine

manner, leading to

Ṙ = LR − ζDR, (21)

where ζ is a model parameter. This has worked well for polymer liq-
uids and for suspensions of particles, where ζ can be related to the
particle aspect ratio.56,57

Then, from the equation of change (20),

d
dt
⟨RR⟩ = (L − ζD)⟨RR⟩ + ⟨RR⟩(L − ζD)T

+ ∫ [g − λ−1
0 h(γ̇)f ]RRd3R,

= (L − ζD)⟨RR⟩ + ⟨RR⟩(L − ζD)T

− λ−1
0 h(γ̇)⟨RR⟩ + ḡI

or

d
dt
⟨RR⟩ − (L − ζD)⟨RR⟩ − ⟨RR⟩(L − ζD)T

+ λ−1
0 h(γ̇)⟨RR⟩ = ḡI, (22)
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where

ḡ = 1
3 ∫ g(R)R2d3R. (23)

This leads to

λ{ d
dt
⟨RR⟩ − (L − ζD)⟨RR⟩ − ⟨RR⟩(L − ζD)T} + ⟨RR⟩

= R2
0

3h(γ̇) I, (24)

where

λ = λ0

h(γ̇) (25)

and

R2
0 = 3ḡλ0 (26)

is the no-flow mean square distance between a pair of junctions.
Note that the break-up rate of the network is manifested in the relax-
ation time and the mean square distance—the higher the strain rate,
the larger the h(γ̇), and the lower the relaxation time (and hence
elasticity) and the mean square distance between a pair of junctions.

Now, the stress contributed by the network, or the stress rule, is
given by τ(p) = ⟨HRR⟩, where H is the entropic spring stiffness for a
network segment.42,47,52 It is also valid for a suspension of ellipsoidal
particles.58 The constitutive equation for the stress is then given by

λ0

h(γ̇){
d
dt
τ(p) − (L − ζD)τ(p) − τ(p)(L − ζD)T} + τ(p)

= HR2
0

3h(γ̇) I. (27)

Instead of working with τ(p), we may define

τ(p) = HR2
0

3h(γ̇) I + S(p), (28)

where the extra stress S(p) is given by

λ0

h(γ̇){
d
dt
S(p) − (L − ζD)S(p) − S(p)(L − ζD)T} + S(p)

= 2
ηp0

h(γ̇)2 D, (29)

with

ηp0 =
HR2

0λ0(1 − ζ)
3

, ηp =
ηp0

h(γ̇)2 , λ = λ0

h(γ̇) . (30)

To this constitutive equation (29), we may add a Newtonian
stress 2ηsD—as has been done in suspension mechanics. Thus, our
microstructure-induced thixotropy model consists of

S = 2ηsD + S(p), (31)

where ηs is the solvent viscosity and S(p) is given by (29).

For a constant shear rate flow, the stress equations are

S(p)11 + λ
d
dt
S(p)11 − (2 − ζ)λγ̇S

(p)
12 = 0,

S(p)22 + λ
d
dt
S(p)22 + ζλγ̇S(p)12 = 0,

S(p)12 + λ
d
dt
S(p)12 − (1 − ζ

2
)λγ̇S(p)22 +

ζ
2
λγ̇S(p)11 = ηpγ̇.

(32)

In small amplitude oscillatory shear flow with shear strain
γ = γ0 sinωt, ε≪ 1,

γ̇ = ωε cosωt,

S(p)12 = ε(S
c
12 cosωt + Ss12 sinωt) + HOT,

Sc12 cosωt + Ss12 sinωt + λω(−Sc12 sinωt + Ss12 cosωt)

= η0ω cosωt,

Sc12 + λωSs12 = ηpω, Ss12 − λωSc12 = 0,

Ss12 =
η0λω2

(1 + λ2ω2) , Sc12 =
η0ω

(1 + λ2ω2) .

The dynamic properties are given by

η′ = η0

(1 + λ2ω2) , η′′ = η0λω
(1 + λ2ω2) . (33)

It is noted that

● The proposed model involves the estimation of four empir-
ical parameters. Three of them, i.e., the solvent viscosity
ηs, the fully structured viscosity ηp0, and h(γ̇) function,
are found through the equilibrium flow curve. The high-
est relaxation time λ0 can be obtained from an oscillatory
experiment with frequency sweep.

● When ζ = 0, one has a similar form of the simple thixotropic
model (9), but the viscosity is inversely proportional to h(γ̇)2

instead of h(γ̇),
λ0

h(γ̇)
d
dt
S(p)12 + S(p)12 =

ηp0

h(γ̇)2 γ̇. (34)

● The isotropic assumption of g(R) may be a simplification in
the network theory; however, if the creation rate is to depend
on f, one can always separate out an isotropic term, and the
rest can be assigned to the destruction rate.

● Recently, a new interpretation of yield stress was reported in
Ref. 59. In this work, yielding is considered a kinetic pro-
cess of a solid to fluid transition. Figure 3 shows the two
regions in the relation between the relaxation time λ0/h(γ̇)
and the shear rate γ̇. Below the yield point, at a large value
of λ0/h(γ̇), the microstructure is fully structured, and the
predicted stress of the model response resembles that of a
Maxwell solid. As the microstructure network disintegrates
to small flocs [λ0/h(γ̇) is small], the interaction between dif-
ferent flocs would result in an elastic response (due to non-
affine motion of the flocs) and a thixotropy viscosity (due to
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FIG. 3. The relaxation time vs the shear rate.

the integrated/disintegrated processes) as well. The model
would be considered to be a thixotropic model, which is
comparable to the model in Eq. (9), but the structure param-
eter is interpreted in a probabilistic sense (which has been
integrated into the stress equations), rather than a scalar in
simple thixotropic models.

IV. MODEL PREDICTIONS
A. Steady flow curve

At steady state,

S(p)12 =
ηp

1 + ζ(2 − ζ)λ2γ̇2 γ̇, (35)

S(p)11 = (2 − ζ)λγ̇S
(p)
12 , S(p)22 = −ζλγ̇S

(p)
12 . (36)

This leads to the normal stress difference ratio

N2

N1
= S(p)22 − S

(p)
33

S(p)11 − S
(p)
22

= − ζ
2

(37)

and the first normal stress difference

N1 = 2ηp0λ0γ̇2/h.

The shear stress is given by

S12 = ηsγ̇ +
ηpγ̇

1 + ζ(2 − ζ)λ2γ̇2 , (38)

or the viscosity is

η = S12

γ̇
= ηs +

ηp
1 + ζ(2 − ζ)λ2γ̇2

= ηs +
ηp0

(h2 + ζ(2 − ζ)λ2
p0γ̇2)

. (39)

Thus, if the fitting equation for the experiment viscosity data is ηexp,
then

ηp0

(h2 + ζ(2 − ζ)λ2
p0γ̇2)

= ηexp − ηs

h2 = ηp0

ηexp − ηs
− ζ(2 − ζ)λ2

p0γ̇
2.

(40)

ηexp can be any convenient empirical curve used to fit the experi-
mental data. These will provide a mean for choosing f e, or h, over a
range of the shear rate.

Thus, if Papanastasiou’s model60 is chosen as the fitting equa-
tion for the experiment viscosity data, accounting for its engineering
yielding behavior,

η(γ̇) = μ +
Sy[1 − exp (−nγ̇)]

γ̇
, (41)

where μ is the high shear viscosity, Sy is the yield stress value, and n
is a parameter, then by choosing μ = ηs and ηp0 = nSy, this provides
a mean for determining h(γ̇),

h(γ̇) = 1 + βγ̇, (42)

where β =
√

n
(1−e−nγ̇)γ̇ − ζ(2 − ζ)λ2

0 − 1/γ̇.

A range of applied shear rates is γ̇ = (4 × 10−4 → 10) s−1, with
fine distribution at the low shear zone for a finer measurement of
the fluid behavior. For each step of the applied shear rate, the sys-
tem is sheared until reaching the equilibrium state. Figure 4 plots
the equilibrium curve viscosity vs shear rate [Eq. (39)] and exper-
imental data for the 3% bentonite mixture. It can be seen that the
larger the value of n, the higher the low shear viscosity (the curve is
thus more asymptotic to a Bingham fluid).

FIG. 4. A 3% bentonite mixture (blue square—experimental data) and viscosity
flow curves [Eq. (39)] [a high shear viscosity of 4.2 × 10−2 Pa s, h calculated from
Eq. (42), a yield stress of Sy = 0.65 Pa, and growth parameter n = {100, 300,
700, 1000, 1500}]. The fluid is allowed to attain the steady state at each shear
step.
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B. Stress overshoot
Stress overshoot is an important phenomenon that hap-

pens when a thixotropic liquid undergoes a sudden change in
applied strained rates (e.g., sediment flows over a fixed pipeline
or blades moving in a mixer underwent a step change in the
flow rate). Stress overshoot can be found in a step-change-in-
shear rate experiment.25 Each shear rate value of the equilibrium
curve has a corresponding structural level. Then, with stepwise
changes in the shear rate, the microstructure does not have suffi-
cient time to adapt to the new equilibrium state. The inhomoge-
neous microstructure (hence viscosity) leads to stress overshoot that
is linked to the flow process. A detailed explanation can be found in
Ref. 6.

In this control shear rate mode, a step shear with a high dγ̇
dt is

applied. It is noted that the shear stress is now greater than Sy; thus,
the model is in a thixotropic response. The development of shear
viscosity can be calculated from Eq. (32),

d
dt
η(p) + λ−1η(p) − (1 − ζ

2
)S(p)22 +

ζ
2
γ̇S(p)11 = ηp0(λ0h)−1. (43)

In the following, we demonstrate the use of the proposed con-
stitutive model in a shear flow with a prescribed shear rate his-
tory. This was done by shearing a sample at a reference shear
rate γ̇ = γ̇a. A higher step-change in speed γ̇ = γ̇b is then made,
and the evolution of stress Sb is noted before γ̇ is reversed into γ̇b.
Three scenarios of shear rate histories are carried out. A shear rate
γ̇ of 4 s−1 is maintained until equilibrium state is attained, subse-
quently increased from 4 s−1 to 7 s−1 in 1 s for case (a) [and 4 s
and 6 s for case (b) and (c), respectively], continued at 7 s−1 in 10 s,
reduced from 7 s−1 to 4 s−1 in 1 s, and kept at 4 s−1 for the rest.
The actual variation in the imposed shear rate can be fitted by the
following exponential functions, as illustrated in the lower parts of
Fig. 6:

γ̇4−7 = 4e−6(t−t0) + 7[1 − e−6(t−t0)],

γ̇7−4 = 7e1.5 (t−t0)
(t−t0−0.5) + 4[1 − e1.5 (t−t0)

(t−t0−0.5) ].

The microstructure-induced thixotropy is now examined
numerically by an ordinary differential equation (ODE) solver. Here,
we choose the ODE23s solver in Matlab due to the stiffness of the
problem. To simulate the time-dependent rheological behavior, the
rheological equation (43) is employed. The value of λ0 is to be calcu-
lated as 1/(2πf 0) at the intersection point between the storage modu-
lus (G′) and the dissipative modulus (G′′) in frequency sweep exper-
iments (Fig. 5). Here, the maximum value of the relaxation time λ0 is
estimated around 40 s; the value of h(γ̇) of each steady shear rate is
calculated from Eq. (42). The numerical simulation shows the devel-
opment of shear stress with the applied shear rate (when γ̇ from 4 s−1

to 7 s−1). The top of Fig. 6 (Multimedia view) shows that the model
has the ability to predict the general responses in all cases, including
the maximum location of the stress at the transition of strain rate.
As expected, a higher shear rate slope ( dγ̇dt ) leads to a reduction of the
stress overshoot peaks. Note that the break-up rate of the network
is manifested in the relaxation time—the higher the strain rate, the
larger the h(γ̇), and the lower the relaxation time (and hence stress
overshoot).

FIG. 5. Oscillatory frequency sweep experiment of the 3% bentonite clay. Con-
tinuous lines are G′ (blue) and G′′ (red) approximated by multiplying η′ and η′′
[Eq. (33)] by ω.

C. Constant structure curves
As reported in Ref. 25, a step-change shear rate experiment

(Fig. 7) is carried out to evaluate the CS curves. It is recalled that
a constant shear rate has a structural level relating to a CS curve;
therefore, the experiment is performed by adopting one reference
shear rate and then applying a higher or lower shear rate magni-
tude around this reference value. A 3% bentonite solution under-
goes a reference shear rate γ̇ = γ̇r until the steady state is attained.
Then, an increasing/decreasing shear rate γ̇ = γ̇1 is imposed, and
the highest/lowest value of shear stress S1 is recorded before γ̇
is reduced/increased toγ̇r . In this work, those repeated steps are
carried out with γ̇r = {2, 5, 8} s−1 and then graphed the fam-
ily of CS curves. Following the same procedure of the Toorman
model [Eqs. (11)–(16)], an equation of a constant structure curve
is

S12 = (1 + h−2
I − h−2)ηpγ̇ + ηsγ̇. (44)

The parameters ηs and ηp and the function h(γ̇) have been found
from the Papanastasiou equilibrium flow curve with a viscosity of
0.042 Pa s and a yield stress of 0.65 Pa (which corresponds to a
3% bentonite solution having an equilibrium flow curve plotted
in Fig. 4). A substitution of those values [ηs, ηp0, and h(γ̇)] of
each CS curve in Eq. (44) gives a set of CS curves. As shown in
Fig. 8, a comparison of the experimental data and CS curves cal-
culated from the proposed model is plotted. It can be seen that the
lower value of γ̇r , the higher yield stress is. A qualitative agreement
between the model predictions and the experimental observations is
observed.

D. Viscosity bifurcation
Rheometric tests (Ref. 61) have revealed that for small stresses

(lower than a given critical value), fluid viscosity rises over time
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FIG. 6. Numerical calculation and experimental results for the stress response of a 3% wt bentonite clay mixture: [(a)–(c)] the corresponding shear stresses (red solid
curve—experimental data, black dashed curve—model prediction) for the declining slope of shear rate over time; the smaller figures: time evolution of the applied shear rate.
Multimedia view: https://doi.org/10.1063/5.0033199.1

and eventually prevents the fluid from flowing. On the other hand,
larger stresses (above the critical stress value) result in a drop
in viscosity continually over time and the fluid thus accelerates.
Consequently, the viscosity changes in a discontinuous manner
from a low value to an unbound value at the yield stress and this
behavior is named viscosity bifurcation. Experiments were con-
ducted61 to study the bifurcation in rheological behavior of various
materials.

We shall consider a j CS curve that intersects the EF curve
at the equilibrium point J (Fig. 1). For points below the equilib-
rium flow curve, such as point 1, if the imposed shear stress S1 is
maintained constant (S1 is smaller than the yield value), the struc-
ture will continuously develop and the shear viscosity η1 would
increase until the fluid reaches the state of equilibrium (η1 = ηp0,
an extremely high value). On the other hand, at points above the

FIG. 7. A typical step-change shear rate experiment to graph the set of constant
structure curves. A reference shear rate (γ̇r) is chosen and then higher (γ̇2,γ̇4) or
lower shear rate (γ̇1,γ̇3) magnitudes around this reference value are applied. It is
noted that γ̇r has a structural level relating to a CS curve.

EF curve (e.g., point 2), if one keeps S2 (which is higher than
the yield stress value), the microstructure will gradually collapse,
resulting in a loss in the shear viscosity η2 and, eventually, to
the equilibrium value η∞. If Papanastasiou’s model60 is the fitting
equation, shear viscosity is thus bounded by nSy and η∞, hence the
bifurcation.

FIG. 8. A family of CSCs. Symbols: plotted from experimental data for reference
shear rates γ̇r = 2 s−1 (red line and red asterisk), 5 s−1 (black line and black open
circle), and 8 s−1 (blue line and blue open square) (from top to bottom); solid line:
calculated from the proposed model.
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The model is then applied to predict the viscosity evolution of a
bentonite suspension over time under a range of applied stresses.
To carry out the test, the test samples are pre-sheared so that a
reproducible initial state can be obtained. From the previous steady
experiment conducted to analyze the yield stress, it was found that
the yield stress for a 5 wt. % bentonite suspension is approximately
around 10 Pa. Hence, applied stresses of {8, 9, 10, 11, 12} Pa are
employed here to analyze the viscosity bifurcation [Fig. 9 (top)]. As
anticipated, when the shear stress imposed to the sample is below
the yield point, the structure builds-up, resulting in a more viscous
dominant behavior. Viscosity thus asymptotes to a very large value.
Nevertheless, when the shear stress applied exceeds the yield stress,
the microstructure fails and the bentonite suspension viscosity is
thus approximate to 0.05 Pa s. Figure 9 (bottom) shows the model

FIG. 9. (Top) Viscosity bifurcation for 5 wt. % bentonite suspensions. (Bottom) As
predicted by the model for different applied stresses [8 (blue cross), 9 (red rect-
angle), 10 (green plus), 11 (blue asterisk), 12 (green closed diamond), and 13
(orange closed circle)] Pa.

prediction of viscosity vs time using the same values of applied
stresses.

E. Oscillatory flows
This experiment involves imposing an increase in the ampli-

tude oscillation stress at a fixed frequency and tracks the corre-
sponding changes in the storage modulus (G′) representing elastic
components and the loss modulus (G′′) exhibiting viscous com-
ponents of the fluid. The dominant modulus decides whether the
mixture, under the applied stress, is to be regarded as an elastic
or a viscous material. The stress amplitude is continually increased
until G′ and G′′ changed significantly with a stress threshold. Below
this stress level, the microstructure network can resist the applied
stress without a significant deformation. The mixture is able to
store energy and recover its initial configuration (to some extent).
It behaves like an elastic solid (not ideal), and some energy is
dissipated. Thus, one has an elastic response (G′ > G′′). Con-
versely, if the stress amplitude is sufficiently large, the structured
network disintegrates and the energy exerted on the material is dis-
sipated. Consequently, the material responds in a viscous manner
(G′ < G′′).

The oscillatory flow experiments are conducted on a ben-
tonite suspension of 4 wt. %. The model’s parameters are estimated
from EFC curve (a viscosity of 9.5 × 10−2 Pa s, a yield stress
of Sy = 7.68 Pa), and h(γ̇) is calculated from Eq. (42) and the
frequency sweep experiments (λ0 = 3.18 s). From the oscillatory
sweep, due to the collapse of the microstructure, there is another
way of interpreting the yield stress. One can consider the sudden
drop of storage modulus G′ to be the yield point, as this repre-
sents the breakdown of the structure, whereas others consider the
crossover between G′ and G′′ to be a critical point (yield) as it is the
conversion from elastic to viscous behavior. As shown in Fig. 10,
G′ is approximately one order of magnitude larger than G′′ at a
low-stress range, showing that the suspension is stable and shows

FIG. 10. Oscillatory stress sweep experiment at a fixed frequency (1 Hz) of
the 4% bentonite clay. Viscoelastic response occurs at an applied stress below
7.68 Pa.
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a gel-like response. When the stress amplitude gradually devel-
ops, a yield stress value can be determined around 7.68 Pa, which
is also consistent with value deduced from the equilibrium flow
curve.

Significant differences in the response of the mixture in oscil-
lating flows can be shown by the Lissajous graphs. These Lissajous
graphs are plots of stress vs strain, with each curve corresponding
to an oscillatory shear test with a sinusoidal stress input at a fixed
frequency and amplitude. In this test, we repeat this procedure for
applied stresses of {2, 3.7, 4.7, 5.7, 7, 8, 10, 12} Pa at a fixed frequency

f = 1 Hz and then plot the set of curves, as shown in Figs. 11 and 12.
The current theoretical analysis shows a good agreement with the
experimental results in the phase transition changing from a solid
to a liquid. The trajectory is an asymptote straight line for an elastic
solid at small stresses [Figs. 11(a) and 11(b)]. With larger stresses, the
trajectory becomes more elliptic in a viscoelastic zone [Figs. 11(c),
11(d), 12(a), and 12(b)]. At large enough stresses, the ellipse reduces
to a circle, indicating that all network structures are practically bro-
ken and the material now resembles a Newtonian fluid [Figs. 12(c)
and 12(d)].

FIG. 11. Lissajous figures of oscillatory flow experiments and the model prediction on the 4% bentonite clay with increasing applied stresses of 2 Pa (a), 3.7 Pa (b), 4.7 Pa
(c), and 5.7 Pa (d) at a frequency f = 1 Hz. Red: data, blue: model.
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FIG. 12. Lissajous figures of oscillatory flow experiments and the model prediction on the 4% bentonite clay with increasing stress amplitude of 7 Pa (a), 8 Pa (b), 10 Pa (c),
and 12 Pa (d) at a frequency f = 1 Hz. Red: data, blue: model.

V. CONCLUDING REMARKS

In this article, a simple model based on the network theory
for viscoelastic–thixotropic mixtures is developed, and its predic-
tions in a variety of shear and oscillatory shear flows are given.
To model thixotropy–viscoelastic behaviors and assuming that both
viscoelasticity and thixotropy are induced by microstructure net-
works, the proposed constitutive equation is fully specified from
the microstructure configuration; no continuum viscoelastic model
for the stress is required, and thus, the model has a small num-
ber of parameters and is convenient for engineering simulation
tasks.

In contrast to the deterministic models proposed in the lit-
erature, the structural parameter here is a probability distribu-
tion function f (t,R). The creation function g is isotropic, and the
destruction function h is chosen by fitting experimental data with
a shear-thinning (engineering yield stress) model. Its final form
resembles the simple thixotropic model (9), but the relaxation time λ
is inversely proportional to h, and the network contributed viscosity
is inversely proportional to h2.

From an engineering perspective, we believe that it is reason-
able and practical to model a viscoelastic–thixotropy material as a
fluid (at all stress levels) that has elasticity and extremely high vis-
cosity at small shear rates (the concept of engineering yield stress),
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followed by a smooth transition to a thixotropy regime at high shear
rates. The proposed model basically covers this transition, is easy to
implement, and is applicable for a wide range of shear rates. Despite
its simplicity, the present model is able to produce some good and
reasonable results for a bentonite clay suspension in non-trivial
shear rate histories and oscillatory flows.

As discussed in Ref. 62, the microstructure is destroyed due to
the applied stress rather than the strain rate. It is thus reasonable
to take into consideration the destruction function h as a func-
tion of stress h(S) to gives a better view of the physics. In addi-
tion, the model can be further investigated in a similar manner as
described in Sec. II with multi-relaxation times for complex mixtures
(e.g., polymer–filler and polymer–particle systems) at the expense of
simplicity.
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