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A B S T R A C T

Identifying hazardous locations is crucial for maximising benefits from road safety investments. Using an
appropriate method for identifying hazardous road locations (HRL) is essential due to limited research on
existing approaches. This study evaluated the effectiveness of the four most commonly used approaches to
prioritise HRLs such as crash frequency (CF), crash rate (CR) Empirical-Bayes (EB) adjustment and potential for
safety improvement (PSI). This study used six years (2010–2015) of severe-crash data collected from 80 highway
segments in Toowoomba, Australia. Crash prediction models were created to anticipate crash expectations. The
negative binomial technique was found to be suitable for developing the models. These HRL identification
techniques were assessed using rigorous quantitative criteria, such as the site consistency test, the total-rank
differences test, the method consistency test and the total-score test. Our data demonstrate that the EB
approach significantly outperformed the other ranking strategies. In contrast, the CR method consistently
underperformed because of its inherent bias towards low-traffic sites. Notably, this technique assumes a linear
relationship between CRs and traffic volume, despite earlier research proving the normal nonlinearity of this
connection. As a result of this study, road engineers can develop models to predict crash trends and use the EB
approach to prioritise treatment sites and identify the most hazardous locations for safety improvements. In
conclusion, building on our current findings and prior research, we strongly recommend that the EB adjustment
approach be adopted as the standard for determining HRLs unless alternative methods emerge to replace it.

Introduction

Identifying hazardous road locations (HRLs) is an essential to
improve road safety. Resources can be wasted on locations that have
been identified incorrectly as hazardous, and whereas truly hazardous
locations remain untreated if not identified properly. In general, there is
some crash risk on all roadways. However, certain road sites (e.g. in-
tersections and segments) are considered more hazardous than others.
Not surprisingly, various physical characteristics, meteorological con-
ditions, operational components and traffic volumes result in hetero-
geneity in crash risk levels. Therefore, identifying HRLs is critical for
enhancing road safety, especially when road safety authorities operate
on a limited budget.

The identification of HRLs is usually considered the initial phase of a
crash-reduction process. HRLs are sometimes referred to ‘black spots’,
‘hotspots’, or ‘crash-prone locations’. According to Al-Marafi et al.
(2020) and Hauer et al. (2002), identifying HRLs signifies a list of

locations selected for additional research and technical investigations
that have helped characterise collision patterns, emotional factors, and
potential countermeasures. To make investment decisions with limited
resources, experts use cost-effective identification methods to choose
road safety projects. This study identified HRLs using two approaches
based on: crash data and models. The first method is based on historical
accident data, in which HRLs are defined as locations with more than a
present crash frequency (CF) (e.g. crash per km or crash per year) or
crash rate (CR) (e.g. crash per vehicle km). The second technique is
model-based assessment, in which statistical models are applied to es-
timate the severity at each site, referred to as ‘black spots’ (AASHTO,
2010).

Desai et al. (2021) investigated the correlation between hard braking
events and road crashes using data from 23 sites along Indiana interstate
roadways over two months. The study revealed that around one crash
happened for every 147 hard braking events per mile. The use of hard
braking data has the potential to assist agencies in prioritising safety
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investments. This approach allows for proactive decision-making
without the necessity of waiting for crash history to evolve over time
on a particular roadway under evaluation. However, this approach re-
quires vehicles to have connected devices. These devices can monitor
and record live operational data, including location, speed, and hard
braking events (Desai et al., 2021; Feng et al., 2024).

Elvik (2008) identified and ranked hazardous locations using CF, CR,
and a combination of CF and empirical-Bayes (EB) methods. According
to the results, the EB method performed the best, whereas the CR
method performed the worst. Cheng and Washington (2008) and Mon-
tella (2010) validated this finding. According to Al-Marafi et al. (2019)
and Elvik (2007), the optimal technique for determining HRLs is the
expected crash frequency and not observed crashes. The most accurate
technique to calculate the expected crash frequency is to combine the
number of recorded crashes with the model estimate for a particular
location. Using the EB approach is an effective way to do this. It is
noteworthy that the EB method eliminates regression-to-the-mean
(RTM) bias by generating a weighted average of actual and antici-
pated crashes (Al-Marafi, 2019; Abdel-Aty et al., 2014; Elvik et al., 2017;
B. Persaud and Lyon, 2007; Tegge et al., 2010). According to Persaud
and Lyon (2007) the RTM phenomenon is caused by the tendency of
locations (e.g. roadway segments) with a high collision frequency in one
year to regress to a lower CF in the next year. Thus, for a site that
experienced many crashes in a particular year, the random nature of the
crashes suggests that CF is likely to decrease the next year, even without
treatment or changes in traffic conditions. This regression is expected to
bring the CF closer to the long-termmean value. According to Elvik et al.
(2017), the EB method helps researchers to account for RTM bias, long-
term trends and exogenous fluctuations in traffic flow.

The Poisson distribution and negative binomial (NB) models are
considered more suitable for constructing crash prediction models
(CPMs) because of the inherent characteristics of crash occurrences,
which are inevitable, discrete and often exhibit random behaviour
(Abdel-Aty and Radwan, 2000; Ackaah and Salifu, 2011; Hadi et al.,
1995; Pew et al., 2020). According to Abdel-Aty and Radwan (2000),
several limitations and restrictions are associated with the use of the
Poisson distribution technique. In crash data, the variation in crash
numbers is generally more than the mean; in such cases, the data are
excessively dispersed. To overcome the restriction of over-dispersion in
the Poisson distribution technique, a few studies (Al-Marafi et al., 2021;
Al-Marafi, 2019; Chin and Quddus, 2003; Gargoum and El-Basyouny,
2016; Lord and Mannering, 2010) recommend using other methods.
As a result, they propose using NB model as an alternative because it
does not need the assumption of equal mean and variance.

Ensuring the success of safety improvement programs in reducing
roadway crashes depends on the availability of techniques that offer
valid estimations of highway safety level. These estimations should be
relevant to current roadway conditions and future scenarios, such as
treatment implementation. The primary objective of this study was to
assess the available methods used for identifying and ranking HRLs for
safety improvement. The 2010–2015 crash data from Toowoomba,
Australia, were used to compare a few common methods. The CPMs for
roadway segments were initially developed and evaluated for all
serious-crashes. To select the most suitable method, the performances of
different ranking methods, such as CF, CR, EB adjustment and potential
for safety improvement (PSI) methods, were compared. To evaluate
performance, the following robust quantitative testing criteria were
used: (i) site consistency test (SCT), (ii) total rank differences test
(TRDT), (iii) method consistency test (MCT) and (iv) total score test
(TST).

The remainder of this paper is structured as follows: initially, it de-
scribes the data that was utilised in the analysis. Then, it provides pre-
vious research on HRL identification methods and the development of
CPMs. The following section examines the process of creating and
evaluating models and presents the results of the applied HRL identifi-
cation techniques. Finally, the concluding section summarises the

study’s findings with recommendations.

Crash data preparation

Crash data for the Toowoomba city roadway segments were obtained
from the Department of Transport and Main Roads (DTMR), Queens-
land. The details of speed limit, type of traffic control, crash location,
crash time and crash severity were acquired for each crash data of the
designated road segments. The traffic volume data were obtained from
both the Toowoomba Regional Council (TRC) and the DTMR. Data on
the geometric characteristics of roadway segments were obtained from
site visits and historical design records from the TRC. The historical
records of treatments applied to roadway segments during the study
period, considering both geometric and traffic characteristics, were
reviewed using historical data from TRC and DTMR. This step was
crucial to identify and exclude any segments that changed during the
study period. By doing so, the study aimed to prevent bias in the analysis
results of the model. Finally, from a sample size of 80 roadway segments,
and 301 records of serious crashes were obtained.

The following principles were applied to segment the road. Accord-
ing to the first criterion, a roadway segment was defined as any portion
of the road situated between two major intersections. In particular, the
defined intersection boundary was excluded, and the borders of a road
segment were determined by the presence of two nearby intersections,
as shown in Fig. 1. The intersection boundary was defined as a 20-meter
area measured upstream from the stop line (Al-Marafi et al., 2021). Any
crashes with geo-coordinates falling within this boundary were consid-
ered intersection-related and excluded from the analysis. The second
criterion stipulated that a road segment should be homogeneous,
meaning that any differences from the modelling risk would be mini-
mised. Consistent and uniform values were maintained for all explana-
tory variables, including traffic volume, number of lanes, shoulder
width, lane width and speed limit. Considering all things, creating a new
roadway segment was possible either by the existence of two nearby
intersections or based on previously specified roadway attributes.

Roadway segments were chosen based on their geographical location
within the study area to avoid bias towards high or low CF locations. The
study period covered six years (from 2010 to 2015). Independent vari-
ables related to crashes in roadway segments were represented by geo-
metric parameters and traffic volume. Table 1 summarises the
independent variables included in the safetymodels and shows how they
were defined within the dataset.

Each segment has two directions of traffic flow, and AADT value
includes traffic on both directions. Depending on the direction of travel,
traffic on each segment must use either an upward or downward
gradient. Therefore, this study used the gradient’s absolute value,
resulting in a positive value for all segments.

Crash prediction models

CPMs were developed with the goal of estimating the expected
number of crashes. These estimates are essential for applying EB and PSI
ranking techniques, contributing to assessing and prioritising roadways’
safety measures.

There have been many research papers (Sacchi et al., 2012; Sun
et al., 2012; Xie et al., 2011) on the calibration and validation of the
crash prediction models used in the HSM. They investigated the trans-
ferability of HSM crash prediction approach and discovered that they
were consistent with the homogeneous segmentation of the selected
study roads. Xie et al. (2011) indicated that the HSM overestimated
crash numbers. Abdel-Aty et al. (2014) summarised developing a
statewide calibration factor, calibration factors specific to different
types of crashes, calibration based on the frequency of animal-related
crashes by county, and calibration based on the frequency of animal-
related crashes by section to address variations in estimation. Due to
the complexity of the HCM approach, many of these studies employed
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empirical Bayes (EB) method to enhance accuracy.
Montella (2003) study on the Potential for Safety Improvement (PSI)

index found it eliminates the need for preliminary data in safety reviews
of existing roads. The index complements safety reviews in many
highway agencies worldwide, ranking reviewed segments or safety is-
sues. Different PSI indexes can be computed, identifying safety concerns
where cost-effective improvements may be made. The overall index
measures potential safety improvement in all segments. A team with
sound safety engineering knowledge is necessary for improved
reliability.

Selecting explanatory variables

When analysing data from roadway segments, the explanatory var-
iables may be interrelated. Pearson’s correlation analysis measures the
connection between two explanatory variables and assists in deter-
mining the degree of a correlation between any two sets of variables.
According to Navidi (2008), the model estimate could be erroneous if
the predictor variables are significantly correlated, typically in the range
between ± 0.50 and 1.00. The standard error of the regression model

rises when the two explanatory parameters have significant correlations.
As a result, the correlation values for each predictor variable in this
study were determined. Variables with correlation values between
− 0.49 and + 0.49 (moderate correlation) were incorporated into the
modelling. The parameters were judged statistically significant at the
0.05 significance level with a confidence level of 95 %. Table 2 presents
the correlation coefficient matrix among the independent variables
employed in selecting the appropriate model. The correlation matrix
reveals a strong correlation between the following variables: traffic
volume with lane width; lane width with number of lanes per direction;
and shoulder width with the presence of edge line road marking. As a
result, these variables were not included simultaneously in the modeling
process to mitigate issues related to multicollinearity.

Selecting suitable modelling approaches

Road crash distributions were initially assumed to have an NB dis-
tribution. Later, generalised linear models were used to develop the
models using identified explanatory variables. Regression analyses were
performed using SPSS (version 22) under the assumption of NB models
with a log link function. The general form of the predicted model for the
ith roadway segment can be written as follows:

Npre.i = Lsα1i Q
α2
i .eβ0+

∑n
j=1

βjXij (1)

where: Npre.i – predicted crash frequency; Lsi – roadway segment length
in metres; Qi – annual average daily traffic (AADT) in vehicle/day; Xij –
explanatory variable j; and α1, α2, β0, and βj – model parameters.

The over-dispersion assumption helps check the suitability of the
models. This assumption was tested by estimating and examining two
values: Pearson’s chi-square (x2) divided by the degree of freedom (dof)
and the deviance divided by the dof. The assumption of the NB model
may be used when the sum of these two numbers falls between the range
of 0.80 and 1.20 (Al-Marafi et al., 2021; Ackaah and Salifu, 2011).
Otherwise, other models, such as the Poisson distribution, need to be
considered in modelling (Al-Marafi et al., 2020; Abdul Manan et al.,
2013; Bauer and Harwood, 2000).

Model evaluation

To evaluate the models’ validity, some goodness-of-fit (GOF) mea-
sures were required, because no single measure could achieve a com-
plete desired outcome. The GOF measures for the selected models were
examined by using many statistical approaches, including the Akaike
information criterion (AIC), Freeman-Tukey R-Squared coefficient
(R2

FT), mean squared prediction error (MSPE), Bayesian information
criterion (BIC), and mean squared error (MSE). AIC and BIC are used to
assess the fit of the estimated distributions for the data and to identify
the most suitable distributions. Abdul Manan et al. (2013) and Cafiso

Fig.1. Roadway segment as defined in the study.

Table 1
Summary statistics of the segment’s explanatory variables.

Variables Min Max Mean Std.
deviation

Symbol Variable
type

Segment
length,
(km)

0.190 1.500 0.530 0.212 Ls Continuous

Traffic
volume,
AADT

2500 21,800 10,960 4874.3 Q Continuous

Lane width
(m)

2.9 4.8 3.92 0.851 Wl Continuous

Shoulder
width
(m)a

0 5.0 1.10 1.681 Ws Continuous

Number of
lanes per
direction

1.0 2.0 1.37 0.483 N Count

Access
points

0 11 2.84 1.768 A Count

Presence of
median

0 1 0.18 0.392 M Categorical

Presence of
road
marking

Centre line 0 1 0.90 0.276 Cl Categorical
Edge line 0 1 0.47 0.499 El Categorical
Grade (%) 0.45 8.85 3.63 1.821 Gr Continuous
Speed Limit
(kph)

40 70 58.9 3.842 Vs Continuous

a combined width; AADT=annual average daily traffic (vpd).

M.N. Al-Marafi and K. Somasundaraswaran



Transportation Research Interdisciplinary Perspectives 26 (2024) 101196

4

et al. (2010) found that models with reduced AIC and BIC values were
more favourable than models with higher values. In other words, lower
AIC and BIC values signify a smaller discrepancy and a better fit of the
developed model to the data. In this study, the MSPE, MSE, and R2

FT
values were also used to evaluate the models’ effectiveness in predicting
road crashes over subsequent years. MSPE is used as a tool to calculate
the variability of the discrepancy between predicted and observed crash
numbers. Additionally, it is used to compute the errors associated with a
validation dataset. The MSE is commonly used to quantify errors asso-
ciated with an estimation dataset. The R2

FT is used to calculate the
average of the prediction variability including both the estimation and
validation datasets. A higher value of R2

FT indicates that the model ex-
hibits a stronger fit for the data used.

Model results and interpretation

After several trials with different variables, a crash model was
identified and estimated using NB distribution with a log correlation
function. The computed regression parameters for the chosen model are
shown in Equation (2).

Npre.i = Ls.338i × Q.529
i × e(− 6.271− .410M+.031Gr) (2)

where: Npre.i – predicted CF along the roadway segment for three years
(2010–2012), Ls – length (m) of the roadway segment, Qi – AADT in
vehicles/day, M – the presence of a median island (1 – present, 0 – ab-
sent), and Gr – the percentage of the absolute gradient, i.e., positive
value for both gradient. The over-dispersion parameter (k) of the NB
distribution was also derived during the regression calibration process
and was determined to be 0.520.

The variance inflation factor (VIF) was utilised to evaluate the
collinearity of the variables in the final developed model. This statistical
test was used to calculate the multicollinearity level for each variable in
a developed model. A variable with a VIF greater than 10 has to be
removed from the model as it indicates the presence of high multi-
collinearity (Dadashova et al., 2016). The VIF values for the variables
included in the model (Equation (2) were as follows: Ls = 1.144, Qi =
1.061, M=1.088, and Gr = 1.025. According to these values, the vari-
ables in the developed model do not have any collinearity problems.

The calculated GOF measures demonstrate the predicted model’s fit
to the dataset. The deviation and Pearson Chi-squared values were
divided by the dof to estimate the GOF value, as shown in Table 3.
Significantly, the GOF values were within the accepted range of
0.80–1.20, meaning that the NB distribution assumption was adequate
to represent the data. Table 2 also shows the AIC and BIC values as
effectiveness indicators for the predicted model.

Table 4 shows the validation results obtained by three performance

measures, including MSPE, MSE, and R2
FT. When comparing the MSPE

and MSE values from the validation and estimation datasets, it is clear
that the value of MSPE from the validation dataset was somewhat higher
than the MSE value from the estimation dataset. This indicates that the
chosen model is slightly over-fitted. Furthermore, the R2

FT value for the
validation dataset is lower than for the estimation dataset, however, the
overall difference is not significant. The findings is reasonable because
these values are not determined from the same data points. However,
the results designate that the model works effectively over additional
years of data. The previous discussions have led to the conclusion that
the model is statistically sound and could be accepted for further
investigation.

Hazardous road identification methods

Four assessment methods were used to compare the four HRL iden-
tification techniques in this section. The identification techniques
include CF, CR, EB adjustment and PSI methods. The assessment
methods include the SCT, TRDT, MCT and TST.

Crash frequency method

CF is the simplest and most common method for identifying HRLs
(Hu et al., 2021; Persaud, 2001; Tarko and Kanodia, 2004). This method
ranked the roadway segments of the recorded CFs in descending order.
The safety of the roadway segments of different lengths was compared
by dividing the total number of crashes by the section length. Therefore,
the site with the highest number of crashes per km received the highest

Table 2
Correlation matrix for independent variables.

Variables Ls Q Wl Ws N A M Cl El Gr Vs

Ls 1
Q -0.302 1
Wl 0.124 -0.506 1
Ws 0.019 0.201 -0.353 1
N -0.418 0.414 -0.611 0.264 1
A 0.425 -0.148 0.109 -0.135 -0.117 1

M -0.246 0.149 -0.092 0.26 0.340 -0.229 1
Cl 0.018 0.407 -0.308 -0.021 0.233 -0.038 -0.405 1
El 0.027 0.244 -0.459 0.708 0.195 -0.106 0.282 0.012 1
Gr 0.109 -0.056 0.082 -0.231 -0.146 0.014 -0.124 0.155 -0.173 1

Vs 0.182 0.461 -0.007 -0.101 0.210 0.181 -0.194 0.279 -0.114 0.083 1

1

0

-1

 .49

 -.49

Table 3
Goodness-of-fit (GOF) tests for the selected model.

Criterion Label Value dof Value/dof

Deviance − 84.050 79 1.066
Pearson’s chi-Squared x2 69.861 0.862
Akaike’s info. criterion AIC 284.091 .
Bayesian info. criterion BIC 298.175 .

Table 4
Validation results for the selected model.

Performance measure Estimation data Validation data
(2010 – 2012) (2013 – 2015)

MSPE − 2.331
MSE 1.763 −

R2
FT % 25.0 18.0

M.N. Al-Marafi and K. Somasundaraswaran



Transportation Research Interdisciplinary Perspectives 26 (2024) 101196

5

ranking.

Crash rate method

The number of crashes is divided by the traffic volume and the
segment’s length, which gives the CR. This study measured CR as the
number of crashes per vehicle km for the study period. The data on crash
history and traffic volume covered the period from 2010 to 2012 as the
first period and from 2013 to 2015 as the second period.

Empirical Bayes method

The EB method was used to account for the RTM bias found in the
road crash datasets to improve the accuracy of road safety estimation.
This method helps combine observed crashes with predicted crashes
(derived from CPMs) to obtain more accurate results in the estimation of
expected crashes at each location. Therefore, this method was utilised to
determine the predicted crash and weight adjustment factor for each
location within the study area. The general function to calculate ex-
pected crashes using the EB method is defined in detail by Equation (3)
(AASHTO, 2010):

Nexp.,i = ωi × Npre.,i +(1 − ωi) × Nobs.,i (3)

The values of the weighting factor (ω) range between 0.0 and 1.0,
where ω is calculated as follows:

ωi =
1

1+ k/Li ×
∑T

t=1Npre.i
(4)

where: Nexp,i – expected crashes at i roadway segment; ωi – weighting
adjustment to model prediction; Npre,i – predicted crashes at i roadway
segment in a time t (year); Nobs,i – the observed crashes at i roadway
segment; k – parameter of over-dispersion of the prediction model; and
Li – length (km) of roadway segment. The over-dispersion parameter (k)
reflects the degree of systematic variation in CFs that the model cannot
explain for. The over-dispersion parameter will have a value of zero
when the predicted model explains all systematic variations in the crash
frequencies (Elvik et al., 2017). In such cases, the value of ω will be
equal to 1.0. For applying the EB adjustment method, model I was
chosen to calculate the predicted crashes for roadway segments based on
the GOF results. Thereafter, the weighting adjustment factor (ω) was
estimated using the over-dispersion value (k = 0.580, for the developed
model) and the predicted crashes utilising the data for the first three
years (2010–2012).

Potential for safety improvement method

The PSI value was determined by calculating the difference between
predicted and expected accidents at a certain location. The computed
PSI value for each highway segment within the research region was used
to identify the HRLs in this study. A significantly positive PSI value
implies that there is a need for safety improvements and vice versa.

Evaluation of methods

The SCT, TRDT, MCT and TST were used for evaluation. SCT accesses
the ability of the HRL identification method to consistently identify a
site as having a high crash risk over consecutive periods. The test as-
sumes that a site identified as a high risk site during a certain period (i)
should also reveal inferior safety performance in the next period (i + 1),
because there is no requirement for safety treatments at those sites
(Cheng andWashington, 2008; Cheng andWashington, 2005). Themore
accurate the HRL identification process, themore sites with a higher SCT
value will be chosen. The SCT values can be computed as follows:

SCTj =
∑n

k=n− nα
Ck,method=j,i+1 >

∑n

k=n− nα
Ck,method∕=j,i+1 (5)

where: n –number of the segments being compared (n = 80); Ck – crash
count for segment ranked k; α – threshold of high-risk segments iden-
tified (e.g., α = 0.10 corresponding with top 10 % of n segments iden-
tified as HRLs); j – HRL identification method being compared; and i –
observation period (e.g., i = first period from 2010 to 2012 and i + 1 =

second period from 2013 to 2015).
The TRDT considers the sites’ safety performance rankings in the two

consecutive periods. The test was carried out by computing the total
rank differences between the two time periods (Montella 2010). The
lower the TRDT score, the more likely the site is to be identified as an
HRL. The test values can be computed as follows:

TRDTj =
∑n

k=n− nα+1

⃒
⃒R(kj,i) − R(kj,i+1)

⃒
⃒ (6)

where: ℜ – the rank of segment k in period i for method j.
The MCT measures the number of the same HRLs identified in two

consecutive time periods. The test assumes that highway portions have
the same traffic conditions, geometric design, and driver population in
both periods. Under this homogeneity assumption, the greater the
number of HRLs identified in both periods, the more consistent the
method’s performance. TheMCT test statistics are shown in Equation (7)
(Cheng and Washington, 2008):

MCTj = {kn− nα, kn− na+1,⋯, kn}j,i ∩ {kn− nα, kn− nα+1,⋯, kn}j,i+1 (7)

where: k –segment being compared between two consecutive time pe-
riods, that is from i to i + 1.

The results of the SCT, TRDT, and MCT evaluation criteria are then
merged using TST to provide a synthetic index. The TST test assumes
that all effectiveness tests have equal weight. In numerical form, the TST
test statistics are shown in Equation (8) (Montella 2010):

TSTj =
100
3

×

[(
SCTj

maxjSCT

)

+

(

1

−
TRDTj − minjTRDT

maxjTRDT

)

+

(
MCTj

maxjMCT

)]

(8)

where: maxjSCT, maxjTRDT, and maxjMCT –the largest values obtained
from method j; minjTRDT –the smallest value obtained from method j. A
greater TST value (closer to 100) is the preferable method j.

Evaluation results and discussion

This evaluation identified the top 10 % and 15 % of the segments as
hazardous segments with PSIs. Table 5 presents the evaluation results of
four HRL identification methods based on SCT, TRDT, MCT and TST
evaluation criteria. For the SCT criterion, the CF method outperformed
the EB adjustment and PSI methods in the top 10 % of sites, while the EB
adjustment method outperformed the others in the top 15 % of sites. The
CR method performed significantly worse than the other methods in
both the top 10 % and 15 % of sites, with the identified sites having the
lowest crash frequencies per km in the second period. In the case of the
TRDT criterion, the EB adjustment method outperformed the other
methods, while the CRmethod performed the worst (i.e. greater the total
rank differences) in identifying the top 10 % and 15 % of sites. Similar
outcomes were obtained with theMCT (i.e. MCT=2 sites) for both the EB
adjustment and the CF methods with respect to the top 10 % sites,
whereas the CF method outperformed other methods by identifying five
sites in the first period that were also identified as hazardous sites in the
second period with respect to the top 15 % sites.

Overall, it is observed that the EB adjustment method performed
better than the CF and PSI methods and that the CR method performed
the worst in terms of the TST criterion with respect to the top 10 % and
15 % of sites. These results are consistent with the results obtained by
Cheng and Washington (2008) and Montella (2010). However, it is not
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surprising that the EB adjustment method, which takes into account the
RTM bias through estimates of the expected crash frequencies for each
roadway segment, produces better results than the other methods for
identifying HRLs. In contrast, the CR method consistently demonstrated
the worst against all criteria. This conclusion is concerning because
many road agencies use the CR method for its simplicity in identifying
HRLs.

Table 6 displays the top 15 % (12 locations) of HRLs identified using
EB method, which was determined to be the most effective method
based on the previous compression results (refer to Table 5). The find-
ings identify RS-43 the hazardous segment. This particular segment has
an undivided four lanes, with two lanes in each direction, on flat profile
(grade = 0), no road shoulders, and a speed limit of 60 kph. The study
recommends several treatments for this poorly performing segment,
including reducing the speed limit by 10 kph, adding a median island,
and increasing lane width. Previous studies (Abdel-Aty and Radwan,
2000; Ackaah and Salifu, 2011; Al-Marafi, 2019; Al-Marafi and Soma-
sundaraswaran, 2023; Pew et al., 2020) guided the assessment of the
safety impact of these recommended treatments.

Conclusions and recommendations

When road agencies have financial constraints, for example, they can
only examine and treat a limited number of sites, therefore, ranking
HRLs is critical. The primary goal of this study was to assess the most
commonly used ranking methods for detecting HRLs using real crash
data. This study evaluated four ranking methods, including CF, CR, EB
adjustment and PSI method, utilising the following statistical tests: SCT,
TRDT, MCT, and TST. To accomplish this task, CPMs with NB structures
were initially developed based on crash data obtained from 80 roadway
segments in Toowoomba city, Australia. Several GOF assessments were
applied to the predicted models to show the performance of each model.
One of the examined models was proved to be highly statistically sig-
nificant. The identified model was used to estimate the predicted and
expected crash frequencies required, especially for the EB adjustment
and PSI methods.

Results show that the EB adjustment method outperformed in most
evaluation tests, ranking in the top 10 % and 15 % of hazardous seg-
ments. Therefore, the study concluded that the EB adjustment method is
considered to be one of the most logical and reliable methods for ranking
HRLs. In contrast, the CR method consistently performed the worst. The
reason for this may be that the CR method favours low-traffic volume
sites and implicitly assumes that CRs follow a linear relationship with
traffic volume, whereas several other studies (Bonneson and McCoy,
1993; Lord et al., 2005; Park and Abdel-Aty, 2016) have confirmed that
this relationship is often nonlinear. This result is quite concerning
because many road agencies use the CR method.

The study also acknowledges that the benefits of the EB modification

method were derived only through the use of severe-crash data from
Toowoomba, Australia, but the findings are significant and consistent
with the findings of previous studies. In order to further strengthen
confidence in the use of the EB adjustment approach and its advantages
and benefits, future studies can be reproduced using all crash severity
levels across a wide range of locations.
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Table 5
A comparison of the four methods for locating HRLs.

Method α = 0.90 α = 0.85

SCT a TRDT MCT TST SCT a TRDT MCT TST

EB Test result 51.4 186 2 99.2 71.9 307 4 93.3
Test ranking 2 1 1 1 1 1 2 1

CF Test result 52.7 239 2 95.1 66.3 400 5 90.8
Test ranking 1 2 1 2 2 2 1 2

PSI Test result 49.9 292 1 71.8 65.8 449 3 73.8
Test ranking 3 3 2 3 3 3 3 3

CR Test result 28.3 362 1 51.7 50.3 470 3 65.1
Test ranking 4 4 2 4 4 4 3 4

Note: α = 0.90 and α = 0.85 represent the cases of top 10 % and 15 % hazardous roadway segments.
a SCT results are based on the observed crashes per kilometre in the second period (2013–2015).

Table 6
Top 15% of HRLs identified using the EB method.

Segment
ID

Length
(km)

Observed
crashes/
3yr

Predicted
crashes/
3yr

Weight
factor
(ω)

EB
estimated

EB
rank

RS-43 0.29 6 2.30 0.19 5.31 1
RS-4 0.74 5 2.70 0.33 4.24 2
RS-72 0.41 5 1.97 0.27 4.17 3
RS-16 0.90 5 2.53 0.39 4.03 4
RS-19 0.40 4 2.56 0.22 3.68 5
RS-53 0.27 4 2.21 0.18 3.68 6
RS-8 0.46 4 2.40 0.26 3.59 7
RS-32 0.78 4 2.68 0.35 3.54 8
RS-42 0.25 4 1.69 0.21 3.51 9
RS-21 0.78 4 2.49 0.36 3.45 10
RS-49 0.42 4 1.98 0.28 3.44 11
RS-6 1.00 4 2.37 0.43 3.30 12
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