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ABSTRACT

Offshore industries face significant challenges in integrating renewable energy sources (RES) to achieve a sus-
tainable and reliable energy supply, due to the intermittency and unpredictable offshore weather conditions,
which hinder the reliability of standalone microgrids. To address this issue, this study explores the integration of
a hydrogen gas energy storage station within a standalone DC microgrid, evaluating its potential to enhance
stability and reduce emissions in offshore maritime operations. The research investigates the effectiveness of
hybrid energy storage systems (HESS) in mitigating RES intermittency, incorporating solar PV, wind, and wave
energy as primary generation sources. Using an enhanced particle swarm optimisation (PSO) method, the study
compares various energy storage configurations, with results indicating that a battery-supercapacitor HESS
achieves the lowest levelised cost of electricity (LCOE), which is 19.63 US Cents /kWh, making it the most cost-
effective solution. A probabilistic model is further developed to validate the microgrid’s resilience under real-
world conditions, bridging the gap between theoretical design and practical implementation. Additionally, the
study assesses the feasibility of integrating wave energy, concluding that current market dynamics render it
financially unviable for offshore microgrid applications. The proposed enhanced PSO algorithm demonstrates
superior performance compared to commonly used heuristic optimisation methods such as Genetic Algorithm
(GA), standard PSO, and Ant Colony Optimisation (ACO). This improvement is attributed to the integration of
quadratic interpolation and extended local search mechanisms. Additionally, the study introduces an energy
storage system (ESS) degradation algorithm that outperforms the traditional Rainflow counting method in both
accuracy and computational efficiency, particularly in modelling partial charge-discharge cycles. Overall, this
work provides critical insights into optimising standalone microgrids for offshore industries, alongside technical
performance and economic viability.

1. Introduction

microgrids can facilitate hydrogen fuel stations for maritime transport,
promoting the use of green hydrogen in fuel cell-operated vessels [2].
This transition to hydrogen-based offshore energy solutions aligns with

Offshore standalone DC microgrids provide a sustainable and effi-
cient alternative to fossil fuel-powered generators for offshore platforms
by integrating RES such as wind, solar, and wave energy, in conjunction
with energy storage systems (ESS) with high energy density, such as
batteries and hydrogen [1]. These systems help to reduce greenhouse
gas emissions, lower operational costs, and minimise environmental
impact while ensuring a reliable power supply. Additionally, offshore

global decarbonization efforts, supporting sustainable energy solutions
for aquaculture facilities, offshore oil and gas platforms, and remote
island communities.

However, the variability of RES leads to power fluctuations, placing
stress on ESS, particularly batteries, and reducing their lifespan [3]. To
manage these challenges, hybrid energy storage systems (HESS),
combining complementary technologies such as batteries, hydrogen
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Nomenclature

N1 Efficiency of PEM electrolyser

Nre Efficiency of the fuel cell stack

N Combined efficiency of the generator and gear system of
the wind turbine

Npy Efficiency of a solar panel

Nwe Efficiency of a wave energy converter

P air Density of air [kgm 3]

Psw Density of sea water [kgm 3]

Arc Area under a healthy complete cycle of the ESS

Apanel Area of solar panel [m?]

Cp Per unit price of diesel [USD/1]

Cpig Costs associated with the diesel generator [USD]

Ch,—tank  Capacity of Hydrogen storage tank [kg]

Csc Capacitance of SCESS [F]

Epessraed  Rated capacity of the BESS [kWh]
Egss, Rated capacity for N ESS [kWh]

Esc Energy capacity of SCESS [kWh]

ECp Energy content of diesel [kJ/1]

EFp Emission factor of diesel [tCO3 eq/kJ]

F Faraday constant [C/mol]

FCpg Fuel consumption rate of the diesel generator [kWh/1]

FCy, Daily hydrogen requirement for fuel cell operation [kg]

g Gravitational acceleration [ms 2]

HFSy, Daily hydrogen requirement for the hydrogen fuel station
[kgl

Armax Maximum allowed running hours before replacement for
diesel generator [hrs]

Ipic Capital cost per unit of the diesel generator [USD/kW]

Iy, Per unit investment cost of electrolyser [USD/kW]

Igssy Per unit investment cost for N ESS [USD/kWh]

Irc Output current from the fuel cell stack [A]

Inr Per unit investment cost for Hydrogen storage tank [USD/
kgl

Irgy Per unit investment cost for N renewable energy source
[USD/kW]

I max Maximum reported solar irradiance within a defined
interval [Wm™2]

kpy Temperature coefficient for solar PV rc

Lwe Width of wave energy converter interacting with the wave

front [m]

m inverse of the electrolyser’s lifespan [year 1]

myr Capacity of Hydrogen storage tank [kg]

My, Molar mass of hydrogen [kgmol ']

my,-rs  Mass flow rate usage of hydrogen in the hydrogen fuel
station [kgsfl]

Neeis Total number of cells inside the fuel cell stack

NEss Number of ESS elements in HESS

Nray Number of units for the N renewable energy source

OMp;;  Operation and maintenance cost per unit for diesel
generator [USD/kW.year]

OMF;, per unit operation and maintenance cost [USD/kW]

OMgFixedrssy, Per unit fixed operation and maintenance cost for Nt
ESS [USD/kW]

OMyr per unit operation and maintenance cost for Hydrogen
storage tank [USD/kg]
OMgg,  Per unit operation and maintenance cost for N renewable

energy source [USD/kW.year]
OMyqrssy, Per unit variable operation and maintenance cost for Nt
ESS [USD/kWh]

Ppig Rated power of the diesel generator [kW]

Py Rated capacity of microgrid [kW]

Prated Rated power output of a wind turbine [kW]

Prey Power of a single unit for the N'" renewable energy source
[kw]

PR Performance ratio of solar PV system

Rer Per unit replacement cost of electrolyser [USD/kW]

Ressy Per unit replacement cost for N ESS [USD/kWh]

Teye Total cycle time of the ESS

Tuc Expected lifetime of the microgrid [years]

Tres Reference temperature of solar cell [°C]

Vin Cut-in wind speed for the wind turbine [ms™1]

Vinean Mean wind speed [ms™]

Vout Cut-off wind speed for the wind turbine [ms™ ]

VRated Rated wind speed of the wind turbine [ms™ 1]

Vi Input voltage of the electrolyser [V]

Vre Output voltage of the fuel cell stack [V]

Vsc_raea  Rated voltage of SCESS [V]

Vsc(t) Instantaneous voltage of SCESS [V]
x Annual utilisation factor of the diesel generator
y inverse of lifespan of ESS [year™!]

storage, and supercapacitors (SC), are deployed to extend system life by
distributing the load more effectively [4]. SCs provide a rapid response
to transient power demands, thereby reducing strain on batteries, while
hydrogen storage offers high energy density, enhancing overall system
resilience [5]. By intelligently coordinating these storage technologies
through advanced control algorithms and energy management strate-
gies, HESS can optimise power flow, increase operational efficiency, and
ensure the stability of offshore microgrids under dynamic operating
conditions [6].

The integration of hydrogen production via electrolysers into
offshore microgrids enables a localised, renewable-based fuel supply for
fuel cell-powered vessels, enhancing sustainable energy autonomy and
reducing reliance on fossil fuels. This integration also improves micro-
grid stability while mitigating challenges related to hydrogen storage
and transportation in maritime operations [7]. The design and operation
of standalone microgrids incorporating hydrogen production and stor-
age require comprehensive planning, scheduling, and energy manage-
ment due to the inherent uncertainties of renewable energy sources and
the limited flexibility of electrolysers in handling input power fluctua-
tions [8]. Advanced mathematical modelling of electrolysers and
renewable energy systems, combined with robust optimisation

techniques, is essential to ensure both the stability of the microgrid and
the reliable operation of the electrolysers [9].

Research on the planning and design of standalone microgrids with
HESS-integrated RES is rapidly expanding. In [10], the Whale Optimi-
sation Algorithm was used to determine the optimal capacity and cost of
a HESS comprising a battery and an SC, managed using a low-pass filter-
based method. A GA-based energy management framework was pro-
posed in [11] for a HESS consisting of a hydrogen storage and an SC in a
standalone microgrid with a hydrogen refuelling station. In [12], a non-
dominated sorting genetic algorithm II (NSGA-II) based optimisation
strategy was developed for HESS sizing using a rule-based management
approach. The moth flame optimisation algorithm was applied in [13]
for HESS sizing, considering the uncertainty of weather parameters and
load demand, with a low-pass filter used to allocate power signals be-
tween the battery and SC. In [14], a HESS comprising a battery and SC
was managed using a rule-based algorithm and optimised with GA. A
cuckoo optimisation-based methodology for sizing a HESS consisting of
a battery and thermal energy storage, based on a rule-based energy
management approach, was proposed in [15] for a standalone DC
microgrid. In [16], a PSO-based approach was introduced for developing
an HESS for a microgrid, employing a low-pass filter for HESS
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management.

An improved ACO-based method was applied in [17] to design a
HESS with a battery and hydrogen storage for cost minimisation and
reliability enhancement. In [18], a HESS incorporating different battery
technologies was designed for a low-voltage DC microgrid using a GA-
based optimisation approach. In [19], a battery and SC-based HESS
was proposed to provide inertial support for a microgrid using an
enhanced PSO technique. A dynamic programming-based design for a
HESS comprising a battery and SC was introduced in [20] to support
vector machine application. In [21], a GA-based optimisation approach
was proposed for HESS design, managed using a discrete Fourier
transform method in a standalone DC microgrid. In [22], a reduced
fractional gradient descent algorithm-based energy management solu-
tion was developed for designing a HESS in a standalone microgrid
operating under challenging weather conditions, such as high irradiance
and partial shading of solar PV. The goal was to reduce hydrogen con-
sumption in fuel cells and utilise the produced hydrogen for ammonia
production. In [23], a hybrid optimisation algorithm combining Grey
Wolf Optimiser and JAYA optimisation was proposed for HESS design in
a standalone DC microgrid, aiming to enhance system reliability. In
[24], an energy compensation-based statistical method was used for
sizing a standalone microgrid, incorporating two different battery
technologies within the HESS to meet reliability and economic

Table 1
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expectations.

The influence of varying climate conditions was effectively managed
using a battery and hydrogen-based HESS in [25], where analysis con-
ducted in HOMER software demonstrated that the HESS could efficiently
handle climate variations while maintaining costs at a stable level. In
[26], a generalised reduced gradient algorithm-based design strategy
was proposed for a standalone DC microgrid, ensuring autonomous
operation of a 100 % renewable-powered system without failures. In
[27], HOMER software was used to design a standalone DC microgrid
powered entirely by RES with an HESS. The results showed an unmet
load of less than 0.2 %, demonstrating high system reliability. In [28], a
HESS was implemented to extend the battery system’s lifespan in
microgrid design, resulting in a 14.8 % increase in battery lifetime. The
ageing of the ESS was assessed using the rainflow cycle counting
method. In [29], a standalone DC microgrid was designed using a
modified fuzzy logic super-twisting algorithm, where hydrogen was
utilised for fuel cell operation to support both microgrid functions and
an electric vehicle charging station.

In [30], a Mixed-Integer Linear Programming (MILP) based optimi-
sation method was employed to minimise the operation and mainte-
nance costs of a DC microgrid, achieving full recovery of the initial
investment within 6 years. In [31], an NSGA-II-based optimisation
approach was utilised to design an HESS comprising Hydrogen energy

Summary of recent significant literature on utilising HESS for standalone microgrid design.

Reference  ESS Optimisation Strategy HESS Management Hydrogen Consideration of the Applicability in an Consideration of
Approach Production uncertainty of inputs  offshore Degradation Effects
environment
[10] Battery, SC Whale Optimisation Low-pass filter x x x x
Algorithm
[11] Hydrogen, SC GA Low-pass filter v x x x
[12] Battery, SC NSGA-II Rule-based x x x x
[13] Battery, SC Moth flame Low-pass filter x v x x
optimisation
[14] Battery, SC GA Rule-based x x x x
[15] Battery, Thermal ESS Cuckoo Optimisation Rule-based x v x x
[16] Battery, SC PSO Low-pass filter x x x x
[17] Battery, FC ACO Rule-based x x x x
[18] New Li Ion Battery, GA Rule-based v x x x
Second Life Li Ion
Battery, Lead Acid
Battery
[19] Battery, SC PSO Rule-based x x x x
[20] Battery, SC Dynamic programming  Rule-based x x x v
[21] Battery, SC GA Discrete Fourier x x x x
Transform
[22] Battery, SC, Hydrogen Reduced Fractional Low Pass Filter v v x x
Gradient Descent (Primary &
Algorithm Secondary)
[23] Battery, SC JAYA / Grey Wolf Rule-based x x x v
Optimisation
[24] Two Battery Statistical Rule-based x x x v
technologies
[25] Battery, Hydrogen HOMER Optimiser Rule based v x x x
Storage
[26] ZnBr Battery, Pumped Generalised Reduced Rule-based x x x x
Hydro Gradient Algorithm
[27]1 Battery, SC HOMER Optimiser Rule-based x x x x
[28] Battery, SC Rainflow Counting Low Pass Filter x x x v
Algorithm
[29] Battery, Hydrogen Fuzzy Logic-based Low Pass Filter v x v x
Storage Modified Super
Twisting Algorithm
[30] Battery, Hydrogen MILP Rule-based v x x x
Storage
[31] Battery, Hydrogen NSGA-II CEEMDAN v x x x
Storage
[32] Battery, Hydrogen MILP / MIQP Low-pass Filter v x x x
Storage
This Battery, SC, Hydrogen Modified PSO Low-pass filter v v v v

study

Storage
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storage and BESS in a standalone DC microgrid. In this study, Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) was developed to decompose power fluctuations into high- and
low-frequency components. In [32], a design methodology combining
MILP and Mixed Integer Quadratic Programming (MIQP) was proposed
for a standalone DC microgrid with Hydrogen and Battery HESS,
resulting in reduced total operating costs and pollutant emission costs.
Table 1 summarises the key gaps and unmet factors identified in the
research on HESS for standalone DC microgrids.

Most of the literature reviewed focuses on applying novel optimisa-
tion algorithms to minimise costs and reduce simulation time. Among
these, PSO has been the most widely utilised due to its ability to achieve
fast convergence in large solution spaces [33]. However, heuristic al-
gorithms, including PSO, are prone to trapping in local minima, and
techniques such as local search, partial integration of mathematical
optimisation, and parallel computing, which could mitigate this issue,
are rarely discussed in the literature. Additionally, limited studies assess
the techno-economic feasibility of offshore standalone microgrids uti-
lising specific RES, such as wave energy, in combination with offshore
hydrogen refuelling stations for vessels. The cost-effectiveness of
hydrogen energy storage compared to batteries in hydrogen-based
microgrids, particularly where investments in hydrogen production
have already been made, has not been thoroughly analysed in the cur-
rent literature, especially considering the high costs associated with fuel
cells. Offshore microgrids also face significant uncertainty in key input
parameters such as solar irradiation and wind speed, yet only a limited
number of studies employ probabilistic analysis to account for this
variability and improve design accuracy [34]. Furthermore, the degra-
dation of ESS due to factors such as cycle life and temperature is often
overlooked, despite its impact on system lifespan and maintenance
costs. Standard methods, such as the Rainflow counting algorithm,
cannot accurately capture the partial charge-discharge cycles of ESS,
making them unsuitable for standalone DC microgrids, where frequent
partial cycling occurs throughout the day [35]. Addressing these gaps is
essential for the advancement of offshore hydrogen-based microgrids
and the development of more reliable, efficient and cost-effective energy
storage solutions.

This study addresses the critical design challenge of determining an
optimal sizing strategy for RES and ESS in a standalone hydrogen-based
microgrid. The primary objective is to balance the total net present value
of costs while leveraging technological advances through ESS hybrid-
isation, integrating diverse RES in offshore environments, and produc-
ing green hydrogen at minimal cost for fuel stations. The inclusion of
multiple RES and ESS technologies, each with unique characteristics,
increases the complexity of the design [36]. To address this, an intelli-
gent energy management model is integrated into the microgrid design
to optimally allocate ESS technologies to meet demand, identify which
RES should be prioritised to minimise lifecycle costs, and determine the
most cost-effective timeframes for hydrogen production. To further
enhance the design methodology, this study introduces a novel optimi-
sation framework to address key research gaps in standalone microgrid
development with on-site hydrogen production for offshore applica-
tions, with the following novel features.

B An enhanced PSO algorithm integrating Quadratic Interpolation
with an extended local search is presented for determining optimal
design parameters of a standalone DC microgrid. The integration of
quadratic interpolation with extended local search effectively miti-
gates the issue of local minima commonly encountered in standard
PSO.

B A comprehensive framework for ESS degradation quantification is
developed, enabling the integration of future advancement and
replacement costs into the optimisation cost function. This frame-
work accurately captures partial charge-discharge cycles, improving
the reliability of lifecycle cost estimation.

Journal of Energy Storage 140 (2025) 118847

M A mathematical model of wave energy is incorporated into the cost
function to evaluate the techno-economic feasibility of wave energy
in the design of offshore standalone DC microgrids.

M The proposed optimisation framework for designing a standalone DC
microgrid with a hydrogen fuel station is evaluated under three
scenarios of ESS: (i) battery only, (ii) battery + SC HESS, and (iii)
hydrogen + SC HESS, to determine the optimal energy storage
combination.

M A scenario-based probabilistic analysis is conducted to assess the
impact of uncertainty of input variables, such as variability in RES,
on the design and performance of the standalone DC microgrid.

The sections of the manuscript are organised as follows. Section 2
describes the design of each component within the offshore standalone
DC microgrid, including ESS cycle life considerations and the distribu-
tion of power signals among multiple ESS technologies. Section 3 defines
the objectives, constraints, and methodologies employed for optimal
microgrid design. Section 4 presents a case study demonstrating the
application of the proposed methodologies. Section 5 presents the
simulation results, including comparisons across multiple scenarios, and
provides design recommendations. Section 6 explains the superiority of
the proposed enhanced PSO methodology compared to conventional
heuristic optimisation techniques, as well as the effectiveness of the
proposed ESS degradation quantification framework. Section 7 outlines
future research directions emerging from this study, followed by a
conclusion that provides a concise summary of the key findings.

2. Design of standalone hydrogen-based DC microgrid

This study proposes a design for a hydrogen-based standalone DC
microgrid for offshore applications, featuring a DC bus architecture that
interconnects generation sources, loads, and ESS components. The
microgrid integrates solar PV, wind, and wave energy as RES, with a
diesel generator serving as a backup, as illustrated in Fig. 1. The load
profile includes offshore site demands and a hydrogen fuelling station.
Three ESS configurations are analysed to determine the optimal solution
for this application. In the first two scenarios, (1) battery-only, and (2)
battery + SC HESS, the hydrogen fuelling station operates solely as a
load, with an electrolyser producing hydrogen exclusively for refuelling
purposes. In the third scenario, where a hydrogen storage + SC HESS is
proposed, the electrolyser generates hydrogen for both the fuelling
station and a fuel cell, which supplies power to the microgrid. In this
configuration, the hydrogen system, including the electrolyser,
hydrogen storage tank, and fuel cell, functions as both a load and an ESS.
The study aims to identify the most cost-effective ESS configuration by
evaluating lifecycle costs for offshore applications.

2.1. Model of solar PV system

Solar PV is a strong candidate for microgrid design due to its ease of
implementation, low manufacturing costs, and zero emissions after
installation [37]. The maximum power output (Ppy ), which is influenced
by site-specific solar irradiation (Irr) and cell temperature (Tc¢), is
calculated using Eq. (1) [38].

Ppy = Npy.(PR).(Irr). Apanet. (1 — kpy. (Tc — Trer) ) (@)

Solar irradiance can be modelled using a Beta distribution for
probabilistic analysis and is estimated using Egs. (2), (3) and (4) below
[39]. Here a, § are the shape parameters of the Beta distribution, and g,
and o are the mean and standard deviation (SD) of a probabilistic
distribution.

_ D(a+p) [ Ir \*! Irr \*!
£ (lrr) = I'(a).T(B) <Irrmax) '(1 B Irrmax> 2
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2.2. Wind turbine system

Wind turbines convert the kinetic energy of wind into electricity and
can be installed either onshore or offshore [40]. Power generation de-
pends on wind speed (vVying) and rotor swept area (ASWQPt), with the
power output (Pwr) calculated using Eq. (5) [41].

3 .3
E'n(‘,-CP~ASwept~ijy~VWind7 if Vin < VWind < VRated

Pyr = . 5
wr PRated'-, if VRated < Vwind < Vout ( )

0; otherwise

Wind speed is a stochastic variable that can be modelled using a
Weibull distribution for probabilistic studies, where c and k are the scale
factor and shape factor of the probability density function (PDF), and is
estimated using Egs. (6), (7), and (8) provided below [42].

()
kil (T
f (Vwind) = C—“k"“".e (6)
—1.086
K= ( o ) @
vmean

2.3. Wave energy system

Wave energy, derived from ocean waves, is a promising RES due to
its higher energy density and greater consistency compared to other
renewables. It harnesses the kinetic and potential energy of wind-driven
waves to generate electricity. Advancements in wave energy converters
(WECs) aim to enhance efficiency while minimising environmental
impact [43]. Ocean waves are primarily driven by wind, and since wind
energy prediction methods are well-established, wave data can be
forecasted using the correlation between wind speed and wave energy
parameters [44]. The power density of ocean waves (Pwaye) is typically
calculated based on wavefront width, as shown in Eq. (9) [45].

Pume = P& b 2 7, ©)
64n

Wave height (hy) and wave period (Ty ) can be estimated from wind
speed data using a wave power prediction model, as expressed in Egs.
(10) and (11), which incorporate the parameters a, b, ¢, and d [44]. The
output power of a WEC (Pyy) is then calculated using Eq. (12), subject to
the operating condition h¢ < hy < heo, where h¢ and heo denote the
cut-in and cut-off wave heights, respectively. When hy < hg, the device
motion is insufficient to drive the power take-off (PTO) effectively. In
this case, the harvested energy cannot compensate for mechanical and
electrical losses, resulting in negligible net output. Conversely, when
hy > hco, the forces exerted on the device and its PTO system become
excessive. Operating under such extreme conditions risks structural
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damage, fatigue, or PTO failure; therefore, the WEC incorporates pro-
tective measures by shutting down [46].

hW = a‘V‘l:,ind (10)

TW = C'stind (11)
O,hw < hCI

Pwe = { Nwe-Pwave-Lwe, ha < hw < heo 12)
0,hw > heo

2.4. Diesel generator

Due to the intermittent nature of RES, a backup power source
—typically a diesel generator —is essential in standalone DC microgrids.
Diesel generators are easy to install, have a low initial cost, and offer
reliable long-term operation [47]. However, they have notable draw-
backs, including high operational costs, frequent maintenance re-
quirements, and significant carbon emissions. Diesel generators are
typically sized to meet peak demand, but this approach results in inef-
ficient low-load operation during periods of reduced demand, thereby
increasing operational and maintenance costs [48]. To mitigate these
issues, it is recommended to operate the diesel generator at a constant
load with an optimal loading percentage [49]. In [50], it is suggested
that the optimal loading level is approximately 75 % of full capacity.
Therefore, this study assumes the diesel generator operates at 75 % of its
rated full load.

2.5. Battery energy storage system (BESS)

BESS have gained popularity due to their high efficiency, low
manufacturing costs, and minimal environmental impact. Various bat-
tery technologies, including lithium-ion, lead-acid, graphene, and
sodium-ion, are available for microgrid applications [51]. Lithium-ion
batteries stand out for their high efficiency, flexible discharge profiles,
and long operational lifespan, making them the preferred choice. With a
significant reduction in manufacturing costs, lithium-ion technology has
become the leading option for BESS in microgrid systems [52]. In this
study, lithium-ion batteries are selected as the ESS for the standalone DC
microgrid design. The State of charge (SOC) of a BESS is calculated as
the ratio of the instantaneous energy capacity (Epgss(t)) to the rated
energy capacity (EpgssRrated), @s shown in Eq. (13) below.

E
SOCpess(t) = Enass(t)

= 13)
EBESS.Rated

2.6. Supercapacitor Energy Storage System (SCESS)

SCESS offer high power density, rapid charge-discharge capability,
and a long operational lifespan, making them ideal for stabilising
microgrids during power fluctuations. SCESS complements other storage
technologies by providing short-term energy buffering, thereby
improving overall efficiency and resilience [53]. This study examines
the effectiveness of SCESS in mitigating high power fluctuations in
conjunction with BESS and hydrogen energy storage. To manage power
fluctuations effectively, SCESS must be capable of quickly absorbing or
releasing energy, which requires it to remain readily available during
microgrid operation. A focused SOC range is proposed, with SOCsc gL
near 50 % and SOCgc gy near the maximum allowed SOC, as illustrated
in Fig. 2 [14]. SCESS should maintain its SOC within this range and
promptly return to it if deviations occur. The SOC and energy re-
quirements of SCESS are calculated using Egs. (14) and (15).

Vsc(t)

=0 (14)

SOCSC (t) B VSC Rated
—Rate
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Focused Operation Range

of SCESS
——
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Operating Range of SCESS
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SOCsc_minsy SOCsc_max: Allowed minimum and maximum
SOC values for SCESS

SOCsc.r, SOCgc.py - Minimum and maximum SOC values
forthe focused range of SCESS

Fig. 2. Focused operation range vs. allowed operation range for SCESS.

1
Egc = §~CSC~VSC—Rated‘ (SOCsc_wmax” — SOCsc—wiin®) (15)

2.7. Fuel cell

Hydrogen fuel cells provide a clean, efficient, and scalable power
source by converting hydrogen into electricity with minimal emissions.
Their integration into microgrids enables continuous power generation,
thereby reducing reliance on intermittent RES. With high energy density
and operational adaptability, fuel cells enhance energy security, reduce
environmental impact, and improve system flexibility [54]. Eq. (16)
represents the total power output of the fuel cell stack (Prc), while the

hydrogen mass flow rate (anrFC) is calculated using Eq. (17).

Prc = Ve Ipc (16)
. Prc.Nceis-Mp,
=2 1
My, _rc 2 F e Vi a7)

2.8. Proton Exchange Membrane (PEM) electrolyser

PEM electrolysers are ideal for offshore hydrogen production due to
their high efficiency, rapid response times, and compact design. Their
ability to operate at high pressures makes them well-suited for inte-
gration with RES, supporting decarbonization of maritime industries by
reducing dependence on fossil fuels. Also, their modularity and scal-
ability enable flexible energy solutions for offshore operations [55]. In
this study, a PEM electrolyser is utilised to produce hydrogen for a
fuelling station within the microgrid, with the generated hydrogen also
used to power fuel cells as part of the ESS. The PEM electrolyser draws
power from the DC microgrid to split water into hydrogen and oxygen.

The hydrogen production rate (I.nHTEL> is calculated using Eq. (18).

. Mgy, -Prr-Ma,

My, | = T oFVy (18)

The system efficiency of the electrolyser depends on multiple factors.
Eq. (19) below calculates the system efficiency by multiplying Faraday’s
efficiency (1%, ), hydrogen production efficiency (i ), and compression
efficiency (15,). #%, accounts for the loss due to the permeation of
Hydrogen, which is the unintended move of hydrogen gas through the
PEM from the cathode to the anode side, as presented in Eq. (20) below.
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n is calculated in Eq. (21) below, which relates to the temperature and
pressure differences in the electrochemical reaction stage.

e, = Mg iy Mg, 19)

O:
2.Vi (F.P{IZ e “—;ﬁﬂ)

et de1

F=11- (20)
MEL P

Y 125
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output level, given as a percentage of the converter’s rated power
output.

Ngyr = 0-03150, + 0.061; 4y, + 0.131504, + 0.10030, + 0.48Ms54y, + 0.201;09g,
(23)
3. Methodology

This study presents the design of a standalone DC microgrid powered
by RES to support an offshore facility equipped with a hydrogen fuel
station. The proposed strategy focuses on minimising the microgrid’s

2D

0:

2F pi2 po2

EL EL (Po)

ML, =
1.229 + [1.48 + AHyqp Pryo (1 4 1) — Ucal | + R-'zrgell In (pgl.z 'I:ESLZ ) + Pgp (01 To+der-et) _ 0.9(Teen—298)

2.9. Hydrogen storage tank

Hydrogen produced by the electrolyser is stored in gaseous form in
high-pressure tanks, typically operating within a range from 350 to 700
bar, offering high energy density while ensuring safe storage. Tank
materials, such as carbon fibre composites or high-strength steel, are
selected to ensure structural integrity under varying environmental and
operational conditions [56]. The quantity of hydrogen stored at the time
ty (mHz,Ta,,k(tg) ) is calculated using the mass balance equation, as
shown in Eq. (22).

My, —tank (t2) =My —tank (61) + (b2 —t1). | M, —pr (E2) — Mg, —pe (t2) — M, —ps (t2)

(22)

2.10. Power converters

Power converters play a crucial role in facilitating power conversion
and integration within standalone microgrids. The solar PV system is
interfaced with the DC bus via a unidirectional DC/DC converter
equipped with maximum power point tracking (MPPT) functionality to
optimise energy extraction. Other renewable energy sources, which
typically produce AC power, are converted to DC using unidirectional
AC/DC converters, also featuring MPPT capabilities [57]. Bidirectional
DC/DC converters are employed to interface both the BESS and the
SCESS with the DC bus, enabling controlled charging and discharging
operations [58]. When the fuel cell is integrated into the microgrid
configuration, it is connected to the DC bus via an additional DC/DC
converter. To accommodate both DC and AC loads, appropriate con-
version technologies are utilised: DC/DC converters are used for DC
loads, while DC/AC converters are employed to supply AC loads from
the DC bus [59].

In this study, the efficiency of these power electronic controllers is
modelled and incorporated into the objective function of the optimisa-
tion problem. To represent controller efficiency, the European weighted
efficiency model 7, is employed [60]. This model is expressed by Eq.

Vi 1000

lifecycle cost through the implementation of a HESS, accounting for
investment, replacement, operation, maintenance, and carbon tax costs.
The following subsections provide a detailed description of the proposed
optimisation strategy, which incorporates a probabilistic approach to
address uncertainties in input parameters, such as weather conditions.
This method enables the identification of best- and worst-case scenarios,
which can be utilised in the design process, depending on the criticality
of the power supply requirements for the connected loads.

3.1. Objective function

The objective function for the optimisation problem is defined in Eq.
(24), where Ci is the lifecycle cost of the standalone DC microgrid. To
account for future expenses, the net present value (NPV) method is
employed to aggregate all cost components, into a unified framework for
analysis.

Cic = Cgrg + Cpig + Cgss + Curs 24

In this study, solar PV, wind, and wave energy are selected as RES.
The lifecycle cost of RES (Crg) is represented in Eq. (25) below.

Tmc OMRGN
Nrey -Proy- | Iray + ZW (25)

3

Cra =

N=1

The lifetime costs of the diesel generator within the microgrid are
represented by Eq. (26). To account for carbon emissions, a carbon tax
(CT) is incorporated into the cost calculation [61].

Cpig =P 2 OMpig + X.FCpig.Cp ey 29 Ipig
DIG = FDIG- Z 1+ r)TM(;—(i+1) ; Tyt
i=1 i=0 (1 + I') MGTx

Ti(* FCpig X.hrmax.ECp.EFp.CT
' 1000.(1 + r)Tve= D
(26)

This study investigates the effectiveness of hybridising ESS,
including BESS, SCESS and fuel cells, alongside hydrogen energy stor-
age. The costs associated with ESS (Cgss) are represented in Eq. (27). For
fuel cells, Eq. (27) should replace (SOCygx — SOCpyin) term with a con-
stant (i.e., 1), since fuel cells do not undergo a conventional charging
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process. Instead, hydrogen production and storage required for fuel cell
operation are managed by the electrolyser and hydrogen storage tank
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CH,—Tank > Ma,—1ank (t — 1) +mp, g (t) — (Mp,—pps (t) + M, —pe(t) ) (32)

Ness Tmg OMyar iss y-Tng Rss, Tug OMleed ESS,
Crss = Z Egssy - | Iessy + Z T (D) Z = 7 | +Pue Z PUTE ,N“) 27)
= = (1+71) =0 (SOCytax — SOCyin)-(1 +1)™7
The costs associated with a hydrogen fuel station (Cyr) are divided Ewaste < Ewaste_tMax (33)
into two main components: the electrolyser and the hydrogen storage
tank, as represented by Eq. (28). LCOE < LCOEax (34)

Tymc OM m.Tyg R
Cum, = By [T+ Y ——— - E
Z 1 + r)TMG D 12:(; (1 + r)TMG*é

(28)

Tvc OMHT
+ Mar. (IHT + Z (1 + r)TMG’(H’l-)

i=1
3.2. Constraints

The optimisation strategy proposed in this study incorporates mul-
tiple constraints to satisfy the requirements of the optimisation problem.
Constraint (29) ensures power balance, which is critical for the reli-
ability of the microgrid. Its primary objective is to maintain the total
microgrid demand, comprising both the load demand and the electro-
lyser unit’s load, below the combined output from energy sources and
the power discharged from the ESS. When the ESS is charging, the sign of
Prss(t) becomes negative, thereby contributing to the demand side of the
inequality. Constraint (30) regulates hydrogen production to meet the
requirements of both the hydrogen refuelling station and fuel cell op-
erations. The total daily hydrogen demand from these two components,
considered only in the hydrogen + SC HESS configuration, must not
exceed the daily hydrogen production from the electrolyser unit.

The SOC constraint, represented by constraint (31), applies exclu-
sively to BESS and SCESS. The proposed maximum and minimum SOC
limits for charging and discharging are intended to mitigate over-
heating, which can adversely affect the lifespan of the ESS [33]. For
hydrogen energy storage, constraint (32) ensures that the hydrogen tank
capacity consistently exceeds the required hydrogen demand. At each
timestep, the tank capacity is updated by adding the hydrogen produced
during that interval to the existing hydrogen volume from the previous
timestep, and subtracting the hydrogen utilised by the refuelling station
and fuel cell if present.

To minimise energy losses due to RES curtailment, constraint (33)
imposes a limit on the maximum allowable curtailment. In this study,
the permitted curtailment is restricted to less than 5 % of the daily
renewable energy generation [62]. Finally, constraint (34) ensures that
the LCOE remains below a specified threshold, thereby maintaining the
economic viability of the microgrid. The maximum allowable LCOE is
set at 25 % above that of a standalone diesel generator-based power
system [63]. This additional margin accounts for the increased cost
associated with integrating hydrogen and SC-based HESS into the
microgrid.

Pp(t) 4+ Pgi(t) < Pge(t) + Ppig(t) + Pss(t) (29)
My, gL > HFSH2 +FCH2 (30)
SOCuin < SOCss(t) < SOCpax (31)

3.3. Energy management criterion for HESS

This study introduces a novel energy management criterion for
standalone DC microgrids, considering the SOC of different components
in HESS, as presented in the following set of equations. Eq. (35) defines
the instantaneous power (Pgss(t) ) managed by the ESS as the difference
between total demand (Prp(t)) and renewable generation (Pgg(t)),
while Eq. (36) calculates total power demand, which the generation
must meet from RES, and must satisfy both the instantaneous site load
requirements (Pp(t) ) and electrolyser power demand (Pgr(t) ).

Piss(t) = Prp(t) — Pro(t) (35)
[ Pp(t) + P (t),if Prg(t) > Pp(t) + Pri(t)
Pmf(t) = { Pp(t), otherwise (36)

A second-order passive low-pass energy filter is employed to
distribute the power demand between ESS, offering the advantage of
reduced computational complexity [64]. The high-energy-density ESS
manages the low-frequency component of the demand signal. In
contrast, the high-frequency component, obtained by subtracting the
low-frequency signal from the original, is handled by the high-power-
capacity ESS. The transfer function of the filter (f(s) ) is defined in Eq.
(37), where w, represents the cut-off frequency, and Q denotes the
quality factor, which characterises the damping behaviour of the filter.
To determine the optimal value for w,, a discrete Fourier transform-
based model is used as given in Egs. (38) to (40). Discrete Fourier
transform of Pggs(t) is found using Eq. (38) below, where Pgss(n) is the
discrete-time signal of Pgss(t). Power Spectral Density (PSD), which
describes how the signal’s power is distributed across frequencies, is
calculated using Eq. (39) below, where Sp(wy) is the PSD for a certain wy
frequency. Using the PSD values for different frequencies, the percent-
age of frequencies to be handled by the low-power-density ESS unit in
HESS is calculated using Eq. (40). The optimal value for this percentage
is determined by solving the microgrid optimisation problem, which
minimises the total lifecycle cost.

fs)=——2 37)
s + ( >s + 02
= 2, NTso
Ppss[K ZO Prss(n).e N where k = 21 k (38)
1 2
Sp(wk) = N\PESS[k] | (39)
" Sp (k)

(40)
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Inputs: Weather Data
Offshore site operational Demand
Fuel requirement of hydrogen fuel station
Cost data of equipment

1= Time Step (T =
At)

Calculate Generation from
Renewable Sources [Pgq(t)]

If Ppg(t) =
Pp(t) +
Pg, ()

No

If Ppg(t) = No

Pp(t)

Yes

Pgys(t)
- PRG (t) - [PD(t) + PEL(t)]

Pz.\'\(t) = Pna(t) - Po(t)

PE,\',\'(t) = PD(t) - PRa(t)

I

Surplus Energy Management
Strategy

|

Energy Deficit Management

In this study, RES and demand data were collected at discrete time
intervals. To apply the continuous-time transfer function, it was con-

Strategy
T =T + At, until T=1year
Fig. 3. Proposed energy management algorithm for the standalone DC microgrid.
b
by = El =by = 0,2 T2 (43)

verted to the discrete-time domain (z-domain) using Tustin’s method,
with the resulting transfer function shown in Eq. (41) [65]. Converting
the z-domain transfer function to the time domain enables the extraction
of the low-frequency component of the demand signal (P gss(t)),
which is then allocated to the appropriate ESS, which is represented in
Egs. (42) to (44), where by, by, by, a;, and a, are constants.

f(z) = 3 & (41)

—
|
S

2
+ 07

10

-

i
i

Prr_pss(t) = Do Pgss(t) + by Pygs(t — T) + by Prgs(t — 2T)

(42)
—a1.Prp_pss(t — T) — ap.Prp_pss(t — 27T)

a; | a4z —22+1) 4+ 20,QT(z% — 1) + 02T*(z2 + 2z + 1)

z T2(z2 4+ 22+ 1) “9

z 72

The high-frequency component of the power signal (Pup gss(t)) is
obtained by subtracting the low-frequency component from the original
power signal supplied to the ESS, as described in Eq. (45). The overall
energy management criterion for the HESS and microgrid is illustrated
in Fig. 3. Based on the generation surplus or deficit at a given time, this
criterion selects either the surplus energy management strategy or the
deficit energy management strategy, which are depicted in Figs. 4 and 5,
respectively.

Pur_gss(t) = Prss(t) — Prr_gss(t) (45)

In the case of a fuel cell, both ramp-up and ramp-down rates exist
when transitioning between power levels or during startup. During these
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Surplus Energy
Signal

Filter the Signal for two separate
signals with low and high frequency

I
|

|

Low Frequency Signal - Managed by
ESS with high energy capacity

High Frequency Signal - Managed
by ESS with high power capacity

No
Yes
Charge the Dissipate through Charge the Dissipate through
ESS dynamic load ESS dynamic load

|

Next Time Step

Fig. 4. Surplus energy management strategy.

ramping periods, the SCESS supports the fuel cell by compensating for
the portion of power that the fuel cell cannot supply or absorb [66]. The
following Egs. (46) and (47), describe the power management strategy
during the ramp-up and ramp-down processes, where Ryc denotes the
fuel cell ramp rate, and Pyc(t') and Psc(t') represent the power contri-
butions from the fuel cell and SCESS, respectively, during these periods.

Prc(t) = Min [Pig_gss(t+T) , Prr_gss(t) + Rec.(t —t) ] (46)

Psc(t) = Pgss(t+T) — Pre(t) 47)

3.4. Cycle counting algorithm for ESS

When designing an ESS, it is essential to account for its degradation
over time, which is measured by its cycle life, to ensure optimal tech-
nical and economic performance. Cycle life is affected by various factors,
including temperature, charge/discharge profiles, and depth of
discharge. It is typically evaluated by counting the number of cycles
until the manufacturer’s specified limit is reached, at which point the
ESS must be replaced [67]. Drawing inspiration from the Rainflow cycle
counting method used in material fatigue analysis, the proposed cycle
counting algorithm for ESS monitors the area under the SOC curve at
each time step to quantify complete cycles. Eq. (48) calculates the
triangular areas illustrated in Fig. 6, while Eq. (49) determines the total
cycle duration of the ESS. The flowchart for the algorithm is shown in
Fig. 7.

_AT.[SOC, — SOC, |

An
2

(48)

10

Tmg

2 A
-1

=1 (49
Arc

TCyc =

The ageing of ESS exhibits a nonlinear relationship with factors such
as temperature, pressure, and depth of discharge (DOD), rather than
solely depending on the number of cycles [68]. In this study, it is
assumed that environmental conditions, including temperature and
pressure, are maintained at satisfactory levels to minimise their impact
on ESS ageing. Additionally, for ESS types susceptible to lifespan
reduction due to excessive DOD, such as batteries, the SOC is maintained
within a reasonable range to prevent significant degradation and pre-
serve the overall lifespan of the ESS.

3.5. Representation of uncertainty

This study identifies four key uncertain input variables in the
standalone DC microgrid: solar irradiance, wind speed, offshore site load
demand, and ambient temperature. PDFs for the weather-related vari-
ables are derived from 14 years of historical data obtained from New
Zealand’s NIWA website for the location of the proposed “Blue
Endeavor” open ocean aquaculture farm by The New Zealand King
Salmon Company Limited [69]. Load demand data, collected over two
weeks in summer and two weeks in winter, is extrapolated to represent
an entire year by assuming that the summer demand profile extends
from October to March, while the winter profile spans from March to
September. Fig. 8 illustrates the average daily demand of an aquaculture
farm operated by The New Zealand King Salmon Company Limited
during typical summer and winter days. This demand profile is projected
over a period of 13 years using a second-order Markov chain model,
based on the assumption that industrial load growth follows domestic
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the ESS
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Fig. 5. Energy deficit management strategy.

consumption trends [70].

Scenario vectors were generated by permuting the uncertain input
variables at 15-min intervals. The probabilities associated with these
vectors were computed, as shown in Fig. 9, by dividing the Gaussian
PDFs for load demand and ambient temperature into five discrete re-
gions. This discretisation enabled the assignment of probabilities and
corresponding input values to each scenario, which were calculated
using Egs. (50) and (51).

Xn

/ PDF(X).dX,¥Sc = 1,2, ..n

(50)

PX,Sc (n)

11

Xn

E[X,Sc (n)] = / X.PDE(X).dX,¥Sc = 1,2, ...n 1)

X.Sc (n)
Xn-1

After discretising all uncertain variables into five scenarios, the total
number of multi-dimensional scenarios for the optimisation problem
reaches 625, resulting in a computationally intensive process. To
address this challenge, a mixed integer linear programming (MILP)-
based scenario reduction method, as described in [71], is employed. This
method selects a minimal subset of scenarios that effectively represents
the probability distributions of all four uncertain variables: solar irra-
diance, wind speed, ambient temperature, and load demand. The sce-
nario reduction algorithm is mathematically formulated in Eq. (52),
where Ngs. denotes the optimal number of reduced scenarios. The binary
variable f, indicates whether each original scenario is included,
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Fig. 6. Illustrative representation of cycle counting algorithm.
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Fig. 7. Flowchart for the cycle counting algorithm.
subject to the constraints defined in Egs. (53) and (54). The authors in scenarios. Moreover, the resulting design variable values closely align
[71]1 demonstrated through numerical examples that this scenario with those obtained using the complete scenario set. This method has
reduction approach yields solutions that are near optimal in terms of been successfully applied in analysis involving large datasets, including
objective function values, even with a significantly reduced number of probabilistic studies of microgrids [72-74].
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500.0 (a) Average demand profile on summer day such as economic dispatch, optimal power flow, and energy manage-
ment in microgrids [75]. Unlike gradient-based methods, PSO does not
400.0 require derivative information, making it suitable for non-differentiable

or discontinuous problems frequently encountered in power system
analysis [76].

%3000 PSO’s capability to handle multi-objective optimisation, offering

g Pareto-optimal solutions for conflicting objectives such as cost mini-

& 2000 misation and reliability enhancement, further strengthens its appeal. Its

rapid convergence, scalability, and ability to manage continuous,

100.0 discrete, or mixed-integer variables make it highly versatile [77].

Moreover, PSO can effectively accommodate uncertainties in power

0.0 systems, including fluctuating renewable energy generation and vari-
00:00 06:00 12:00 18:00 00:00

able load demands. Inspired by natural swarm behaviour, PSO simulates

a population of candidate solutions (particles) that navigate the solution

500.0 (b) Average demand profite on winter day space, updating their positions based on both individual experiences and

the experiences of neighbouring particles [78]. This mechanism enables

PSO to deliver optimal or near-optimal solutions efficiently. Supported

by extensive research and numerous algorithmic enhancements, PSO

remains a preferred method for microgrid optimisation and broader

power system applications.

Like other heuristic algorithms, PSO has certain drawbacks, such as

200.0 susceptibility to local minima and an imbalance between exploration

and exploitation [79]. To overcome these challenges, this study in-

100.0 troduces a novel local search algorithm, QPSOL (Quadratic Program-

ming Solver), integrated with PSO [80]. QPSOL enhances solution

o0 diversity and improves the balance between exploration and exploita-

00:00 06:00 12:00 18:00 00:00 tion through a dynamic optimisation process. By employing quadratic

Time interpolation (QI) around the optimal search agent, QPSOL improves

Fig. 8. Average demand profile of Te Pangu Aquaculture Farm of The New solution accuracy and strengthens PSO’s exploitation capability, thereby
Zealand King Salmon Company Limited (a) Summer Day, (b) Winter Day. boosting the overall convergence efficiency of the algorithm.

The proposed optimisation strategy operates in two distinct phases

625 within each generation. In the first phase, either PSO or QI is employed

Ngs. = Zﬂ&n (52) to update the positions of all particles. In the second phase, QPSOL is

n=1 applied to enhance solution quality, refine particle positions, and pro-

mote efficient convergence. The population is subsequently ranked

based on the fitness function and divided into two groups: QI is used to

Time

400.0

300.0

Demand (kW)

5 5 s
P(Sc)) = Z Z ZP(Scj,Sck,Scl), Vscenarios where i,j, k,l chosen from {SI, WS,AT,LD} (53)

=1 k=1 =1

improve the performance of less optimal particles. At the same time,
PSO explores the solution space around the best-performing particles.

5 5 5 5
Z Z Z ZP(Sci,Scj,Sck,Scl) = 1, Vscenarios where i,j, k, L chosen from {SI, WS, AT, LD} (54)

i=1 j=1 k=1 I=1

To prevent excessive computation while maintaining exploitation
capability, the local search in the proposed PSO-QPSOL framework is
applied selectively rather than to all particles. A hybrid trigger condition
is employed: local search is invoked when either the global best solution
shows no improvement for a predefined number of iterations (stagnation
detection), or the particle ranks within the top 10 % of the population.
Once triggered, the local search operates within a fitness-driven adap-
tive radius, defined as R(i), where a is a scaling factor, F(i) is the fitness
of particle i, and Rx denotes the decision variable bounds. This formu-
lation ensures that particles closer to the global best undergo fine-
grained exploitation with a smaller neighbourhood, while less-fit

3.6. Optimisation algorithm

The formulated optimisation problem can be effectively solved using
various optimisation algorithms, with PSO being the primary method
selected for this study. PSO has gained widespread adoption in power
system research due to its simplicity, robustness, and adaptability. It is
particularly effective for solving complex, nonlinear, non-convex, and
multi-modal optimisation problems, which are common in applications

13
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particles explore a broader region. Such a design balances exploration
and exploitation, enhances convergence speed, and avoids premature
stagnation. The steps of the optimisation strategy are outlined in the
pseudo code below.

Algorithm. PSO integrated with QPSOL and Extended Local Search.

1. Initialisation

Journal of Energy Storage 140 (2025) 118847

(a) Initialise population P of N particles randomly within the feasible search space

(b) Initialise velocity V for each particle in P

(c) Set iteration counter t = 0
(d) Initialise stagnation counter s = 0
2. Main Loop

(e) While (t < Gyqyx) and (Evaluations < Epayx)
Do:
3. Fitness Evaluation and Ranking

(f) For each particle i in P:
Evaluate the fitness of particle i [F(i)]

(9) Rank particles in P based on fitness values F
(h) Update global best Gp
If (Gg is improved) then s = 0
Elses=s+1
4. Particle Update
(i) If (i belongs to the top 50% based on ranking):

1) Update particle’s velocity using PSO rules:

V(@) =w. V(@) + c1.1. [Ppese (1) — P(D)] + ¢3.75. [Gpese (i) —

P@)]
Il) Update particle’s position:
P() = P(i) + V()
(j) Else (i belongs to the bottom 50%):

Update particle’s position using QI Mechanism:

P(D) = QI[P(D)]

5. Local Search and Diversity Enhancement

(k) For selected particles:

If (s = L) OR (i in top 10% of ranked population)) then

Perform Local Search around P (i) with radius R(i)

where R(i) = a. (1 L0 ).RX

F(Gp)

(j) Apply binomial crossover to population P to increase diversity

6. Iteration Update
(k) Incremental Iteration Counter:
t=t+1
() End While

7. Output Results
(m) Return the best solution found in population P

14
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4. Case study: hydrogen-based standalone DC microgrid for
offshore salmon aquaculture

The Blue Economy Cooperative Research Centre was established by
the Australian Government to promote sustainable practices in offshore
industries across Australia and New Zealand. Among its many initiatives
is the development of open ocean aquaculture farms, which aim to in-
crease fish yield per unit area [81]. To support the sustainable operation,
transportation, and logistics of these farms, this study proposes tran-
sitioning to RES-powered infrastructure and hydrogen fuel cell-powered
vessels [82]. The focus of this study is the design of an offshore

15

standalone DC microgrid integrated with a hydrogen fuelling station to
sustainably power aquaculture operations. The proposed microgrid will
be located in Marlborough Sounds, New Zealand, where “Blue
Endeavor,” the country’s first open-ocean salmon aquaculture farm, is
currently under development [83]. Fig. 10 below shows the location of
the proposed farm on Google Maps.

To develop the microgrid model for this case study, specific brands
and equipment costs were selected based on the operational re-
quirements of the salmon aquaculture farms. The technical specifica-
tions of the microgrid components are presented in Table 2, while the
economic specifications, expressed in U.S. dollars, are detailed in
Table 3. The microgrid is designed for a 25-year operational lifespan
with an assumed interest rate of 6 %. Fig. 11 illustrates the monthly
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Table 2

Technical Specifications of the proposed standalone microgrid.
Parameter Value Source Parameter Value Source Parameter Value Source
Npy 22.6 % [84] Cp 0.5 Lwe 15m [85]
PR 80 % Aswept 397.6 m? [86] SOCgEss—Min 10 % [87]
Apanet 1.6 m* Vin 3.5 ms ™! SOCEss_vax 90 %
k -0.29 % /°C VRated 10.5 ms™! SOCsc_min 5% [88]
Tret 25°C Vout 20 ms ! SOCsc-Max 95 %
N 90 % [86] Prated 100 kW Nec 60 % [89]
her 0.5m [90] hco 10.0 m [90]
s 95 % Nwe 40 % [851 nS, 95 % [91]
pl: 700 bar [92] pY: 13,790 kPa da 5.1x10"* pm [93]
el 1.15 [93] ay 1.2x107° ecm [94] AHyap 241 kJ/mol
Py,0 47.948 kPa Gel 0.137 s/cm 10 2.7x10"2 mQ/cm?
P, 4 bar Q 0.95

Table 3

Economic Specifications of the proposed standalone microgrid.
Parameter Value Unit Source Parameter Value Unit Source
Ipy 1448 USD/KW [95] Ips 1270 USD/kW [95]
OMpy 17.16 USD/kW-year OMgs 45.76 USD/kW-year
Iwr 2098 USD/kW Isc 8300 USD/kW
OMwr 29.64 USD/kW-year OMsc 3.25 USD/kW-year
Iwc 5934 USD/KW [96] Irc 6771 USD/kW [971
OMwc 41.25 USD/kW-year OMgc 34.65 USD/kW-year
Ipe 700 USD/kW [98] I 1520 USD/kW [99]
OMpg 33 USD/kW-year OMg, 25 USD/kW-year
Cp 1.50 USD/Liter Inr 750 USD/kgH»
CT 70 USD/t-CO; [61] OMyr 15 USD/ kgHy-year

average 24-hour profiles of the uncertain variables over one year. For
the probabilistic study, 14 years (2010—2023) of historical data on solar
irradiance, wind speed, and ambient temperature were obtained from
the NIWA website.

This study proposes the design of a standalone DC microgrid pow-
ered by RES to support an offshore facility equipped with a hydrogen
fuel station. The strategy aims to minimise the microgrid’s lifecycle cost
through the integration of HESS. The following subsections present a
detailed description of the proposed optimisation strategy, which in-
corporates a probabilistic approach to account for uncertainties in sys-
tem inputs.

5. Simulation and results

The proposed optimisation model was developed and evaluated in
MATLAB R2024a, using a one-year offshore demand profile with 15-min
time intervals. Three energy storage configurations were analysed: (1)
battery-only ESS, (2) battery combined with SCESS, and (3) hydrogen
energy storage combined with SCESS. Each configuration was simulated
under two scenarios: a deterministic simulation using one year of data,
and a probabilistic simulation incorporating 14 years of historical data.
Key outcomes from the probabilistic analysis support decision-making in
microgrid design by identifying three lifecycle cost scenarios: best-case,
average-case, and worst-case, corresponding to the 10th percentile, ex-
pected value, and 90th percentile of lifecycle cost results, respectively,
based on a normal distribution. The boundaries for decision variables
are provided in Table 4. For each scenario, 40 independent trial runs
were performed, and the run yielding the lowest lifecycle cost was
selected as the optimal solution for further analysis.

5.1. Scenario 1: battery only system

The battery-only ESS served as the baseline configuration for this
optimisation study. No energy filter was applied, as there is no high-
power capacity storage available to manage high-frequency demand
fluctuations. A rule-based energy management algorithm was imple-
mented, wherein excess renewable energy is used to charge the battery,
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and any demand exceeding the renewable generation is met through
battery discharge. The initial optimisation was performed using one year
of deterministic data for the uncertain variables.

In the probabilistic study, PSFs were generated for the uncertain
variables using 14 years of historical weather data, along with syn-
thetically generated demand profiles from the same period. The data
were divided into five discrete segments to improve approximation ac-
curacy. A total of 625 scenarios, resulting from the discretisation of these
variables, were reduced to five using a scenario reduction algorithm
based on MILP. Table 5 compares these five reduced scenarios with the
deterministic data for a specific date, while Table 6 presents the opti-
misation results across different scenarios.

5.2. Scenario 2: battery + SC HESS

In this scenario, the BESS is combined with SCESS to form a HESS.
The BESS manages the low-frequency component of the demand signal
due to its high energy density. At the same time, the SCESS handles the
high-frequency component due to its high power capacity. A second-
order low-pass filter is employed to separate the demand signal into
its respective frequency components. The deterministic and probabi-
listic data for this scenario were obtained using the same methodology
as in Scenario 1 (battery-only scenario). The optimisation results for this
scenario are presented in Table 7.

5.3. Scenario 3: hydrogen energy storage + SC HESS

The dynamic performance of fuel cells in microgrids is constrained
by the oxygen and hydrogen feeding systems, making them unsuitable
for managing rapid power demand fluctuations. These limitations can
result in voltage drops, leading to increased stress on power converters,
frequent fuel cell switching, voltage instability, and a reduced lifespan
for both fuel cells and converters [100]. Due to these challenges,
hydrogen energy storage alone is not ideal for ESS in applications with
frequent power variations. To address rapid fluctuations, a secondary
ESS is required. While batteries can fulfil this role, their lower power
handling capacity makes them less optimal. High-power capacity
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Average Load Demand for Each Month

Fig. 11. Monthly average 24-hour profiles for uncertain variables: Solar irra-
diance, Wind speed, Temperature, Load Demand.

systems, such as supercapacitors, offer a more effective solution for
managing rapid power variations in hydrogen energy storage-based
microgrids [101].

In this study, hydrogen energy storage and SCESS were evaluated as
a HESS. Similar to Scenario 2, a second-order low-pass filter was used to
separate the demand signal into low- and high-frequency components,
which were managed by the fuel cell and SCESS, respectively. As the fuel
cell has a ramp up rate in switching, SCESS supports the fuel cell for few
seconds until fuel cell can absorb the total power requirement. For both
deterministic and probabilistic studies, the data were obtained by dis-
cretising the PDFs and applying a scenario reduction algorithm. In this
scenario, the hydrogen required for the fuel cell is supplied directly by
the PEM electrolyser, thereby increasing the load demand on the
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Table 4
Upper and lower boundaries for the decision variables of the optimisation
problem.

Decision Lower Upper Selection criteria

variable boundary (LB) boundary (UB)

Npy 0 * 2140 UB: Number required to meet

* 2720: demand with 4 h of peak
Scenario 3 sunlight.
(With fuel cell)
Nyr 0 *14 UB: Number required to meet
*17: Scenario 3~ demand through wind energy.
(With fuel cell)
Nwc 0 *15 UB: Number required to meet
*18: Scenario 3~ demand through wave energy.
(With fuel cell)
Ppg 630 kW 2480 kW LB: Capacity needed for meet
0: Scenario 3 demand with 5 % LOLP at 75 %
(With fuel load without hydrogen
cell) production.
UB: Capacity required to meet
the peak demand with a 15 %
margin with hydrogen
production (8 h electrolyser at
75 % load).

Egs 0 5935 kWh UB: Capacity to supply half the
daily demand.

Esc 0 405 kWh UB: Capacity for peak demand
during hydrogen production
over 15 min.

Prc 0 1350 kw UB: Capacity to supply half the
peak demand with 8 h of full-
load hydrogen production.

Py, 370 kW 1700 kW LB: Capacity to meet fuel
station needs with 24-h
operation.
UB: Capacity to meet both fuel
station and fuel cell needs with
8-h operation.

myr 200 kg 500 kg LB: Capacity to store hydrogen

for the fuel station.

UB: Capacity to store daily
hydrogen for the fuel station
and fuel cell.

microgrid. The results of the optimisation for this configuration are
presented in Table 8.

5.4. Comparison of the results of three scenarios

The results from the three evaluated scenarios reveal several key
insights. Notably, wave energy was excluded from the optimal design
scenarios in all scenarios, indicating that, given the current costs of wave
energy converters and associated infrastructure, wave energy remains
economically uncompetitive compared to more established RES like
solar PV and wind, even for offshore standalone DC microgrids. From an
economic perspective, solar PV and wind continue to be the preferred
RES options for microgrid design.

The lowest LCOE was achieved with the battery + SC HESS, showing
an 11.14 % reduction compared to the baseline battery-only system.
This reduction occurred despite the per-unit cost of SCESS being more
than seven times that of BESS. Two key factors contributed to this
improvement.

1. Reduced BESS Capacity Requirement: In the battery + SC configu-
ration, the required BESS capacity decreased by approximately 47 %,
from 5100 to 5250 kWh in the battery-only system to 2700-3000
kWh.

2. Extended BESS Replacement Frequency: The replacement period for
BESS increased from 11.5 years in the battery-only scenario to 17
years when coupled with an SC, thereby reducing overall replace-
ment costs.
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Table 5
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Comparison of Deterministic and Probabilistic Study Values for uncertain variables at 12:00 Noon on January 1st.

Study Scenario Probability of Occurrence Solar Irradiance (W/m?) Wind Speed (m/s) Ambient Temperature (°C) Load Demand (kW)
Deterministic N/A N/A 937.3 6.9 18.6 297.1
Probabilistic 1 0.275 847.2 7.7 20.1 313.3
2 0.223 983.7 8.9 17.7 289.0
3 0.202 711.4 9.8 19.2 297.0
4 0.154 653.9 10.3 19.3 301.0
5 0.146 572.4 9.2 18.4 293.2
Table 6 Table 8

Results for optimisation problem for Scenario 1 — Battery only system.

Output of Optimisation Deterministic Probabilistic Study
Problem Study
Best Average Worst
Case Case Case
Total Cost of microgrid 23.92 22.01 24.74 28.65
(USD Millions)
LCOE (US Cents/kWh) 22.09 20.32 22.84 26.45
Carbon Footprint (tCO, 14,392 11,247 14,553 15,018
eq)
Replacement Frequency BESS - 11.5 BESS - BESS — BESS -
of ESS (Years) 12 11.5 11.5
Npy 2129 2116 2131 2143
Nwr 10 9 10 11
Nwce 0 0 0 0
Ppg (kW) 630 630 630 650
Egs (kWh) 5150 5100 5150 5250
Py (kW) 580 550 590 620
myr (kg) 200 200 200 200
Table 7

Results for optimisation problem for Scenario 2 — Battery + Supercapacitor
system.

Output of Optimisation Deterministic Probabilistic Study

Problem Study Best Average Worst
Case Case Case
Total Cost of microgrid 21.27 19.79 21.70 24.04
(USD Millions)
LCOE (US Cents/kWh) 19.63 18.28 20.04 22.19
Carbon Footprint (tCO2, 10,256 8133 10,810 12,014
eq)
Replacement Frequency BESS - 17 BESS — BESS - 17 BESS —
of ESS (Years) SCESS - No 17 SCESS - 16.5
SCESS - No SCESS -
No No
Npy 2129 2114 2129 2141
Nwr 10 9 10 11
Nwc 0 0 0 0
Ppg (kW) 630 630 630 650
Egs (kWh) 2830 2720 2850 2950
Egc (kWh) 120 110 120 135
Py, (kW) 580 550 590 620
myr (kg) 200 200 200 200

Due to these factors, the LCOE of the battery + SC system was lower
than that of the battery-only system, even with the additional cost of
SCESS.

Furthermore, compared to the hydrogen energy storage + SC HESS,
the battery + SC system achieved a 42.69 % reduction in LCOE. The
higher costs associated with fuel cells and their lower efficiency
contributed to this high LCOE for the hydrogen energy storage + SC
HESS.

In the probabilistic study, across all scenarios (best-case, average-
case, and worst-case), the battery + SC HESS consistently demon-
strated a significant reduction in LCOE compared to both the battery-
only and hydrogen energy storage + SC configurations. Fig. 12 illus-
trates a comparative overview of LCOE values for the three scenarios in
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Results for optimisation problem for scenario 3 — hydrogen energy storage + SC
system.

Output of optimisation Deterministic Probabilistic study

problem study Best case Average Worst

case case

Total Cost of microgrid ~ 47.07 42.75 49.49 56.63
(USD Millions)

LCOE (US Cents/kWh) 34.25 31.12 36.03 41.23

Carbon Footprint 0 0 0 0
(tCO2,eq)

Replacement Fuel cell - No Fuel cell Fuel cell - Fuel cell
Frequency of ESS SCESS - No - No No - No
(Years) SCESS - SCESS - SCESS -

No No No

Npy 2669 2629 2701 2731

Nwr 14 13 15 17

Nwc 0 0 0 0

Ppg (kW) 0 0 0 0

Egc (kWh) 175 170 185 195

Prc (kW) 1250 1175 1275 1350

Py (kW) 950 920 970 1020

myr (kg) 350 310 350 390

42

LCOE (US CENTS/KWH)

o

DETERMINISTIC STUDY BEST CASE AVERAGE CASE WORST CASE

PROBABILISTIC STUDY

—e—BatteryOnly ~ —m—Battery + Supercapacitor  —s— Fuel cell + Super capacitor
Fig. 12. Comparison of LCOE for three ESS scenarios: deterministic study vs.

probabilistic study.

both deterministic and probabilistic studies.

A standalone DC microgrid powered solely by a diesel generator
typically has a minimum LCOE of approximately 30 US cents/kWh
[102]. In contrast, renewable energy-based microgrids, whether using a
battery-only system or a battery + SC HESS, offer significant cost ad-
vantages, making them economically superior to diesel-only systems.
However, the hydrogen energy storage + SC HESS, when integrated into
a renewable energy microgrid, remains less competitive than diesel-
powered systems due to the high costs associated with fuel cells and
electrolysers. Even in scenarios where an electrolyser is already avail-
able for hydrogen production, or where carbon taxes are imposed on
diesel operations, the economic performance of the hydrogen energy
storage + SC system remains unfavourable. This is primarily due to the
high capital costs and lower efficiency of current fuel cell and electro-
lyser technologies.
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Despite these economic challenges, the hydrogen energy storage +
SC system offers the benefit of eliminating diesel usage, thereby
reducing the microgrid’s carbon footprint to zero. If fuel cell and elec-
trolyser costs decline significantly and efficiencies improve, this system
could become a viable solution for green offshore microgrids in the
future. Fig. 13 illustrates the variation in LCOE for a hydrogen energy
storage + SC HESS integrated microgrid as the fuel cell costs decrease,
with efficiency levels maintained at 60 % and increased to 75 %. The
results indicate that:

e When fuel cell efficiency is maintained at 60 %, the LCOE of the
hydrogen energy storage + SC HESS falls below that of the battery +
SC HESS once the fuel cell cost reaches 1981 USD/kW.

o If the fuel cell efficiency increases to 75 %, this LCOE crossover oc-
curs at 2078 USD/kW.

This means that, with current cost levels, the fuel cell price would
need to decrease by 70.7 % to achieve cost parity with the battery + SC
HESS without efficiency improvements. If the fuel cell efficiency in-
creases to 75 %, the required cost reduction is slightly lower at 69.3 %.

To further assess the effectiveness of the battery + SC HESS
compared to the battery-only configuration, an analysis of the power
curves, presented in Fig. 14, provides valuable insights. The charging
curve of the BESS is notably smoother in the battery + SC HESS than in
the battery-only configuration. The SCESS absorbs power peaks, effec-
tively mitigating power surges in the battery’s charging curve. This has
resulted in a lower required capacity for the BESS and significantly

(a) Efficiency of fuel cell = 60% esmmwFuel Cell + SC HESS

20 Battery + SC HESS
35

30

25

LCOE (US Cents)

20

-—“"”"’

T
|
I
|
|
15 1
1
I

1 Optimum Cost
11962.26

Current Cost
6771

10

1000 2000 3000 4000 5000

Per Unit Cost of Fuel Cell (USD/kW

6000 7000

(b)

of Fuel Cel

Efficiency

Optimum Cost
2177.79

Current Cost

T
]
]
]
]
]
]
]
]
]
]
]
]
]
]
'
]
]
]
]
]
]
]

6771,

]

'

6000 7000

Fig. 13. LCOE variation of hydrogen energy storage + SC HESS integrated
microgrid with the change of the cost of fuel cell [(a) Efficiency kept at 60 %,
(b) Efficiency increased up to 75 %.
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=~

SCESS

Fig. 14. Charging-discharging curve for BESS for Scenario 1 & Scenario 2, and
Charging curve for SCESS for Scenario 2.

reduced the number of charge-discharge cycles necessary for daily
operation.

In this design, hydrogen production for both the fuel cell and the
hydrogen fuelling station was powered entirely by RES, resulting in the
generation of green hydrogen across all three scenarios. Scenarios 1 and
2 include only the hydrogen fuelling station, while scenario 3 in-
corporates both a fuel cell and a hydrogen fuelling station. Notably,
except for Scenario 3, which utilises hydrogen energy storage + SC
HESS, producing green hydrogen from RES proved to be more cost-
effective than relying on fossil fuels for hydrogen production in the
offshore standalone DC microgrid. Fig. 15 illustrates the electrolyser’s
operational profile, averaged over a summer and winter day, for Sce-
narios 2 and 3. The load demand profiles for the electrolyser in Scenario
1 and Scenario 2 are nearly identical. From both figures, it is evident that
during summer, the electrolyser load peaks during daylight hours,
coinciding with maximum solar PV generation. In contrast, during
winter, the load peaks from midnight to early morning, aligning with
lower demand periods when wind power serves as the primary energy
source.

The key insights from analysing the electrolyser demand profiles
include:

v Optimum size of the electrolyser is determined mainly by green
hydrogen production during the daytime in summer, utilising both
solar PV and wind energy as RES. This is evident from the consis-
tently high electrolyser output throughout summer, as shown in the
average profiles.

v Minimum hydrogen production occurs in the evening when renew-
able energy generation is low, and load demand is high in both
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(a) Electrolyser Seasonal Average Load Profile -
Battery + Supercapacitor HESS
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Fig. 15. Electrolyser average demand profile for summer and winter for Scenario 2 and Scenario 3.
seasons. This is particularly clear in the summer demand profile. In Fig. 16 provides a comparative analysis of optimisation results under
winter, reduced hydrogen production during the day is also observed different uncertainty budgets, highlighting the significance of probabi-
due to lower solar irradiance, limiting PV generation compared to listic modelling in standalone microgrid design. The key insights are:
summer.

v Higher hydrogen production rates are seen from midnight to early v Best Case Scenario: In the most optimal scenario for the battery +
morning, when offshore site load demand is significantly lower. In supercapacitor HESS, the Levelized Cost of Energy (LCOE) decreases
winter, this production is notably higher than in summer, due to by 7.0 % compared to the deterministic model. In contrast, the other
comparatively lower daytime generation. two scenarios show a nearly 10 % increase in LCOE. This
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—19.7%

19.63
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Fig. 16. Comparative analysis of probabilistic

demonstrates that significant savings can be achieved with a high-
risk, cost-optimised design for the standalone microgrid using the
battery + supercapacitor HESS.

v Average Case Scenario: Across all scenarios, the average-case sce-
nario from the probabilistic study shows a slight increase in LCOE
compared to the deterministic model. This rise is primarily due to the
larger energy storage capacity required. The probabilistic study of-
fers a more robust understanding of the optimal design, accounting
for uncertainties in standalone microgrid design.

v Worst Case Scenario: The worst-case scenario shows a 12.9 % in-
crease in LCOE compared to the deterministic model. For the battery-
only system and the hydrogen energy storage + supercapacitor
HESS, the LCOE rises significantly by 19.8 % and 20.3 %, respec-
tively. This suggests that, under critical conditions, a higher invest-
ment in generation and storage is required. Nevertheless, the battery
-+ supercapacitor HESS still offers a more favourable LCOE than the
other configurations and the diesel generator standalone system.

To evaluate the target cost of integrating wave energy into offshore
standalone DC microgrids, the optimal standalone DC microgrid
configuration with a battery-SC HESS was analysed under scenarios of
reduced WEC costs and improved WEC efficiencies. Fig. 17 illustrates
the number of WECs in the optimal design as a function of the unit cost
of wave energy, considering the current efficiency of 40 % and hypo-
thetical increases up to 80 %. The results indicate that, at the current
efficiency level, the unit cost of wave energy must decrease by at least

—— Efficiency = 40% (Current)
—— Efficiency = 60%
—— Efficiency = 80%

°®

o

Current Cost of Wave
Energy (5934 USD/KW)

No. of WECs in Optimal Design
@ I

~

1000 2000 3000 4000 5000

Unit Cost of Wave Energy (USD/kW)

6000 7000

Fig. 17. Integration of wave energy in optimal design of standalone DC
microgrid against the cost of wave energy under different efficiency levels.

21

Battery + Supercapacitor

Journal of Energy Storage 140 (2025) 118847

22.19 41.23

—13.0% —20.4%

34.25

- 6.9% - 9.1%

18.28 31.12
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study under different uncertainty budgets.

70 % relative to present levels to achieve integration. Furthermore, even
with efficiency improvements up to 80 %, a cost reduction of at least 58
% is required. These findings imply that, although wave energy shows
promise, substantial cost reductions are essential for its integration into
offshore standalone DC microgrids.

5.5. Sensitivity analysis of key cost drivers

To evaluate the impact of potential cost reductions in RES equipment
and ESS, as well as increases in diesel generator fuel costs, on the
optimal design of a standalone DC microgrid, further optimisations were
conducted under three distinct scenarios: (1) Existing scenario: Current
cost conditions are maintained throughout the microgrid’s operational
lifetime, (2) Realistic change scenario: The costs of RES and ESS
equipment are reduced by 20 %, while diesel fuel costs are increased by
20 %, (3) Extreme change scenario: The costs of RES and ESS equipment
are reduced by 70 %, and diesel fuel costs are increased by 70 %. The
results of these three scenarios are summarized in Table 9.

Model Output Existing Realistic Change Extreme Change
Scenario Scenario Scenario
Total Cost of microgrid 21.27 18.09 11.37
(USD Millions)
LCOE (US Cents/kWh) 19.63 16.67 10.50
Carbon Footprint (tCOy, 10,256 3484 0
eq)
Npy 2129 2375 2540
Nwr 10 13 15
Nye 0 0 0
Ppg (kW) 630 630 630
Egs (kWh) 2830 2980 3220
Egc (kWh) 120 145 170
Py (kW) 580 580 580
mpr (kg) 200 200 200
Table 9

Comparison of Average No. of iterations and time taken for convergence in
different metaheuristic optimisation techniques.

Optimisation Average CPU Usage Average No. of Average CPU

Algorithm Time until Iterations for Usage Time for
convergence (s) Convergence one iteration (s)

GA 7189 127 56.61

ACO 6543 117 55.92

Standard PSO 6671 110 60.65

Enhanced PSO 6310 93 67.84

(This study)
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Based on the data presented in Table 9, a 20 % reduction in RES and
ESS costs combined with a 20 % increase in diesel fuel prices results in a
significant decrease, approximately 66 %, in diesel generator utilisation,
as reflected in the corresponding reduction in carbon footprint. Under
the extreme scenario, where RES and ESS costs are reduced by 70 % and
fuel costs are increased by 70 %, the diesel generator is not utilised at all.
In this case, the RES and ESS systems fully meet the microgrid’s energy
demand. The LCOE decreases by 15 % in the realistic scenario and by
46.5 % in the extreme scenario. This reduction in diesel generator usage
is primarily attributed to the increased ESS capacity enabled by lower
costs, which allows the system to store and supply energy that would
otherwise require diesel generation. Additionally, the capacity of RES is
expanded in conjunction with ESS, as the enhanced storage capability
facilitates greater integration of renewable energy. These findings sug-
gest that substantial cost reductions in RES and ESS technologies can
enable standalone DC microgrids to operate entirely on renewable en-
ergy. This is a key observation and a significant conclusion drawn from
the analysis.

5.6. Sensitivity analysis of quality factor of the low pass filter

In the design of the standalone DC microgrid, a low-pass filter quality
factor of 0.9 was assumed for computational convenience. To assess its
impact on the lifecycle cost of the microgrid, different quality factor
values were evaluated under the deterministic optimal design scenario
of the standalone DC microgrid integrating a battery-supercapacitor
HESS. Fig. 18 illustrates the variation of the LCOE with respect to the
quality factor. The results show that a higher quality factor generally
reduces the lifecycle cost. However, in practical applications, a quality
factor close to unity implies that signals near the cutoff frequency are
split between the two ESS units [103]. In the presence of noise, har-
monics, and sensor errors, such conditions can lead to oscillations.
Therefore, the selected value of 0.9 is considered more appropriate, as it
balances lifecycle cost minimization with system stability.

6. Performance analysis of the proposed methodology

This study introduces a set of novel methodologies aimed at opti-
mising the lifecycle cost of standalone DC microgrids for offshore ap-
plications. The computational and statistical performance of these
methodologies, applied at various stages of the optimisation process, is
evaluated and compared against existing techniques. The following
subsections present a detailed analysis of each method’s performance,
highlighting improvements in efficiency, accuracy, and robustness over
conventional approaches.
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Fig. 18. Variation of lifecycle cost of the microgrid with the quality factor of
the low pass filter of HESS.
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6.1. Performance analysis of the proposed enhanced PSO

The proposed enhanced PSO algorithm was executed for 40 inde-
pendent runs on the dataset, with each run consisting of up to 200 it-
erations. From these runs, the best and worst cases were identified based
on the lowest and highest lifecycle costs of the microgrid, respectively.
To evaluate the performance of the enhanced PSO algorithm, the same
procedure was applied using three widely adopted metaheuristic opti-
misation techniques: GA, ACO, and standard PSO. These comparisons
were conducted using the most optimal deterministic scenario: Scenario
2, which incorporates a battery + SC HESS. The best and worst runs from
each of the four optimisation techniques are plotted and compared in
Fig. 19, providing a visual assessment of their relative performance in
minimising lifecycle cost.

From above figures, several key observations can be made. First, the
selected number of iterations (i.e., 200) is sufficient to ensure conver-
gence for each algorithm. Second, the enhanced PSO algorithm clearly
outperforms the established metaheuristic techniques; GA, ACO, and
standard PSO, in terms of minimising lifecycle cost. These results
demonstrate that the enhancements introduced to the PSO algorithm,
specifically the integration of quadratic interpolation and extended local
search mechanisms, significantly improve its efficiency and effective-
ness in standalone DC microgrid sizing applications.

CPU time required for convergence is another important metric for
evaluating the performance of the proposed optimisation algorithm
[104]. Table 9 presents a comparative overview of the average
convergence time for each algorithm applied to the deterministic model
of the optimisation problem. The results indicate that the proposed
enhanced PSO algorithm outperforms the other metaheuristic tech-
niques, GA, ACO, and standard PSO, in terms of average CPU time to

(a) Convergence of different metaheuristic optimization algorithms in the best and worst
runs (outof 40 independenttrials)
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Fig. 19. Comparison of convergence of proposed enhanced PSO algorithm with
three common metaheuristic optimisation techniques.
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Table 10
Statistical parameters of the 40 independent trials of proposed enhanced PSO.
Output (F;) Best (Fpest) Worst Mean (Fypean = SD RMSE RE
F N F N Fi—
(Fre) Liafiy 1 (B~ Fyean)” iy (Fi = Foes)® L Fi — Pt
N N-1 N Fpest
Lifecycle Cost of the Microgrid (USD 21.22 22.03 21.67 0.201 0.203 0.0227
Millions)
LCOE (US Cents) 19.59 20.34 20.01 0.188 0.191 0.0107
Carbon Footprint (tCOZ)eq) 10,245 10,713 10,449 117 118 0.0143
Table 11
Descriptive Statistics for Cycle Time in different ESS, for (a) Proposed ESS degradation algorithm, (b) Rainflow counting algorithm.
(a) Proposed ESS Degradation Algorithm:
Output (F;) Best Worst Mean (Fyeqn = SD RMSE RE
N N
Fest) (Fwore) Zia By S, (Fi — Fuean)? SN, (Fi — Fpea)? S Fi — Frew
N N-1 N Fese
Number of cycles per year for 520 533 525 3.25 3.25 0.0057
BESS
Number of cycles per year for 35,454 35,529 35,497 18.75 18.76 0.00076
SCESS
(b) Rainflow Counting Algorithm:
Output (F;) Best Worst Mean (Fyeqn = SD RMSE RE
F F, N F N F
(Fpest) (Fworst) pon Fl) SN (Fi — Fugean)? SN (Fi — Fpea)? i1 Fi — Fpest
N N-1 N Fpest
Number of cycles per year for 538 559 554 5.25 5.25 0.0072
BESS
Number of cycles per year for 35,790 36,451 36,210 165.25 165.33 0.0058
SCESS
convergence. Although each iteration of the enhanced PSO algorithm
requires slightly more computational time than the others, the total Table 12

number of iterations needed for convergence is significantly lower. This
trade-off results in overall faster convergence and improved computa-
tional efficiency. These findings suggest that the enhanced PSO algo-
rithm is a more effective and efficient tool for optimising the design of
standalone DC microgrids.

To assess the robustness of the proposed enhanced PSO algorithm,
statistical analysis was performed on the results from 40 independent
trial runs. The study focused on the most optimal configuration, scenario
2, which incorporates a battery + SC HESS. The statistical parameters
evaluated include the mean, SD, root mean square error (RMSE), and
relative error (RE), providing a comprehensive understanding of the
algorithm’s consistency and reliability. Table 10 summarises these sta-
tistical metrics for the enhanced PSO algorithm, where N represents the
number of independent trials. The descriptive statistics collectively
indicate that the enhanced PSO algorithm exhibits low sensitivity to
initial conditions and delivers robust performance. This suggests that a
single execution of the algorithm is likely to yield an acceptable solution,
making it practical for real-world applications. Minor variations in
carbon footprint observed across different trials suggest that intermit-
tent operation of the diesel generator may introduce slight instability in
the total discounted lifecycle cost of the microgrid. However, these de-
viations remain within acceptable limits, further supporting the reli-
ability of the proposed optimisation approach.

6.2. Performance analysis of the cycle counting algorithm for ESS

To evaluate the efficiency, effectiveness, and robustness of the pro-
posed cycle counting algorithm for ESS, statistical analysis was
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Computational performance comparison of the proposed ESS degradation
quantification algorithm with Rainflow counting algorithm.

ESS Degradation

Average CPU Usage

Average No. of

Average CPU

Algorithm Time until Iterations for Usage Time
convergence for Convergence for one
Optimisation iteration (s)
Problem (s)
Proposed ESS 6310 93 67.84
Degradation
Quantification
Algorithm (This
Study)
Rainflow Counting 6442 94 68.53
Algorithm

conducted on the results from 40 independent optimisation trials. The
analysis focused on the most optimal configuration, scenario 2, which
incorporates a battery + SC HESS, and considered key output parame-
ters, specifically the estimated lifetimes of the battery and SC. For
comparison, an additional set of 40 independent trials was conducted
using the same optimisation framework, but with the widely used
rainflow counting algorithm applied for battery degradation modelling
[105]. Statistical analysis was performed on the results of both methods,
and the outcomes are summarized in Table 11. In addition to perfor-
mance metrics, computational efficiency was assessed by comparing the
overall runtime of the two algorithms in Table 12 below. The results
demonstrate the proposed cycle counting method’s advantages in both
accuracy and computational speed, highlighting its suitability for
lifecycle-based optimisation of standalone DC microgrids.
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Based on the results presented in Tables 11 and 12, it is evident that
the proposed ESS degradation algorithm significantly outperforms the
widely used rainflow counting algorithm in terms of both robustness and
computational efficiency. This superior performance can be attributed
to the algorithm’s tailored design, which specifically addresses the
degradation characteristics of ESS in standalone DC microgrid applica-
tions. Standalone microgrids often experience numerous partial charge-
discharge cycles due to fluctuating renewable energy inputs and dy-
namic load profiles. The proposed algorithm accurately identifies and
quantifies these partial cycles, leading to a more precise estimation of
total cycle counts and degradation. In contrast, the rainflow counting
algorithm, originally developed for fatigue analysis in mechanical sys-
tems, is less effective in capturing partial cycles in ESS operation. This
limitation results in less accurate degradation modelling and higher
variability in lifecycle cost predictions. The enhanced accuracy and ef-
ficiency of the proposed algorithm make it a more suitable choice for
lifecycle cost optimisation of ESS in standalone DC microgrids.

7. Future research directions

Although this study provides valuable insights into the design of
standalone DC microgrids for offshore applications, several assumptions
were made that may affect the generalizability and accuracy of the re-
sults. In the hydrogen ESS, a fixed efficiency was assumed for the fuel
cell. However, in real-world conditions, this efficiency may vary
depending on operating voltage and current, ambient temperature, and
atmospheric pressure. Future studies should investigate the impact of
these dynamic parameters to enhance design accuracy, particularly for
applications involving critical equipment. Additionally, the cost of
hydrogen compression was assumed to be fixed, based on a final pres-
sure of 700 bar, which is suitable for fuel cell vehicles [106]. However,
different applications such as hydrogen-powered vessels, hydrogen
turbines, and heating systems may require varying pressure levels.
Future research should focus on tailoring hydrogen compression costs
and pressure requirements to specific offshore applications.

In the probabilistic analysis, uncertainties in input parameters such
as solar irradiance, wind speed, ambient temperature, and load demand
were considered. However, uncertainties related to economic parame-
ters, including fuel costs, ESS replacement costs, and operation and
maintenance costs of RES and ESS, were not included. Incorporating
these uncertainties would improve the robustness of the probabilistic
design framework. To achieve this, multivariate joint distribution-based
statistical methods can be employed. Copula-based techniques offer a
viable and computationally efficient approach for modelling complex
dependencies among uncertain variables [107].

To enable practical implementation of the proposed standalone DC
microgrid design, its resiliency under extreme conditions, such as severe
weather events and equipment faults, must be thoroughly investigated.
Fault detection, handling, and clearance mechanisms should be thor-
oughly studied to enhance the system’s robustness and reliability [108].
Future research should focus on developing strategies for managing
these extreme scenarios to improve overall microgrid performance.
Additionally, ancillary services such as black start capability are critical,
especially in situations involving outages of fossil fuel-powered gener-
ators. Evaluating the microgrid’s ability to restore operation under such
conditions autonomously is essential for assessing its resiliency. Future
studies should explore the integration of black start functionality and
other ancillary services to ensure reliable operation in offshore and
remote environments.

In this design, equipment degradation caused by harsh offshore
conditions, such as corrosion due to salinity, was not considered.
However, in practical implementations, such degradation can influence
the lifecycle cost by increasing replacement frequency. Future studies
should therefore focus on modelling equipment degradation under
adverse environmental conditions and evaluating its impact on the
design and economic feasibility of standalone DC microgrids.
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8. Conclusion

Offshore standalone microgrids integrated with hydrogen fuel sta-
tions present a sustainable energy solution for powering maritime in-
dustries. HESS offer a cost-effective approach to managing the
variability and uncertainty associated with RES in such applications.
This manuscript introduces a novel meta-heuristic optimisation-based
probabilistic model for designing a standalone DC microgrid with an
integrated hydrogen fuel station, tailored explicitly for offshore indus-
trial use. A case study involving a proposed aquaculture farm in New
Zealand demonstrates the model’s practical applicability and quantifi-
able outcomes.

The findings indicate that a battery + SC HESS configuration is the
most economically viable energy storage solution for offshore stand-
alone microgrids. This configuration reduces lifecycle costs by over 11 %
compared to a battery-only setup. It achieves a 42 % lower LCOE than
the hydrogen + SC HESS configuration, despite the additional invest-
ment in hydrogen infrastructure. These cost savings are primarily
attributed to the system’s ability to smooth power fluctuations, thereby
reducing operational stress and extending the lifespan of the BESS. In the
deterministic scenario, the battery + SC HESS configuration achieves an
LCOE of 19.63 US cents per kWh, outperforming conventional diesel
generator-based systems commonly used in offshore settings. This result
underscores the economic and environmental feasibility of sustainable
power supply solutions for offshore industries. Additionally, the study
reveals that, at current cost levels, achieving cost parity with the battery
+ SC HESS configuration would require a 70.7 % reduction in fuel cell
prices without any efficiency improvements. However, if fuel cell effi-
ciency increases to 75 %, the reduction of cost needed decreases slightly
to 69.3 %.

Another notable finding is that wave energy is currently not
economically viable for offshore standalone microgrids due to the high
costs and low efficiency of wave energy converters. These limitations
hinder its competitiveness as a power source. Nevertheless, given that
wave energy technology is still in its early stages, future advancements
and cost reductions could enhance its feasibility, particularly in offshore
environments. The study also highlights the importance of probabilistic
modelling in microgrid design. Deterministic models tend to underes-
timate lifecycle costs, especially under extreme scenarios. In the optimal
battery + SC HESS configuration, deviations from deterministic results
are 6.9 % in the best-case scenario and 13.0 % in the worst-case scenario,
with even larger deviations observed in other configurations. The
probabilistic model effectively captures these variances, aligning the
design process more closely with real-world operating conditions.

The effectiveness of the proposed methodologies was evaluated and
compared with commonly used techniques to assess performance.
Across 40 independent trials, the proposed enhanced PSO algorithm
demonstrated superior performance in minimising lifecycle costs
compared to standard PSO, GA, and ACO. This improvement is attrib-
uted to the integration of quadratic interpolation and extended local
search mechanisms. The enhanced PSO also achieved faster convergence
with fewer iterations, despite slightly higher per-iteration computa-
tional time. Statistical analysis confirmed its robustness and reliability,
with low sensitivity to initial conditions. Furthermore, the proposed
cycle counting algorithm for ESS outperformed the traditional rainflow
counting method in both accuracy and computational efficiency,
particularly in modelling partial charge-discharge cycles. These ad-
vancements make the proposed methodologies highly effective for real-
world microgrid design and lifecycle cost optimisation.

While the study provides valuable insights, it is constrained by
certain assumptions. Future research should address uncertainties
related to equipment costs, component lifetimes, and the impact of
adverse weather conditions offshore. Further exploration into opera-
tional strategies, such as day-ahead storage scheduling, demand
response optimisation, and ancillary service provision, is also recom-
mended. Overall, this study demonstrates that standalone microgrids,
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particularly those utilising HESS configurations, represent a technically
and economically feasible solution for sustainable offshore energy sys-
tems. These findings contribute to the advancement of a sustainable blue
economy.
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