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Abstract: A novel meshless method based on Radial Basis Function rieswWBBFN) and
variational principle (global weak form) is presented imstpaper. In this method, the global
integrated RBFN is localized and coupled with the movingliesuare method via the partition
of unity concept. As a result, the system matrix is symmesjarse and banded. The trial and
test functions satisfy the Kronecker-delta property, i®.(x;) = &j. Therefore, the essential
boundary conditions are imposed in strong form as in the FENgeover, the proposed method
is applicable to scattered nodes and arbitrary domains. ridthod is examined with several
numerical examples and the results indicate that the acganad the rate of convergence of the
proposed method are superior to those of the EFG method lirs#rag basis functions. In addition,
the method does not exhibit any volumetric locking near itiné lof incompressible material.

Keywords: RBF, Local IRBF, Moving IRBF, partition of unity, meshlessasticity, crack, su-
perconvergence.

1 Introduction

In recent years meshless methods have achieved remarkabtess. Works reported include [Be-
lytschko, Lu, and Gu (1994); Li, Shen, Han, and Atluri (20a3xn and Atluri (2003); Atluri, Liu,
and Han (2006); Mai-Duy, Khennane, and Tran-Cong (2007angrand Chen (2008); Zheng, Wu,
Tang, and Zhang (2008)]. Among meshless methods, the Etdfnea Galerkin (EFG) method
introduced by Belytschko, Lu, and Gu (1994) has attractedmaitention and been successfully
applied to various engineering computations owing to italfiity in solving problems with mov-
ing boundaries and moving discontinuities such as evolemagk and shear band formation.

In comparison with FEM, the EFG meshless method enjoys a aupfladvantages. For example,
the latter does not require a mesh for the interpolationgeecoffers a higher order of continuity;
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and may not suffer so much degradation in accuracy as nogalgaments are irregular. More-
over, EFG is more suitable for adaptivity and able to allevihe effects of volumetric locking
at the limit of incompressible materials provided that theal support radius is large enough.
However, the major disadvantage of EFG as well as MovingtLegeare (MLS) based meshless
methods is that the shape functions lack the Kronneckéa-gebperty, i.e.®;(x;) # &;. The
essential boundary conditions are not easy to be imposenlaety as in the FEMs due to this in-
equality. Attempts to overcome this shortcoming includgraage multiplier and penalty method
[Zhu and Atluri (1998)], Nitsche's method [Fernandez-Méndnd Huerta (2004)], point collo-
cation [Wanger and Liu (1999)], singular weight functioksljevic and Saigal (1997)], coupling
with FEM [Belytschko, Organ, and Krongauz (1995)]. Anotladternative approach to address
this limitation is employing the interpolation techniqubat possess the Kronecker-delta property
in constructing the shape functions of meshless Galerkithode Examples include point inter-
polation meshless method [Wang and Liu (2002)], radial fpimiterpolation method [Liu, Zhang,
and Gu (2005)], and moving Kriging method [Gu (2003)].

Motivated by the former works, this paper proposes a novedhtess method based on (i) Mov-
ing Integrated Radial Basis Function Network (MIRBFN) aii)l (@lobal weak form) Galerkin
formulation, resulting in Moving IRBFN Galerkin (MIRBFNG)eshless method. In the present
method, the shape functions are constructed within subihenastead of the global domain. The
system matrix is thus sparse and banded. The shape funsttisfy/ the Kronnecker-delta prop-
erty, therefore, essential boundary conditions are imphesesily and straightforwardly as in the
FEMs. Moreover, the proposed method is applicable to iteegdistributions of nodes and ar-
bitrary domains. The remaining of this work is organized @tws. The MIRBFN is briefly
presented in section 2 followed by the Galerkin formulationelasticity problems in section 3.
Section 4 reports the numerical experiments and sectioaBsisome conclusions.

2 MOVING IRBFN PROCEDURE
2.1 The global IRBFN approximation

In the IRBFN method [Mai-Duy and Tran-Cong (2001, 2005); Nbaiy and Tanner (2005); Le,

Mai-Duy, Tran-Cong, and Baker (2007, 2008)], the highedeoderivatives of a function, e.qg.

;—Xzzu(x), are represented by RBFNs. The derivative expressionsneltare then integrated to
]



yield expressions for lower order derivatives and finallytfee original function as follows.
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where, the subscripts;] denote variables associated with partial differentigtians the number
of RBF centers{g\ (x)}™, the set of RBFs{C;}2 ; the set of constants arising from integration,
{wl}™ P2 the set of corresponding network weights to be fOL{riq[klj]](i)(x PR {H[[O]]()( i
the newly derived basis functions relating to the first deiie and the original function(x),

respectivelyp;, p2 the number of centers used to represent integration cdag@n= 2p1).
Collocating (1)-(3) at the set df nodal points{x(©}L_, leads to
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whereu is the vector of nodal values af G the matrix whose'" row is comprised of gt (x(P) }"
and{0}",, andHPX]j] the matrix whosep!" row is comprised OI{H[[)'(H')(X(P))}E”' and {0} ”
For the multiquadric function
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wherecl) is the RBF center and) the RBF width, the width of thé" RBF can be determined
according to the following simple relation

a® = pd, 8

wherep is a factor,8 > 0, andd(! is the distance from th#" center to its nearest center.

We perform a prior conversion of the unknowns from networlghts, e.g.{w(}™ ", into nodal



function valueu in order to form a square system of equations of smaller siZelws.
The network weights are expressed in terms of nodal fune@umes as

Wi| = [H[O]_]]ilu. )

Substitution of (9) into the system (4)-(6) yields
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wherel is the identity matrix.

2.2 Moving least-square approximants

The moving least-square (MLS) method was originally dgwetbby Lancaster (1981) for curve-
fitting problem and later on applied in the context of the edatdree Galerkin method [Be-
lytschko, Lu, and Gu (1994)]. The principal property of MLStD exactly reproduce a given
set of functions. Therefore, an approximatidix) of the functionu(x) € Q is given by

u'(x) =
|

a (X)pi (x) (13)

M=

wherep is the basis vector containing functions that need to be reproducedl= [x,y], anday (x)
are unknown coefficients dependinganin this paper, we use a linear basis, pé.= [1,x,y].

The unknown coefficients, (x) in (13) are obtained by minimizing the quadratic form

2

S = i w(x —x3) (pT (x3)a(x) — )", (14)
=]

wheren is the number of points in the neighbourhoodxdbr which the weight functiorw(x —
X3) # 0, anduj is the nodal value afi atx = x;.

Minimizing the discrete weighteld, norm _# in (14) with respect t@(x) leads to a linear relation
betweena(x) andu,, that can be solved fa(x) which is then substituted into (13) to obtain the



final MLS approximation

n
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where the subscrigt, 1) denotes columh of B.

In this paper, we use the quartic spline kernel function
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wherer = ||[x— X ||, ||.|| denotes the Euclidean norm, aRglis the radius of the support domain of

the weight functiorw(r) defined by
RS — ah, (19)

in which h is a characteristic length that relates to the nodal spaaiagnd the point of interest
anda is a scale factor.

2.3 Moving IRBFN interpolation

The moving IRBFN method using partition of unity concept [stik and Babuska (1996); Babuska
and Melenk (1997)] is as follows.

Let the open and bounded domain of intel@st RY be discretised by a set df points 2

%:{Xl’xz’...7XN}7 X € Q, =212,...,N, (20)



2 is used to define a set of finite open coverfi.e., {Q} such thatQ € U, Q, and{Q,}
satisfies a point-wise overlap condition

vxeQ Jke N : card{l[x € Q;} <k. (21)

We choose a family of compactly supported, non-negativitimoous functiong, supported on
the closure of2, such that at every poirtwe have the following property

N
le-pl (X) = 15 vx e Q’ (22)
|=

where{y } is called a partition of unity subordinate to the coy&y; }.

For every subdomaif®;, a local approximatiom, is constructed by using global IRBFN presented
in section 2.1, i.e.,

uW(x)eVi, Vi =spaV, V2 .. V), (23)

where{V;} are referred to as the local approximation spaces\ni$ thek-th element of the
vector defined by
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The global approximation ai(x), u"(x), is obtained via
N

wx) =Y U,  W(x) eV, (24)
=1

where g (x) andu'(x) are associated with the subdom&p, andV is called PUM space and
defined by

N
V= V. 25
I;WI | (25)

In the present work, the partition of unity functigh is chosen to be the MLS shape functipn
in (16), the subdomaif, is centered a%, as shown in Figure 1.



Replacingy, with MLS shape functiorg,, (24) can be rewritten as follows

N
= I; ¢ (x)u(x), (26)

and the associated derivativesuitx) are
N
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h h
whereuf}(x), uy,

u"(x) and its derivatives can be expressed in a compact form as

(x), are derived in (11).

u"(x) = @' (x)u, (29)
U (x) = PL(X)u, (30)
u}(x) = @l (x)u, (31)

whereu = {ug, Uy, ..., un }, P(X) is the vector of shape function®,(x) and®(x) can be deter-
mined by substitution of (11) into equations (27) and (283pectively, as follows.

$x(x) [H[O D)., HY ™ () [H[O] +
[ D), HZ ™ 0] [H] ] (32)
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It is noted thatd, (x;) = &3 as shown in Figures 2 and 3. Consequently, the present MIRBFN
method possesses the Kronecker-delta property which niakasy and efficient to impose the
essential boundary conditions.



3 \Variational form of two dimensional elasticity problems

Consider the following two-dimensional problem on a don@ihounded by =T, (Ul

O-0+b=0 in Q, (34a)
u=u on Iy, (34b)
o-n=t on [ (34c)

whereg is the stress tensor, which corresponds to the displacefieéhti andb the body force,
n the outward unit normal tb;. The superimposed bar denotes prescribed value on the &igund

The weak form for the above equations is expressed as
/ 5(0su)T 0dQ — / 5uTbdQ + 5uTtdr (35)

where the subscrip denotes the symmetric part of the gradient operator. Cigateon of (35)
with Moving IRBFNSs yields

Ku =f, (36)

where

Kl :/ BTCBIdQ, 37)
Q

are 2x 2 matrices to be assembled into the global mairiat positions associated with nodes
andj as in a FEM procedure,

f :/ ¢it_dr+/¢ibd§2, (38)
r Q

are 2x 1 vectors to be assembled into the global vetiatr positions associated with nodas in
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a FEM procedure,

o, 0
B=|0 o (39)
Py P
For the linear Hookean constitutive relation, the ma@iin the case of plane stress is
1 v O
__E 1 0 (40)
12|V '
0 0 v

wherekE is the elastic modulus andthe Poisson’s ratio.

In global weak form discretisation, a background mesh ieddpnt of data nodes is necessary for
numerical integration of (37)-(38), and Gauss quadratuesriployed for the numerical integration
in this work. A noteworthy feature of the present method & the essential boundary condition
is imposed easily and straightforwardly as in the FEM.

4 Numerical examples

For error estimation and convergence study, the displacen@m and energy norm are defined

as follows.
displacement norra- \// (unum _ yexact)T (ynum _ yexact)dQy (41)
Q
1
energy norm= \/E/ (gnum — ge@c)T(ghum _ gead)dQ), (42)
Q

where the superscriptaimandexact denote numerical and exact solutions, respectively; tesst
and strain components are presented in vector form aisde, respectively.

The convergence order of the solution with respect to theesfent of spatial discretization is



11

assumed to be in the form of
error(h) ~ W = O(h"), (43)

whereh is the maximum nodal spacing, andA are the parameters of the exponential model,
which are found by general linear least square formula.

It is noted that the present results are compared with thbsgned by the EFG method which
only uses linear basis function.

4.1 One dimensional example

Consider a one-dimensional bar of unit lendth1) subjected to a linear body force of magnitude
x as shown in Figure 4. The bar is fixed at the left end and tnadtie at the right end. The cross
sectional area of the bar is of unit value and the modulusasitieity iSE = 1.

The equilibrium equation and boundary conditions for thidbems are as follows.

d0%u

EW+x:O, 0<x<1 (44)
u(0) =0, (45)

Jdu
&(1) =0. (46)

The exact solution to the problem is given by

u(x) = 1 Bx— 6X—52} . (47)

In this example, the domain is uniformly discretisedand 3 are set at 2.1 and 4, respectively.
Seven Gauss points are employed in each cell (defined by tjsoead nodes) for the numerical
integration.

Figure 5 shows the numerical solution obtained by the ptasethod with uniform distribution
of 9 nodes and the results are interpolated at 50 points.nlteaseen that the numerical solu-
tion excellently agrees with the exact solution. Moreoteg, accuracy of the present method is
favourably compared with that of the EFG method as showngdnries 5-6.

The rates of convergence of the present method, using desplent and energy norms arg 2
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and 187, respectively, while those of the EFG method aB®2nd 148, respectively, as displayed
in Figures 7-8.

4.2 Cantilever Beam

The present method is now verified, using the problem of alesat beam subject to parabolic
shear load at the erxl= 0 as shown in Figure 9. The following parameters are usedhr t
problem:L = 4.8 andD = 1.2. The beam has a unit thickness. Young’s modulus s 3 x 10°,
Poisson’s ratio it = 0.3 (alsou = 0.4999) and the integrated parabolic shear forde s 100.
Plane stress condition is assumed and there is no body force.

The exact solution to this problem was given by Timoshenkb@aodier (1970) as

—P
O-X)((va) = I—Xy’ (48a)
O-W(Xv y) = 07 (48b)
—P (D?
Ty (X, Y) = o (? — > . (48c)
The displacements are given by
Py uPy® Py PL? PD?
T 72BN T 6l +%+y(ﬁ_%>’ (49)

_ uPxy> Px* PL% PL3
W= e 28 TEED (50)

wherel = D3/12 is the moment of inertia of the cross section of the beanuifiifthickness),
G=E/(2(1+ u)) the modulus of elasticity in shear.

The exact displacements (49) and (50) are applied on theHDatiboundary = L.

To solve this problem, uniform distributions of nodes (Fgd0) are considered. The scale factor
of local supportx is set at 2.1 an@ is 9. Background meshes of four-node cells with 4 Gauss
guadrature points per cell are used for the numerical iategr.

Figure 11 illustrates the comparison between the stgd®btained by the proposed method with
20x 5 nodes and the exact one. Figures 12 and 13 show the congergehaviour of the method
using displacement and energy norms, respectively. Hidarerof convergence achieved by the
present method can be observed in the figuresQi(a>2t) andO(h*®®) (u = 0.3) using displace-
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ment and energy norms, respectively. The stress plots r@-itjl) together with the error norms
(Figures 12-13) show an excellent agreement between thenzahresults and the analytical so-
lution. Furthermore, the numerical results in the casg ef 0.4999 indicate that the MIRBFNG

method does not suffer from any volumetric locking near hmét lof incompressible material.

For the purpose of comparison, the same configurations adsyddcal supports and background
meshes are used for the EFG method with4lGauss quadrature points in each integration cell.
The comparison shows that the rates of convergence and theaag achieved by the present
method are superior to those obtained by the EFG as showe abibve figures.

To study the performance of the method with sets of scattecels (1 = 0.3), the domain of
interest is discretised with 125, 225, 633, 803, 1020, 122502 unstructured nodes as depicted
in Figure 14. The convergence gf, atx = 2.40 is revealed in Figure 15. It can be observed that
the method performs very well with scattered distributidmades. The convergence rates using
displacement and energy norms obtained by the present thatko3.95 and 1.72, respectively
(Figures 16-17).

4.3 Infinite plate with a circular hole

In this example, an infinite plate with a circular hole subgelcto unidirectional tensile load of
1.0 in thex direction as shown in Figure 18 is analyzed. The radius ohtie is taken as 1 unit.

Owing to symmetry, only the upper right quadradit4] x [0,4] of the plate is modeled as shown
in Figure 19.

In this problem, plane stress conditions are assumed waistielisotropic propertieg = 10°,
u = 0.3. The exact solution to this problem was given by Timoshead Goodier (1970) as
follows.

4

ox(X,y) =0 [1— ?—2 E cog20) + cos(46)} + % cos(46)] , (51a)

oy(X,y) = — [ [ cog20) —cos(46)] grjcoqw)}, (51b)

Ty(XY) = — [a—z{ n(26) +S|n(49)] 3‘:‘isin(49)], (51c)
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where(r, 8) are the polar coordinatea the radius of the hole.

The corresponding displacements are given by

w1 2 = 14 i
U(X,y) = 0 5 l+“rcos(6)+l+“ . cos(6)+2 . cog30) 573 cog30) (52a)
wixy) = o R T =H e+ 2R o)+ 12 ginae) - 12 gingag) (52b)
yoy) = E |1+pu 1+pur 2T 2r3

The boundary conditions of the problem are as follows. Thetiwns which correspond to the
exact solution for the infinite plate are applied on the top @ght edges, the symmetric conditions
are applied on the left and bottom edges, and the edge of thedhpaction free.

The computational domain ABCD is shown in Figure 22. Owingymmetry, only the upper
half of ABCD, namely CDEFG as shown in Figure 23, is analyzétie segment of the crack
denoted by EF has a length b= 5 mm. The boundary condition of the problem is as follows.
The traction free boundary condition is applied on the crabie the displacement field given in
(54) is imposed on the remaining boundaries.

The problem is discretised as shown in Figure 19. The valaeanfd( are 1.5 and 1, respectively.
The number of Gauss quadrature points per integrationscélki4.

To study the convergence of the method, a number of configneabf 50, 120, 315, 511 nodes
is considered. Figures 20-21 show that the present methodvas excellent accuracy and high
rates of convergence, i.e. 2.91 and 1.45 using displaceanelrgnergy norms, respectively. Again,
it can be seen that the accuracy and the convergent rates pfdaposed method are favourably
compared with those of the EFG method as shown in the figures.

4.4 Mode | crack problem

Consider an infinite plate containing a straight crack ofjtarta and loaded by a remote uniform
stress fieldo as shown in Figure 22. Under plane strain condition, theetldsrm solution in
terms of polar coordinates in a reference fran®) centered at the crack tip is given by (body
force is zero) [Tada, Paris, and Irwin (2000)]
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K 6 .6 .0
Ox = WCOSE (1—sm§ sm3§> , (53a)
K 6 .6 .0
Oy = WCOSE <1+ smzsm3§> , (53b)
Ki .6 6 0
Ty = W smz cosz cos 35, (53c)

and the closed form of near tip displacement field is given by

21+ p) K 0 6
Uy = N E\ﬁcosz (2 2u — cos 2), (54a)

_ 2+ K
y \/ZT E

whereK, = g+/ma s the stress intensity factqu, is the Poisson’s ratio arid is the Young modu-
lus. ABCD is a square of 10 10 mn?, a= 100mm; E = 10'N/mn?, u = 0.3 (alsou = 0.4999),
o = 10°N/mn?.

In this example, the domain of interest is uniformly disised. a andf are 1.1 and 1, respectively.
2 x 2 Gauss quadrature points per integration cell are usetiéanumerical integration.

) e]
\ﬁsmE (2—2;1 —cog E) , (54b)

The numerical solutions to displacement and stress olataitte 20x 10 nodes g = 0.3) and the
analytical solutions are plotted in Figures 24-26. The cargpn indicates an excellent agreement
between the solutions obtained by the proposed method arekdct solutions.

For convergence study, a number of regular distribution 84 8 x 16, 12x 24, 16x 32, 20x
40, and 24x 48 nodes is employed with = 0.3 andu = 0.4999. The convergence curves for
displacement and energy are shown in Figures 27 and 28 cteshe The orders of convergence
using displacement and energy norms are 1.35 and 0.48cteghe for u = 0.3. It can be seen
that the rate of convergence for energy is reduced signtficdae to singularity in the stress field.
Again, the numerical results demonstrate that the methed dot show any volumetric locking
in the case oft = 0.4999 (Figures 27-28).
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5 Concluding remarks

This work proposes a novel meshless method based on the NNRErpolation and Galerkin
method for solving PDEs. The key feature of the method is ttatshape functions are locally
supported and satisfy the Kronecher-delta property. Asalt,ehe essential boundary conditions
are imposed exactly and straightforwardly in this methodhe Tethod is applicable to sets of
scattered nodes and irregular domains. Furthermore, tpmped method achieves high orders of
convergence and high accuracy for smooth problems. Théebtaesults also indicate that there
is no evidence of volumetric locking with the present methédirthermore, it is encouraging
that the accuracy and the rate of convergence of the methfadaasrably compared with those
of the EFG method. As a result of coupling MLS technique witical’ IRBFN method, the
computational cost of the present Moving IRBFN approachusrbetter than that of the global
IRBFN method but still higher than that of the MLS technigughe order of magnitude of the
improvement in efficiency was reported in Le, Rabczuk, MaiyCand Tran-Cong (2010).
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Figure 1: Schematic representation of a Moving IRBENis the domain of interest which is
subdivided intdN overlapping subdomair®, centered ax;.
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Figure 2: Example of Moving IRBFN shape functions: €a)x) in one dimension and (I8 (x,y)
in two dimensions.
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Figure 3: Example of derivatives of Moving IRBFN shape fumes in two dimensions: (a)

2R (xy) and (b) 3t (x,y).

b(x) = x

Y

L

Figure 4: A uniform bar: a mathematical model.
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Figure 5: A uniform bar: the results obtained by the presesthod with 9 nodes are interpolated
at 50 nodes, (a) displacement and (b) stress.
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Figure 6: A uniform bar: the results obtained by the EFG mathih 9 nodes are interpolated

with 50 nodes, (a) displacement and (b) stress.
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L2 error norm for displacement
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Figure 7: A uniform barl, error norm for displacement.
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Figure 8: A uniform bari, error norm for energy.
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Figure 9: Cantilever beam: a mathematical model.
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Figure 10: Cantilever beam: discretisation model withxZDnodes.
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Figure 11: Cantilever beanwy given by (a) MIRBFNG with 20< 5 nodes and (b) Exact solution.
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error norm for displacement
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L, error norm for energy
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Figure 12: Cantilever beant: error norm for displacement.
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Figure 13: Cantilever beant, error norm for energy.
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(a) 803 nodes (b) 1020 nodes

(c) 1725 nodes (d) 2502 nodes
Figure 14: Cantilever beam: untructured discretisations.

20 . . . 20— . . .
MIRBFNG solution “ o MIRBFNG solution
or Exact solution 1 or Exact solution
-20 -20F
-40 -40¢
R -60 R —60r
-80 -80+
-100 -100+
-120 -120+
-140— : : ] : : : -140
-06 -04 -0.2 0 0.2 0.4 0.6 -06 -04 -0.2 0 0.2 0.4 0.6
y y
(a) 225 nodes (b) 633 nodes
20 T T T T -
¢ MIRBFNG solution ¢
s —— Exact solution ] 20 " i "
O  MIRBFNG solution
-20 or Exact solution
-40 -20r
_a0l
X =60
R -60f
-80
_gol
-1001
-1001
-1201 _120}
-140—> ‘ ‘ : ‘ ‘ ‘ -140
-06 -04 -0.2 0 0.2 0.4 0.6 -06 -04 -02 0 0.2 0.4 0.6
y y
(c) 803 nodes (d) 1020 nodes

Figure 15: Cantilever beam: convergencergfatx = 2.40 with untructured nodal refinement.
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Figure 16: Cantilever beanh; error norm for displacement with unstructured nodes.
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Figure 17: Cantilever beant; error norm for energy with unstructured nodes.

Figure 18: Infinite plate with a circular hole.
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Figure 19: Infinite plate with a circular hole: computatibdamain discretization with 315 nodes.
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Figure 20: Infinite plate with a circular holé&x error norm for displacement.
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Figure 22: Infinite cracked plate under remote tension.



30

2b c

b G

Figure 23: Infinite cracked plate: analyzed portion.
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Figure 24: Infinite cracked plate: (a) MIRBFNG solution abji€xact solution ofl, with 20x 10

nodes (1 = 0.3).
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Figure 25: Infinite cracked plate: (a) MIRBFNG solution abgi¢xact solution ofi, with 20x 10
nodes (1 = 0.3).
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Figure 26: Infinite cracked plate: (a) MIRBFNG solution abjléxact solution oby with 20x 10
nodes (1 = 0.3).
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Figure 27: Infinite cracked platé: error norm for displacement.

10" T
—8— MIRBFNG, a =1.1,v=0.3, rate =0.47981
—©— MIRBFNG, a =1.1, v = 0.4999 , rate =1.3152

L, error norm for energy
S\
\
1

10"
10

Figure 28: Infinite cracked plat&:, error norm for energy.






