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Abstract

The development of crop varieties with higher nitrogen use efficiency is crucial for sustainable crop production. 
Combining high-throughput genotyping and phenotyping will expedite the discovery of novel alleles for breeding crop 
varieties with higher nitrogen use efficiency. Digital and hyperspectral imaging techniques can efficiently evaluate the 
growth, biophysical, and biochemical performance of plant populations by quantifying canopy reflectance response. 
Here, these techniques were used to derive automated phenotyping of indicator biomarkers, biomass and chloro-
phyll levels, corresponding to different nitrogen levels. A detailed description of digital and hyperspectral imaging 
and the associated challenges and required considerations are provided, with application to delineate the nitrogen 
response in wheat. Computational approaches for spectrum calibration and rectification, plant area detection, and 
derivation of vegetation index analysis are presented. We developed a novel vegetation index with higher precision 
to estimate chlorophyll levels, underpinned by an image-processing algorithm that effectively removed background 
spectra. Digital shoot biomass and growth parameters were derived, enabling the efficient phenotyping of wheat 
plants at the vegetative stage, obviating the need for phenotyping until maturity. Overall, our results suggest value in 
the integration of high-throughput digital and spectral phenomics for rapid screening of large wheat populations for 
nitrogen response.
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Introduction

Globally, low levels of nitrogen (N) in arable soils limit crop 
productivity. This constraint has largely been relieved since the 
development of synthetic N fertilizers, combined with the use 
of high-yielding crop varieties and irrigation in some parts 

of the world, all of which are key components of the green 
revolution. To maximize crop production, large amounts of N 
fertilizers are applied in regions where farmers can afford to 
supplement N. Ironically, most crop plants typically utilize only 
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small amounts (<40%) of the applied N (Kant et  al., 2011), 
with the remaining N lost to the environment. This results 
in higher crop production costs and significant global envir-
onmental damage by eutrophication of water ecosystems and 
gaseous loss to the atmosphere (Gao et  al., 2012). To reduce 
costs and address pollution concerns, improving crop N use 
efficiency (NUE) by a combination of designing strategies for 
improved crop management practices, genomics, genetics, and 
conventional and modern genomic breeding is imperative.

The advent of genomic techniques is transforming plant 
breeding programmes with rapid genetic gains and shorter 
breeding cycles. Central to genomic breeding approaches is the 
availability of high-quality phenotypic data. The development 
of efficient phenotyping techniques that can rapidly increase 
throughput, enabling the screening of large numbers of geno-
types, is needed to underpin genomic breeding methods. With 
the increasing availability and decreasing cost of digital sensory 
image capture and computational analytics, plant phenotyping 
is in an exponential growth phase. In recent years, advances in 
computer-vision-assisted sensors and analysis tools have made 
significant advances in the high-throughput, reliable, and pre-
cise phenotyping of plants, as well as for N studies in crops 
(Fiorani and Schurr, 2013; Deery et al., 2014; Fahlgren et al., 
2015; Nguyen and Kant, 2018). The goal of digital imaging is 
to measure the growth, development and physiology, and to es-
timate biochemical components of plants, through automated 
processes. A  key component of digital phenotyping is the 
non-destructive data capture of plant traits, which allows time-
series growth measurements, eliminates destructive analysis, 
and can increase the number of genotypes in an experiment.

Digital sensors and cameras are based on the electromagnetic 
spectrum and the interaction of plant components with spe-
cific spectral regions, such as visible (VIS; 400–700 nm), near 
infrared (NIR; 700–1000 nm) and shortwave infrared (SWIR; 
1000–2500 nm) light (Mulla, 2013; Fahlgren et al., 2015). These 
digital sensors can be active (with an internal energy source for 
detecting the response of a crop, e.g. light detection and ranging 
sensors) or passive [relying on an independent energy source 
and collecting red-green-blue (RGB) or NIR spectrum light, 
e.g. multispectral cameras] (Erdle et  al., 2011). When light or 
energy interacts with a plant surface, the radiation is reflected, 
absorbed, or transmitted. Sensors measure spectral reflectance, 
and data-processing computational algorithms generate digital 
plant objects and/or vegetation indices to correlate with plant 
growth (Li et al., 2001), biomass (Golzarian et al., 2011), physio-
logical status, and biochemical parameters (Homolová et  al., 
2013; Klukas et al., 2014). Vegetation indices can be identified 
that correlate with direct phenotyping measurements of traits 
associated with N, such as chlorophyll levels, protein content, 
canopy coverage, and biomass (Filella et al., 1995; Erdle et al., 
2011; Poiré et al., 2014; Pandey et al., 2017).

Visible-spectrum (RGB) cameras, along with image-
processing algorithms, can generate phenotypic traits such as 
the estimation of biomass, biovolume, leaf area, plant morph-
ology, growth rates, rates of senescence, and pathogen infec-
tion (Golzarian et  al., 2011; Poiré et  al., 2014; Neilson et  al., 
2015; Cai et al., 2016; Meng et al., 2017; Nguyen et al., 2019). 
As the wavebands in RGB sensors operate across a relatively 

broad range of the electromagnetic spectrum, specific wave-
length information is lost in the output data. In contrast, 
hyperspectral sensors can measure hundreds of discrete spectral 
bands, making hyperspectral imaging a promising technology 
for the detection and measurement of abiotic stresses (Sytar 
et al., 2017; Mohd Asaari et al., 2018), biotic stresses (Thomas 
et al., 2018), and biochemical parameters (Vigneau et al., 2011; 
Pandey et al., 2017). Image acquisition by hyperspectral sensors 
can be slower than with other digital sensors, with additional 
computational challenges in the processing and analysis of 
high-dimensional hyperspectral data (Bioucas-Dias et al., 2013; 
Behmann et al., 2016). Nevertheless, plant phenotyping using 
hyperspectral imaging may be an important component of 
improving NUE efficiency by enabling the timely, effective, 
and non-destructive monitoring of N status in planta, allowing 
plant N demand to be better matched with N supply both 
temporally and spatially (Cassman, 1999; Tilman et al., 2002). 
Importantly, it would also allow the collection of high-quality 
phenotypic data in a large diverse germplasm collection such 
as those used in breeding programmes.

In NUE studies, controlling the plant environment is crit-
ical, and genotypes are often initially screened under controlled 
environmental conditions, with subsets of promising lines 
selected for further field evaluation. Controlled-environment 
(e.g. greenhouse, growth chamber) experiments provide greater 
environmental control, more growing cycles, and are easier 
environments in which to study root phenotypes, although 
plants are often constrained by pot dimensions and less nat-
ural environmental interactions. For controlled-environment 
phenotyping, different automated platforms have been de-
scribed (Li et al., 2014; Poiré et al., 2014; Humplík et al., 2015; 
Neilson et al., 2015; Pandey et al., 2017), such as the Scanalyzer 
3D imaging system, in which plants are placed on a conveyor 
system and moved to sensors for automated image acquisition 
(Neilson et  al., 2015), PlantEye, a 3D laser scanner mounted 
on a movable gantry, where a sensor is moved to image the 
plants (Kjaer and Ottosen, 2015; Vadez et al., 2015; Maphosa 
et al., 2017), Phenoscope (Tisné et al., 2013), Phenosis (Granier 
et  al., 2006), and Weighing, Imaging and Watering Machines 
(WIWAM) (Skirycz et al., 2011). 

Wheat is the second most important cereal worldwide after 
rice (Giraldo et  al., 2019). The development of genetic re-
sources and diversity in wheat is well documented and readily 
available (Hayes et al., 2017; He et al., 2019). Efficient, reliable, 
objective, and cost-effective phenotyping methods to screen 
a large wheat germplasm collection under s defined N level 
will enable these genetic resources to be utilized to improve 
NUE. Here, we report on the development and testing of effi-
cient protocols with defined varying N levels, and digital and 
hyperspectral image analysis, to phenotypically screen wheat 
genotypes under controlled-environment conditions for N re-
sponse traits. We explored opportunities for phenotyping wheat 
genotypes in early vegetative growth to obviate the need to 
grow plants to maturity. Automated phenotyping using visible-
colour and hyperspectral cameras, and techniques developed 
for image processing and analysis, are described to derive bio-
markers such as biomass and chlorophyll content, which are 
important traits for the study of N responses in wheat plants.
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Materials and methods

Nutrient solution and growth media
Of the two inorganic forms of N (i.e. nitrate and ammonium), nitrate is 
the predominant N source in most agricultural soils (Kant et al., 2008, 
2011). We therefore applied nitrate as the N source for all experiments. 
Eight N levels were tested, 20, 15, 10, 5, 2, 1, 0.5, and 0.2 mM N, applied 
as KNO3. These N levels were relative, as the nutrient solution containing 
the indicated N concentration was added once a week. The chosen N re-
gimes were intended to identify optimum N, moderate N stress, and low 
N stress levels. The other nutrients in the solution were 4 mM MgSO4, 
4 mM KCl, 5 mM CaCl2, 3 mM KH2PO4/K2HPO4 (pH 6.0), 0.1 mM 
Fe-EDTA, 10 µM MnCl2, 10 µM ZnSO4, 2 µM CuSO4, 50 µM H2BO3, 
and 0.2 µM Na2MoO4. A nutrient-free growth medium, consisting of 
perlite covered with a layer of vermiculite, was used to grow plants. The 
perlite used was a combination of fine, medium, and coarse grades (2:2:1). 
As perlite is white and therefore prone to algal growth, which would af-
fect imaging, a layer of vermiculite (~2 cm) was used to cover the surface 
and prevent algal growth.

Experiments in a conventional glasshouse
Two separate experiments were conducted. In the first experiment, wheat 
(Triticum aestivum L.) variety Yitpi was grown to full maturity, under the 
eight N levels described above, with 32 replicates per N treatment, in a 
semi-hydroponic system using perlite and vermiculite as described above. 
The second experiment used three N levels, 20, 5, and 2 mM N, which 
were identified as optimum N, and medium and severe N depletion stress, 
respectively. The wheat varieties Baxter, Yitpi, Gladius, and Westonia were 
used in 16 replicates. For both experiments, plastic pots 110×110 mm 
across and 120 mm deep, with 1 litre capacity, were used; 32 pots, each 
containing one plant, were placed in a steel tray 50×95 cm and 4 cm 
deep (see Supplementary Fig. 1A at JXB online). Three litres of nutrient 
solution with a defined N level was applied to each tray at weekly inter-
vals. The growing conditions in the glasshouse were 24 °C/15 °C day/
night, with natural lighting. Eight plants per genotype per treatment were 
destructively harvested at the vegetative growth stage, and the remaining 
plants were grown to full maturity to obtain yield data.

Experiments in a high-throughput phenotyping facility
Agriculture Victoria’s Plant Phenomics Victoria, Horsham (PPVH) is 
a high-throughput controlled-environment phenotyping facility. It is 
equipped with a conveyor belt system, automated weighing and watering 
stations, and an automated phenotyping Scanalyzer 3D system (Lemnatec 
GmBH, Aachen, Germany), which includes high-resolution RGB and 
hyperspectral imaging sensors. The conveyor belt system comprises 
25 housing lanes, each lane accommodating 24 pots, and three sep-
arate watering lanes. Each pot is placed in a plastic carrier fitted with a 
radiofrequency identification (RFID) chip, which is read by RFID chip 
readers at multiple locations during rotation to ensure accurate pot loca-
tion during imaging and watering. The RGB imaging system comprises 
two high-resolution fixed-zoom digital cameras positioned to obtain side 
and top views. Each RGB camera (Prosilica GT 6600C, Allied Vision 
Technologies, Stadtroda, Germany) is a 28.8 megapixel camera, with 
GigE vision compliance and an ethernet interface. Top-view images are 
acquired from the RGB camera mounted directly above the plant. Side-
view images are captured by a rotation function using the ‘turner’, from 
any angle between 0° and 360°. Depending upon its size, a plant can be 
lifted using the ‘lifter’ to three levels. The layout of plants on the conveyor 
belt system and the imaging system are shown in Supplementary Fig. S2.

The hyperspectral camera at PPVH is a pushbroom-type imaging 
spectrometer (Micro-Hyperspec, VNIR-E Series, Headwall Photonics, 
Fitchburg, MA, USA) covering extended visible and near-infrared 
(VNIR) wavelengths. The sensor is operational over a spectral range of 
470–1720 nm (the green–red portion of VIS, the entire NIR, and the 
first part of SWIR) with a spectral resolution of ~4.85 nm, and with a 1:1 
binning setting this forms a 256-band hypercube. The sensor is mounted 

with a fore-optics lenses assembly of 25 mm. The number of horizontal 
spatial channels (i.e. the number of individual pushbroom detector elem-
ents) is 320 pixels wide with an aperture of F/2.5. The position of the 
hyperspectral sensor from the plant can be adjusted to cover a narrow or 
wide area depending on the height of the plant. The plant on the con-
veyor belt system remains stationary during data acquisition and is illu-
minated with electromagnetic radiation from halogen lamps (Hi-Spot® 
ES50 Superia, 35W, 180 lumen, beam angle 25°, 2600 K colour tempera-
ture) located directly above the plant and on the opposite wall. An in-
ternal rotating scanning mirror configuration in the hyperspectral sensor 
sequentially exposes the detector array with illumination from the im-
aging chamber in a top-to-bottom direction. The start and stop pitch of 
the rotating assembly can be programmed to cover both short and tall 
plants. In this case, the system rotates between 90° (horizontal pitch level) 
and –110° (inclined pitch level) from the sensor axis at a rate of 0.7° s–1, 
producing a total of 446 scan lines (i.e. 446 vertical pixels). The detector 
array has a 12-bit radiometric range and transmits the data over ethernet 
interfaces to a data-acquisition computer.

The PPVH system has three automated weighing and watering sta-
tions. Each station has two pumps (Watson-Marlow Fluid Technology 
Group, Falmouth, UK), one used for watering and other for the appli-
cation of nutrient solutions. The water or nutrient solution can be dis-
pensed into each pot in multiple ways, such as absolute volume, a target 
weight, or a target weight with a dynamic offset, depending on the re-
quirement in a given experiment. Weighing scales (Bizerba SE and Co. 
KG, Balingen, Germany) are used to obtain gravimetric weights before 
and after watering. To reduce spatial effects, plants were rotated twice 
a week on the conveyor lanes, such that each whole lane continuously 
shifted east to west and each half of the lanes rotated north or south.

For the experiments conducted at PPVH, the wheat varieties Baxter, 
Yitpi, Gladius, and Westonia were grown in two separate experiments 
with 20, 10, 5, and 2 mM N levels. One plant was grown per pot (200 mm 
Euro-TL white, Garden City Plastics, Dandenong South, Australia) filled 
with growth media as described above. Individual pots were weighed 
and equalized to a fixed pot weight and watered uniformly. Saucers were 
used to avoid seepage of the nutrient solution. The pots were loaded on 
to the system 10 days after the emergence of seedlings. Nutrient solu-
tion was supplied as 100 ml per pot every week. The growing conditions 
were 24 °C/15 °C day/night. The two experiments were conducted as 
biological repeats with 20 replicate plants per N treatment. A subset of 
five plants per N treatment were destructively harvested at 14, 21, 28 and 
35 days after sowing (DAS) and shoot fresh biomass was recorded, and 
samples were collected for biochemical assays.

RGB and hyperspectral image acquisition
The RGB images were taken from top and side views (0°, 120°, and 240°), 
and hyperspectral images were taken from side views. RGB images were 
analysed using image analysis pipelines developed in the LemnaGrid soft-
ware (Lemnatec GmBH, Aachen, Germany). An overview of the image 
analysis pipeline for analysing RGB images is provided in Supplementary 
Fig. S3. In brief, demosaicing was carried out on raw images to recon-
struct a full-colour image, followed by applying a region of interest to 
separate the plant from the background. The resulting image was con-
verted to the hue-saturation-intensity (HSI) colour space to enhance the 
separation between plant and background. An appropriate threshold was 
applied to the image to further improve plant detection. A median filter 
was used to smooth the edges of the detected image and unwanted soli-
tary pixels were filled by in-painting. Colour classification was applied 
to delineate the green and non-green tissue and, with the help of image 
object composition, spatially independent objects were merged into one 
large object as the plant. The total pixel area was obtained by adding the 
pixel areas of three side views and the top view, from here on referred to 
as estimated shoot biomass (ESB). Other morphological parameters es-
timated included minimum area rectangle (MAR), calliper length (CL), 
convex hull area (CHA), and eccentricity (E). Details of the measured and 
estimated morphological parameters are given in Supplementary Table S1 
and illustrated in Supplementary Fig. S4.
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Hyperspectral image analysis
Hyperspectral image analysis involved the development of a multi-level 
processing pipeline for sensor data calibration, illumination adjustment, 
detection of plant area, and extraction of the plant spectrum, as well as 
generating standard vegetation indices and applying an innovative brute-
force indices mining approach to identify a new vegetation index for the 
estimation of chlorophyll content.

Hyperspectral sensor data calibration
Raw scan lines from the hyperspectral sensor are recorded in digital 
numbers (DNs) of 12-bit ranges. Spectral and radiometric calibration 
of the hyperspectral sensor is needed to facilitate transformation of the 
raw DN values into physical radiance units (mW cm2 sr–1 µm–1) and 
then to reflectance. Calibration was conducted using a spectralon ref-
erence panel (https://www.labsphere.com/) with an optically flat spec-
tral profile at 95% reflectivity, and the sensor operating at 256 spectral 
bands frame period, with the integration time set at 59 ms. A rectangular 
section of the spectralon panel (1170 mm length×100 mm width) was 
placed on the imaging point using a customized height-adjustable mount 
(Supplementary Fig. 5). The hyperspectral sensor was tuned to focus pre-
cisely on the spectralon panel and collect a perfect white spectrum under 
artificial illumination from the halogen lamps. Additionally, a dark spec-
trum was collected with the halogen lamps turned off. For each scan line, 
a corresponding radiometric coefficient—sensor gain and bias transform-
ation were automatically calculated and applied using data-acquisition 
software (Hyperspec III, Headwall Photonics, Inc) to produce a radio-
metrically calibrated response. This also removed inter-channel mismatch 
(flat-field errors) caused by pixel-to-pixel variation in sensitivity in the 
detector. Automatic hyperspectral image restoration using low-rank and 
sparse modelling techniques (Rasti et al., 2017) was used to further re-
move inter-channel variation and radiometric bit error at given pixels.

Hyperspectral illumination adjustment
The inside of the hyperspectral imaging cabinet is lined with a re-
flective material (white in colour) to assist with multiple reflections and 

scattering, and to produce close-to-uniform illumination conditions. 
However, the placement of the light source at the top and occlusion pro-
duced from the sensor induces a gradient variation in input illumination 
levels (Supplementary Fig. S6A, B). Moreover, halogen-based lighting 
systems are prone to brightness changes with heating, drift in radiometric 
response, and fluctuations due to irregularities in power levels, which 
affect the standard reflectance response collected by the hyperspectral 
sensor over time (Supplementary Fig. 6A). To accurately extract physio-
logical traits and chemical properties of plants, hyperspectral imaging re-
lies on the acquisition of systematic reflectance profiles. Some studies 
have recommended the collection of calibration measurements after each 
plant measurement (Qin and Lu, 2008), whereas other studies have jus-
tified a trade-off between image quality and high throughput (Pandey 
et al., 2017). We devised a novel illumination-adjustment workflow using 
persistent radiometric control points to construct a synthetic spatial and 
temporal profile of illumination errors. A reflectance tarp (56% reflect-
ivity; 163 cm height×117 cm width) was constructed and placed in the 
background as a calibration panel, so that the tarp remained visible in each 
hyperspectral image with the plant in the foreground (Supplementary 
Fig. S5B, C). Four radiometric control points near the corners of the im-
ages were selected as references (Supplementary Fig. S6A). A spline func-
tion (De Boor, 1978) was used to interpolate an illumination difference 
or error gradient layer, assuming a 2D Gaussian distribution profile. The 
illumination error layer was computed for each acquired hypercube and 
subsequently subtracted from the hypercubes to prepare an illumination-
adjusted output (Supplementary Fig. S6B, C) with a standard temporal 
reflectance response (Supplementary Fig. S6D).

Detection of plant area and extraction of plant spectrum
A typical hypercube acquisition contains a set of finite image elements—
that is, the plant, cage, pot, soil, and background (Fig. 1A). For extraction 
of vegetation biomarkers and indices, it is essential to first detect the 
plant pixels within the image. Vigneau et al. (2011) have previously used 
index-based thresholding to separate the plant and the non-plant area. 
This approach has certain limitations for analysing stressed plants, as tissue 
tends to change in reflectance and levels of indices usually decrease under 
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stress, meaning that parts of the plant showing stress symptoms are masked 
off from the analysis due to a stringent index threshold value. We devised 
a spectrum elimination technique to selectively avoid the inclusion of 
non-plant (cage, pot, soil, and background) class pixels, thereby detecting 
both the healthy and the stressed tissue in an imaged plant. The method 
worked by selecting non-plant-class objects (using image pixels) to create 
a spectral library, which was used to generate a spectral information di-
vergence layer (Chang, 1999) for the image scene within a spectral diver-
gence angle of 0.2 radians. A binary mask was computed for the pixels 
remaining (i.e. the plant class) out of the spectral information divergence 
classification (Fig.  1). A  pixel-level multiplication was then performed 
between the binary mask and the intended hypercube to detect the plant 
area in the hypercube. For further analysis, the detected plant pixels from 
the hypercube of an imaged plant were averaged to generate an individual 
reflectance spectrum with 256 spectral bands.

Computation of standard vegetation indices
The generation of vegetation indices from reflectance signatures involved 
a spectral transformation of reflectance at two or more narrow wave-
bands designed to highlight a particular property of vegetation. A linear 
resampling approach based on a generalized Kaiser–Bessel approximation 
model (Lewitt, 1990) was used to filter and spectrally sample the reflect-
ance signature to the desired narrow wavelengths (1 nm spectral width) 
as required by the target vegetation indices. After successful resampling, 
a total of 47 possible standard vegetation indices within the operational 
spectral range of the hyperspectral system (470–1720 nm) were selected 
(Supplementary Table S2).

Development of a novel vegetation index for estimation of 
chlorophyll levels
Plants utilize the chlorophyll pigment in leaves to absorb solar energy and 
convert it into chemical energy. Therefore, the chlorophyll level in a plant 
is physiologically linked to its yield. The suitability of existing standard 
vegetation indices relating to chlorophyll levels (chlorophyll a, chloro-
phyll b, and total chlorophyll) measured in laboratory destructive analysis 
was investigated. To further improve the model prediction in the estima-
tion of chlorophyll, a new narrowband index was developed, referred to 
here as the normalized difference chlorophyll index in wheat (NDCIW). 
Hyperspectral data collected from the first experiment was used to iden-
tify suitable wavelengths for NDCIW. An indices model was defined using 
the following function: 

indices model =
ρi − ρj
ρi + ρj

 (1)

where ρ represents wavelength band over the electromagnetic range with 
i and j=470–1720 nm at 1 nm spectral step.

A non-parametric linear regression equation was used as a criterion 
function to identify suitable band combinations:
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where r is the regression value for the new indices model expressed as x 
and the true value expressed as y.

It can intuitively be understood that the optimal bands should permit 
maximal valuation for |r| or r2. The equivalent maximization criterion 
function is equivalent to maximizing the trace of the correlation as:

arg max
Φ

{
trace[r2]

}
 (3)

where Φ is the universal set of all possible paired combination of 
wavelengths.

Fig. 2A shows the correlation map for all the input combinations of 
wavelengths expressed on a Cartesian space. The heat map shows the 
correlation levels, with high levels depicted in bright yellow. It is clear 
from the plot that there are several potential suitable combinations of 

wavelength for NDCIW. However, the maximal trace was identified for 
wavebands at 727 nm and 1654 nm. Therefore, NDCIW was expressed as:

NDCIW =
ρ1654 − ρ727
ρ1654 + ρ727  

(4)

where, ρ represent the reflectance in designated wavelength bands 1654 
nm and 727 nm.

The validity of the developed index NDCIW was tested using the 
dataset from the second experiment.

Biochemical assays
Leaf tissue was finely ground using a pestle and mortar with liquid N, then 
aliquoted into 50 mg subsamples and stored at –80 °C until biochemical 
analysis. Chlorophyll was extracted with 100% methanol followed by cen-
trifugation for 10 min at 10 016 g; this process was repeated twice. Extracts 
were analysed by recording the absorbance at 750, 665, 652, and 470 nm 
using a UV-VIS spectrophotometer (Shimadzu UV-1800, Shimadzu Inc., 
Kyoto, Japan). Chlorophyll a, chlorophyll b, and total chlorophyll were cal-
culated using the formula described in Lichtenthaler (1987).

Statistical analysis
Linear regression and Pearson’s correlation coefficient (R) were used to 
determine the association between the destructively harvested fresh bio-
mass and digitally estimated plant parameters using the ‘psych’ package in 
R software (https://cran.r-project.org/web/packages/psych/index.html 
and http://www.R-project.org).

Results

Defining N growth for wheat

Wheat plants grown in nutrient-free growth medium were 
evaluated for biomass and yield responses under N levels ranging 
from 0.2 to 20 mM N (Supplementary Figs S1A and S2C). Dry 
biomass and yield increased exponentially until 10 mM N, and 
there was a non-significant increase thereafter (Supplementary 
Fig. S1B, C). For subsequent experiments, 20 mM N was used 
as the optimum N condition, 5 mM N as moderate N stress, 
and 2 mM as low N stress. The four wheat varieties showed an 
incremental increase in dry biomass and seed yield from low to 
high N levels. The trend for dry biomass accumulation at both 
the vegetative growth and the maturity stage as well as seed yield 
at a given N level were similar across all varieties (Fig. 3A–C). 
Dry biomass at the vegetative growth stage was highly correlated 
with dry biomass at maturity and seed yield (Fig. 3D).

Estimation of shoot biomass and dynamic growth of 
wheat plants

The application of digital sensing techniques for the determin-
ation of N response was studied using image-based phenotyping. 
RGB images were acquired in an automated imaging system 
at PPVH (Supplementary Fig. S2) and analysed using auto-
mated image analysis pipelines (Supplementary Figs S3 and S4) 
that identify colour-classified wheat plants by removing back-
ground elements. ESB was calculated from analysed images by 
adding together the number of pixels of the three side views 
and a top view, and was highly correlated with actual shoot 
fresh biomass (Supplementary Fig. S7A). Images were acquired 
from early vegetative growth until late reproductive growth. 
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Plants grown in the presence of 20 mM N showed an expo-
nential growth curve in biomass accumulation, while plants 
supplied with 5 mM N showed a linear increase in biomass 
during the growing period (Fig.  4 and Supplementary Fig. 
S7B). The average ESB in 20 mM N-treated plants and 5 mM 
N-treated plants was 270 and 40 kilopixels, respectively, at 83 
DAS (Supplementary Fig. S7B). Importantly, clear differences 
between the treatments were effectively delineated through 
digital estimation of shoot biomass at different imaging time 
points during the early vegetative growth phase (Fig. 4).

The digital parameters MAR, CL, and CHA were also es-
timated. The 20 mM N-treated plants showed larger MAR, 
higher CL, and larger CHA compared with 5 mM N-treated 
plants (Supplementary Fig. S4). The parameter E represents the 
extent of plant spread. The 5 mM N-treated plants had higher 
E values than the 20 mM N-treated plants, with mean values 
of 0.74 and 0.92, respectively (data not shown). The relation-
ship between measured and estimated parameters was deter-
mined by Pearson’s correlation analysis. A very high positive 
correlation was observed between harvested fresh biomass and 
ESB (R=0.986), MAR (R=0.921), CL (R=0.898), and CHA 

(R=0.929), while a very high negative correlation was re-
corded for E (R=–0.883) (Supplementary Fig. S8).

Correlation of the novel vegetation index NDCIW with 
measured chlorophyll levels in wheat

The performance of the novel vegetation index, NDCIW, and 
47 published indices were tested for chlorophyll estimation 
(Supplementary Tables S2 and S3). To describe the ability of 
the previously published spectral indices to measure chloro-
phyll levels as a means of assessing N treatments, we used the 
datasets from two experiments to calculate the Pearson correl-
ation (r2) relationship between the indices and values of total 
chlorophyll level measured by laboratory-based biochemical 
assays (Supplementary Table S3). Most published vegetation 
indices demonstrated a low correlation with measured chloro-
phyll levels (r2<0.5). Some indices, such as the Vogelmann 
Red Edge Indices 1, 2, and 3 (VOG1, VOG2, and VOG3), 
the Transformed Chlorophyll Absorption Reflectance Index 
(TCARI), and the Zarco-Tejada and Miller Index (ZMI), 
achieved a reasonable degree of correlation with chlorophyll 
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levels, although the correlation was not consistent across two 
experiments and/or did not work consistently for chlorophyll 
a, chlorophyll b, and/or total chlorophyll. For instance, VOG1 
had correlations with chlorophyll a (r2=0.65), chlorophyll b 
(r2=0.69), and total chlorophyll (r2=0.66) in experiment 1, but 
in experiment 2 these correlations were r2=0.80, r2=0.48, and 
r2=0.76, respectively.

The new vegetation index (NDCIW) achieved consistently 
high correlations with chlorophyll a (r2=0.93), chlorophyll b 
(r2=0.93), and total chlorophyll (r2=0.94), and outperformed 
the other standard indices (Supplementary Table S3). To validate 
the potential of NDCIW to retrieve information on chlorophyll 
levels, the transferability of the index was tested on a separate ex-
perimental dataset. While the correlation with measured chloro-
phyll levels was low at a very early stage of plant development 
(14 DAS), due to limited numbers of available plant pixels in very 
small plants, the correlation rapidly increased from 21 DAS on-
wards (Fig. 5). The accuracy of NDCIW in predicting chlorophyll 
saturated between 21 DAS and 35 DAS, achieving the highest 
correlations at 35 DAS with chlorophyll a (r2=0.91), chlorophyll 
b (r2=0.81), and total chlorophyll (r2=0.92) (Fig. 5).

A false-colour scheme (red-yellow-green in increasing 
order of response) was used to represent the chlorophyll levels 

predicted in representative plants from experiment 2 using the 
NDCIW (Fig. 6). At the first time point (14 DAS), plants at all 
N treatment levels have similar plant area and predicted chloro-
phyll levels, although the 10 mM and 20 mM N-treated plants 
on average contained more chlorophyll. At later imaging time 
points (21 DAS onwards) significant N treatment responses were 
seen, with 20 mM N-treated plants demonstrating the highest 
estimated chlorophyll levels compared with the other N levels 
(Fig.  6). Fig.  6 also shows the average predicted chlorophyll 
levels for all imaged plant biomass across all biological repli-
cates within a treatment. Chlorophyll levels for plants treated 
with 2 mM N did not change across the growth period be-
cause, even though the biomass increases, leaves cannot be kept 
alive. Although 5 mM N-treated plants showed an increase in 
chlorophyll level, the increase was gradual and levels remained 
low. Plants grown with 10 mM and 20 mM N started with 
high predicted chlorophyll levels at 14 DAS, which increased 
with biomass production (Fig.  6). These trends in predicted 
chlorophyll levels closely matched the actual chlorophyll con-
centrations measured in plants harvested on the same imaging 
days (Supplementary Fig. S9). Clear treatment differences be-
tween the four N treatments, were evident from 21 DAS on-
wards for chlorophyll a, chlorophyll b, and total chlorophyll 
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(Supplementary Fig. S9). The close match between measured 
chlorophyll concentrations and predicted chlorophyll levels 
provides further evidence of the strength of the NDCIW in 
the non-destructive estimation of chlorophyll levels. The nat-
ural concentration gradient of chlorophyll, with high levels in 
young (upper) leaves and lower levels in older (lower) leaves, 
was particularly visible at 35 DAS (Fig. 6). The gradient was less 
prominent in the low-N treatments (2 nM and 5 nM), with the 
colour scheme being centred near low levels of NDCIW. These 
false-colour images generated using NDCIW data could also be 
used to track the location of and changes in photosynthetically 
active tissues, especially in N stressed plants, where symptoms 
may not develop clearly in the visible light spectrum.

Discussion

Increasing NUE in crop species will play an important role 
not only in improving plant growth, development, and yield, 
but also in helping to reduce excess N contamination of the 
atmosphere, soil, and ground water (Good and Beatty, 2011; 
Cormier et  al., 2013). Modern genomic breeding strategies 
rely on efficient genotyping and phenotyping for NUE 
breeding, that is, by studying the phenotypic N responses in 
diverse wheat germplasm. Conventional phenotyping for N 
response relies on manual and/or destructive analysis of bio-
markers such as plant growth (mainly biomass), biochemical 
components (chlorophyll, protein, and N content), and grain 
yield, which increases the cost and time required (Furbank and 
Tester, 2011). Technologies that are more cost and time effi-
cient than traditional phenotyping methods are therefore key 
to crop breeding programmes (Yendrek et al., 2017; Silva-Perez 
et al., 2018). 

In this study, protocols were developed with defined varying 
N levels, and an image-based, automated, non-destructive 
phenotyping workflow was established to study N responses 
in wheat genotypes. We report a simplified system to delin-
eate wheat plant growth responses when grown under varying 
N levels, which allows the efficient and non-destructive 
phenotyping of large germplasm collections. Non-destructive 
and repetitive phenotyping for traits of interest will help in 
the selection of genotypes without compromising the ac-
curacy of conventional phenotyping methods (Jiménez et al., 
2017). Digital and manual observations were recorded at mul-
tiple time points throughout the life cycle of wheat plants. 
Furthermore, repeated digital measurements allowed the meas-
urement of N responses at various growth stages and also the 
study of dynamic growth curves across time points, which can 
assess plant N responses with greater precision than manual 
observations. Our results indicated that N responses during the 
vegetative stages are highly correlated with N responses in later 
growth stages in the accessions screened (Fig. 3). Previous re-
search has also shown that screening in the early vegetative 
stages can provide key insights into plant behaviour and yield 
during later growth (Kirda et  al., 1992; Damon and Rengel, 
2007; Krishnamurthy et  al., 2007; Nakhforoosh et  al., 2016; 
Meng et al., 2017; Nguyen et al., 2019).

To identify a high-throughput methodology to phenotype 
wheat for N response, image-based phenotyping using RGB 
and hyperspectral imaging was conducted at the PPVH facility. 
RGB images were acquired using a Lemnatec 3D Scanalyzer 
and plant biomarkers such as ESB, MAR, CL, CHA, and E were 
found to correlate well with fresh biomass. Similarly high cor-
relations between actual and estimated shoot dry biomass were 
observed by Golzarian et al. (2011) in different wheat varieties. 
Clear differences in growth, in terms of estimated plant param-
eters, were observed between high- and low-N-treated plants, 
which demonstrated the ability of image-based phenotyping 
to capture both large and subtle variations between treatments. 
There were high correlations between measured biomass and 
estimated plant traits at 35 DAS (Supplementary Fig. S8), as 
well as high correlations between dry biomass at the vege-
tative stage and both dry biomass at maturity and seed yield 
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(Fig. 3D). This finding suggests that wheat can be effectively 
screened at the vegetative stage, removing the need to grow 
plants to maturity, thus increasing throughput and allowing 
larger populations to be screened in a given timeframe.

Hyperspectral sensors are highly sensitive systems that can 
be used to measure minute variations in plant reflectance re-
sponses when subjected to stress conditions. This high sensi-
tivity also makes a hyperspectral sensor prone to radiometric 
abnormalities due to spectral or illumination variations. The 
necessity of proper spectral and radiometric calibration when 
studying plants in controlled imaging cabinets was previously 
outlined by Pandey et al. (2017). The current study identified 
similar challenges in calibrating the hyperspectral sensor to ac-
curately measure N responses in wheat. In addition, fluctu-
ations in the intensity of illumination were found to severely 
affect the detection of plant area across multiple time point 
images and masked the reflectance response to the applied 
N treatment variations. The novel illumination adjustment 
protocol for hyperspectral imaging proposed in this study to 
stabilize the response due to changing illumination levels al-
lowed a more accurate detection of plant area and profiling of 
the reflectance response to N levels.

The orientation of the plant with respect to the source of 
illumination and the hyperspectral sensor places additional 
constraints on the correct estimation of chlorophyll content. 
Vegetation indices show anisotropy depending on the struc-
tural development of the canopy, shadowing, the view angles of 
the sensors, the inherent viewing geometry of sensors, and in 

some respects the underlying soil (Kimes et al., 1985). Vigneau 
et  al. (2011) used Lambertian transformation of reflectance 
to normalize the angular spectral response in wheat. A multi-
angular imaging approach was also used by Guo et al. (2018) 
for estimating N uptake using hyperspectral imaging in winter 
wheat. In the current study, the improved chlorophyll estima-
tion achieved using the new NDCIW index is due to (i) using 
multi-angular imaging with three views each at 120° offset, 
then averaging spectral responses; (ii) collecting hyperspectral 
data at a high sensor zenith angle (~90°) through side-view 
imaging, thus including total wheat plant characteristics in the 
lower, middle, and upper canopy; and (iii) using the extended 
VNIR wavelengths, discussed below.

Chlorophyll plays an important role in photosynthesis and 
hence can be a direct indicator of a plant’s primary produc-
tion and photosynthetic potential (Richardson et  al., 2002). 
Chlorophyll content, either measured or estimated, can also 
be used to determine the N status and stress response of crop 
plants (Wood et al., 1993; Filella et al., 1995), with remote and 
non-destructive estimation of chlorophyll content and fluor-
escence now becoming common (Richardson et  al., 2002; 
Murchie and Lawson, 2013). Previous scientific efforts to non-
destructively measure the chlorophyll content of leaves have 
focused more on the VNIR (400–1000 nm) portion of the elec-
tromagnetic spectrum. As part of developing the hyperspectral 
image analysis pipeline, we tested 47 previously published 
vegetation indices (between 470 and 1720 nm) related to the 
biophysical and biochemical basis of plants, many of which 
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make use of the inverse relationship between red and NIR 
reflectance associated with healthy green vegetation. Different 
vegetation indices, such as the chlorophyll index (CI), Merris 
terrestrial chlorophyll index (MTCI), modified chlorophyll 
absorption in reflectance index (MCARI), and normalized 
difference red-edge index (NDRE), have been found to indir-
ectly infer the amount of chlorophyll by measuring variation 
in wavelengths over the NIR, red-edge (RE), and red bands. 
The superior performance of NDCIW was to a certain extent 
due to the inclusion of input wavelengths in index compu-
tation from near the RE (727 nm) and the extended VNIR 
(1654 nm) regions. However, the inclusion of widely separ-
ated wavelength bands (727 and 1654 nm) also ensured that 
the output response for NDCIW is high for ‘soil’; that is, the 
response is sensitive to the presence of exposed growth media. 
Previous studies have identified the soil effect, or soil bright-
ness as noise in vegetation indices (Richardson and Wiegand, 
1977; Major et al., 1990). The effect of soil brightness could be 
normalized either by tuning the selection of the wavelengths, 
where possible, or by employing a vegetation masking criterion 
to avoid the inclusion of soil in the computation of vegetation 
indices. The latter approach was adopted in this study to mask 
out the vegetation portion of wheat from the hyperspectral 
data using a robust calibration and classification workflow 
before computing the vegetation index, thereby eliminating 
the soil effect. Additionally, the side-wise imaging geometry 
helped to reduce the soil brightness effect, as the soil part is 
limited to the bottom of the image, and the background was a 
standard reflectance calibration target. 

As shown in this study, the ability to measure the extended 
VNIR region in controlled environments provides increased 
capability to detect variations in the concentration of photo-
synthetically active chlorophyll pigments. The performance 
of the newly developed NDCIW index was better than that 
of other available vegetation indices previously proposed for 
chlorophyll measurement. The employed brute-force indices 
mining approach utilized a simplistic model with selection 
of two model input parameters, that is, reflectance at specific 
wavebands. Furthermore, the indices mining approach devel-
oped could be used to extract other physiochemical parameters 
important for crop growth. Although this research utilized a 
brute-force indices mining approach to identify a novel index, 
there are several other noteworthy approaches, including neural 
networks, machine learning, and deep learning, for chlorophyll 
estimation. However, these approaches would process the en-
tire spectrum instead of utilizing specific reflectance wave-
lengths for deriving plant chlorophyll levels. An evaluation of 
these potential approaches is an important scientific question 
and requires future research.

Spectral reflectance has previously been shown to be sig-
nificantly affected by canopy structure, planting density, and 
the angle of the incident radiation (Rondeaux et  al., 1996). 
Accurate profiling of chlorophyll levels using a vegetation 
index as an indicator depends on the surface area of the leaves 
available for spectral imaging. The growth stage of a wheat 
plant governs the amount of leaf tissue available for imaging. 
Plants in vegetative growth stages (between 21 and 35 DAS) are 
therefore the optimum size for hyperspectral imaging, as they 

have enough pixel area to decipher genotypic and treatment 
variations but are not too big to cause oversaturation, and also 
minimize leaf overlap and shadowing. Early vegetative stage 
plants (21 DAS onwards) showed clear treatment differences 
in biomass as well as estimated chlorophyll, with estimated 
chlorophyll levels able to be used to map changes in photo-
synthetically active tissue as plants develop. Vegetative screening 
using digital imaging and the new NDCIW index to estimate 
chlorophyll content should therefore be a successful strategy 
for high-throughput NUE phenotyping of large wheat popu-
lations. The success of NDCIW in wheat also suggests its ap-
plication to other plants, or at least cereal crops. In the absence 
of more experimental data on a diverse variety of species, this 
new index has been catalogued as NDCIW (a novel chlorophyll 
index in wheat). The expected adoption of this index in future 
studies by the wider scientific community would potentially 
aid the evaluation of NDCIW for its relevance to other plants 
or crop varieties.

In conclusion, spectroscopic methods are useful to es-
timate growth and biochemical biomarkers of a crop 
germplasm population by quantifying canopy reflectance 
across a range of narrowband wavelength channels. In this 
study, digital and hyperspectral imaging techniques were 
used to isolate specific phenotypic responses to different N 
levels and to non-destructively quantify biomass, growth 
rate, and chlorophyll levels in wheat genotypes grown in the 
presence of different N levels. Hyperspectral imagery was 
used to derive a novel vegetation index, NDCIW, for the 
estimation of chlorophyll, which had significantly greater 
reliability than previously published vegetation indices. An 
image-processing algorithm was developed that selectively 
targeted wheat spectra and removed background spectra 
from hyperspectral sensor data. Furthermore, shoot biomass 
was estimated using digital coloured imagery to draw dy-
namic growth curves, which were highly correlated with 
biomass accumulation during the later stages of growth. 
The results of both digital and hyperspectral imaging sug-
gest that biomass and chlorophyll estimation can be used 
as biomarkers to phenotype wheat plants for N response at 
vegetative stages, obviating the need to phenotype plants up 
to maturity. A combination of hyperspectral chlorophyll and 
digital biomass estimations could be used in further studies 
to non-destructively and rapidly phenotype large wheat 
populations in a short timeframe, thus speeding up the se-
lection of elite germplasm for NUE breeding programmes.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Growth of wheat plants at different nitrogen levels.
Fig. S2. Wheat plants growing in the Plant Phenomics 

Victoria, Horsham, automated glasshouse.
Fig. S3. Simplified RGB colour image analysis pipeline.
Fig. S4. Estimation of plant digital parameters.
Fig. S5. Hyperspectral sensor system assembly.
Fig. S6. Calibration of illumination variation in hyperspectral 

sensing.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/71/15/4604/5809332 by U

niversity of Southern Q
ueensland (Inactive) user on 28 N

ovem
ber 2023



4614 | Banerjee et al.

Fig. S7. Estimation of shoot biomass and growth rate of 
wheat plants.

Fig. S8. Correlations between estimated and measured plant 
parameters.

Fig. S9. Chlorophyll analysis of wheat plants.
Table S1. Measured and estimated plant traits using destruc-

tive harvesting and digital imaging methods.
Table S2. Computation of published vegetation indices.
Table S3. Correlation analysis of standard vegetation indices 

and NDCIw for chlorophyll estimation.
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