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Abstract: A novel meshless method based on Radial Basis Function networks (RBFN) and

variational principle (global weak form) is presented in this paper. In this method, the global

integrated RBFN is localized and coupled with the moving least square method via the partition

of unity concept. As a result, the system matrix is symmetric, sparse and banded. The trial and

test functions satisfy the Kronecker-delta property, i.e.Φi(x j) = δi j. Therefore, the essential

boundary conditions are imposed in strong form as in the FEMs. Moreover, the proposed method

is applicable to scattered nodes and arbitrary domains. Themethod is examined with several

numerical examples and the results indicate that the accuracy and the rate of convergence of the

proposed method are superior to those of the EFG method usinglinear basis functions. In addition,

the method does not exhibit any volumetric locking near the limit of incompressible material.

Keywords: RBF, Local IRBF, Moving IRBF, partition of unity, meshless,elasticity, crack, su-

perconvergence.

1 Introduction

In recent years meshless methods have achieved remarkable progress. Works reported include [Be-

lytschko, Lu, and Gu (1994); Li, Shen, Han, and Atluri (2003); Han and Atluri (2003); Atluri, Liu,

and Han (2006); Mai-Duy, Khennane, and Tran-Cong (2007); Zhang and Chen (2008); Zheng, Wu,

Tang, and Zhang (2008)]. Among meshless methods, the Element Free Galerkin (EFG) method

introduced by Belytschko, Lu, and Gu (1994) has attracted much attention and been successfully

applied to various engineering computations owing to its flexibility in solving problems with mov-

ing boundaries and moving discontinuities such as evolvingcrack and shear band formation.

In comparison with FEM, the EFG meshless method enjoys a number of advantages. For example,

the latter does not require a mesh for the interpolation process; offers a higher order of continuity;
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and may not suffer so much degradation in accuracy as nodal arrangements are irregular. More-

over, EFG is more suitable for adaptivity and able to alleviate the effects of volumetric locking

at the limit of incompressible materials provided that the local support radius is large enough.

However, the major disadvantage of EFG as well as Moving Least Square (MLS) based meshless

methods is that the shape functions lack the Kronnecker-delta property, i.e.Φi(x j) 6= δi j. The

essential boundary conditions are not easy to be imposed accurately as in the FEMs due to this in-

equality. Attempts to overcome this shortcoming include Lagrange multiplier and penalty method

[Zhu and Atluri (1998)], Nitsche’s method [Fernández-Mández and Huerta (2004)], point collo-

cation [Wanger and Liu (1999)], singular weight functions [Kaljevic and Saigal (1997)], coupling

with FEM [Belytschko, Organ, and Krongauz (1995)]. Anotheralternative approach to address

this limitation is employing the interpolation techniquesthat possess the Kronecker-delta property

in constructing the shape functions of meshless Galerkin method. Examples include point inter-

polation meshless method [Wang and Liu (2002)], radial point interpolation method [Liu, Zhang,

and Gu (2005)], and moving Kriging method [Gu (2003)].

Motivated by the former works, this paper proposes a novel meshless method based on (i) Mov-

ing Integrated Radial Basis Function Network (MIRBFN) and (ii) (global weak form) Galerkin

formulation, resulting in Moving IRBFN Galerkin (MIRBFNG)meshless method. In the present

method, the shape functions are constructed within subdomains instead of the global domain. The

system matrix is thus sparse and banded. The shape functionssatisfy the Kronnecker-delta prop-

erty, therefore, essential boundary conditions are imposed easily and straightforwardly as in the

FEMs. Moreover, the proposed method is applicable to irregular distributions of nodes and ar-

bitrary domains. The remaining of this work is organized as follows. The MIRBFN is briefly

presented in section 2 followed by the Galerkin formulationfor elasticity problems in section 3.

Section 4 reports the numerical experiments and section 5 draws some conclusions.

2 MOVING IRBFN PROCEDURE

2.1 The global IRBFN approximation

In the IRBFN method [Mai-Duy and Tran-Cong (2001, 2005); Mai-Duy and Tanner (2005); Le,

Mai-Duy, Tran-Cong, and Baker (2007, 2008)], the highest order derivatives of a functionu, e.g.
∂ 2

∂x2
j
u(x), are represented by RBFNs. The derivative expressions obtained are then integrated to
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yield expressions for lower order derivatives and finally for the original function as follows.

∂ 2

∂x2
j

u(x) =
m

∑
i=1

w(i)g(i)(x), (1)

∂
∂x j

u(x) =
∫ m

∑
i=1

w(i)g(i)(x)dx j +C1(xl;l 6= j) =
m+p1

∑
i=1

w(i)H [1](i)
[x j ]

(x), (2)

u(x) =

∫ m+p1

∑
i=1

w(i)H [1](i)
[x j ]

(x)dx j +C2(xl;l 6= j) =
m+p2

∑
i=1

w(i)H [0](i)
[x j ]

(x), (3)

where, the subscripts[x j] denote variables associated with partial differentiation, m is the number

of RBF centers,{g(i)(x)}m
i=1 the set of RBFs,{Ci}2

i=1 the set of constants arising from integration,

{w(i)}m+p2
i=1 the set of corresponding network weights to be found,{H [1](i)

[x j ]
(x)}m

i=1, {H [0](i)
[x j ]

(x)}m
i=1

the newly derived basis functions relating to the first derivative and the original functionu(x),

respectively,p1, p2 the number of centers used to represent integration constants (p2 = 2p1).

Collocating (1)-(3) at the set ofL nodal points{x(c)}L
c=1 leads to

u, j j = Gw[x j ], (4)

u, j = H[1]
[x j ]

w[x j ], (5)

u = H[0]
[x j ]

w[x j ], (6)

whereu is the vector of nodal values ofu, G the matrix whosepth row is comprised of{g(i)(x(p))}m
i=1

and{0}p2
i=1, andH[l]

[x j ]
the matrix whosepth row is comprised of{H [l](i)

[x j ]
(x(p))}m+pl

i=1 and{0}p2−pl
i=1 .

For the multiquadric function

g(i)(x) =

√

∥

∥x−c(i)
∥

∥

2
+

(

a(i)
)2

, (7)

wherec(i) is the RBF center anda(i) the RBF width, the width of theith RBF can be determined

according to the following simple relation

a(i) = βd(i), (8)

whereβ is a factor,β > 0, andd(i) is the distance from theith center to its nearest center.

We perform a prior conversion of the unknowns from network weights, e.g.,{w(i)}m+p2
i=1 , into nodal
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function valueu in order to form a square system of equations of smaller size as follows.

The network weights are expressed in terms of nodal functionvalues as

w[x j ] =
[

H[0]
[x j ]

]−1
u. (9)

Substitution of (9) into the system (4)-(6) yields

u, j j = G
[

H[0]
[x j ]

]−1
u, (10)

u, j = H[1]
[x j ]

[

H[0]
[x j ]

]−1
u, (11)

u = H[0]
[x j ]

[

H[0]
[x j ]

]−1
u = Iu , (12)

whereI is the identity matrix.

2.2 Moving least-square approximants

The moving least-square (MLS) method was originally developed by Lancaster (1981) for curve-

fitting problem and later on applied in the context of the element-free Galerkin method [Be-

lytschko, Lu, and Gu (1994)]. The principal property of MLS is to exactly reproduce a given

set of functions. Therefore, an approximationuh(x) of the functionu(x) ∈ Ω is given by

uh(x) =
M

∑
I=1

aI(x)pI(x) (13)

wherep is the basis vector containingM functions that need to be reproduced,xT = [x,y], andaI(x)

are unknown coefficients depending onx. In this paper, we use a linear basis, i.e.pT = [1,x,y].

The unknown coefficientsaI(x) in (13) are obtained by minimizing the quadratic form

J =
n

∑
J=1

w(x−xJ)
(

pT (xJ)a(x)−uJ
)2

, (14)

wheren is the number of points in the neighbourhood ofx for which the weight functionw(x−
xJ) 6= 0, anduJ is the nodal value ofu at x = xJ.

Minimizing the discrete weightedL2 normJ in (14) with respect toa(x) leads to a linear relation

betweena(x) anduI , that can be solved fora(x) which is then substituted into (13) to obtain the



6

final MLS approximation

uh(x) =
n

∑
I=1

ϕI(x)uI , (15)

with MLS shape functions

ϕI(x) =
M

∑
J=1

n

∑
K=1

pJ(x)A−1
JK (x) BKI(x) (16)

and

A(x) =
n

∑
I=1

w(x−xI)p(xI)pT (xI),

B(:,I)(x) = w(x−xI)p(xI), (17)

where the subscript(:, I) denotes columnI of B.

In this paper, we use the quartic spline kernel function

w(r) =







1−6
(

r
Rs

)2
+8

(

r
Rs

)3
−3

(

r
Rs

)4
, r

Rs
≤ 1;

0, r
Rs

> 1,
(18)

wherer = ‖x−xI‖, ‖.‖ denotes the Euclidean norm, andRs is the radius of the support domain of

the weight functionw(r) defined by

Rs = αh, (19)

in which h is a characteristic length that relates to the nodal spacingaround the point of interest

andα is a scale factor.

2.3 Moving IRBFN interpolation

The moving IRBFN method using partition of unity concept [Melenk and Babuška (1996); Babuška

and Melenk (1997)] is as follows.

Let the open and bounded domain of interestΩ ⊆ R
d be discretised by a set ofN pointsX

X = {x1,x2, . . . ,xN}, xI ∈ Ω, I = 1,2, . . . ,N, (20)
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X is used to define a set of finite open cover ofΩ, i.e., {ΩI} such thatΩ ⊆ ⋃N
I=1 ΩI and{ΩI}

satisfies a point-wise overlap condition

∀x ∈ Ω ∃k ∈ N : card{I|x ∈ ΩI} ≤ k. (21)

We choose a family of compactly supported, non-negative, continuous functionsψI supported on

the closure ofΩI, such that at every pointx we have the following property

N

∑
I=1

ψI(x) = 1, ∀x ∈ Ω, (22)

where{ψI} is called a partition of unity subordinate to the cover{ΩI}.

For every subdomainΩI, a local approximationuI is constructed by using global IRBFN presented

in section 2.1, i.e.,

uh
I (x) ∈VI , VI = span{V 1

I ,V 2
I , ...,V L

I }, (23)

where{VI} are referred to as the local approximation spaces andV k
I is thek-th element of the

vector defined by

[

H [0](1)
[x j ]I

(x),H [0](2)
[x j ]I

(x), . . . ,H [0](m+pk)
[x j ]I

(x)
][

H[0]
[x j ]

]−1
.

The global approximation ofu(x), uh(x), is obtained via

uh(x) =
N

∑
I=1

ψI(x)uh
I (x), uh(x) ∈V, (24)

whereψI(x) anduh
I (x) are associated with the subdomainΩI , andV is called PUM space and

defined by

V :=
N

∑
I=1

ψIVI . (25)

In the present work, the partition of unity functionψI is chosen to be the MLS shape functionϕI

in (16), the subdomainΩI is centered atxI as shown in Figure 1.
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ReplacingψI with MLS shape functionϕI, (24) can be rewritten as follows

uh(x) =
N

∑
I=1

ϕI(x)uh
I (x), (26)

and the associated derivatives ofuh(x) are

uh
,x(x) =

N

∑
I=1

[

ϕI,x(x)uh
I (x)+ ϕI(x)uh

I,x(x)
]

, (27)

uh
,y(x) =

N

∑
I=1

[

ϕI,y(x)uh
I (x)+ ϕI(x)uh

I,y(x)
]

, (28)

whereuh
,x(x), uh

,y(x), are derived in (11).

uh(x) and its derivatives can be expressed in a compact form as

uh(x) = ΦT (x)u, (29)

uh
,x(x) = ΦT

,x(x)u, (30)

uh
,y(x) = ΦT

,y(x)u, (31)

whereu = {u1,u2, . . . ,uN}, Φ(x) is the vector of shape functions,Φ,x(x) andΦ,y(x) can be deter-

mined by substitution of (11) into equations (27) and (28), respectively, as follows.

Φ,x(x) =ϕ,x(x)
[

H [0](1)
[x] (x),H [0](2)

[x] (x), . . . ,H [0](m+pk)
[x] (x)

][

H[0]
[x]

]−1
+

ϕ(x)
[

H [1](1)
[x] (x),H [1](2)

[x] (x), . . . ,H [1](m+pk)
[x] (x)

][

H[0]
[x]

]−1
, (32)

Φ,y(x) =ϕ,y(x)
[

H [0](1)
[y] (x),H [0](2)

[y] (x), . . . ,H [0](m+pk)
[y] (x)

][

H[0]
[y]

]−1
+

ϕ(x)
[

H [1](1)
[y] (x),H [1](2)

[y] (x), . . . ,H [1](m+pk)
[y] (x)

][

H[0]
[y]

]−1
. (33)

It is noted thatΦI(xJ) = δIJ as shown in Figures 2 and 3. Consequently, the present MIRBFN

method possesses the Kronecker-delta property which makesit easy and efficient to impose the

essential boundary conditions.
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3 Variational form of two dimensional elasticity problems

Consider the following two-dimensional problem on a domainΩ bounded byΓ = Γu
⋃

Γt

∇ ·σ +b = 0 in Ω, (34a)

u = ū on Γu, (34b)

σ ·n = t̄ on Γt , (34c)

whereσ is the stress tensor, which corresponds to the displacementfield u andb the body force,

n the outward unit normal toΓt . The superimposed bar denotes prescribed value on the boundary.

The weak form for the above equations is expressed as

∫

Ω
δ (∇su)T σdΩ =

∫

Ω
δuT bdΩ+

∫

Γt

δuT t̄dΓ, (35)

where the subscripts denotes the symmetric part of the gradient operator. Discretization of (35)

with Moving IRBFNs yields

Ku = f, (36)

where

K i j =

∫

Ω
BiT CB jdΩ, (37)

are 2×2 matrices to be assembled into the global matrixK at positions associated with nodesi

and j as in a FEM procedure,

fi =
∫

Γt

Φi t̄dΓ+
∫

Ω
ΦibdΩ, (38)

are 2×1 vectors to be assembled into the global vectorf at positions associated with nodei as in
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a FEM procedure,

Bi =







Φi
,x 0

0 Φi
,y

Φi
,y Φi

,x






. (39)

For the linear Hookean constitutive relation, the matrixC in the case of plane stress is

C =
E

1−ν2







1 ν 0

ν 1 0

0 0 1−ν
2






, (40)

whereE is the elastic modulus andν the Poisson’s ratio.

In global weak form discretisation, a background mesh independent of data nodes is necessary for

numerical integration of (37)-(38), and Gauss quadrature is employed for the numerical integration

in this work. A noteworthy feature of the present method is that the essential boundary condition

is imposed easily and straightforwardly as in the FEM.

4 Numerical examples

For error estimation and convergence study, the displacement norm and energy norm are defined

as follows.

displacement norm=

√

∫

Ω
(unum −uexact)T (unum −uexact)dΩ, (41)

energy norm=

√

1
2

∫

Ω
(εnum − εexact)T (σ num −σ exact)dΩ, (42)

where the superscriptsnum andexact denote numerical and exact solutions, respectively; the stress

and strain components are presented in vector form asσ andε , respectively.

The convergence order of the solution with respect to the refinement of spatial discretization is
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assumed to be in the form of

error(h) ≈ ζhλ = O(hλ ), (43)

whereh is the maximum nodal spacing,ζ andλ are the parameters of the exponential model,

which are found by general linear least square formula.

It is noted that the present results are compared with those obtained by the EFG method which

only uses linear basis function.

4.1 One dimensional example

Consider a one-dimensional bar of unit length (L = 1) subjected to a linear body force of magnitude

x as shown in Figure 4. The bar is fixed at the left end and traction free at the right end. The cross

sectional area of the bar is of unit value and the modulus of elasticity isE = 1.

The equilibrium equation and boundary conditions for this problems are as follows.

E
∂ 2u
∂x2 + x = 0, 0≤ x ≤ 1 (44)

u(0) = 0, (45)

∂u
∂x

(1) = 0. (46)

The exact solution to the problem is given by

u(x) =
1
E

[

1
2

x− x3

6L2

]

. (47)

In this example, the domain is uniformly discretised,α andβ are set at 2.1 and 4, respectively.

Seven Gauss points are employed in each cell (defined by two adjacent nodes) for the numerical

integration.

Figure 5 shows the numerical solution obtained by the present method with uniform distribution

of 9 nodes and the results are interpolated at 50 points. It can be seen that the numerical solu-

tion excellently agrees with the exact solution. Moreover,the accuracy of the present method is

favourably compared with that of the EFG method as shown in Figures 5-6.

The rates of convergence of the present method, using displacement and energy norms are 2.73
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and 1.87, respectively, while those of the EFG method are 2.50 and 1.48, respectively, as displayed

in Figures 7-8.

4.2 Cantilever Beam

The present method is now verified, using the problem of a cantilever beam subject to parabolic

shear load at the endx = 0 as shown in Figure 9. The following parameters are used for the

problem:L = 4.8 andD = 1.2. The beam has a unit thickness. Young’s modulus isE = 3×106,

Poisson’s ratio isµ = 0.3 (alsoµ = 0.4999) and the integrated parabolic shear force isP = 100.

Plane stress condition is assumed and there is no body force.

The exact solution to this problem was given by Timoshenko and Goodier (1970) as

σxx(x,y) =
−Pxy

I
, (48a)

σyy(x,y) = 0, (48b)

τxy(x,y) =
−P
2I

(

D2

4
− y2

)

. (48c)

The displacements are given by

ux = −Px2y
2EI

− µPy3

6EI
+

Py3

6IG
+ y

(

PL2

2EI
− PD2

8IG

)

, (49)

uy =
µPxy2

2EI
+

Px3

6EI
− PL2x

2EI
+

PL3

3EI
, (50)

whereI = D3/12 is the moment of inertia of the cross section of the beam (ofunit thickness),

G = E/(2(1+ µ)) the modulus of elasticity in shear.

The exact displacements (49) and (50) are applied on the Dirichlet boundaryx = L.

To solve this problem, uniform distributions of nodes (Figure 10) are considered. The scale factor

of local supportα is set at 2.1 andβ is 9. Background meshes of four-node cells with 4×4 Gauss

quadrature points per cell are used for the numerical integration.

Figure 11 illustrates the comparison between the stress (σx) obtained by the proposed method with

20×5 nodes and the exact one. Figures 12 and 13 show the convergence behaviour of the method

using displacement and energy norms, respectively. High orders of convergence achieved by the

present method can be observed in the figures, i.e.O(h5.21) andO(h2.95) (µ = 0.3) using displace-
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ment and energy norms, respectively. The stress plots (Figure 11) together with the error norms

(Figures 12-13) show an excellent agreement between the numerical results and the analytical so-

lution. Furthermore, the numerical results in the case ofµ = 0.4999 indicate that the MIRBFNG

method does not suffer from any volumetric locking near the limit of incompressible material.

For the purpose of comparison, the same configurations of nodes, local supports and background

meshes are used for the EFG method with 4×4 Gauss quadrature points in each integration cell.

The comparison shows that the rates of convergence and the accuracy achieved by the present

method are superior to those obtained by the EFG as shown in the above figures.

To study the performance of the method with sets of scatterednodes (µ = 0.3), the domain of

interest is discretised with 125, 225, 633, 803, 1020, 1725 and 2502 unstructured nodes as depicted

in Figure 14. The convergence ofτxy at x = 2.40 is revealed in Figure 15. It can be observed that

the method performs very well with scattered distribution of nodes. The convergence rates using

displacement and energy norms obtained by the present method are 3.95 and 1.72, respectively

(Figures 16-17).

4.3 Infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional tensile load of

1.0 in thex direction as shown in Figure 18 is analyzed. The radius of thehole is taken as 1 unit.

Owing to symmetry, only the upper right quadrant[0,4]× [0,4] of the plate is modeled as shown

in Figure 19.

In this problem, plane stress conditions are assumed with elastic isotropic propertiesE = 103,

µ = 0.3. The exact solution to this problem was given by Timoshenkoand Goodier (1970) as

follows.

σx(x,y) = σ
[

1− a2

r2

[

3
2

cos(2θ)+cos(4θ)

]

+
3a4

2r4 cos(4θ)

]

, (51a)

σy(x,y) = −σ
[

a2

r2

[

1
2

cos(2θ)−cos(4θ)

]

+
3a4

2r4 cos(4θ)

]

, (51b)

τxy(x,y) = −σ
[

a2

r2

[

1
2

sin(2θ)+sin(4θ)

]

− 3a4

2r4 sin(4θ)

]

, (51c)
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where(r,θ) are the polar coordinates,a the radius of the hole.

The corresponding displacements are given by

ux(x,y) = σ
(1+ µ)

E

[

1
1+ µ

rcos(θ)+
2

1+ µ
a2

r
cos(θ)+

1
2

a2

r
cos(3θ)− 1

2
a4

r3 cos(3θ)

]

(52a)

uy(x,y) = σ
(1+ µ)

E

[ −µ
1+ µ

rsin(θ)+
1−µ
1+ µ

a2

r
sin(θ)+

1
2

a2

r
sin(3θ)− 1

2
a4

r3 sin(3θ)

]

(52b)

The boundary conditions of the problem are as follows. The tractions which correspond to the

exact solution for the infinite plate are applied on the top and right edges, the symmetric conditions

are applied on the left and bottom edges, and the edge of the hole is traction free.

The computational domain ABCD is shown in Figure 22. Owing tosymmetry, only the upper

half of ABCD, namely CDEFG as shown in Figure 23, is analyzed.The segment of the crack

denoted by EF has a length ofb = 5 mm. The boundary condition of the problem is as follows.

The traction free boundary condition is applied on the crackwhile the displacement field given in

(54) is imposed on the remaining boundaries.

The problem is discretised as shown in Figure 19. The value ofα andβ are 1.5 and 1, respectively.

The number of Gauss quadrature points per integration cell is 4×4.

To study the convergence of the method, a number of configurations of 50, 120, 315, 511 nodes

is considered. Figures 20-21 show that the present method achieves excellent accuracy and high

rates of convergence, i.e. 2.91 and 1.45 using displacementand energy norms, respectively. Again,

it can be seen that the accuracy and the convergent rates of the proposed method are favourably

compared with those of the EFG method as shown in the figures.

4.4 Mode I crack problem

Consider an infinite plate containing a straight crack of length 2a and loaded by a remote uniform

stress fieldσ as shown in Figure 22. Under plane strain condition, the closed form solution in

terms of polar coordinates in a reference frame(r,θ) centered at the crack tip is given by (body

force is zero) [Tada, Paris, and Irwin (2000)]
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σx =
KI√

r
cos

θ
2

(

1−sin
θ
2

sin3
θ
2

)

, (53a)

σy =
KI√

r
cos

θ
2

(

1+sin
θ
2

sin3
θ
2

)

, (53b)

τy =
KI√

r
sin

θ
2

cos
θ
2

cos3
θ
2

, (53c)

and the closed form of near tip displacement field is given by

ux =
2(1+ µ)√

2π
KI

E

√
r cos

θ
2

(

2−2µ −cos2
θ
2

)

, (54a)

uy =
2(1+ µ)√

2π
KI

E

√
r sin

θ
2

(

2−2µ −cos2
θ
2

)

, (54b)

whereKI = σ
√

πa is the stress intensity factor,µ is the Poisson’s ratio andE is the Young modu-

lus. ABCD is a square of 10×10mm2, a = 100mm; E = 107N/mm2, µ = 0.3 ( alsoµ = 0.4999),

σ = 104N/mm2.

In this example, the domain of interest is uniformly discretised.α andβ are 1.1 and 1, respectively.

2×2 Gauss quadrature points per integration cell are used for the numerical integration.

The numerical solutions to displacement and stress obtained with 20×10 nodes (µ = 0.3) and the

analytical solutions are plotted in Figures 24-26. The comparison indicates an excellent agreement

between the solutions obtained by the proposed method and the exact solutions.

For convergence study, a number of regular distribution of 4×8, 8×16, 12×24, 16×32, 20×
40, and 24× 48 nodes is employed withµ = 0.3 andµ = 0.4999. The convergence curves for

displacement and energy are shown in Figures 27 and 28, respectively. The orders of convergence

using displacement and energy norms are 1.35 and 0.48, respectively, for µ = 0.3. It can be seen

that the rate of convergence for energy is reduced significantly due to singularity in the stress field.

Again, the numerical results demonstrate that the method does not show any volumetric locking

in the case ofµ = 0.4999 (Figures 27-28).
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5 Concluding remarks

This work proposes a novel meshless method based on the MIRBFN interpolation and Galerkin

method for solving PDEs. The key feature of the method is thatthe shape functions are locally

supported and satisfy the Kronecher-delta property. As a result, the essential boundary conditions

are imposed exactly and straightforwardly in this method. The method is applicable to sets of

scattered nodes and irregular domains. Furthermore, the proposed method achieves high orders of

convergence and high accuracy for smooth problems. The obtained results also indicate that there

is no evidence of volumetric locking with the present method. Furthermore, it is encouraging

that the accuracy and the rate of convergence of the method isfavourably compared with those

of the EFG method. As a result of coupling MLS technique with ‘local’ IRBFN method, the

computational cost of the present Moving IRBFN approach is much better than that of the global

IRBFN method but still higher than that of the MLS technique.The order of magnitude of the

improvement in efficiency was reported in Le, Rabczuk, Mai-Duy, and Tran-Cong (2010).
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Figure 1: Schematic representation of a Moving IRBFN:Ω is the domain of interest which is
subdivided intoN overlapping subdomainsΩI centered atxI .
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Figure 2: Example of Moving IRBFN shape functions: (a)ΦI(x) in one dimension and (b)ΦI(x,y)
in two dimensions.
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(a) (b)
Figure 3: Example of derivatives of Moving IRBFN shape functions in two dimensions: (a)
∂ΦI
∂x (x,y) and (b)∂ΦI

∂y (x,y).

Figure 4: A uniform bar: a mathematical model.
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Figure 5: A uniform bar: the results obtained by the present method with 9 nodes are interpolated
at 50 nodes, (a) displacement and (b) stress.
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Figure 6: A uniform bar: the results obtained by the EFG method with 9 nodes are interpolated
with 50 nodes, (a) displacement and (b) stress.
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Figure 7: A uniform bar:L2 error norm for displacement.
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Figure 8: A uniform bar:L2 error norm for energy.
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Figure 9: Cantilever beam: a mathematical model.

 

 

Figure 10: Cantilever beam: discretisation model with 20×5 nodes.

(a) (b)
Figure 11: Cantilever beam:σx given by (a) MIRBFNG with 20×5 nodes and (b) Exact solution.
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Figure 12: Cantilever beam:L2 error norm for displacement.
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Figure 13: Cantilever beam:L2 error norm for energy.
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(a) 803 nodes (b) 1020 nodes

(c) 1725 nodes (d) 2502 nodes
Figure 14: Cantilever beam: untructured discretisations.
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Figure 15: Cantilever beam: convergence ofτxy at x = 2.40 with untructured nodal refinement.
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Figure 16: Cantilever beam:L2 error norm for displacement with unstructured nodes.
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Figure 17: Cantilever beam:L2 error norm for energy with unstructured nodes.

Figure 18: Infinite plate with a circular hole.
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Figure 19: Infinite plate with a circular hole: computational domain discretization with 315 nodes.
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Figure 20: Infinite plate with a circular hole:L2 error norm for displacement.
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Figure 21: Infinite plate with a circular hole:L2 error norm for energy.

Figure 22: Infinite cracked plate under remote tension.
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Figure 23: Infinite cracked plate: analyzed portion.
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Figure 24: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solution ofux with 20×10
nodes (µ = 0.3).
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Figure 25: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solution ofuy with 20×10
nodes (µ = 0.3).
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Figure 26: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solution ofσx with 20×10
nodes (µ = 0.3).
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Figure 27: Infinite cracked plate:L2 error norm for displacement.
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Figure 28: Infinite cracked plate:L2 error norm for energy.




