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A B S T R A C T

Offshore industries face significant challenges in integrating renewable energy sources (RES) to achieve a sus
tainable and reliable energy supply, due to the intermittency and unpredictable offshore weather conditions, 
which hinder the reliability of standalone microgrids. To address this issue, this study explores the integration of 
a hydrogen gas energy storage station within a standalone DC microgrid, evaluating its potential to enhance 
stability and reduce emissions in offshore maritime operations. The research investigates the effectiveness of 
hybrid energy storage systems (HESS) in mitigating RES intermittency, incorporating solar PV, wind, and wave 
energy as primary generation sources. Using an enhanced particle swarm optimisation (PSO) method, the study 
compares various energy storage configurations, with results indicating that a battery-supercapacitor HESS 
achieves the lowest levelised cost of electricity (LCOE), which is 19.63 US Cents /kWh, making it the most cost- 
effective solution. A probabilistic model is further developed to validate the microgrid’s resilience under real- 
world conditions, bridging the gap between theoretical design and practical implementation. Additionally, the 
study assesses the feasibility of integrating wave energy, concluding that current market dynamics render it 
financially unviable for offshore microgrid applications. The proposed enhanced PSO algorithm demonstrates 
superior performance compared to commonly used heuristic optimisation methods such as Genetic Algorithm 
(GA), standard PSO, and Ant Colony Optimisation (ACO). This improvement is attributed to the integration of 
quadratic interpolation and extended local search mechanisms. Additionally, the study introduces an energy 
storage system (ESS) degradation algorithm that outperforms the traditional Rainflow counting method in both 
accuracy and computational efficiency, particularly in modelling partial charge–discharge cycles. Overall, this 
work provides critical insights into optimising standalone microgrids for offshore industries, alongside technical 
performance and economic viability.

1. Introduction

Offshore standalone DC microgrids provide a sustainable and effi
cient alternative to fossil fuel-powered generators for offshore platforms 
by integrating RES such as wind, solar, and wave energy, in conjunction 
with energy storage systems (ESS) with high energy density, such as 
batteries and hydrogen [1]. These systems help to reduce greenhouse 
gas emissions, lower operational costs, and minimise environmental 
impact while ensuring a reliable power supply. Additionally, offshore 

microgrids can facilitate hydrogen fuel stations for maritime transport, 
promoting the use of green hydrogen in fuel cell-operated vessels [2]. 
This transition to hydrogen-based offshore energy solutions aligns with 
global decarbonization efforts, supporting sustainable energy solutions 
for aquaculture facilities, offshore oil and gas platforms, and remote 
island communities.

However, the variability of RES leads to power fluctuations, placing 
stress on ESS, particularly batteries, and reducing their lifespan [3]. To 
manage these challenges, hybrid energy storage systems (HESS), 
combining complementary technologies such as batteries, hydrogen 
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storage, and supercapacitors (SC), are deployed to extend system life by 
distributing the load more effectively [4]. SCs provide a rapid response 
to transient power demands, thereby reducing strain on batteries, while 
hydrogen storage offers high energy density, enhancing overall system 
resilience [5]. By intelligently coordinating these storage technologies 
through advanced control algorithms and energy management strate
gies, HESS can optimise power flow, increase operational efficiency, and 
ensure the stability of offshore microgrids under dynamic operating 
conditions [6].

The integration of hydrogen production via electrolysers into 
offshore microgrids enables a localised, renewable-based fuel supply for 
fuel cell-powered vessels, enhancing sustainable energy autonomy and 
reducing reliance on fossil fuels. This integration also improves micro
grid stability while mitigating challenges related to hydrogen storage 
and transportation in maritime operations [7]. The design and operation 
of standalone microgrids incorporating hydrogen production and stor
age require comprehensive planning, scheduling, and energy manage
ment due to the inherent uncertainties of renewable energy sources and 
the limited flexibility of electrolysers in handling input power fluctua
tions [8]. Advanced mathematical modelling of electrolysers and 
renewable energy systems, combined with robust optimisation 

techniques, is essential to ensure both the stability of the microgrid and 
the reliable operation of the electrolysers [9].

Research on the planning and design of standalone microgrids with 
HESS-integrated RES is rapidly expanding. In [10], the Whale Optimi
sation Algorithm was used to determine the optimal capacity and cost of 
a HESS comprising a battery and an SC, managed using a low-pass filter- 
based method. A GA-based energy management framework was pro
posed in [11] for a HESS consisting of a hydrogen storage and an SC in a 
standalone microgrid with a hydrogen refuelling station. In [12], a non- 
dominated sorting genetic algorithm II (NSGA-II) based optimisation 
strategy was developed for HESS sizing using a rule-based management 
approach. The moth flame optimisation algorithm was applied in [13] 
for HESS sizing, considering the uncertainty of weather parameters and 
load demand, with a low-pass filter used to allocate power signals be
tween the battery and SC. In [14], a HESS comprising a battery and SC 
was managed using a rule-based algorithm and optimised with GA. A 
cuckoo optimisation-based methodology for sizing a HESS consisting of 
a battery and thermal energy storage, based on a rule-based energy 
management approach, was proposed in [15] for a standalone DC 
microgrid. In [16], a PSO-based approach was introduced for developing 
an HESS for a microgrid, employing a low-pass filter for HESS 

Nomenclature

ηEL Efficiency of PEM electrolyser
ηFC Efficiency of the fuel cell stack
ηG Combined efficiency of the generator and gear system of 

the wind turbine
ηPV Efficiency of a solar panel
ηWC Efficiency of a wave energy converter
ρAir Density of air [kgm− 3]
ρSW Density of sea water [kgm− 3]
AFC Area under a healthy complete cycle of the ESS
APanel Area of solar panel [m2]
CD Per unit price of diesel [USD/l]
CDIG Costs associated with the diesel generator [USD]
CH2 − Tank Capacity of Hydrogen storage tank [kg]
CSC Capacitance of SCESS [F]
EBESS,Rated Rated capacity of the BESS [kWh]
EESSN Rated capacity for Nth ESS [kWh]
ESC Energy capacity of SCESS [kWh]
ECD Energy content of diesel [kJ/l]
EFD Emission factor of diesel [tCO2,eq/kJ]
F Faraday constant [C/mol]
FCDG Fuel consumption rate of the diesel generator [kWh/l]
FCH2 Daily hydrogen requirement for fuel cell operation [kg]
g Gravitational acceleration [ms− 2]
HFSH2 Daily hydrogen requirement for the hydrogen fuel station 

[kg]
hrmax Maximum allowed running hours before replacement for 

diesel generator [hrs]
IDIG Capital cost per unit of the diesel generator [USD/kW]
IEL Per unit investment cost of electrolyser [USD/kW]
IESSN Per unit investment cost for Nth ESS [USD/kWh]
IFC Output current from the fuel cell stack [A]
IHT Per unit investment cost for Hydrogen storage tank [USD/ 

kg]
IRGN Per unit investment cost for Nth renewable energy source 

[USD/kW]
Irrmax Maximum reported solar irradiance within a defined 

interval [Wm− 2]
kPV Temperature coefficient for solar PV [◦C− 1]
LWC Width of wave energy converter interacting with the wave 

front [m]
m inverse of the electrolyser’s lifespan [year− 1]
mHT Capacity of Hydrogen storage tank [kg]
MH2 Molar mass of hydrogen [kgmol− 1]
ṁH2 − FS Mass flow rate usage of hydrogen in the hydrogen fuel 

station [kgs− 1]
NCells Total number of cells inside the fuel cell stack
NESS Number of ESS elements in HESS
NRGN Number of units for the Nth renewable energy source
OMDIG Operation and maintenance cost per unit for diesel 

generator [USD/kW.year]
OMEL per unit operation and maintenance cost [USD/kW]
OMFixed,ESSN Per unit fixed operation and maintenance cost for Nth 

ESS [USD/kW]
OMHT per unit operation and maintenance cost for Hydrogen 

storage tank [USD/kg]
OMRGN Per unit operation and maintenance cost for Nth renewable 

energy source [USD/kW.year]
OMVar,ESSN Per unit variable operation and maintenance cost for Nth 

ESS [USD/kWh]
PDIG Rated power of the diesel generator [kW]
PMG Rated capacity of microgrid [kW]
PRated Rated power output of a wind turbine [kW]
PRGN Power of a single unit for the Nth renewable energy source 

[kW]
PR Performance ratio of solar PV system
REL Per unit replacement cost of electrolyser [USD/kW]
RESSN Per unit replacement cost for Nth ESS [USD/kWh]
TCyc Total cycle time of the ESS
TMG Expected lifetime of the microgrid [years]
TRef Reference temperature of solar cell [◦C]
vin Cut-in wind speed for the wind turbine [ms− 1]
vmean Mean wind speed [ms− 1]
vout Cut-off wind speed for the wind turbine [ms− 1]
vRated Rated wind speed of the wind turbine [ms− 1]
VEL Input voltage of the electrolyser [V]
VFC Output voltage of the fuel cell stack [V]
VSC− Rated Rated voltage of SCESS [V]
VSC(t) Instantaneous voltage of SCESS [V]
x Annual utilisation factor of the diesel generator
y inverse of lifespan of ESS [year− 1]
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management.
An improved ACO-based method was applied in [17] to design a 

HESS with a battery and hydrogen storage for cost minimisation and 
reliability enhancement. In [18], a HESS incorporating different battery 
technologies was designed for a low-voltage DC microgrid using a GA- 
based optimisation approach. In [19], a battery and SC-based HESS 
was proposed to provide inertial support for a microgrid using an 
enhanced PSO technique. A dynamic programming-based design for a 
HESS comprising a battery and SC was introduced in [20] to support 
vector machine application. In [21], a GA-based optimisation approach 
was proposed for HESS design, managed using a discrete Fourier 
transform method in a standalone DC microgrid. In [22], a reduced 
fractional gradient descent algorithm-based energy management solu
tion was developed for designing a HESS in a standalone microgrid 
operating under challenging weather conditions, such as high irradiance 
and partial shading of solar PV. The goal was to reduce hydrogen con
sumption in fuel cells and utilise the produced hydrogen for ammonia 
production. In [23], a hybrid optimisation algorithm combining Grey 
Wolf Optimiser and JAYA optimisation was proposed for HESS design in 
a standalone DC microgrid, aiming to enhance system reliability. In 
[24], an energy compensation-based statistical method was used for 
sizing a standalone microgrid, incorporating two different battery 
technologies within the HESS to meet reliability and economic 

expectations.
The influence of varying climate conditions was effectively managed 

using a battery and hydrogen-based HESS in [25], where analysis con
ducted in HOMER software demonstrated that the HESS could efficiently 
handle climate variations while maintaining costs at a stable level. In 
[26], a generalised reduced gradient algorithm-based design strategy 
was proposed for a standalone DC microgrid, ensuring autonomous 
operation of a 100 % renewable-powered system without failures. In 
[27], HOMER software was used to design a standalone DC microgrid 
powered entirely by RES with an HESS. The results showed an unmet 
load of less than 0.2 %, demonstrating high system reliability. In [28], a 
HESS was implemented to extend the battery system’s lifespan in 
microgrid design, resulting in a 14.8 % increase in battery lifetime. The 
ageing of the ESS was assessed using the rainflow cycle counting 
method. In [29], a standalone DC microgrid was designed using a 
modified fuzzy logic super-twisting algorithm, where hydrogen was 
utilised for fuel cell operation to support both microgrid functions and 
an electric vehicle charging station.

In [30], a Mixed-Integer Linear Programming (MILP) based optimi
sation method was employed to minimise the operation and mainte
nance costs of a DC microgrid, achieving full recovery of the initial 
investment within 6 years. In [31], an NSGA-II-based optimisation 
approach was utilised to design an HESS comprising Hydrogen energy 

Table 1 
Summary of recent significant literature on utilising HESS for standalone microgrid design.

Reference ESS Optimisation Strategy HESS Management 
Approach

Hydrogen 
Production

Consideration of the 
uncertainty of inputs

Applicability in an 
offshore 
environment

Consideration of 
Degradation Effects

[10] Battery, SC Whale Optimisation 
Algorithm

Low-pass filter ⨯ ⨯ ⨯ ⨯

[11] Hydrogen, SC GA Low-pass filter ✓ ⨯ ⨯ ⨯
[12] Battery, SC NSGA-II Rule-based ⨯ ⨯ ⨯ ⨯
[13] Battery, SC Moth flame 

optimisation
Low-pass filter ⨯ ✓ ⨯ ⨯

[14] Battery, SC GA Rule-based ⨯ ⨯ ⨯ ⨯
[15] Battery, Thermal ESS Cuckoo Optimisation Rule-based ⨯ ✓ ⨯ ⨯
[16] Battery, SC PSO Low-pass filter ⨯ ⨯ ⨯ ⨯
[17] Battery, FC ACO Rule-based ⨯ ⨯ ⨯ ⨯
[18] New Li Ion Battery, 

Second Life Li Ion 
Battery, Lead Acid 
Battery

GA Rule-based ✓ ⨯ ⨯ ⨯

[19] Battery, SC PSO Rule-based ⨯ ⨯ ⨯ ⨯
[20] Battery, SC Dynamic programming Rule-based ⨯ ⨯ ⨯ ✓
[21] Battery, SC GA Discrete Fourier 

Transform
⨯ ⨯ ⨯ ⨯

[22] Battery, SC, Hydrogen Reduced Fractional 
Gradient Descent 
Algorithm

Low Pass Filter 
(Primary & 
Secondary)

✓ ✓ ⨯ ⨯

[23] Battery, SC JAYA / Grey Wolf 
Optimisation

Rule-based ⨯ ⨯ ⨯ ✓

[24] Two Battery 
technologies

Statistical Rule-based ⨯ ⨯ ⨯ ✓

[25] Battery, Hydrogen 
Storage

HOMER Optimiser Rule based ✓ ⨯ ⨯ ⨯

[26] ZnBr Battery, Pumped 
Hydro

Generalised Reduced 
Gradient Algorithm

Rule-based ⨯ ⨯ ⨯ ⨯

[27] Battery, SC HOMER Optimiser Rule-based ⨯ ⨯ ⨯ ⨯
[28] Battery, SC Rainflow Counting 

Algorithm
Low Pass Filter ⨯ ⨯ ⨯ ✓

[29] Battery, Hydrogen 
Storage

Fuzzy Logic-based 
Modified Super 
Twisting Algorithm

Low Pass Filter ✓ ⨯ ✓ ⨯

[30] Battery, Hydrogen 
Storage

MILP Rule-based ✓ ⨯ ⨯ ⨯

[31] Battery, Hydrogen 
Storage

NSGA-II CEEMDAN ✓ ⨯ ⨯ ⨯

[32] Battery, Hydrogen 
Storage

MILP / MIQP Low-pass Filter ✓ ⨯ ⨯ ⨯

This 
study

Battery, SC, Hydrogen 
Storage

Modified PSO Low-pass filter ✓ ✓ ✓ ✓

H. Jayasinghe et al.                                                                                                                                                                                                                            Journal of Energy Storage 140 (2025) 118847 

3 



storage and BESS in a standalone DC microgrid. In this study, Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM
DAN) was developed to decompose power fluctuations into high- and 
low-frequency components. In [32], a design methodology combining 
MILP and Mixed Integer Quadratic Programming (MIQP) was proposed 
for a standalone DC microgrid with Hydrogen and Battery HESS, 
resulting in reduced total operating costs and pollutant emission costs. 
Table 1 summarises the key gaps and unmet factors identified in the 
research on HESS for standalone DC microgrids.

Most of the literature reviewed focuses on applying novel optimisa
tion algorithms to minimise costs and reduce simulation time. Among 
these, PSO has been the most widely utilised due to its ability to achieve 
fast convergence in large solution spaces [33]. However, heuristic al
gorithms, including PSO, are prone to trapping in local minima, and 
techniques such as local search, partial integration of mathematical 
optimisation, and parallel computing, which could mitigate this issue, 
are rarely discussed in the literature. Additionally, limited studies assess 
the techno-economic feasibility of offshore standalone microgrids uti
lising specific RES, such as wave energy, in combination with offshore 
hydrogen refuelling stations for vessels. The cost-effectiveness of 
hydrogen energy storage compared to batteries in hydrogen-based 
microgrids, particularly where investments in hydrogen production 
have already been made, has not been thoroughly analysed in the cur
rent literature, especially considering the high costs associated with fuel 
cells. Offshore microgrids also face significant uncertainty in key input 
parameters such as solar irradiation and wind speed, yet only a limited 
number of studies employ probabilistic analysis to account for this 
variability and improve design accuracy [34]. Furthermore, the degra
dation of ESS due to factors such as cycle life and temperature is often 
overlooked, despite its impact on system lifespan and maintenance 
costs. Standard methods, such as the Rainflow counting algorithm, 
cannot accurately capture the partial charge-discharge cycles of ESS, 
making them unsuitable for standalone DC microgrids, where frequent 
partial cycling occurs throughout the day [35]. Addressing these gaps is 
essential for the advancement of offshore hydrogen-based microgrids 
and the development of more reliable, efficient and cost-effective energy 
storage solutions.

This study addresses the critical design challenge of determining an 
optimal sizing strategy for RES and ESS in a standalone hydrogen-based 
microgrid. The primary objective is to balance the total net present value 
of costs while leveraging technological advances through ESS hybrid
isation, integrating diverse RES in offshore environments, and produc
ing green hydrogen at minimal cost for fuel stations. The inclusion of 
multiple RES and ESS technologies, each with unique characteristics, 
increases the complexity of the design [36]. To address this, an intelli
gent energy management model is integrated into the microgrid design 
to optimally allocate ESS technologies to meet demand, identify which 
RES should be prioritised to minimise lifecycle costs, and determine the 
most cost-effective timeframes for hydrogen production. To further 
enhance the design methodology, this study introduces a novel optimi
sation framework to address key research gaps in standalone microgrid 
development with on-site hydrogen production for offshore applica
tions, with the following novel features. 

■ An enhanced PSO algorithm integrating Quadratic Interpolation 
with an extended local search is presented for determining optimal 
design parameters of a standalone DC microgrid. The integration of 
quadratic interpolation with extended local search effectively miti
gates the issue of local minima commonly encountered in standard 
PSO.

■ A comprehensive framework for ESS degradation quantification is 
developed, enabling the integration of future advancement and 
replacement costs into the optimisation cost function. This frame
work accurately captures partial charge-discharge cycles, improving 
the reliability of lifecycle cost estimation.

■ A mathematical model of wave energy is incorporated into the cost 
function to evaluate the techno-economic feasibility of wave energy 
in the design of offshore standalone DC microgrids.

■ The proposed optimisation framework for designing a standalone DC 
microgrid with a hydrogen fuel station is evaluated under three 
scenarios of ESS: (i) battery only, (ii) battery + SC HESS, and (iii) 
hydrogen + SC HESS, to determine the optimal energy storage 
combination.

■ A scenario-based probabilistic analysis is conducted to assess the 
impact of uncertainty of input variables, such as variability in RES, 
on the design and performance of the standalone DC microgrid.

The sections of the manuscript are organised as follows. Section 2
describes the design of each component within the offshore standalone 
DC microgrid, including ESS cycle life considerations and the distribu
tion of power signals among multiple ESS technologies. Section 3 defines 
the objectives, constraints, and methodologies employed for optimal 
microgrid design. Section 4 presents a case study demonstrating the 
application of the proposed methodologies. Section 5 presents the 
simulation results, including comparisons across multiple scenarios, and 
provides design recommendations. Section 6 explains the superiority of 
the proposed enhanced PSO methodology compared to conventional 
heuristic optimisation techniques, as well as the effectiveness of the 
proposed ESS degradation quantification framework. Section 7 outlines 
future research directions emerging from this study, followed by a 
conclusion that provides a concise summary of the key findings.

2. Design of standalone hydrogen-based DC microgrid

This study proposes a design for a hydrogen-based standalone DC 
microgrid for offshore applications, featuring a DC bus architecture that 
interconnects generation sources, loads, and ESS components. The 
microgrid integrates solar PV, wind, and wave energy as RES, with a 
diesel generator serving as a backup, as illustrated in Fig. 1. The load 
profile includes offshore site demands and a hydrogen fuelling station. 
Three ESS configurations are analysed to determine the optimal solution 
for this application. In the first two scenarios, (1) battery-only, and (2) 
battery + SC HESS, the hydrogen fuelling station operates solely as a 
load, with an electrolyser producing hydrogen exclusively for refuelling 
purposes. In the third scenario, where a hydrogen storage + SC HESS is 
proposed, the electrolyser generates hydrogen for both the fuelling 
station and a fuel cell, which supplies power to the microgrid. In this 
configuration, the hydrogen system, including the electrolyser, 
hydrogen storage tank, and fuel cell, functions as both a load and an ESS. 
The study aims to identify the most cost-effective ESS configuration by 
evaluating lifecycle costs for offshore applications.

2.1. Model of solar PV system

Solar PV is a strong candidate for microgrid design due to its ease of 
implementation, low manufacturing costs, and zero emissions after 
installation [37]. The maximum power output (PPV), which is influenced 
by site-specific solar irradiation (Irr) and cell temperature (TC), is 
calculated using Eq. (1) [38]. 

PPV = ηPV.(PR).(Irr).APanel.
(
1 − kPV.

(
TC − TRef

) )
(1) 

Solar irradiance can be modelled using a Beta distribution for 
probabilistic analysis and is estimated using Eqs. (2), (3) and (4) below 
[39]. Here α, β are the shape parameters of the Beta distribution, and μ, 
and σ are the mean and standard deviation (SD) of a probabilistic 
distribution. 

f (Irr) =
Γ(α + β)
Γ(α).Γ(β).

(
Irr

Irrmax

)α− 1

.

(

1 −
Irr

Irrmax

)β− 1

(2) 
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α = μ.
(

μ(1 − μ)
σ2 − 1

)

(3) 

β = (1 − μ).
(

μ(1 − μ)
σ2 − 1

)

(4) 

2.2. Wind turbine system

Wind turbines convert the kinetic energy of wind into electricity and 
can be installed either onshore or offshore [40]. Power generation de
pends on wind speed (vWind) and rotor swept area (ASwept

)
, with the 

power output (PWT) calculated using Eq. (5) [41]. 

PWT =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
.ηG.CP.ASwept.ρAir.v

3
Wind; if vin ≤ vWind ≤ vRated

PRated; if vRated ≤ vWind ≤ vout

0; otherwise

(5) 

Wind speed is a stochastic variable that can be modelled using a 
Weibull distribution for probabilistic studies, where c and k are the scale 
factor and shape factor of the probability density function (PDF), and is 
estimated using Eqs. (6), (7), and (8) provided below [42]. 

f (vWind) =
k.vk− 1

wind
ck .e

−

(
vWind

c

)k

(6) 

k =

(
σv

vmean

)− 1.086

(7) 

c =
vmean

Γ
(

1 + 1
k

) (8) 

2.3. Wave energy system

Wave energy, derived from ocean waves, is a promising RES due to 
its higher energy density and greater consistency compared to other 
renewables. It harnesses the kinetic and potential energy of wind-driven 
waves to generate electricity. Advancements in wave energy converters 
(WECs) aim to enhance efficiency while minimising environmental 
impact [43]. Ocean waves are primarily driven by wind, and since wind 
energy prediction methods are well-established, wave data can be 
forecasted using the correlation between wind speed and wave energy 
parameters [44]. The power density of ocean waves (PWave) is typically 
calculated based on wavefront width, as shown in Eq. (9) [45]. 

PWave =
ρSW.g2

64π .hW
2
.TW (9) 

Wave height (hW) and wave period (TW) can be estimated from wind 
speed data using a wave power prediction model, as expressed in Eqs. 
(10) and (11), which incorporate the parameters a, b, c, and d [44]. The 
output power of a WEC (PWC) is then calculated using Eq. (12), subject to 
the operating condition hCI ≤ hW ≤ hCO, where hCI and hCO denote the 
cut-in and cut-off wave heights, respectively. When hW < hCI, the device 
motion is insufficient to drive the power take-off (PTO) effectively. In 
this case, the harvested energy cannot compensate for mechanical and 
electrical losses, resulting in negligible net output. Conversely, when 
hW > hCO, the forces exerted on the device and its PTO system become 
excessive. Operating under such extreme conditions risks structural 

Fig. 1. Architecture of proposed standalone DC microgrid.
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damage, fatigue, or PTO failure; therefore, the WEC incorporates pro
tective measures by shutting down [46]. 

hW = a.vb
wind (10) 

TW = c.vd
wind (11) 

PWC =

⎧
⎨

⎩

0,hW < hCI
ηWC.PWave.LWC,hCI ≤ hW ≤ hCO

0,hW > hCO

(12) 

2.4. Diesel generator

Due to the intermittent nature of RES, a backup power source 
—typically a diesel generator —is essential in standalone DC microgrids. 
Diesel generators are easy to install, have a low initial cost, and offer 
reliable long-term operation [47]. However, they have notable draw
backs, including high operational costs, frequent maintenance re
quirements, and significant carbon emissions. Diesel generators are 
typically sized to meet peak demand, but this approach results in inef
ficient low-load operation during periods of reduced demand, thereby 
increasing operational and maintenance costs [48]. To mitigate these 
issues, it is recommended to operate the diesel generator at a constant 
load with an optimal loading percentage [49]. In [50], it is suggested 
that the optimal loading level is approximately 75 % of full capacity. 
Therefore, this study assumes the diesel generator operates at 75 % of its 
rated full load.

2.5. Battery energy storage system (BESS)

BESS have gained popularity due to their high efficiency, low 
manufacturing costs, and minimal environmental impact. Various bat
tery technologies, including lithium-ion, lead-acid, graphene, and 
sodium-ion, are available for microgrid applications [51]. Lithium-ion 
batteries stand out for their high efficiency, flexible discharge profiles, 
and long operational lifespan, making them the preferred choice. With a 
significant reduction in manufacturing costs, lithium-ion technology has 
become the leading option for BESS in microgrid systems [52]. In this 
study, lithium-ion batteries are selected as the ESS for the standalone DC 
microgrid design. The State of charge (SOC) of a BESS is calculated as 
the ratio of the instantaneous energy capacity (EBESS(t)) to the rated 
energy capacity (EBESS,Rated), as shown in Eq. (13) below. 

SOCBESS(t) =
EBESS(t)

EBESS,Rated
(13) 

2.6. Supercapacitor Energy Storage System (SCESS)

SCESS offer high power density, rapid charge-discharge capability, 
and a long operational lifespan, making them ideal for stabilising 
microgrids during power fluctuations. SCESS complements other storage 
technologies by providing short-term energy buffering, thereby 
improving overall efficiency and resilience [53]. This study examines 
the effectiveness of SCESS in mitigating high power fluctuations in 
conjunction with BESS and hydrogen energy storage. To manage power 
fluctuations effectively, SCESS must be capable of quickly absorbing or 
releasing energy, which requires it to remain readily available during 
microgrid operation. A focused SOC range is proposed, with SOCSC-FL 
near 50 % and SOCSC-FH near the maximum allowed SOC, as illustrated 
in Fig. 2 [14]. SCESS should maintain its SOC within this range and 
promptly return to it if deviations occur. The SOC and energy re
quirements of SCESS are calculated using Eqs. (14) and (15). 

SOCSC(t) =
VSC(t)

VSC− Rated
(14) 

ESC =
1
2
.CSC.VSC− Rated.

(
SOCSC− Max

2 − SOCSC− Min
2) (15) 

2.7. Fuel cell

Hydrogen fuel cells provide a clean, efficient, and scalable power 
source by converting hydrogen into electricity with minimal emissions. 
Their integration into microgrids enables continuous power generation, 
thereby reducing reliance on intermittent RES. With high energy density 
and operational adaptability, fuel cells enhance energy security, reduce 
environmental impact, and improve system flexibility [54]. Eq. (16)
represents the total power output of the fuel cell stack (PFC), while the 

hydrogen mass flow rate ˙(mH2 − FC

)

is calculated using Eq. (17). 

PFC = VFC.IFC (16) 

ṁH2 − FC =
PFC.NCells.MH2

2.F.ηFC.VFC
(17) 

2.8. Proton Exchange Membrane (PEM) electrolyser

PEM electrolysers are ideal for offshore hydrogen production due to 
their high efficiency, rapid response times, and compact design. Their 
ability to operate at high pressures makes them well-suited for inte
gration with RES, supporting decarbonization of maritime industries by 
reducing dependence on fossil fuels. Also, their modularity and scal
ability enable flexible energy solutions for offshore operations [55]. In 
this study, a PEM electrolyser is utilised to produce hydrogen for a 
fuelling station within the microgrid, with the generated hydrogen also 
used to power fuel cells as part of the ESS. The PEM electrolyser draws 
power from the DC microgrid to split water into hydrogen and oxygen. 

The hydrogen production rate ˙(mH2 − EL

)

is calculated using Eq. (18). 

ṁH2 − L =
ηEL.PEL.MH2

2.F.VEL
(18) 

The system efficiency of the electrolyser depends on multiple factors. 
Eq. (19) below calculates the system efficiency by multiplying Faraday’s 
efficiency 

(
ηF

EL
)
, hydrogen production efficiency 

(
ηH

EL
)
, and compression 

efficiency 
(
ηC

EL
)
. ηF

EL accounts for the loss due to the permeation of 
Hydrogen, which is the unintended move of hydrogen gas through the 
PEM from the cathode to the anode side, as presented in Eq. (20) below. 

Fig. 2. Focused operation range vs. allowed operation range for SCESS.
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ηH
EL is calculated in Eq. (21) below, which relates to the temperature and 

pressure differences in the electrochemical reaction stage. 

ηEL = ηF
EL.ηH

EL.ηC
EL (19) 

ηF
EL =

⎡

⎢
⎢
⎢
⎣

1 −

2.VEL

(

F.PT
H2
.
PH2

EL +PO2
EL

del .δel
+ ax .PEL

d.δ

)

PEL

⎤

⎥
⎥
⎥
⎦

(20) 

2.9. Hydrogen storage tank

Hydrogen produced by the electrolyser is stored in gaseous form in 
high-pressure tanks, typically operating within a range from 350 to 700 
bar, offering high energy density while ensuring safe storage. Tank 
materials, such as carbon fibre composites or high-strength steel, are 
selected to ensure structural integrity under varying environmental and 
operational conditions [56]. The quantity of hydrogen stored at the time 
t2 
(
mH2 − Tank(t2)

)
is calculated using the mass balance equation, as 

shown in Eq. (22). 

mH2 − Tank(t2)=mH2 − Tank(t1)+(t2 − t1).
[

ṁH2 − EL(t2)− ṁH2 − FC(t2)− ṁH2 − FS(t2)
]

(22) 

2.10. Power converters

Power converters play a crucial role in facilitating power conversion 
and integration within standalone microgrids. The solar PV system is 
interfaced with the DC bus via a unidirectional DC/DC converter 
equipped with maximum power point tracking (MPPT) functionality to 
optimise energy extraction. Other renewable energy sources, which 
typically produce AC power, are converted to DC using unidirectional 
AC/DC converters, also featuring MPPT capabilities [57]. Bidirectional 
DC/DC converters are employed to interface both the BESS and the 
SCESS with the DC bus, enabling controlled charging and discharging 
operations [58]. When the fuel cell is integrated into the microgrid 
configuration, it is connected to the DC bus via an additional DC/DC 
converter. To accommodate both DC and AC loads, appropriate con
version technologies are utilised: DC/DC converters are used for DC 
loads, while DC/AC converters are employed to supply AC loads from 
the DC bus [59].

In this study, the efficiency of these power electronic controllers is 
modelled and incorporated into the objective function of the optimisa
tion problem. To represent controller efficiency, the European weighted 
efficiency model ηEUR, is employed [60]. This model is expressed by Eq. 
(23), where ηX(5%,10%,…,100%) denotes the efficiency at a specific power 

output level, given as a percentage of the converter’s rated power 
output. 

ηEUR = 0.03η5% +0.06η10% +0.13η20% +0.10η30% +0.48η50% +0.20η100%

(23) 

3. Methodology

This study presents the design of a standalone DC microgrid powered 
by RES to support an offshore facility equipped with a hydrogen fuel 
station. The proposed strategy focuses on minimising the microgrid’s 

lifecycle cost through the implementation of a HESS, accounting for 
investment, replacement, operation, maintenance, and carbon tax costs. 
The following subsections provide a detailed description of the proposed 
optimisation strategy, which incorporates a probabilistic approach to 
address uncertainties in input parameters, such as weather conditions. 
This method enables the identification of best- and worst-case scenarios, 
which can be utilised in the design process, depending on the criticality 
of the power supply requirements for the connected loads.

3.1. Objective function

The objective function for the optimisation problem is defined in Eq. 
(24), where CLC is the lifecycle cost of the standalone DC microgrid. To 
account for future expenses, the net present value (NPV) method is 
employed to aggregate all cost components, into a unified framework for 
analysis. 

CLC = CRG +CDIG +CESS +CHFS (24) 

In this study, solar PV, wind, and wave energy are selected as RES. 
The lifecycle cost of RES (CRG) is represented in Eq. (25) below. 

CRG =
∑3

N=1

[

NRGN .PRGN .

(

IRGN +
∑TMG

i=1

OMRGN

(1 + r)TMG − (i+1)

) ]

(25) 

The lifetime costs of the diesel generator within the microgrid are 
represented by Eq. (26). To account for carbon emissions, a carbon tax 
(CT) is incorporated into the cost calculation [61]. 

CDIG = PDIG.

⎛

⎜
⎜
⎝

∑TMG

i=1

OMDIG + x.FCDIG.CD.hrmax

(1 + r)TMG − (i+1) +
∑x.TMG

i=0

IDIG

(1 + r)TMG −
i
x

⎞

⎟
⎟
⎠

+
∑TMG

i=1

FCDIG.x.hrmax.ECD.EFD.CT
1000.(1 + r)TMG − (i+1)

(26) 

This study investigates the effectiveness of hybridising ESS, 
including BESS, SCESS and fuel cells, alongside hydrogen energy stor
age. The costs associated with ESS (CESS) are represented in Eq. (27). For 
fuel cells, Eq. (27) should replace (SOCMax − SOCMin) term with a con
stant (i.e., 1), since fuel cells do not undergo a conventional charging 

ηH
EL =

125

1.229 +

⃒
⃒
⃒
⃒
⃒
1.48 +

ΔHVap .PH2O
2F

(

1
PH2

EL
+ 1

PO2
EL

)

− UCell

⃒
⃒
⃒
⃒
⃒
+

R.TCell
2F ln

(
PH2

EL .PO2
EL

(Po)
1.5

)

+
PEL(σel .r0+del .δel)

σel .VEL
−

0.9(TCell − 298)
1000

(21) 
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process. Instead, hydrogen production and storage required for fuel cell 
operation are managed by the electrolyser and hydrogen storage tank  

The costs associated with a hydrogen fuel station (CHFL) are divided 
into two main components: the electrolyser and the hydrogen storage 
tank, as represented by Eq. (28). 

CHFL = EEL.

⎛

⎜
⎜
⎝IEL +

∑TMG

i=1

OMEL

(1 + r)TMG − (i+1) +
∑m.TMG

i=0

REL

(1 + r)TMG −
i
m

⎞

⎟
⎟
⎠

+mHT.

(

IHT +
∑TMG

i=1

OMHT

(1 + r)TMG − (i+1.)

)
(28) 

3.2. Constraints

The optimisation strategy proposed in this study incorporates mul
tiple constraints to satisfy the requirements of the optimisation problem. 
Constraint (29) ensures power balance, which is critical for the reli
ability of the microgrid. Its primary objective is to maintain the total 
microgrid demand, comprising both the load demand and the electro
lyser unit’s load, below the combined output from energy sources and 
the power discharged from the ESS. When the ESS is charging, the sign of 
PESS(t) becomes negative, thereby contributing to the demand side of the 
inequality. Constraint (30) regulates hydrogen production to meet the 
requirements of both the hydrogen refuelling station and fuel cell op
erations. The total daily hydrogen demand from these two components, 
considered only in the hydrogen + SC HESS configuration, must not 
exceed the daily hydrogen production from the electrolyser unit.

The SOC constraint, represented by constraint (31), applies exclu
sively to BESS and SCESS. The proposed maximum and minimum SOC 
limits for charging and discharging are intended to mitigate over
heating, which can adversely affect the lifespan of the ESS [33]. For 
hydrogen energy storage, constraint (32) ensures that the hydrogen tank 
capacity consistently exceeds the required hydrogen demand. At each 
timestep, the tank capacity is updated by adding the hydrogen produced 
during that interval to the existing hydrogen volume from the previous 
timestep, and subtracting the hydrogen utilised by the refuelling station 
and fuel cell if present.

To minimise energy losses due to RES curtailment, constraint (33)
imposes a limit on the maximum allowable curtailment. In this study, 
the permitted curtailment is restricted to less than 5 % of the daily 
renewable energy generation [62]. Finally, constraint (34) ensures that 
the LCOE remains below a specified threshold, thereby maintaining the 
economic viability of the microgrid. The maximum allowable LCOE is 
set at 25 % above that of a standalone diesel generator-based power 
system [63]. This additional margin accounts for the increased cost 
associated with integrating hydrogen and SC-based HESS into the 
microgrid. 

PD(t)+PEL(t) ≤ PRG(t)+PDIG(t)+PESS(t) (29) 

mH2 − EL ≥ HFSH2 + FCH2 (30) 

SOCMin ≤ SOCESS(t) ≤ SOCMax (31) 

CH2 − Tank ≥ mH2 − Tank(t − 1)+mH2 − EL(t) − (mH2 − HFS(t)+mH2 − FC(t) ) (32) 

EWaste ≤ EWaste− Max (33) 

LCOE ≤ LCOEMax (34) 

3.3. Energy management criterion for HESS

This study introduces a novel energy management criterion for 
standalone DC microgrids, considering the SOC of different components 
in HESS, as presented in the following set of equations. Eq. (35) defines 
the instantaneous power (PESS(t) ) managed by the ESS as the difference 
between total demand (PTD(t) ) and renewable generation (PRG(t) ), 
while Eq. (36) calculates total power demand, which the generation 
must meet from RES, and must satisfy both the instantaneous site load 
requirements (PD(t) ) and electrolyser power demand (PEL(t) ). 

PESS(t) = PTD(t) − PRG(t) (35) 

PTD(t) =
{

PD(t) + PEL(t), if PRG(t) ≥ PD(t) + PEL(t)
PD(t), otherwise (36) 

A second-order passive low-pass energy filter is employed to 
distribute the power demand between ESS, offering the advantage of 
reduced computational complexity [64]. The high-energy-density ESS 
manages the low-frequency component of the demand signal. In 
contrast, the high-frequency component, obtained by subtracting the 
low-frequency signal from the original, is handled by the high-power- 
capacity ESS. The transfer function of the filter (f(s) ) is defined in Eq. 
(37), where ωn represents the cut-off frequency, and Q denotes the 
quality factor, which characterises the damping behaviour of the filter. 
To determine the optimal value for ωn, a discrete Fourier transform- 
based model is used as given in Eqs. (38) to (40). Discrete Fourier 
transform of PESS(t) is found using Eq. (38) below, where PESS(n) is the 
discrete-time signal of PESS(t). Power Spectral Density (PSD), which 
describes how the signal’s power is distributed across frequencies, is 
calculated using Eq. (39) below, where SP(ωk) is the PSD for a certain ωk 

frequency. Using the PSD values for different frequencies, the percent
age of frequencies to be handled by the low-power-density ESS unit in 
HESS is calculated using Eq. (40). The optimal value for this percentage 
is determined by solving the microgrid optimisation problem, which 
minimises the total lifecycle cost. 

f(s) =
ω2

n

s2 +

(
ωn
Q

)

s + ω2
n

(37) 

PESS[k] =
∑N− 1

n=0
PESS(n).e− j2π

N kn,where k =
NTSωk

2π (38) 

SP(ωk) =
1
N
|PESS[k] |2 (39) 

xn =

∫ ωn
0 SP(ωk)
∫ ∝

0 SP(ωk)
(40) 

CESS =
∑NESS

N=1

⎡

⎢
⎢
⎢
⎣

EESSN .

⎛

⎜
⎜
⎜
⎝

IESSN +
∑TMG

i=1

OMVar,ESSN

(1 + r)TMG − (i+1) +
∑y.TMG

i=0

RESSN

(SOCMax − SOCMin).(1 + r)TMG −
i
y

⎞

⎟
⎟
⎟
⎠

+PMG.
∑TMG

i=1

OMFixed,ESSN

(1 + r)TMG − (i+1)

⎤

⎥
⎥
⎥
⎦

(27) 

H. Jayasinghe et al.                                                                                                                                                                                                                            Journal of Energy Storage 140 (2025) 118847 

8 



In this study, RES and demand data were collected at discrete time 
intervals. To apply the continuous-time transfer function, it was con
verted to the discrete-time domain (z-domain) using Tustin’s method, 
with the resulting transfer function shown in Eq. (41) [65]. Converting 
the z-domain transfer function to the time domain enables the extraction 
of the low-frequency component of the demand signal (PLF− ESS(t) ), 
which is then allocated to the appropriate ESS, which is represented in 
Eqs. (42) to (44), where b0, b1, b2, a1, and a2 are constants. 

f(z) =
ω2

n
⎛

⎜
⎝2

T.
1− 1

z
1+1

z

⎞

⎟
⎠

2

+

(
ωn
Q

)
⎛

⎜
⎝2

T.
1− 1

z
1+1

z

⎞

⎟
⎠+ ω2

n

(41) 

PLF− ESS(t) = b0.PESS(t)+b1.PESS(t − T)+b2.PESS(t − 2T)
− a1.PLF− ESS(t − T) − a2.PLF− ESS(t − 2T)

(42) 

b0 =
b1

2
= b2 = ωn

2.T2 (43) 

a1

z
+

a2

z2 =
4(z2 − 2z + 1) + 2ωnQT(z2 − 1) + ω2

nT2(z2 + 2z + 1)
T2(z2 + 2z + 1)

(44) 

The high-frequency component of the power signal (PHF− ESS(t) ) is 
obtained by subtracting the low-frequency component from the original 
power signal supplied to the ESS, as described in Eq. (45). The overall 
energy management criterion for the HESS and microgrid is illustrated 
in Fig. 3. Based on the generation surplus or deficit at a given time, this 
criterion selects either the surplus energy management strategy or the 
deficit energy management strategy, which are depicted in Figs. 4 and 5, 
respectively. 

PHF− ESS(t) = PESS(t) − PLF− ESS(t) (45) 

In the case of a fuel cell, both ramp-up and ramp-down rates exist 
when transitioning between power levels or during startup. During these 

Fig. 3. Proposed energy management algorithm for the standalone DC microgrid.
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ramping periods, the SCESS supports the fuel cell by compensating for 
the portion of power that the fuel cell cannot supply or absorb [66]. The 
following Eqs. (46) and (47), describe the power management strategy 
during the ramp-up and ramp-down processes, where RFC denotes the 
fuel cell ramp rate, and PFC(t́ ) and PSC(t́ ) represent the power contri
butions from the fuel cell and SCESS, respectively, during these periods. 

PFC(t́ ) = Min [PLF− ESS(t+T) ,PLF− ESS(t)+RFC.(t́ − t) ] (46) 

PSC(t́ ) = PESS(t+T) − PFC(t́ ) (47) 

3.4. Cycle counting algorithm for ESS

When designing an ESS, it is essential to account for its degradation 
over time, which is measured by its cycle life, to ensure optimal tech
nical and economic performance. Cycle life is affected by various factors, 
including temperature, charge/discharge profiles, and depth of 
discharge. It is typically evaluated by counting the number of cycles 
until the manufacturer’s specified limit is reached, at which point the 
ESS must be replaced [67]. Drawing inspiration from the Rainflow cycle 
counting method used in material fatigue analysis, the proposed cycle 
counting algorithm for ESS monitors the area under the SOC curve at 
each time step to quantify complete cycles. Eq. (48) calculates the 
triangular areas illustrated in Fig. 6, while Eq. (49) determines the total 
cycle duration of the ESS. The flowchart for the algorithm is shown in 
Fig. 7. 

An =
ΔT.|SOCn − SOCn− 1|

2
(48) 

TCyc =

∑TMG

n=1
An

AFC
(49) 

The ageing of ESS exhibits a nonlinear relationship with factors such 
as temperature, pressure, and depth of discharge (DOD), rather than 
solely depending on the number of cycles [68]. In this study, it is 
assumed that environmental conditions, including temperature and 
pressure, are maintained at satisfactory levels to minimise their impact 
on ESS ageing. Additionally, for ESS types susceptible to lifespan 
reduction due to excessive DOD, such as batteries, the SOC is maintained 
within a reasonable range to prevent significant degradation and pre
serve the overall lifespan of the ESS.

3.5. Representation of uncertainty

This study identifies four key uncertain input variables in the 
standalone DC microgrid: solar irradiance, wind speed, offshore site load 
demand, and ambient temperature. PDFs for the weather-related vari
ables are derived from 14 years of historical data obtained from New 
Zealand’s NIWA website for the location of the proposed “Blue 
Endeavor” open ocean aquaculture farm by The New Zealand King 
Salmon Company Limited [69]. Load demand data, collected over two 
weeks in summer and two weeks in winter, is extrapolated to represent 
an entire year by assuming that the summer demand profile extends 
from October to March, while the winter profile spans from March to 
September. Fig. 8 illustrates the average daily demand of an aquaculture 
farm operated by The New Zealand King Salmon Company Limited 
during typical summer and winter days. This demand profile is projected 
over a period of 13 years using a second-order Markov chain model, 
based on the assumption that industrial load growth follows domestic 

Fig. 4. Surplus energy management strategy.
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consumption trends [70].
Scenario vectors were generated by permuting the uncertain input 

variables at 15-min intervals. The probabilities associated with these 
vectors were computed, as shown in Fig. 9, by dividing the Gaussian 
PDFs for load demand and ambient temperature into five discrete re
gions. This discretisation enabled the assignment of probabilities and 
corresponding input values to each scenario, which were calculated 
using Eqs. (50) and (51). 

PX,Sc (n) =

∫xn

xn− 1

PDF(X).dX, ∀Sc = 1,2, ..,n (50) 

E[X, Sc (n) ] =
1

PX,Sc (n)

∫xn

xn− 1

X.PDF(X).dX, ∀Sc = 1, 2, ..,n (51) 

After discretising all uncertain variables into five scenarios, the total 
number of multi-dimensional scenarios for the optimisation problem 
reaches 625, resulting in a computationally intensive process. To 
address this challenge, a mixed integer linear programming (MILP)- 
based scenario reduction method, as described in [71], is employed. This 
method selects a minimal subset of scenarios that effectively represents 
the probability distributions of all four uncertain variables: solar irra
diance, wind speed, ambient temperature, and load demand. The sce
nario reduction algorithm is mathematically formulated in Eq. (52), 
where NRSc denotes the optimal number of reduced scenarios. The binary 
variable βScn indicates whether each original scenario is included, 

Fig. 5. Energy deficit management strategy.
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subject to the constraints defined in Eqs. (53) and (54). The authors in 
[71] demonstrated through numerical examples that this scenario 
reduction approach yields solutions that are near optimal in terms of 
objective function values, even with a significantly reduced number of 

scenarios. Moreover, the resulting design variable values closely align 
with those obtained using the complete scenario set. This method has 
been successfully applied in analysis involving large datasets, including 
probabilistic studies of microgrids [72–74]. 

Fig. 6. Illustrative representation of cycle counting algorithm.

Fig. 7. Flowchart for the cycle counting algorithm.

H. Jayasinghe et al.                                                                                                                                                                                                                            Journal of Energy Storage 140 (2025) 118847 

12 



NRSc =
∑625

n=1
βScn (52) 

3.6. Optimisation algorithm

The formulated optimisation problem can be effectively solved using 
various optimisation algorithms, with PSO being the primary method 
selected for this study. PSO has gained widespread adoption in power 
system research due to its simplicity, robustness, and adaptability. It is 
particularly effective for solving complex, nonlinear, non-convex, and 
multi-modal optimisation problems, which are common in applications 

such as economic dispatch, optimal power flow, and energy manage
ment in microgrids [75]. Unlike gradient-based methods, PSO does not 
require derivative information, making it suitable for non-differentiable 
or discontinuous problems frequently encountered in power system 
analysis [76].

PSO’s capability to handle multi-objective optimisation, offering 
Pareto-optimal solutions for conflicting objectives such as cost mini
misation and reliability enhancement, further strengthens its appeal. Its 
rapid convergence, scalability, and ability to manage continuous, 
discrete, or mixed-integer variables make it highly versatile [77]. 
Moreover, PSO can effectively accommodate uncertainties in power 
systems, including fluctuating renewable energy generation and vari
able load demands. Inspired by natural swarm behaviour, PSO simulates 
a population of candidate solutions (particles) that navigate the solution 
space, updating their positions based on both individual experiences and 
the experiences of neighbouring particles [78]. This mechanism enables 
PSO to deliver optimal or near-optimal solutions efficiently. Supported 
by extensive research and numerous algorithmic enhancements, PSO 
remains a preferred method for microgrid optimisation and broader 
power system applications.

Like other heuristic algorithms, PSO has certain drawbacks, such as 
susceptibility to local minima and an imbalance between exploration 
and exploitation [79]. To overcome these challenges, this study in
troduces a novel local search algorithm, QPSOL (Quadratic Program
ming Solver), integrated with PSO [80]. QPSOL enhances solution 
diversity and improves the balance between exploration and exploita
tion through a dynamic optimisation process. By employing quadratic 
interpolation (QI) around the optimal search agent, QPSOL improves 
solution accuracy and strengthens PSO’s exploitation capability, thereby 
boosting the overall convergence efficiency of the algorithm.

The proposed optimisation strategy operates in two distinct phases 
within each generation. In the first phase, either PSO or QI is employed 
to update the positions of all particles. In the second phase, QPSOL is 
applied to enhance solution quality, refine particle positions, and pro
mote efficient convergence. The population is subsequently ranked 
based on the fitness function and divided into two groups: QI is used to 

improve the performance of less optimal particles. At the same time, 
PSO explores the solution space around the best-performing particles.

To prevent excessive computation while maintaining exploitation 
capability, the local search in the proposed PSO–QPSOL framework is 
applied selectively rather than to all particles. A hybrid trigger condition 
is employed: local search is invoked when either the global best solution 
shows no improvement for a predefined number of iterations (stagnation 
detection), or the particle ranks within the top 10 % of the population. 
Once triggered, the local search operates within a fitness-driven adap
tive radius, defined as R(i), where α is a scaling factor, F(i) is the fitness 
of particle i, and RX denotes the decision variable bounds. This formu
lation ensures that particles closer to the global best undergo fine- 
grained exploitation with a smaller neighbourhood, while less-fit 
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Fig. 8. Average demand profile of Te Pangu Aquaculture Farm of The New 
Zealand King Salmon Company Limited (a) Summer Day, (b) Winter Day.

P(Sci) =
∑5

j=1

∑5

k=1

∑5

l=1
P
(
Scj, Sck, Scl

)
, ∀scenarios where i, j, k, l chosen from {SI,WS,AT, LD} (53) 

∑5

i=1

∑5

j=1

∑5

k=1

∑5

l=1
P
(
Sci, Scj, Sck, Scl

)
= 1, ∀scenarios where i, j, k, l chosen from {SI,WS,AT, LD} (54) 
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particles explore a broader region. Such a design balances exploration 
and exploitation, enhances convergence speed, and avoids premature 
stagnation. The steps of the optimisation strategy are outlined in the 
pseudo code below. 

Algorithm. PSO integrated with QPSOL and Extended Local Search.  

H. Jayasinghe et al.                                                                                                                                                                                                                            Journal of Energy Storage 140 (2025) 118847 

14 



4. Case study: hydrogen-based standalone DC microgrid for 
offshore salmon aquaculture

The Blue Economy Cooperative Research Centre was established by 
the Australian Government to promote sustainable practices in offshore 
industries across Australia and New Zealand. Among its many initiatives 
is the development of open ocean aquaculture farms, which aim to in
crease fish yield per unit area [81]. To support the sustainable operation, 
transportation, and logistics of these farms, this study proposes tran
sitioning to RES-powered infrastructure and hydrogen fuel cell-powered 
vessels [82]. The focus of this study is the design of an offshore 

standalone DC microgrid integrated with a hydrogen fuelling station to 
sustainably power aquaculture operations. The proposed microgrid will 
be located in Marlborough Sounds, New Zealand, where “Blue 
Endeavor,” the country’s first open-ocean salmon aquaculture farm, is 
currently under development [83]. Fig. 10 below shows the location of 
the proposed farm on Google Maps.

To develop the microgrid model for this case study, specific brands 
and equipment costs were selected based on the operational re
quirements of the salmon aquaculture farms. The technical specifica
tions of the microgrid components are presented in Table 2, while the 
economic specifications, expressed in U.S. dollars, are detailed in 
Table 3. The microgrid is designed for a 25-year operational lifespan 
with an assumed interest rate of 6 %. Fig. 11 illustrates the monthly 

Fig. 9. PDF discretisation into scenarios: Gaussian Distribution (PDF is divided into intervals of equal size).

Fig. 10. Location of proposed blue endeavor farm (Image courtesy of Google Maps). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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average 24-hour profiles of the uncertain variables over one year. For 
the probabilistic study, 14 years (2010− 2023) of historical data on solar 
irradiance, wind speed, and ambient temperature were obtained from 
the NIWA website.

This study proposes the design of a standalone DC microgrid pow
ered by RES to support an offshore facility equipped with a hydrogen 
fuel station. The strategy aims to minimise the microgrid’s lifecycle cost 
through the integration of HESS. The following subsections present a 
detailed description of the proposed optimisation strategy, which in
corporates a probabilistic approach to account for uncertainties in sys
tem inputs.

5. Simulation and results

The proposed optimisation model was developed and evaluated in 
MATLAB R2024a, using a one-year offshore demand profile with 15-min 
time intervals. Three energy storage configurations were analysed: (1) 
battery-only ESS, (2) battery combined with SCESS, and (3) hydrogen 
energy storage combined with SCESS. Each configuration was simulated 
under two scenarios: a deterministic simulation using one year of data, 
and a probabilistic simulation incorporating 14 years of historical data. 
Key outcomes from the probabilistic analysis support decision-making in 
microgrid design by identifying three lifecycle cost scenarios: best-case, 
average-case, and worst-case, corresponding to the 10th percentile, ex
pected value, and 90th percentile of lifecycle cost results, respectively, 
based on a normal distribution. The boundaries for decision variables 
are provided in Table 4. For each scenario, 40 independent trial runs 
were performed, and the run yielding the lowest lifecycle cost was 
selected as the optimal solution for further analysis.

5.1. Scenario 1: battery only system

The battery-only ESS served as the baseline configuration for this 
optimisation study. No energy filter was applied, as there is no high- 
power capacity storage available to manage high-frequency demand 
fluctuations. A rule-based energy management algorithm was imple
mented, wherein excess renewable energy is used to charge the battery, 

and any demand exceeding the renewable generation is met through 
battery discharge. The initial optimisation was performed using one year 
of deterministic data for the uncertain variables.

In the probabilistic study, PSFs were generated for the uncertain 
variables using 14 years of historical weather data, along with syn
thetically generated demand profiles from the same period. The data 
were divided into five discrete segments to improve approximation ac
curacy. A total of 625 scenarios, resulting from the discretisation of these 
variables, were reduced to five using a scenario reduction algorithm 
based on MILP. Table 5 compares these five reduced scenarios with the 
deterministic data for a specific date, while Table 6 presents the opti
misation results across different scenarios.

5.2. Scenario 2: battery + SC HESS

In this scenario, the BESS is combined with SCESS to form a HESS. 
The BESS manages the low-frequency component of the demand signal 
due to its high energy density. At the same time, the SCESS handles the 
high-frequency component due to its high power capacity. A second- 
order low-pass filter is employed to separate the demand signal into 
its respective frequency components. The deterministic and probabi
listic data for this scenario were obtained using the same methodology 
as in Scenario 1 (battery-only scenario). The optimisation results for this 
scenario are presented in Table 7.

5.3. Scenario 3: hydrogen energy storage + SC HESS

The dynamic performance of fuel cells in microgrids is constrained 
by the oxygen and hydrogen feeding systems, making them unsuitable 
for managing rapid power demand fluctuations. These limitations can 
result in voltage drops, leading to increased stress on power converters, 
frequent fuel cell switching, voltage instability, and a reduced lifespan 
for both fuel cells and converters [100]. Due to these challenges, 
hydrogen energy storage alone is not ideal for ESS in applications with 
frequent power variations. To address rapid fluctuations, a secondary 
ESS is required. While batteries can fulfil this role, their lower power 
handling capacity makes them less optimal. High-power capacity 

Table 2 
Technical Specifications of the proposed standalone microgrid.

Parameter Value Source Parameter Value Source Parameter Value Source

ηPV 22.6 % [84] CP 0.5 LWC 15 m [85]
PR 80 % ASwept 397.6 m2 [86] SOCBESS− Min 10 % [87]
APanel 1.6 m2 vin 3.5 ms− 1 SOCBESS− Max 90 %
k − 0.29 % /0C vRated 10.5 ms− 1 SOCSC− Min 5 % [88]
TRef 25 ◦C vout 20 ms− 1 SOCSC− Max 95 %
ηIG 90 % [86] PRated 100 kW ηFC 60 % [89]
hCI 0.5 m [90] hCO 10.0 m [90]
ηGB 95 % ηWC 40 % [85] ηC

EL 95 % [91]
PH2

EL 700 bar [92] PO2
EL

13,790 kPa del 5.1х10− 4 μm [93]
δel 1.15 [93] ax 1.2х10− 5 cm [94] ΔHVap 241 kJ/mol
PH2O 47.948 kPa σel 0.137 s/cm r0 2.7х10− 2 mΩ/cm2

Po 4 bar Q 0.95

Table 3 
Economic Specifications of the proposed standalone microgrid.

Parameter Value Unit Source Parameter Value Unit Source

IPV 1448 USD/kW [95] IBS 1270 USD/kW [95]
OMPV 17.16 USD/kW-year OMBS 45.76 USD/kW-year
IWT 2098 USD/kW ISC 8300 USD/kW
OMWT 29.64 USD/kW-year OMSC 3.25 USD/kW-year
IWC 5934 USD/kW [96] IFC 6771 USD/kW [97]
OMWC 41.25 USD/kW-year OMFC 34.65 USD/kW-year
IDG 700 USD/kW [98] IEL 1520 USD/kW [99]
OMDG 33 USD/kW-year OMEL 25 USD/kW-year
CD 1.50 USD/Liter IHT 750 USD/kgH2

CT 70 USD/t-CO2 [61] OMHT 15 USD/ kgH2-year
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systems, such as supercapacitors, offer a more effective solution for 
managing rapid power variations in hydrogen energy storage-based 
microgrids [101].

In this study, hydrogen energy storage and SCESS were evaluated as 
a HESS. Similar to Scenario 2, a second-order low-pass filter was used to 
separate the demand signal into low- and high-frequency components, 
which were managed by the fuel cell and SCESS, respectively. As the fuel 
cell has a ramp up rate in switching, SCESS supports the fuel cell for few 
seconds until fuel cell can absorb the total power requirement. For both 
deterministic and probabilistic studies, the data were obtained by dis
cretising the PDFs and applying a scenario reduction algorithm. In this 
scenario, the hydrogen required for the fuel cell is supplied directly by 
the PEM electrolyser, thereby increasing the load demand on the 

microgrid. The results of the optimisation for this configuration are 
presented in Table 8.

5.4. Comparison of the results of three scenarios

The results from the three evaluated scenarios reveal several key 
insights. Notably, wave energy was excluded from the optimal design 
scenarios in all scenarios, indicating that, given the current costs of wave 
energy converters and associated infrastructure, wave energy remains 
economically uncompetitive compared to more established RES like 
solar PV and wind, even for offshore standalone DC microgrids. From an 
economic perspective, solar PV and wind continue to be the preferred 
RES options for microgrid design.

The lowest LCOE was achieved with the battery + SC HESS, showing 
an 11.14 % reduction compared to the baseline battery-only system. 
This reduction occurred despite the per-unit cost of SCESS being more 
than seven times that of BESS. Two key factors contributed to this 
improvement. 

1. Reduced BESS Capacity Requirement: In the battery + SC configu
ration, the required BESS capacity decreased by approximately 47 %, 
from 5100 to 5250 kWh in the battery-only system to 2700–3000 
kWh.

2. Extended BESS Replacement Frequency: The replacement period for 
BESS increased from 11.5 years in the battery-only scenario to 17 
years when coupled with an SC, thereby reducing overall replace
ment costs.

Fig. 11. Monthly average 24-hour profiles for uncertain variables: Solar irra
diance, Wind speed, Temperature, Load Demand.

Table 4 
Upper and lower boundaries for the decision variables of the optimisation 
problem.

Decision 
variable

Lower 
boundary (LB)

Upper 
boundary (UB)

Selection criteria

NPV 0 * 2140 
* 2720: 
Scenario 3 
(With fuel cell)

UB: Number required to meet 
demand with 4 h of peak 
sunlight.

NWT 0 * 14 
* 17: Scenario 3 
(With fuel cell)

UB: Number required to meet 
demand through wind energy.

NWC 0 * 15 
* 18: Scenario 3 
(With fuel cell)

UB: Number required to meet 
demand through wave energy.

PDG 630 kW 
0: Scenario 3 
(With fuel 
cell)

2480 kW LB: Capacity needed for meet 
demand with 5 % LOLP at 75 % 
load without hydrogen 
production. 
UB: Capacity required to meet 
the peak demand with a 15 % 
margin with hydrogen 
production (8 h electrolyser at 
75 % load).

EBS 0 5935 kWh UB: Capacity to supply half the 
daily demand.

ESC 0 405 kWh UB: Capacity for peak demand 
during hydrogen production 
over 15 min.

PFC 0 1350 kW UB: Capacity to supply half the 
peak demand with 8 h of full- 
load hydrogen production.

PEL 370 kW 1700 kW LB: Capacity to meet fuel 
station needs with 24-h 
operation. 
UB: Capacity to meet both fuel 
station and fuel cell needs with 
8-h operation.

mHT 200 kg 500 kg LB: Capacity to store hydrogen 
for the fuel station. 
UB: Capacity to store daily 
hydrogen for the fuel station 
and fuel cell.
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Due to these factors, the LCOE of the battery + SC system was lower 
than that of the battery-only system, even with the additional cost of 
SCESS.

Furthermore, compared to the hydrogen energy storage + SC HESS, 
the battery + SC system achieved a 42.69 % reduction in LCOE. The 
higher costs associated with fuel cells and their lower efficiency 
contributed to this high LCOE for the hydrogen energy storage + SC 
HESS.

In the probabilistic study, across all scenarios (best-case, average- 
case, and worst-case), the battery + SC HESS consistently demon
strated a significant reduction in LCOE compared to both the battery- 
only and hydrogen energy storage + SC configurations. Fig. 12 illus
trates a comparative overview of LCOE values for the three scenarios in 

both deterministic and probabilistic studies.
A standalone DC microgrid powered solely by a diesel generator 

typically has a minimum LCOE of approximately 30 US cents/kWh 
[102]. In contrast, renewable energy-based microgrids, whether using a 
battery-only system or a battery + SC HESS, offer significant cost ad
vantages, making them economically superior to diesel-only systems. 
However, the hydrogen energy storage + SC HESS, when integrated into 
a renewable energy microgrid, remains less competitive than diesel- 
powered systems due to the high costs associated with fuel cells and 
electrolysers. Even in scenarios where an electrolyser is already avail
able for hydrogen production, or where carbon taxes are imposed on 
diesel operations, the economic performance of the hydrogen energy 
storage + SC system remains unfavourable. This is primarily due to the 
high capital costs and lower efficiency of current fuel cell and electro
lyser technologies.

Table 5 
Comparison of Deterministic and Probabilistic Study Values for uncertain variables at 12:00 Noon on January 1st.

Study Scenario Probability of Occurrence Solar Irradiance (W/m2) Wind Speed (m/s) Ambient Temperature (◦C) Load Demand (kW)

Deterministic N/A N/A 937.3 6.9 18.6 297.1
Probabilistic 1 0.275 847.2 7.7 20.1 313.3

2 0.223 983.7 8.9 17.7 289.0
3 0.202 711.4 9.8 19.2 297.0
4 0.154 653.9 10.3 19.3 301.0
5 0.146 572.4 9.2 18.4 293.2

Table 6 
Results for optimisation problem for Scenario 1 – Battery only system.

Output of Optimisation 
Problem

Deterministic 
Study

Probabilistic Study

Best 
Case

Average 
Case

Worst 
Case

Total Cost of microgrid 
(USD Millions)

23.92 22.01 24.74 28.65

LCOE (US Cents/kWh) 22.09 20.32 22.84 26.45
Carbon Footprint (tCO2, 

eq)
14,392 11,247 14,553 15,018

Replacement Frequency 
of ESS (Years)

BESS – 11.5 BESS – 
12

BESS – 
11.5

BESS – 
11.5

NPV 2129 2116 2131 2143
NWT 10 9 10 11
NWC 0 0 0 0
PDG (kW) 630 630 630 650
EBS (kWh) 5150 5100 5150 5250
PEL (kW) 580 550 590 620
mHT (kg) 200 200 200 200

Table 7 
Results for optimisation problem for Scenario 2 – Battery + Supercapacitor 
system.

Output of Optimisation 
Problem

Deterministic 
Study

Probabilistic Study

Best 
Case

Average 
Case

Worst 
Case

Total Cost of microgrid 
(USD Millions)

21.27 19.79 21.70 24.04

LCOE (US Cents/kWh) 19.63 18.28 20.04 22.19
Carbon Footprint (tCO2, 

eq)
10,256 8133 10,810 12,014

Replacement Frequency 
of ESS (Years)

BESS – 17 
SCESS – No

BESS – 
17 
SCESS - 
No

BESS – 17 
SCESS - 
No

BESS – 
16.5 
SCESS - 
No

NPV 2129 2114 2129 2141
NWT 10 9 10 11
NWC 0 0 0 0
PDG (kW) 630 630 630 650
EBS (kWh) 2830 2720 2850 2950
ESC (kWh) 120 110 120 135
PEL (kW) 580 550 590 620
mHT (kg) 200 200 200 200

Table 8 
Results for optimisation problem for scenario 3 – hydrogen energy storage + SC 
system.

Output of optimisation 
problem

Deterministic 
study

Probabilistic study

Best case Average 
case

Worst 
case

Total Cost of microgrid 
(USD Millions)

47.07 42.75 49.49 56.63

LCOE (US Cents/kWh) 34.25 31.12 36.03 41.23
Carbon Footprint 

(tCO2,eq)
0 0 0 0

Replacement 
Frequency of ESS 
(Years)

Fuel cell - No 
SCESS - No

Fuel cell 
- No 
SCESS - 
No

Fuel cell - 
No 
SCESS - 
No

Fuel cell 
- No 
SCESS - 
No

NPV 2669 2629 2701 2731
NWT 14 13 15 17
NWC 0 0 0 0
PDG (kW) 0 0 0 0
ESC (kWh) 175 170 185 195
PFC (kW) 1250 1175 1275 1350
PEL (kW) 950 920 970 1020
mHT (kg) 350 310 350 390
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Fig. 12. Comparison of LCOE for three ESS scenarios: deterministic study vs. 
probabilistic study.
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Despite these economic challenges, the hydrogen energy storage +
SC system offers the benefit of eliminating diesel usage, thereby 
reducing the microgrid’s carbon footprint to zero. If fuel cell and elec
trolyser costs decline significantly and efficiencies improve, this system 
could become a viable solution for green offshore microgrids in the 
future. Fig. 13 illustrates the variation in LCOE for a hydrogen energy 
storage + SC HESS integrated microgrid as the fuel cell costs decrease, 
with efficiency levels maintained at 60 % and increased to 75 %. The 
results indicate that: 

• When fuel cell efficiency is maintained at 60 %, the LCOE of the 
hydrogen energy storage + SC HESS falls below that of the battery +
SC HESS once the fuel cell cost reaches 1981 USD/kW.

• If the fuel cell efficiency increases to 75 %, this LCOE crossover oc
curs at 2078 USD/kW.

This means that, with current cost levels, the fuel cell price would 
need to decrease by 70.7 % to achieve cost parity with the battery + SC 
HESS without efficiency improvements. If the fuel cell efficiency in
creases to 75 %, the required cost reduction is slightly lower at 69.3 %.

To further assess the effectiveness of the battery + SC HESS 
compared to the battery-only configuration, an analysis of the power 
curves, presented in Fig. 14, provides valuable insights. The charging 
curve of the BESS is notably smoother in the battery + SC HESS than in 
the battery-only configuration. The SCESS absorbs power peaks, effec
tively mitigating power surges in the battery’s charging curve. This has 
resulted in a lower required capacity for the BESS and significantly 

reduced the number of charge-discharge cycles necessary for daily 
operation.

In this design, hydrogen production for both the fuel cell and the 
hydrogen fuelling station was powered entirely by RES, resulting in the 
generation of green hydrogen across all three scenarios. Scenarios 1 and 
2 include only the hydrogen fuelling station, while scenario 3 in
corporates both a fuel cell and a hydrogen fuelling station. Notably, 
except for Scenario 3, which utilises hydrogen energy storage + SC 
HESS, producing green hydrogen from RES proved to be more cost- 
effective than relying on fossil fuels for hydrogen production in the 
offshore standalone DC microgrid. Fig. 15 illustrates the electrolyser’s 
operational profile, averaged over a summer and winter day, for Sce
narios 2 and 3. The load demand profiles for the electrolyser in Scenario 
1 and Scenario 2 are nearly identical. From both figures, it is evident that 
during summer, the electrolyser load peaks during daylight hours, 
coinciding with maximum solar PV generation. In contrast, during 
winter, the load peaks from midnight to early morning, aligning with 
lower demand periods when wind power serves as the primary energy 
source.

The key insights from analysing the electrolyser demand profiles 
include: 

✓ Optimum size of the electrolyser is determined mainly by green 
hydrogen production during the daytime in summer, utilising both 
solar PV and wind energy as RES. This is evident from the consis
tently high electrolyser output throughout summer, as shown in the 
average profiles.

✓ Minimum hydrogen production occurs in the evening when renew
able energy generation is low, and load demand is high in both 
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seasons. This is particularly clear in the summer demand profile. In 
winter, reduced hydrogen production during the day is also observed 
due to lower solar irradiance, limiting PV generation compared to 
summer.

✓ Higher hydrogen production rates are seen from midnight to early 
morning, when offshore site load demand is significantly lower. In 
winter, this production is notably higher than in summer, due to 
comparatively lower daytime generation.

Fig. 16 provides a comparative analysis of optimisation results under 
different uncertainty budgets, highlighting the significance of probabi
listic modelling in standalone microgrid design. The key insights are: 

✓ Best Case Scenario: In the most optimal scenario for the battery +
supercapacitor HESS, the Levelized Cost of Energy (LCOE) decreases 
by 7.0 % compared to the deterministic model. In contrast, the other 
two scenarios show a nearly 10 % increase in LCOE. This 

0

100

200

300

400

500

600
00

:0
0

00
:4

5

01
:3

0

02
:1

5

03
:0

0

03
:4

5

04
:3

0

05
:1

5

06
:0

0

06
:4

5

07
:3

0

08
:1

5

09
:0

0

09
:4

5

10
:3

0

11
:1

5

12
:0

0

12
:4

5

13
:3

0

14
:1

5

15
:0

0

15
:4

5

16
:3

0

17
:1

5

18
:0

0

18
:4

5

19
:3

0

20
:1

5

21
:0

0

21
:4

5

22
:3

0

23
:1

5

00
:0

0

)
W k(re sylortcel Ef ot uptu

Ore
w oP

(a) Electrolyser Seasonal Average Load Profile -
Battery + Supercapacitor HESS

Summer

Winter

0

100

200

300

400

500

600

700

800

900

1000

00
:0

0

00
:4

5

01
:3

0

02
:1

5

03
:0

0

03
:4

5

04
:3

0

05
:1

5

06
:0

0

06
:4

5

07
:3

0

08
:1

5

09
:0

0

09
:4

5

10
:3

0

11
:1

5

12
:0

0

12
:4

5

13
:3

0

14
:1

5

15
:0

0

15
:4

5

16
:3

0

17
:1

5

18
:0

0

18
:4

5

19
:3

0

20
:1

5

21
:0

0

21
:4

5

22
:3

0

23
:1

5

00
:0

0

)
Wk(resylo rtcelE f otu ptu

Ore
woP

(b) Electrolyser Seasonal Average Load Profile -
Hydrogen + Supercapacitor HESS

Summer

Winter

Fig. 15. Electrolyser average demand profile for summer and winter for Scenario 2 and Scenario 3.

H. Jayasinghe et al.                                                                                                                                                                                                                            Journal of Energy Storage 140 (2025) 118847 

20 



demonstrates that significant savings can be achieved with a high- 
risk, cost-optimised design for the standalone microgrid using the 
battery + supercapacitor HESS.

✓ Average Case Scenario: Across all scenarios, the average-case sce
nario from the probabilistic study shows a slight increase in LCOE 
compared to the deterministic model. This rise is primarily due to the 
larger energy storage capacity required. The probabilistic study of
fers a more robust understanding of the optimal design, accounting 
for uncertainties in standalone microgrid design.

✓ Worst Case Scenario: The worst-case scenario shows a 12.9 % in
crease in LCOE compared to the deterministic model. For the battery- 
only system and the hydrogen energy storage + supercapacitor 
HESS, the LCOE rises significantly by 19.8 % and 20.3 %, respec
tively. This suggests that, under critical conditions, a higher invest
ment in generation and storage is required. Nevertheless, the battery 
+ supercapacitor HESS still offers a more favourable LCOE than the 
other configurations and the diesel generator standalone system.

To evaluate the target cost of integrating wave energy into offshore 
standalone DC microgrids, the optimal standalone DC microgrid 
configuration with a battery–SC HESS was analysed under scenarios of 
reduced WEC costs and improved WEC efficiencies. Fig. 17 illustrates 
the number of WECs in the optimal design as a function of the unit cost 
of wave energy, considering the current efficiency of 40 % and hypo
thetical increases up to 80 %. The results indicate that, at the current 
efficiency level, the unit cost of wave energy must decrease by at least 

70 % relative to present levels to achieve integration. Furthermore, even 
with efficiency improvements up to 80 %, a cost reduction of at least 58 
% is required. These findings imply that, although wave energy shows 
promise, substantial cost reductions are essential for its integration into 
offshore standalone DC microgrids.

5.5. Sensitivity analysis of key cost drivers

To evaluate the impact of potential cost reductions in RES equipment 
and ESS, as well as increases in diesel generator fuel costs, on the 
optimal design of a standalone DC microgrid, further optimisations were 
conducted under three distinct scenarios: (1) Existing scenario: Current 
cost conditions are maintained throughout the microgrid’s operational 
lifetime, (2) Realistic change scenario: The costs of RES and ESS 
equipment are reduced by 20 %, while diesel fuel costs are increased by 
20 %, (3) Extreme change scenario: The costs of RES and ESS equipment 
are reduced by 70 %, and diesel fuel costs are increased by 70 %. The 
results of these three scenarios are summarized in Table 9.

Model Output Existing 
Scenario

Realistic Change 
Scenario

Extreme Change 
Scenario

Total Cost of microgrid 
(USD Millions)

21.27 18.09 11.37

LCOE (US Cents/kWh) 19.63 16.67 10.50
Carbon Footprint (tCO2, 

eq)
10,256 3484 0

NPV 2129 2375 2540
NWT 10 13 15
NWC 0 0 0
PDG (kW) 630 630 630
EBS (kWh) 2830 2980 3220
ESC (kWh) 120 145 170
PEL (kW) 580 580 580
mHT (kg) 200 200 200

Fig. 16. Comparative analysis of probabilistic study under different uncertainty budgets.
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Table 9 
Comparison of Average No. of iterations and time taken for convergence in 
different metaheuristic optimisation techniques.

Optimisation 
Algorithm

Average CPU Usage 
Time until 
convergence (s)

Average No. of 
Iterations for 
Convergence

Average CPU 
Usage Time for 
one iteration (s)

GA 7189 127 56.61
ACO 6543 117 55.92
Standard PSO 6671 110 60.65
Enhanced PSO 

(This study)
6310 93 67.84
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Based on the data presented in Table 9, a 20 % reduction in RES and 
ESS costs combined with a 20 % increase in diesel fuel prices results in a 
significant decrease, approximately 66 %, in diesel generator utilisation, 
as reflected in the corresponding reduction in carbon footprint. Under 
the extreme scenario, where RES and ESS costs are reduced by 70 % and 
fuel costs are increased by 70 %, the diesel generator is not utilised at all. 
In this case, the RES and ESS systems fully meet the microgrid’s energy 
demand. The LCOE decreases by 15 % in the realistic scenario and by 
46.5 % in the extreme scenario. This reduction in diesel generator usage 
is primarily attributed to the increased ESS capacity enabled by lower 
costs, which allows the system to store and supply energy that would 
otherwise require diesel generation. Additionally, the capacity of RES is 
expanded in conjunction with ESS, as the enhanced storage capability 
facilitates greater integration of renewable energy. These findings sug
gest that substantial cost reductions in RES and ESS technologies can 
enable standalone DC microgrids to operate entirely on renewable en
ergy. This is a key observation and a significant conclusion drawn from 
the analysis.

5.6. Sensitivity analysis of quality factor of the low pass filter

In the design of the standalone DC microgrid, a low-pass filter quality 
factor of 0.9 was assumed for computational convenience. To assess its 
impact on the lifecycle cost of the microgrid, different quality factor 
values were evaluated under the deterministic optimal design scenario 
of the standalone DC microgrid integrating a battery–supercapacitor 
HESS. Fig. 18 illustrates the variation of the LCOE with respect to the 
quality factor. The results show that a higher quality factor generally 
reduces the lifecycle cost. However, in practical applications, a quality 
factor close to unity implies that signals near the cutoff frequency are 
split between the two ESS units [103]. In the presence of noise, har
monics, and sensor errors, such conditions can lead to oscillations. 
Therefore, the selected value of 0.9 is considered more appropriate, as it 
balances lifecycle cost minimization with system stability.

6. Performance analysis of the proposed methodology

This study introduces a set of novel methodologies aimed at opti
mising the lifecycle cost of standalone DC microgrids for offshore ap
plications. The computational and statistical performance of these 
methodologies, applied at various stages of the optimisation process, is 
evaluated and compared against existing techniques. The following 
subsections present a detailed analysis of each method’s performance, 
highlighting improvements in efficiency, accuracy, and robustness over 
conventional approaches.

6.1. Performance analysis of the proposed enhanced PSO

The proposed enhanced PSO algorithm was executed for 40 inde
pendent runs on the dataset, with each run consisting of up to 200 it
erations. From these runs, the best and worst cases were identified based 
on the lowest and highest lifecycle costs of the microgrid, respectively. 
To evaluate the performance of the enhanced PSO algorithm, the same 
procedure was applied using three widely adopted metaheuristic opti
misation techniques: GA, ACO, and standard PSO. These comparisons 
were conducted using the most optimal deterministic scenario: Scenario 
2, which incorporates a battery + SC HESS. The best and worst runs from 
each of the four optimisation techniques are plotted and compared in 
Fig. 19, providing a visual assessment of their relative performance in 
minimising lifecycle cost.

From above figures, several key observations can be made. First, the 
selected number of iterations (i.e., 200) is sufficient to ensure conver
gence for each algorithm. Second, the enhanced PSO algorithm clearly 
outperforms the established metaheuristic techniques; GA, ACO, and 
standard PSO, in terms of minimising lifecycle cost. These results 
demonstrate that the enhancements introduced to the PSO algorithm, 
specifically the integration of quadratic interpolation and extended local 
search mechanisms, significantly improve its efficiency and effective
ness in standalone DC microgrid sizing applications.

CPU time required for convergence is another important metric for 
evaluating the performance of the proposed optimisation algorithm 
[104]. Table 9 presents a comparative overview of the average 
convergence time for each algorithm applied to the deterministic model 
of the optimisation problem. The results indicate that the proposed 
enhanced PSO algorithm outperforms the other metaheuristic tech
niques, GA, ACO, and standard PSO, in terms of average CPU time to 
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convergence. Although each iteration of the enhanced PSO algorithm 
requires slightly more computational time than the others, the total 
number of iterations needed for convergence is significantly lower. This 
trade-off results in overall faster convergence and improved computa
tional efficiency. These findings suggest that the enhanced PSO algo
rithm is a more effective and efficient tool for optimising the design of 
standalone DC microgrids.

To assess the robustness of the proposed enhanced PSO algorithm, 
statistical analysis was performed on the results from 40 independent 
trial runs. The study focused on the most optimal configuration, scenario 
2, which incorporates a battery + SC HESS. The statistical parameters 
evaluated include the mean, SD, root mean square error (RMSE), and 
relative error (RE), providing a comprehensive understanding of the 
algorithm’s consistency and reliability. Table 10 summarises these sta
tistical metrics for the enhanced PSO algorithm, where N represents the 
number of independent trials. The descriptive statistics collectively 
indicate that the enhanced PSO algorithm exhibits low sensitivity to 
initial conditions and delivers robust performance. This suggests that a 
single execution of the algorithm is likely to yield an acceptable solution, 
making it practical for real-world applications. Minor variations in 
carbon footprint observed across different trials suggest that intermit
tent operation of the diesel generator may introduce slight instability in 
the total discounted lifecycle cost of the microgrid. However, these de
viations remain within acceptable limits, further supporting the reli
ability of the proposed optimisation approach.

6.2. Performance analysis of the cycle counting algorithm for ESS

To evaluate the efficiency, effectiveness, and robustness of the pro
posed cycle counting algorithm for ESS, statistical analysis was 

conducted on the results from 40 independent optimisation trials. The 
analysis focused on the most optimal configuration, scenario 2, which 
incorporates a battery + SC HESS, and considered key output parame
ters, specifically the estimated lifetimes of the battery and SC. For 
comparison, an additional set of 40 independent trials was conducted 
using the same optimisation framework, but with the widely used 
rainflow counting algorithm applied for battery degradation modelling 
[105]. Statistical analysis was performed on the results of both methods, 
and the outcomes are summarized in Table 11. In addition to perfor
mance metrics, computational efficiency was assessed by comparing the 
overall runtime of the two algorithms in Table 12 below. The results 
demonstrate the proposed cycle counting method’s advantages in both 
accuracy and computational speed, highlighting its suitability for 
lifecycle-based optimisation of standalone DC microgrids.

Table 10 
Statistical parameters of the 40 independent trials of proposed enhanced PSO.

Output (Fi) Best (FBest) Worst 
(FWorst)

Mean (FMean =
∑N

i=1 Fi

N
)

SD 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FMean)
2

N − 1

√ ⎞

⎠

RMSE 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FBest)
2

N

√ ⎞

⎠

RE 
(∑N

i=1 Fi − FBest

FBest

)

Lifecycle Cost of the Microgrid (USD 
Millions)

21.22 22.03 21.67 0.201 0.203 0.0227

LCOE (US Cents) 19.59 20.34 20.01 0.188 0.191 0.0107
Carbon Footprint (tCO2,eq) 10,245 10,713 10,449 117 118 0.0143

Table 11 
Descriptive Statistics for Cycle Time in different ESS, for (a) Proposed ESS degradation algorithm, (b) Rainflow counting algorithm.

(a) Proposed ESS Degradation Algorithm:

Output (Fi) Best 
(FBest)

Worst 
(FWorst)

Mean (FMean =
∑N

i=1 Fi

N
)

SD 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FMean)
2

N − 1

√ ⎞

⎠

RMSE 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FBest)
2

N

√ ⎞

⎠

RE 
(∑N

i=1 Fi − FBest

FBest

)

Number of cycles per year for 
BESS

520 533 525 3.25 3.25 0.0057

Number of cycles per year for 
SCESS

35,454 35,529 35,497 18.75 18.76 0.00076

(b) Rainflow Counting Algorithm:

Output (Fi) Best 
(FBest)

Worst 
(FWorst)

Mean (FMean =
∑N

i=1 Fi

N
)

SD 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FMean)
2

N − 1

√ ⎞

⎠

RMSE 
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 (Fi − FBest)
2

N

√ ⎞

⎠

RE 
(∑N

i=1 Fi − FBest

FBest

)

Number of cycles per year for 
BESS

538 559 554 5.25 5.25 0.0072

Number of cycles per year for 
SCESS

35,790 36,451 36,210 165.25 165.33 0.0058

Table 12 
Computational performance comparison of the proposed ESS degradation 
quantification algorithm with Rainflow counting algorithm.

ESS Degradation 
Algorithm

Average CPU Usage 
Time until 
convergence for 
Optimisation 
Problem (s)

Average No. of 
Iterations for 
Convergence

Average CPU 
Usage Time 
for one 
iteration (s)

Proposed ESS 
Degradation 
Quantification 
Algorithm (This 
Study)

6310 93 67.84

Rainflow Counting 
Algorithm

6442 94 68.53
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Based on the results presented in Tables 11 and 12, it is evident that 
the proposed ESS degradation algorithm significantly outperforms the 
widely used rainflow counting algorithm in terms of both robustness and 
computational efficiency. This superior performance can be attributed 
to the algorithm’s tailored design, which specifically addresses the 
degradation characteristics of ESS in standalone DC microgrid applica
tions. Standalone microgrids often experience numerous partial charge- 
discharge cycles due to fluctuating renewable energy inputs and dy
namic load profiles. The proposed algorithm accurately identifies and 
quantifies these partial cycles, leading to a more precise estimation of 
total cycle counts and degradation. In contrast, the rainflow counting 
algorithm, originally developed for fatigue analysis in mechanical sys
tems, is less effective in capturing partial cycles in ESS operation. This 
limitation results in less accurate degradation modelling and higher 
variability in lifecycle cost predictions. The enhanced accuracy and ef
ficiency of the proposed algorithm make it a more suitable choice for 
lifecycle cost optimisation of ESS in standalone DC microgrids.

7. Future research directions

Although this study provides valuable insights into the design of 
standalone DC microgrids for offshore applications, several assumptions 
were made that may affect the generalizability and accuracy of the re
sults. In the hydrogen ESS, a fixed efficiency was assumed for the fuel 
cell. However, in real-world conditions, this efficiency may vary 
depending on operating voltage and current, ambient temperature, and 
atmospheric pressure. Future studies should investigate the impact of 
these dynamic parameters to enhance design accuracy, particularly for 
applications involving critical equipment. Additionally, the cost of 
hydrogen compression was assumed to be fixed, based on a final pres
sure of 700 bar, which is suitable for fuel cell vehicles [106]. However, 
different applications such as hydrogen-powered vessels, hydrogen 
turbines, and heating systems may require varying pressure levels. 
Future research should focus on tailoring hydrogen compression costs 
and pressure requirements to specific offshore applications.

In the probabilistic analysis, uncertainties in input parameters such 
as solar irradiance, wind speed, ambient temperature, and load demand 
were considered. However, uncertainties related to economic parame
ters, including fuel costs, ESS replacement costs, and operation and 
maintenance costs of RES and ESS, were not included. Incorporating 
these uncertainties would improve the robustness of the probabilistic 
design framework. To achieve this, multivariate joint distribution-based 
statistical methods can be employed. Copula-based techniques offer a 
viable and computationally efficient approach for modelling complex 
dependencies among uncertain variables [107].

To enable practical implementation of the proposed standalone DC 
microgrid design, its resiliency under extreme conditions, such as severe 
weather events and equipment faults, must be thoroughly investigated. 
Fault detection, handling, and clearance mechanisms should be thor
oughly studied to enhance the system’s robustness and reliability [108]. 
Future research should focus on developing strategies for managing 
these extreme scenarios to improve overall microgrid performance. 
Additionally, ancillary services such as black start capability are critical, 
especially in situations involving outages of fossil fuel-powered gener
ators. Evaluating the microgrid’s ability to restore operation under such 
conditions autonomously is essential for assessing its resiliency. Future 
studies should explore the integration of black start functionality and 
other ancillary services to ensure reliable operation in offshore and 
remote environments.

In this design, equipment degradation caused by harsh offshore 
conditions, such as corrosion due to salinity, was not considered. 
However, in practical implementations, such degradation can influence 
the lifecycle cost by increasing replacement frequency. Future studies 
should therefore focus on modelling equipment degradation under 
adverse environmental conditions and evaluating its impact on the 
design and economic feasibility of standalone DC microgrids.

8. Conclusion

Offshore standalone microgrids integrated with hydrogen fuel sta
tions present a sustainable energy solution for powering maritime in
dustries. HESS offer a cost-effective approach to managing the 
variability and uncertainty associated with RES in such applications. 
This manuscript introduces a novel meta-heuristic optimisation-based 
probabilistic model for designing a standalone DC microgrid with an 
integrated hydrogen fuel station, tailored explicitly for offshore indus
trial use. A case study involving a proposed aquaculture farm in New 
Zealand demonstrates the model’s practical applicability and quantifi
able outcomes.

The findings indicate that a battery + SC HESS configuration is the 
most economically viable energy storage solution for offshore stand
alone microgrids. This configuration reduces lifecycle costs by over 11 % 
compared to a battery-only setup. It achieves a 42 % lower LCOE than 
the hydrogen + SC HESS configuration, despite the additional invest
ment in hydrogen infrastructure. These cost savings are primarily 
attributed to the system’s ability to smooth power fluctuations, thereby 
reducing operational stress and extending the lifespan of the BESS. In the 
deterministic scenario, the battery + SC HESS configuration achieves an 
LCOE of 19.63 US cents per kWh, outperforming conventional diesel 
generator-based systems commonly used in offshore settings. This result 
underscores the economic and environmental feasibility of sustainable 
power supply solutions for offshore industries. Additionally, the study 
reveals that, at current cost levels, achieving cost parity with the battery 
+ SC HESS configuration would require a 70.7 % reduction in fuel cell 
prices without any efficiency improvements. However, if fuel cell effi
ciency increases to 75 %, the reduction of cost needed decreases slightly 
to 69.3 %.

Another notable finding is that wave energy is currently not 
economically viable for offshore standalone microgrids due to the high 
costs and low efficiency of wave energy converters. These limitations 
hinder its competitiveness as a power source. Nevertheless, given that 
wave energy technology is still in its early stages, future advancements 
and cost reductions could enhance its feasibility, particularly in offshore 
environments. The study also highlights the importance of probabilistic 
modelling in microgrid design. Deterministic models tend to underes
timate lifecycle costs, especially under extreme scenarios. In the optimal 
battery + SC HESS configuration, deviations from deterministic results 
are 6.9 % in the best-case scenario and 13.0 % in the worst-case scenario, 
with even larger deviations observed in other configurations. The 
probabilistic model effectively captures these variances, aligning the 
design process more closely with real-world operating conditions.

The effectiveness of the proposed methodologies was evaluated and 
compared with commonly used techniques to assess performance. 
Across 40 independent trials, the proposed enhanced PSO algorithm 
demonstrated superior performance in minimising lifecycle costs 
compared to standard PSO, GA, and ACO. This improvement is attrib
uted to the integration of quadratic interpolation and extended local 
search mechanisms. The enhanced PSO also achieved faster convergence 
with fewer iterations, despite slightly higher per-iteration computa
tional time. Statistical analysis confirmed its robustness and reliability, 
with low sensitivity to initial conditions. Furthermore, the proposed 
cycle counting algorithm for ESS outperformed the traditional rainflow 
counting method in both accuracy and computational efficiency, 
particularly in modelling partial charge-discharge cycles. These ad
vancements make the proposed methodologies highly effective for real- 
world microgrid design and lifecycle cost optimisation.

While the study provides valuable insights, it is constrained by 
certain assumptions. Future research should address uncertainties 
related to equipment costs, component lifetimes, and the impact of 
adverse weather conditions offshore. Further exploration into opera
tional strategies, such as day-ahead storage scheduling, demand 
response optimisation, and ancillary service provision, is also recom
mended. Overall, this study demonstrates that standalone microgrids, 
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particularly those utilising HESS configurations, represent a technically 
and economically feasible solution for sustainable offshore energy sys
tems. These findings contribute to the advancement of a sustainable blue 
economy.
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