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A B S T R A C T   

The total quantity of solar energy falling on a horizontal plane surface is the global solar exposure (GSE, i.e., total 
solar energy). Precise forecasting of GSE is important in many fields such as renewable energy, agriculture, and 
public health, particularly by the limited hydro-meteorological time series information. This research aims to 
develop an advanced multi-processing deep learning (DL) paradigm to forecast weekly GSE based on maximum 
(Tmax) and minimum (Tmin) air temperatures as the drivers at Brisbane and Perth airport stations in eastern and 
western Australia during 2000 to 2022. The proposed model was comprised of an extra tree feature selection (FS) 
integrated with two novel decomposition techniques, namely time-varying filtering-based empirical mode 
decomposition (TVF-EMD), and empirical wavelet transform (EWT), and a powerful ensemble deep random 
vector functional link (ED-RVFL) approach. To validate the main model, the RVFL, bidirectional long-short term 
memory (Bi-LSTM), and bagged regression tree (Bagging) machine learning (ML) models were examined in 
hybrid and standalone counterpart frameworks. First, the extra-tree FS determined the significant lags of the 
predictors based on an importance benchmark criterion. Then, by applying the optimal gained lags to the feeding 
models, all of the original predictors were decomposed using TVF-EMD and EWT univariate feature extraction. 
The final forecast was computed by aggregating all the individual forecasts of the intrinsic mode functions (IMFs) 
and residual components. In addition, eight statistical indicators (including coefficient of correlation: R, root 
mean square error: RMSE, Kling-Gupta efficiency: KGE, index of agreement: IA, uncertainty coefficient with 95% 
confidence level: U95%, mean absolute percent error: MAPE, Nash-Sutcliffe efficiency: NSE, and mean absolute 
error: MAE) and several graphical methods were utilized to evaluate the performances of the models. The 
modeling results indicated that the ED-RVFL-TVF-EMD (R = 0.9665, RMSE = 1.9193 MJ/m2, and KGE = 0.9565 for 
the Perth airport station) and ED-RVFL-EWT (R = 0.9218, RMSE = 1.9708 MJ/m2, and KGE = 0.8552 for the 
Brisbane station) outperformed all other models, followed by RVFL, Bi-LSTM, and Bagging in a hybrid format. 
With the high predictive robustness, both decomposition-based frameworks can be useful for solving energy 
forecasting problems. The new modeling approach developed in this study can provide more precise forecasts for 
decision-makers to better address climate change, agriculture, and energy crises.   
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Fig. 1. Structure of the Bi-LSTM network (upper panel) and systematic illustration of the ensemble bagging tree regression method (lower panel).  
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Fig. 2. Schematic of the modeling structures of RVFL (upper panel) and ED-RVFL (lower panel).  

Table 1 
Descriptive statistics of the temperature data used for GSE forecast for Brisbane and Perth airport stations.  

Station Brisbane Perth airport 

Indices Tmax (oC) Tmin (oC) Observed GSE (MJ/m2) Tmax (oC) Tmin (oC) Observed GSE (MJ/m2) 

Minimum 18.01 5.057  9.757  15.57  2.129  6.329 
25% Percentile 23.74 12.73  14.76  20.33  9.029  11.81 
Median 27.01 16.99  18.6  24.91  11.91  18.16 
75% Percentile 29.26 20.23  22.56  30.16  15.82  25.6 
Maximum 34.77 24.59  30.59  39.41  22.33  33.41 
Range 16.76 19.53  20.83  23.84  20.2  27.09 
Mean 26.62 16.45  18.85  25.38  12.4  18.92 
Std. Deviation 3.318 4.299  4.861  5.518  4.175  7.45 
Std. Error of Mean 0.09685 0.1255  0.1419  0.161  0.1218  0.2174 
Coefficient of variation 12.46% 26.14%  25.79%  21.74%  33.66%  39.37% 
Skewness − 0.1651 − 0.2501  0.2257  0.2787  0.215  0.2033 
Kurtosis − 0.8635 − 1.062  − 0.8963  − 1.118  − 0.863  − 1.278 
Coordinate Latitude: − 27.4705 S Longitude:153.0260 E Latitude: 31.9385◦ S Longitude:115.9672◦ E  
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1. Introduction 

1.1. Research background 

The ongoing use of fossil fuels will continuously cause serious 
environmental pollution (Wu, Qin, & Liu, 2022). Energy crisis is 
becoming a crucial issue (Manieniyan, Thambidurai, & Selvakumar, 
2009; Tracker, 2022) and hence solutions are needed to address this 
pressing issue. It is also noteworthy that research has been conducted to 
use renewable energy to address the related problems (Hai et al., 2020; 
Voyant, Notton, Duchaud, Almorox, & Yaseen, 2020). Solar energy, as a 
clean and renewable source of energy, meets the needs for steady and 
dependable electricity (Kannan & Vakeesan, 2016). However, solar ra
diation S(r) varies erratically, depending on many factors such as clouds 
and air pollution. The safe and steady operation of an electricity system 
can be significantly impacted (Ali & Mohamed, 2022). Thus, accurate 
forecast of S(r) can help maximize the utilization of solar energy re
sources, while also enhancing the safety and stability of power system 
operation (Sharafati et al., 2019). This will lead to the realization of the 
social and economic benefits, while also encouraging the healthy 
growth of renewable energy (Bokde, Yaseen, & Andersen, 2020). 
However, due to the high investment and maintenance costs, the global 
S(r) data are lacking or incomplete in many regions of the world. Hence, 
the assessment and prediction of global S(r) have been important tasks 
over the past decade (El Mghouchi, Chham, Zemmouri, & El Bouardi, 
2019). Applications of global S(r) contribute remarkably to diverse en
gineering fields. 

1.2. Literature review 

Various models have been developed and used for S(r) modeling, 
such as empirical models (Fan et al., 2019b; Jahani, Dinpashoh, & 
Nafchi, 2017), remote sensing methods (Olpenda, Stereńczak, & 

Będkowski, 2018; Şenkal, 2010), physical models (Cogliani, Ricchiazzi, 
& Maccari, 2007; Gautier, Diak, & Masse, 1980), and advanced 
computer-aid models (Hai et al., 2020; Kisi, Heddam, & Yaseen, 2019; 
Sada, Faskari, Ilyasu, & Abba, 2022). The ultimate goal of the modeling 
efforts is to develop more robust and reliable methodologies and attain 
more accurate predictions. The physical models involve direct calcula
tion of the reflection of S(r) from the ground by combining the altitude 
angle of the sun and the azimuth angle of the ground, which is chal
lenging and time-consuming (Kaaya, Ascencio-Vásquez, Weiss, & Topič, 
2021). In contrast, the remote sensing technique predicts S(r) using high- 
resolution images and geographic data (Huang et al., 2022). The 
empirical methods are the widely-used methods for S(r) prediction 
because of their low computing cost and data demand. Several meteo
rological variables have been employed to build different empirical 
models (Fan et al., 2019a). Such models include hybrid models, models 
of sunshine duration, and models of S(r) (Bailek et al., 2018). The 
comparatively high volatility of S(r) has a significant impact on the 
performances of empirical models. Hence, this research suggests the 
exploration of some advanced versions of machine learning (ML) models 
that can more accurately predict S(r) while addressing the drawbacks of 
the three other types of models. 

ML models have been widely used for forecasting climate-related 
variables such as S(r) (Ghimire, Deo, Downs, & Raj, 2019; Khosravi, 
Koury, Machado, & Pabon, 2018; Kumari & Toshniwal, 2021a; Kumari 
& Toshniwal, 2021b; Qazi et al., 2015). The newly enhanced ML models 
have also been applied for modeling S(r). Acikgoz (2022) developed a 
model for S(r) prediction, which consisted of a feature selection phase 
that relied on continuous wavelet transform, an extreme learning model 
for forecasting, complete ensemble empirical model decomposition with 
adaptive noise (CEEMDAN), and feature extraction networks. Bamisile 
et al. (2022) predicted hourly global and diffuse S(r) in Nigeria using a 
DL model and compared with many benchmark ML models. The DL 
models have been proven to be more reliable than other ML models. 

Fig. 3. Study area and the locations of Perth airport and Brisbane stations.  
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Ghimire et al. (2022a) proposed a 4-phase modeling approach for 
simulating global S(r), which combined DL, enhanced random forest 
with extreme gradient, and the Harris Hawks algorithm (HHA). Abubakr 
et al. (2022) utilized the transfer learning technology to develop a better 
S(r) prediction model based on the capabilities of DL neural networks. 
Ghimire et al. (2022b) developed a hybrid DL model via the combina
tion of two-stage stacked regression models for simulating daily global 
S(r), which demonstrated the potential to function as an effective tool for 
contemporary solar energy monitoring. Optimization of the prediction 
feature matrix is another essential component in developing ML models 
for S(r) prediction. Goliatt and Yaseen (2022) developed the covariance 
matrix adaptive evolution strategy with extreme gradient boosting and 
demonstrated its potential for modeling S(r) in an arid area. 

1.3. Research gap and motivation 

A variety of ML models such as extra tree, support vector machine, 
evolutionary programming, fuzzy logic, and even the latest version of DL 
have been applied for S(r) modeling. The implementation of ML models 
for such highly stochastic natural problems can vary from one case to 
another, depending on the type of data, learning process, learning 
mechanism, optimization of input parameters, and other conditions. 
Hence, there are research gaps to be filled and room for further 
exploration. 

Pre-processing the original signals or data has been performed to 
strengthen the reliability of a model and to boost the accuracy of the 
S(r) prediction. Non-stationary data can be modeled by using the 
wavelet transform (WT) to compress the size of the original data 

(Sharma, Yang, Walsh, & Reindl, 2016). Peng et al. (2021) used WT to 
perform threshold denoising to increase the prediction accuracy. How
ever, there is a great restriction to the use of WT for high-dimensional 
data processing. Hence, the empirical mode decomposition (EMD) 
method has been developed to overcome this restriction. Monjoly et al. 
(2017) compared WT, EMD, and ensemble empirical mode decomposi
tion (EEMD) in a study. The prediction accuracy of a single ML model 
can also be improved by combining intelligent algorithms and ML 
models. To forecast S(r), for instance, Eseye et al. (2018) merged the WT 
technique with a hybrid support vector machine model. Mostafavi et al. 
(2013) combined genetic programming (GP) and a simulated annealing 
(SA) algorithm to achieve accurate prediction of global S(r). Peng et al. 
(2021) developed a DL model for S(r) prediction based on a sine cosine 
algorithm (SCA), bi-directional long short-term memory (LSTM), and 
CEEMDAN, and compared with seven other models to demonstrate the 
superiority of their model. 

1.4. Research objectives 

The goal of the current research is to develop a reliable and robust 
forecasting approach by hybridizing different ML algorithms. It is worth 
mentioning that this is the first investigation using such a new approach 
to forecast the global solar exposure (GSE). Most of the previous studies 
focused on the forecasting/prediction of solar radiation. GSE is more 
representable for the solar energy harvesting component. The specific 
objectives of this study include: 

Fig. 4. Flowchart of the proposed multi-stage ML-based models for forecasting the weekly GSE at two stations in Australia using meteorological drivers.  
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• Developing a novel expert DL-based framework to accurately fore
cast weekly GSE based on the minimum and maximum air temper
atures at the Perth airport and Brisbane stations in Australia.  

• Coupling extra tree feature selection, two decomposition schemes (i. 
e., time-varying filtering based empirical mode decomposition (TVF- 
EMD) and empirical wavelet transform (EWT)), and ensemble deep 
random vector functional link (ED-RVFL).  

• Estimating the significant antecedent information among existing 
lags of the two predictors using the extra tree feature selection.  

• Using the TVF-EMD and EWT schemes to decompose the raw time 
series of the predictors imposed by the pre-estimated lags to feed four 
advanced ML approaches.  

• Validating the main modeling frameworks (i.e., ED-RVFL-TVF-EMD 
and ED-RVFL-EWT) with RVFL, Bi-LSTM, and bagging in hybrid 
and standalone counterpart formats. 

2. Methodology and materials 

2.1. Empirical wavelet transform (EWT) 

The empirical wavelet transform (EWT) (Gilles, 2013) is a segmen
tation technique for signals. To remove amplitude and frequency mod
ulation (AM–FM) from the Fourier spectrum, appropriate orthogonal 
wavelet filters are created during the segmentation process. Then, the 
AM–FM signal is transformed using the Hilbert transform to get 
instantaneous frequency amplitude. This transformation is comparable 
to the construction of bandpass filters from the standpoint of the Fourier 
transform (Gu, Chang, Xiong, & Chen, 2021). 

After determining the boundary frequencies ωBN (where n = 0,1,2,...,
N; ωB0 = 0, ωBN = π), it is possible to define the empirical scaling 
function and the empirical wavelets, as in the creation of Littlewood- 
Paley and Meyer’s wavelets (Daubechies, 1992; M. Wang & Sheng, 

Fig. 5. Outcomes of extra tree feature selection to specify the most important lagged-time components of each predictor (Tmax and Tmin) in two study cases including 
importance factors of each lag in form of two sun plots. 

Table 2 
Summarized pre-processing information for the two stations: Decomposition 
tuning via TVF-EMD and EWT applied in all the hybrid ML-based models; and 
optimal antecedent information (lagged-time).  

Station Tuning and 
regularization 

Brisbane Perth airport 

TVF- 
EMD 

Decomposition 
parameters 

Max_IMF = 9; b-spline 
order:26; Bandwidth 
threshold:0.1; end_flag 
= 0; 

Max_IMF = 9; b-spline 
order:26; Bandwidth 
threshold:0.1; end_flag 
= 0; 

IMFs (Tmax) 9 9 
IMFs (Tmin) 9 9 
Total number of 
IMFs 

5Lags@(9 + 9) = 90 5Lags@(9 + 9) = 90  

EWT Decomposition 
parameters 

Signal = ’sig2′, Global 
trend removal= ’plaw’; 
Polynomial 
interpolation degree: 6 

Signal = ’sig2′; Global 
trend removal= ’none’; 
maximum number of 
bands:3; Polynomial 
interpolation degree: 6 

IMFs (Tmax) 7 10 
IMFs (Tmin) 7 13 
Total number of 
IMFs 

5Lags@(7 + 7) = 70 5Lags@(10 + 13) = 115  

Significant antecedent 
information 

Tmax(t-1), Tmax(t-2), 
Tmax(t-8), Tmax(t-9), 
Tmax(t-10), Tmin(t-1), 
Tmin(t-2), Tmin(t-8), 
Tmin(t-9), and Tmin(t- 
10) 

Tmax(t-1), Tmax(t-2), 
Tmax(t-4), Tmax(t-8), 
Tmax(t-10), Tmin(t-1), 
Tmin(t-2), Tmin(t-4), 
Tmin(t-8), and Tmin(t- 
10)  
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2022). 

ϕ̂n(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 , |ω|⩽ωBn − τn

cos
[

π
2

β
(

1
2τn

(|ω| − ωBn + τn )

)]

,ωBn − τn⩽|ω|⩽ωBn + τn

0
(1)    

where β(x) is a polynomial function having values in the range of [0, 1]
and satisfies β(x) + β(1 − x) = 1,∀x ∈ [0,1]. Many polynomial functions 
meet this criterion. β(x) = x4( 35 − 84x+70x2 +20x3) has been widely 
used for this purpose. τn = γωBn defines the transient phase with a width 
of 2τn around each ωBn. To ensure that there is no overlap between 
two successive transitions, the parameter must fulfill 0 < γ <

min
( (

ωB,n+1 − ωBn
)/(

ωB,n+1 + ωBn
) )

. The set 
{

φ1(t), {ψn(t)}
N− 1
n=1

}
is now 

known as a tight frame. 
The wavelet approximation and the detailed coefficients are given by 

the following inner products (Gilles, 2013): 

Wε
x(0, t) = 〈x,ϕ1〉 =

∫

x(τ)ϕ∗
1(τ − t)dτ = F− 1[X(ω)ϕ̂1(ω)] (3)  

Wε
x(n, t) = 〈x,ψn〉 =

∫

x(τ)ψ∗
n(τ − t)dτ = F− 1[X(ω)ψ̂ n(ω)], (n

= 1, 2,…,N − 1) (4)  

where * means “conjugate,” ϕ̂1(ω) and ψ̂ n(ω) are defined in Equations 

Fig. 6. Decomposed sub-sequences of predictors using TVF-EMD (upper panel) and EWT (lower panel) for Perth airport station.  

ψ̂ n(ω) =

⎧
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sin
[

π
2

β
(

1
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,ωBn − τn⩽|ω|⩽ωBn + τn

0

(2)   
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(1) and (2), and ϕ1(t) is the inverse Fourier transform of ϕ̂1(ω). 

2.2. Time varying filter-based empirical mode decomposition (TVF-EMD) 

To solve the mode mixing problem, a modified version of empirical 
mode decomposition (EMD) by applying a time-varying filter (TVF) to 
complete the shifting process was proposed by Li et al. (2017). For time- 
frequency analysis, the TVF-EMD has been demonstrated as an effective 
technique. The implementation process of the TVF-EMD includes the 

following (H. Li et al., 2017; Song, Chen, Wu, & Jin, 2021):  

(i) Shifting process of the empirical mode decomposition.  
(ii) Estimate the local cut-off frequency (LCOF) and the realignment, 

which is defined as: 

gn
m(t) =

∑∞

k=− ∞
c(k)βn(t/m − k) (5)  

where βn(t) and c(k) are the B-spline function and coefficient. The 
approximation is determined by n, m, and c(k) to minimize the 
approximation error 

(
ε2

m
)
, which is defined as: 

ε2
m =

∑+∞

t=− ∞

(
x(t) − [c]↑m*bn

m(t)
)2 (6)  

in which bn
m(t) is the βn(t/m), [ • ]↑m is the up-sampling operation by m, 

and * is the convolution operator. c(k) is given by: 

c(k) =
[
pn

m*x
]

↓m(k) (7)  

where, [ • ]↓m is the down-sampling operation by m, and pn
m is the pre- 

filter. Thus, Eq. (1) can be rewritten as: 

gn
m(t) =

[
pn

m*x
]

↓m*bn
m(t) (8) 

In Eq. (4), the B-spline approximation is a special form of low pass 
filtering. Thus, the LCOF is expected from the input signal and used to 
create the TVF. This process is carried out to obtain the LCOF, 
φ′

bis(t) = φ′

1(t)+φ′

2(t)/2 (where, φ′

1(t), and φ′

2(t) = slow varying com
ponents). Realign the φ′

bis(t) to solve the issue of intermittences and 
attain the final LCOF by interpolating among the peaks.  

(iii) Shifting process based on TVF, which filters the input signal into 
local higher and lower frequency components and obtains the 
extracted local narrowband signal. Check the stopping criterion 
for such a shifting process using Eq. (5) (K. Wang et al., 2020): 

θ(t) =
BLoughlin(t)

φavg(t)
(9)  

where, φavg(t) and BLoughlin(t) are the weighted average instantaneous 
frequency and Loughlin instantaneous bandwidth of separate 
components. 

2.3. Extra tree feature selection 

Feature selection is frequently required prior to the use of a learning 
algorithm. In the current study, the extra tree ensemble algorithm is 
used to determine the importance of input data. ET is an ensemble 
learning strategy that averages the predictions of decision trees (DTs) to 
boost accuracy and decrease computational complexity (Geurts, Ernst, & 
Wehenkel, 2006). The ET method generates a random ensemble of trees, 
then aggregates their predictions using a suitable method, such as 
mathematical averaging for the case of regression or voting majority for 
classification tasks (Seyyedattar, Ghiasi, Zendehboudi, & Butt, 2020). 
Unlike the traditional tree-based ensemble techniques, ETs construct 
trees using the entire learning sample rather than a bootstrap replica, 
and node splitting is performed by a totally random selection of cut 
points (Wehenkel, Ernst, & Geurts, 2006). The two basic parameters of 
the ETR are K (the number of features randomly nominated at each 
node) and nmin (the minimum sample size for splitting a node), which 
prevent overfitting and improve model prediction accuracy. K repre
sents the number of randomly picked characteristics at each node 
throughout the process of tree growth, and it defines the intensity of the 
variable selection process. ETs are expected to successfully minimize the 
variance by the combination of explicit randomization of input features 

Table 3 
Tuning parameters of each machine learning approach in hybrid and the cor
responding standalone counterparts gained by the random search.  

Hyperparameters used in the ML models 

Model Perth airport Brisbane 

ED-RVFL- 
TVF- 

EMD 

num_nodes: 5, regular_para =
0.05, num_layer = 3, 
weight_random_range = [-1, 1] 

num_nodes: 5, regular_para =
0.0005, num_layer = 2, 
weight_random_range = [-1, 1]  

ED-RVFL- 
EWT 

num_nodes: 8, regular_para = 0.6, 
num_layer = 3, 
weight_random_range = [-1, 1] 

num_nodes: 6, regular_para =
0.0005, num_layer = 2, 
weight_random_range = [-1, 1]  

ED- 
RVFL 

num_nodes: 200, regular_para =
0.00055, num_layer = 4, 
weight_random_range = [-1, 1] 

num_nodes: 5, regular_para =
0.0005, num_layer = 2, 
weight_random_range = [-1, 1]  

Bi-LSTM- 
TVF- 

EMD 

Neurons number: 40, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0004, Epochs: 
90, Training Algorithm: Adam, 
Batch Size: 256 

Neurons number: 40, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0005, Epochs: 
90, Training Algorithm: Adam, 
Batch Size: 256  

Bi-LSTM- 
EWT 

Neurons number: 60, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0008, Epochs: 
90, Training Algorithm: Adam, 
Batch Size: 256 

Neurons number: 40, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0004, Epochs: 
80, Training Algorithm: Adam, 
Batch Size: 256  

Bi-LSTM Neurons number: 40, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0004, Epochs: 
90, Training Algorithm: Adam, 
Batch Size: 256 

Neurons number: 40, Number of 
Layers: 2, activation=’relu’, 
Learning Rate: 0.0005, Epochs: 
80, Training Algorithm: Adam, 
Batch Size: 256  

RVFL- 
TVF- 

EMD 

num_nodes: 60, regular_para =
0.05, bias_random_range = [0, 1], 
weight_random_range = [-1, 1] 

num_nodes: 70, regular_para =
0.1, bias_random_range = [0, 1], 
weight_random_range = [-1, 1]  

RVFL- 
EWT 

num_nodes: 50, regular_para =
0.1, bias_random_range = [0, 1], 
weight_random_range = [-1, 1] 

num_nodes: 60, regular_para =
0.1, bias_random_range = [0, 1], 
weight_random_range = [-1, 1]  

RVFL num_nodes: 40, regular_para =
0.1, bias_random_range = [0, 1], 
weight_random_range = [-1, 1] 

num_nodes: 100, regular_para =
0.1, bias_random_range = [0, 1], 
weight_random_range = [-1, 1]  

Bagging- 
TVF- 

EMD 

Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All 

Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All  

Bagging- 
EWT 

Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All 

Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All  

Bagging Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All 

Function: “Fitrensemble”, Mode: 
“bag”, ’MaxNumSplits’: 10, 
’NumVariablesToSample’: All  
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and cut points with ensemble averaging, and the use of the whole 
original learning sample aids in the reduction of bias. The number of 
trees created by the ET model determines the variance reduction of the 
ensemble model aggregation (Geurts et al., 2006). The ETR model was 
created in this study by using the Python’s scikit-library. 

2.4. Bidirectional- LSTM (Bi-LSTM) 

Graves and Schmidhuber (2005) proposed the concept of the bidi
rectional long short-term memory (Bi-LSTM) to solve the gradient ex
plosion and information morphing drawbacks during the 
backpropagation, a particular type of recurrent neural network 
(Schuster & Paliwal, 1997). The Bi-LSTM model processes the sequential 
data into bidirectional (i.e., forward (past to future) and backward 
(future to past) directions) with two distinct hidden layers (or LSTM 
layers), which are connected to the same output layer (Ihianle et al., 
2020). In recent years, DL-based models (e.g., Bi-LSTM) have been 
applied in different areas (Apaydin et al., 2020; Dey, Dey, & Mall, 2021; 
Kang, Yang, Huang, & Oh, 2020; Le, Nguyen, Jung, Yeon, & Lee, 2021; 
LI, MA, CHEN, & HUANG, 2021; Liang et al., 2021; Maddu, Vanga, Sajja, 
Basha, & Shaik, 2021; Park, Jung, Kim, & Park, 2020; Yin, Deng, Ines, 
Wu, & Rasu, 2020). The upper panel of Fig. 1 shows the structure of the 

Bi-LSTM network with a forward hidden state 
(

ht
→)

and backward hid

den state 
(

ht
← )

, and updated based on input layer (xt). Both hidden 

states are calculated for forward and backward directions. The Bi-LSTM 

output is obtained by integrating the outputs of the forward and back
ward layers using Eq. (10) (Y.-H. Li, Harfiya, Purwandari, & Lin, 2020; 
Minh-Tuan & Kim, 2019): 

yt = σ
(

ht
→
, ht

← )
(10)  

in which, σ = a function used to combine the two output sequences. It 
can be a summation, average, concatenating, or multiplication function. 
The final output of the Bi-LSTM layer is characterized by a vector, YT =

[yT− n,⋯,yT− 1], in which the least element, yT− 1, is the forecasted GSE for 
the next iteration. 

2.5. Bagging tree regression 

Breiman (1996) proposed the concept of the bagging tree regression 
(BTR or bootstrap aggregation), and prediction is made based on 
ensemble trees (Y. Zhang, Chiew, Li, & Post, 2018). It is an effective 
method, compared to other ensemble-based decision tree algorithms 
like boosting (C. Zhang & Ma, 2012). The lower panel of Fig. 1 shows the 
prediction procedure of the bagging algorithm, which can be used in 
many classifications and regression to reduce the variance and thereby 
enhance the robustness of the prediction process (Basilio & Goliatt, 
2022; Sutton, 2005). The practical implementation of the bagging al
gorithm includes the following steps (Avand et al., 2020; Zounemat- 
Kermani, Batelaan, Fadaee, & Hinkelmann, 2021): 

Table 4 
Goodness-of-fit metrics for assessing the robustness of the hybrid and standalone models to forecast the weekly GSE at the Perth airport station.  

Models Phase R RMSE MAE MAPE NSE KGE IA U95% 

ED-RVFL-TVF-EMD Training  0.9682  1.8838  1.4526  8.6470  0.9374  0.9521  0.9835  5.2232 
Testing  0.9665  1.9193  1.4808  8.5879  0.9288  0.9565  0.9823  5.2803  

ED-RVFL-EWT Training  0.9623  2.0501  1.6085  9.5965  0.9259  0.9403  0.9802  5.6843 
Testing  0.9634  1.9832  1.5345  9.0832  0.9240  0.9583  0.9809  5.4685  

ED-RVFL Training  0.9283  2.8034  2.1939  12.9547  0.8614  0.8842  0.9607  7.7728 
Testing  0.8957  3.2408  2.4869  14.5794  0.7971  0.8884  0.9453  8.9815  

Bi-LSTM-TVF-EMD Training  0.9428  2.5127  1.9628  11.4506  0.8887  0.9099  0.9693  6.9652 
Testing  0.9490  2.3270  1.7433  9.7423  0.8954  0.9459  0.9736  6.4367  

Bi-LSTM-EWT Training  0.9856  1.2720  0.8868  5.0420  0.9715  0.9797  0.9927  3.5267 
Testing  0.9413  2.6933  2.0390  11.9120  0.8599  0.8901  0.9672  7.4150  

Bi-LSTM Training  0.9053  3.2087  2.4754  14.4944  0.8184  0.8604  0.9476  8.8837 
Testing  0.9162  2.8940  2.1842  12.4839  0.8382  0.9030  0.9562  8.0286  

RVFL-TVF-EMD Training  0.9713  1.7915  1.3983  8.3708  0.9434  0.9572  0.9852  4.9672 
Testing  0.9608  2.0394  1.5360  8.7936  0.9204  0.9484  0.9804  5.5988  

RVFL-EWT Training  0.9659  1.9501  1.5371  9.2302  0.9329  0.9500  0.9823  5.4068 
Testing  0.9606  2.0718  1.5957  9.5140  0.9171  0.9514  0.9794  5.7209  

RVFL Training  0.8858  3.4949  2.8074  17.1343  0.7846  0.8383  0.9362  9.6903 
Testing  0.8729  3.5711  2.8427  17.0501  0.7537  0.8639  0.9321  9.8900  

Bagging-TVF-EMD Training  0.9864  1.2796  0.9671  5.6477  0.9711  0.9410  0.9923  3.5479 
Testing  0.9468  2.3217  1.6924  9.8705  0.8959  0.9383  0.9726  6.4390  

Bagging-EWT Training  0.9856  1.3187  1.0043  5.8938  0.9693  0.9387  0.9918  3.6564 
Testing  0.9408  2.4422  1.8213  10.3860  0.8848  0.9245  0.9692  6.7718  

Bagging Training  0.9627  2.1196  1.6079  9.4698  0.9208  0.8799  0.9774  5.8762 
Testing  0.9028  3.1000  2.3004  13.2733  0.8144  0.8612  0.9470  8.5932  
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(i) Build random subsets from the training dataset using the boot
strap sampling approach with replacement.  

(ii) Apply some prediction models to each bootstrap sample.  
(iii) Obtain the overall prediction by combining the results using 

averaging for regression and voting for classification. 

2.6. Random vector functional link 

RVFL is a feed-forward neural network with a functional link be
tween the input and output layers (Pao, Park, & Sobajic, 1994). The 
initial random improvement layer transforms the input data into 
enhanced features. The concatenation of the improved features and 
input data serves as the input for the output layer. Instead of repeated 
training, the output weights are trained using linear regression methods 
(Adnan et al., 2021). This connection prevents the typical issue of 
overfitting in the traditional SLFNN. Fig. 2 (upper panel) depicts the 
architecture of the RVFL network. 

RVFL collects Ns sample data (X), denoted by the pair (xi,yi), where yi 
is the desired variable. The inputs are then processed by the mid (hid
den) nodes. These mid nodes are known as enhancement nodes. The 
output of each mid node is calculated as follows (Zayed et al., 2021): 

H = Oj
(
ajxi + bj

)
=

1

1 + e(ajxi+bj)
, bj ∈ [0, S], aj ∈ [ − S, S] (11)  

where aj represents the weights between the input layer nodes and the 
middle (enhancement) layer nodes; and bj is the bias. Scale factor S is 

examined during the optimization process. The following formula 
computes the final result of RVFL: 

Z = Bw (12)  

in which, B comprises input data (B1) and enhancement node output 
(B2), and w is the weight of the output. 

B1 =

⎡

⎣
x11 ⋯ x1n
⋮ ⋱ ⋮

xN1 ⋯ xNn

⎤

⎦,B2 =

⎡

⎣
O(a1x1 + b1) ⋯ O

(
apx1 + bp

)

⋮ ⋱ ⋮
O(a1x1 + b1) ⋯ O

(
apxN + bp

)

⎤

⎦ (13) 

The output weight is updated using the following equations, which 
represent the Moore–Penrose pseudo-inverse and ridge regression, 
respectively: 

w = B†Z (14)  

w =

(

BT B +
1
C

)− 1

BT Z (15)  

where † stands for the Moore-Penrose pseudo-inverse and 1
C = λ is the 

regulation parameter. 

2.7. Ensemble Deep-RVFL (ED-RVFL) 

Shi et al. (2021) developed the ED-RVFL and improved the original 
RVFL by building further hidden layers after the initial hidden layer. ED- 

Table 5 
Goodness-of-fit metrics for assessing the robustness of the hybrid and standalone models to forecast the weekly GSE at the Brisbane station.  

Models Mode R RMSE MAE MAPE NSE KGE IA U95% 

ED-RVFL-TVF-EMD Training  0.9151  1.9361  1.4958  8.0260  0.8374  0.8788  0.9538  5.3683 
Testing  0.9181  2.0313  1.5912  8.5692  0.8381  0.8601  0.9531  5.6017  

ED-RVFL-EWT Training  0.9204  1.8771  1.4465  7.7212  0.8472  0.8870  0.9570  5.2044 
Testing  0.9218  1.9708  1.5230  8.1847  0.8476  0.8552  0.9555  5.4655  

ED-RVFL Training  0.8284  2.6894  2.1487  11.7613  0.6863  0.7555  0.8987  7.4568 
Testing  0.8473  2.7043  2.0735  11.4236  0.7131  0.7453  0.9061  7.4873  

Bi-LSTM-TVF-EMD Training  0.8662  2.4034  1.8983  10.1830  0.7495  0.7985  0.9223  6.6602 
Testing  0.8928  2.3026  1.7430  9.4168  0.7920  0.8054  0.9359  6.3716  

Bi-LSTM-EWT Training  0.8771  2.3061  1.8207  9.8176  0.7694  0.8292  0.9312  6.3940 
Testing  0.8780  2.4241  1.8934  10.0611  0.7694  0.8104  0.9298  6.7185  

Bi-LSTM Training  0.8422  2.5911  2.0369  11.0130  0.7088  0.7847  0.9095  7.1825 
Testing  0.8579  2.5994  1.9513  10.5992  0.7349  0.7865  0.9177  7.2065  

RVFL-TVF-EMD Training  0.9209  1.8720  1.4667  7.9018  0.8480  0.8850  0.9571  5.1905 
Testing  0.9077  2.1448  1.7065  9.3616  0.8195  0.8570  0.9478  5.9158  

RVFL-EWT Training  0.9276  1.7937  1.3987  7.4910  0.8605  0.8969  0.9611  4.9734 
Testing  0.9075  2.1252  1.6719  8.9160  0.8228  0.8512  0.9480  5.8947  

RVFL Training  0.7409  3.2854  2.6658  14.7741  0.5319  0.7107  0.8528  9.1092 
Testing  0.8383  2.7579  2.0882  11.3463  0.7016  0.7743  0.9063  7.6435  

Bagging-TVF-EMD Training  0.9735  1.1577  0.8817  4.7705  0.9419  0.8939  0.9837  3.2100 
Testing  0.8832  2.3936  1.8106  9.7111  0.7752  0.7805  0.9287  6.6405  

Bagging-EWT Training  0.9727  1.1736  0.8734  4.7175  0.9403  0.8925  0.9832  3.2541 
Testing  0.8960  2.2817  1.7343  9.0892  0.7957  0.7948  0.9359  6.3165  

Bagging Training  0.9488  1.5801  1.2242  6.6456  0.8917  0.8477  0.9679  4.3811 
Testing  0.8531  2.6622  2.0436  11.0874  0.7219  0.7419  0.9084  7.3746  
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RVFL randomizes and fixes the weights and bias between the hidden 
layers in the same manner as the original RVFL algorithm. Each output 
layer takes features from the output of its associated hidden layer, direct 
connections from the preceding hidden layer (if any), and the input 
layer. The architecture of the RVFL is shown in Fig. 2 (lower panel). In 
the first layer (l = 1), the output can be calculated by (Shi et al., 2021): 

H(1) = f
(
Xw(1)) (16)  

where w is the weight connecting the input layer to the first hidden 
layer; and f(.) is a non-linear activation function. 

In subsequent layers (l > 1), direct linkages from the initial input X 
are added. The input feature space of this layer is the concatenation of 
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Fig. 7. Comparative assessment of the model efficiency based on the binomial distribution function (left) and scatter plots (right) in three categories of TVF-EMD- 
based models, EWT-based models, and their counterparts for the Brisbane and Perth airport stations in the testing period of GSE modeling. 
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the output features of the previous layer (H(l− 1)) and the original input 
features (X): 

H(l) = f
( [

H(l− 1)X
]
w(l) ) (17)  

where f(.) is a nonlinear activation function, and w represents the weight 
between the previous and current layers. L softmax layers act as classi
fiers for the ensemble in an ED-RVFL with L layers. The input feature 

space of the first softmax layer (D(1)
e ) has a direct connection to the 

original input features (X), as shown in the following equation (Cheng, 
Suganthan, & Katuwal, 2021): 

D(1)
e =

[
H(1)X

]
(18) 

The input feature space of the next softmax layer (D(1)
e ) has direct 

linkages between the original input features (X) and the previous layer, 
as shown in the following equation: 
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Fig. 7. (continued). 
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D(1)
e =

[
H(l)H(l− 1)X

]
(19) 

All weights between the input and hidden layers are randomized and 
held constant during the training process. The only parameters requiring 
optimization are the output weights. In this situation, each output layer 
can be viewed as a distinct classifier, and each output weight can be 
calculated independently. Using majority voting or average scoring, one 
can determine the final output label from an ED-RVFL ensemble, which 
is a collection of separate output layers. In this study, as a regression 
problem, averaging of the results is used (Cheng et al., 2021). 

2.8. Evaluation indicators 

The model performances are evaluated by using eight statistical 

metrics, including coefficient of correlation (R), root mean square error 
(RMSE), Kling-Gupta efficiency (KGE), index of agreement (IA), uncer
tainty coefficient with 95% confidence level (U95%), mean absolute 
percent error (MAPE), Nash-Sutcliffe efficiency (NSE), and mean abso
lute error (MAE). The models used for forecasting weekly GSE at the 
Brisbane & Pert sites include ED-RVFL-TVF-EMD, ED-RVFL-EWT, ED-RVFL, 
Bi-LSTM-TVF-EMD, Bi-LSTM-EWT, Bi-LSTM, RVFL-TVF-EMD, RVFL-EWT, RVFL, 
Bagging-TVF-EMD, Bagging-EWT, and Bagging. Mathematically, R (Moriasi 
et al., 2015), RMSE (Jamei et al., 2020a), KGE (Gupta, Kling, Yilmaz, & 
Martinez, 2009; Jamei et al., 2022b), IA (Willmott, 1981), U95% (Patino 
& Ferreira, 2015; Rehamnia, Benlaoukli, Jamei, Karbasi, & Malik, 
2021), MAPE (Singh, Jamei, Karbasi, Malik, & Pandey, 2022), NSE 
(Nash & Sutcliffe, 1970), and MAE can be respectively written as: 

0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

0 1 2 3 4 5 6

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Brisbane  station-Single models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD
0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

7
8

0 1 2 3 4 5 6 7 8

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Perth airport station-Single models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD

0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

0 1 2 3 4 5 6

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Brisbane  station-EWT-based models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD

0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

7
8

9

0 1 2 3 4 5 6 7 8 9

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Perth airport station-EWT-based models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD

0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

0 1 2 3 4 5 6

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Brisbane  station-TVF-EMD-based models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD

0.8

0.9

0.95

0.99

1
0

1
2

3
4

5
6

7
8

0 1 2 3 4 5 6 7 8

Bagging-TVF-EMD

ED-TVFL-TVF-EMD

Reference

Standard Deviation

Stan
da

rd 
Dev

iat
ion

Correlation Coefficient

Perth airport station-TVF-EMD-based models

Bi-LSTM-TVF-EMD

RVFL-TVF-EMD

Fig. 8. Taylor diagrams of SGE forecasted by the hybrid models for the testing period at Brisbane station (left) and Perth airport station (right).  
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Fig. 9. Spider plots of the statistical metrics for different models for Brisbane station (upper panel) and Perth airport station (lower panel).  
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where, GSEobs,i and GSEfor,i are the ith observed and forecasted GSE 
values; GSEobs and GSEfor are the averages of the observed and forecasted 
GSE values; α is the relative variability in the forecasted and observed 
GSE values; β is the ratio of the forecasted GSE average to the observed 
GSE average; STDe denotes the standard deviation of error, and N is the 
total number of data points. 

2.9. Study area and datasets 

The GSE values range from 1 to 35 MJm− 2, which are normally 
highest in summer when the sky is clear, while smallest in winter and 
cloudy situations. The GSE data acquired in this research for the selected 
stations are satellite derived, imagery processed data from the Bureau of 
Meteorology, Australia. The original data were generated from the 
Geostationary Meteorological Satellites namely GMS-4, GMS-5, and 
MTSAT-1R, MTSAT-2 of the Japan Meteorological Agency, and the U.S. 
National Oceanic & Atmospheric Administration (NOAA) GOES-9 
satellite. 

The Perth and Brisbane selected in this study are two important cities 
located in the western and eastern ends of Australia, which respectively 
are the capitals of the States of Queensland and Western Australia. The 
Brisbane station is located on the Northern Brisbane River in Queens
land and the average annual temperature ranges from 21.0 ◦C in July to 
27.0 ◦C in February. The Perth airport station is located at the airport of 
Perth in Western Australia and the average annual temperature ranges 
from 18.9 ◦C in July to 23.4 ◦C in February. 

All the datasets from 01/01/2000 to 30/06/2022 (22.5 years) for 
Brisbane and Perth stations were attained from the Bureau of Meteo
rology Australia. The acquired input data or predictors included 
maximum air temperature (Tmax) and minimum air temperature (Tmin) 
used to forecast weekly GSE. The descriptive statistics of the datasets 
and the latitude and longitude data for both stations are listed in Table 1. 
Fig. 3 illustrates the study area and the locations of the two stations. 

At Brisbane station, the distributions of the observed weekly Tmin, 
Tmax, and GSE datasets were close to normal distributions with a Kur
tosis range of [-1.062, − 0.8635] and had a platykurtic distribution with 
respect to Kurtosis <0. At Perth airport station, the weekly Tmin, Tmax, 
and GSE datasets with a Kurtosis range of [− 1.278, − 0.863] were close 
to near-normal distributions and had a platykurtic distribution (Kurtosis 
<0). Besides, the skewness ranges (Brisbane: [− 0.1651, 0.2257] and 

Fig. 10. Uncertainty and MAPE variation for the GSE forecasted by different models for Brisbane station (upper panel) and Perth airport station (lower panel).  
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Fig. 12. Box plots of relative deviation distribution simulated by the hybrid models for Brisbane and Perth airport stations during the testing period.  
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Perth airport: [0.2033, 0.2787]) for both stations were in an allowable 
range (i.e., [− 2.2, 2.2]) (Geroge & Mallery, 2003; Nie, Bent, & Hull, 
1975) for an ML-based forecasting model. 

2.10. Intelligent expert framework establishment 

In this research, a powerful hybrid model is developed for solar ra
diation forecasting using air temperature data (Tmax and Tmin) for two 
locations in Australia. This model consists of two pre-processing stages: 
(1) it uses a powerful feature selection called “extra tree” to detect the 
effective time lags of each of the predictor signals (Stage 1); and (2) each 
of the predictors is decomposed using two new and effective decompo
sition techniques, namely EWT and TVF-EMD, to provide suitable data 
for feeding the ML models (Stage 2). In this research, a new DL model 
called Ali was used, for the first time, to solve energy-related problems. 
Also, RVFL, Bi-LSTM, and Bagging were used for comparisons either in a 
combined mode with pre-processing steps or in a single mode to 
compare with the main model. The ED-RVFL, RVFL, and Bi-LSTM 
models, along with extra tree, were developed in the Python environ
ment with the help of Scikit-learn and Tensorflow libraries, and other 
techniques (e.g., Bagging) were implemented in the MATLAB environ
ment. The flowchart of the proposed expert system to forecast GSE is 
shown in Fig. 4. The details on the pre-processing stages of the modeling 
are described as follows: 

Stage 1: data processing and preparing. 
Generally, the ground-based meteorological time series datasets 

have some missing data and outliers, which require some treatments 
before constructing the predictive ML-based models. In addition, the 
original daily datasets need to be converted into a weekly scale to 

forecast the weekly GSE. In this research, the limited missing data and 
outliers were processed by using the iterative k-nearest neighbor method 
(Keerin & Boongoen, 2021) and the Grubbs test (Grubbs, 1950; Mishra 
et al., 2022), respectively. Afterward, the most significant antecedent 
information or the lagged-time components of each predictor should be 
accurately determined. Basically, the correlation assesses the relation
ship between two or more variables. But, the disadvantages of correla
tional research include no cause and effect, no-inference results, and 
potentially confounding factors. All these issues are tackled by the newly 
proposed feature selection technique (i.e., extra tree) for solving the 
complicated hydrological and environmental problems. Nowadays, 
similar techniques have been widely used in various fields to solve the 
optimal feature selection problems (Ahmed et al., 2021; Masrur Ahmed 
et al., 2021; Prasad et al., 2019). In the current study, the significant 
lagged-time components were extracted by extra tree feature selection, 
instead of using the cross-correlation technique. Here, the extra tree by a 
criterion, namely importance factor specifies the most influential 
lagged-time sequences to feed the models. The outcomes from the first 
preprocessing procedure over the predictors (Tmax and Tmin) for the two 
sites are shown in the sun plots in Fig. 5. The values of important factor, 
as the benchmark criterion are also listed in Fig. 5. The optimal lags 
obtained in the current stage, listed in the last row of Table 2, are 
required for the next preprocessing stage. 

Stage 2: Predictor decomposing. 
Since short-term meteorological or hydrological time series gener

ally are nonstationary and have a lot of noise, using them without any 
preprocessing in the ML models often does not lead to acceptable results. 
For this reason, it is necessary to decompose the nonlinear input signals 
into their intrinsic modes of oscillation before feeding the ML models. In 

Fig. 13. Empirical cumulative distribution function (ECDF) of absolute forecasting relative deviation, |FARD| (MJ/m2) for all the hybrid models at Brisbane and 
Perth airport stations during the testing period. 
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this research, the two predictors are decomposed into a number of 
intrinsic mode functions (IMFs) and the corresponding residuals using 
two new techniques, namely TVF-EMD and EWT. To the best of our 
knowledge, the TVF-EMD technique is utilized for the first time to 
forecast GSE in a hybrid model with feature selection and derives from 
deep learning. This preprocessing scheme can overcome the defects of 
EMD, including the end effect and mode mixing (K. Wang et al., 2020). 
Furthermore, the EWT returns the multiresolution analysis (MRA) 
components as a new advanced extension of the wavelet transform 
families for signal analysis (Jamei et al., 2022c). TVF-EMD has some 
tuning parameters including Max_IMF, spline order, bandwidth 
threshold, and end_flag (Jamei et al., 2022b). The aforementioned 
optimal parameters are attained by using the trial and error procedure. 
Also, since the maximum number of decomposition components 
(Max_IMF) for both stations is 9, the total number of sub-sequences to be 
fed into the ML models based on the antecedent information chosen for 
the input variables is 90. The effective EWT tuning parameters include 
signal type, global trend removal, and polynomial interpolation degree 
(Jamei et al., 2022b), which are shown in Table 2, along with the 
optimal parameters of the TVF-EMD. The total numbers of sub- 
sequences in the EWT-based models for Brisbane (IMFs (Tmax & Tmin) 
= 7) and for Perth airport (IMFs (Tmax) = 10 and IMFs (Tmin) = 13) are 
70 and 115, respectively. It should be noted that the number of IMFs in 
the EWT is determined adaptively. As a schematic sample, Fig. 6 shows 
the decomposed sub-sequences of predictors using the TVF-EMD and 
EWT schemes for the Perth airport station. 

Stage 3: Prerequisites of feeding models. 
The data splitting strategy is very important and challenging in 

constructing the predictive models. So, adopting a suitable strategy ac
cording to the length of the time series in forecasting problems can 
prevent or mitigate the occurrence of overfitting. K-fold cross-validation 
is one of the most commonly used cross-validation methods to mitigate 
overfitting. However, this scheme is not recommended for time series 
due to the gaps it creates in the time series sequence (Cochrane, 2018). 
Regarding the sufficient length of data (22.5 years) and grid search for 
tuning ML models, it is possible to avoid the occurrence of overfitting 
and use the hold-out cross-validation. Thus, 75% of the entire time series 
is allocated for the training of the models, and the remaining 25% of the 
dataset is used for model testing. In addition, all the inputs and targets 
are normalized between 0 and 1 to enhance the efficiency of the models 
and convergence (Ali et al., 2021). At this stage, the forecasting process 
using the ML models is carried out for each IMF related to the predictors 
(Tmin and Tmax) for both stations. 

After the data required to feed the models are prepared from the 
previous steps, a strategy is adopted to optimize the results and control 
overfitting. Pursuing optimal outcomes and tuning the hyperparameters 
of the ML models are mutually dependent. One of the straightforward 
techniques that have lately gained a lot of popularity is the random 
search strategy. The main hyperparameters of ED-RVFL and RVFL are 
the node numbers, the number of hidden layers, and some regularization 
coefficients (Shi et al., 2021), while the main hyperparameters of Bi- 
LSTM (Jamei et al., 2022b) are the number of neurons, number of 
layers, and learning rate. The tuning of a bagging model is simple and it 
is developed by defining the fitrensemble function and the “bag” mode 
in MATLAB. Table 3 lists the optimal hyperparameters of all the hybrid 
and standalone predictive models gained by the random search strategy. 
The last stage of modeling is summing up all the forecasts associated 
with the IMFs to get the weekly GSE. 

3. Results assessment and discussion 

The performances of the ED-TVFL-TVF-EMD, Bi-LSTM-TVF-EMD, RVFL-TVF- 

EMD, Bagging-TVF-EMD, ED-TVFL-EWT, Bi-LSTM-EWT, RVFL-EWT, Bagging-EWT, 
ED-TVFL, Bi-LSTM, RVFL, and bagging models used to forecast weekly 
GSE for the stations of Perth Airport and Brisbane in Australia were 
evaluated by using the eight statistical metrics. As shown in Table 4, the 

ED-TVFL-TVF-EMD model attained maximum precision for Perth Airport 
station (R = 0.9665, RMSE = 1.9193, MAE = 1.4898, MAPE = 8.5879, 
NSE = 0.9288, KGE = 0.9565, IA = 0.9823, U95% = 5.2803) in the testing 
period, following by ED-TVFL-EWT [R = 0.9634, RMSE = 1.9832, MAE =
1.5345, MAPE = 9.0832, NSE = 0.9240, KGE = 0.9583, IA = 0.9809, 
U95% = 5.4685], and RVFL-TVF-EMD [R = 0.9608, RMSE = 2.0394, MAE 
= 1.5360, MAPE = 8.7936, NSE = 0.9204, KGE = 0.9484, IA = 0.9804, 
U95% = 5.5988]. The Bi-LSTM-TVF-EMD, Bagging-TVF-EMD, Bi-LSTM-EWT, RVFL- 
EWT, Bagging-EWT, ED-TVFL, Bi-LSTM, RVFL, and bagging models 
(Table 4) were reasonably good to forecast weekly GSE. It was found 
that the hybrid TVF-EMD based models had the capabilities to achieve the 
highest accuracy, followed by the EWT-based models for the Perth 
Airport station. Further analysis indicated that the standalone models (i. 
e., ED-TVFL, Bi-LSTM, RVFL, and bagging) had relatively lower accu
racy, compared to the hybrid versions. Overall, the ED-TVFL-TVF-EMD 
model was the most accurate model for forecasting weekly GSE for the 
Perth Airport station. 

For Brisbane station, the ED-TVFL-EWT model showed better accuracy 
(R = 0.9218, RMSE = 1.9708, MAE = 1.5230, MAPE = 8.1847, NSE =
0.8476, KGE = 0.8552, IA = 0.9555, U95% = 5.4655) (Table 5) in the 
testing period to forecast weekly GSE than all other models including 
ED-TVFL-TVF-EMD, Bi-LSTM-TVF-EMD, RVFL-TVF-EMD, Bagging-TVF-EMD, Bi-LSTM- 
EWT, RVFL-EWT, Bagging-EWT, ED-TVFL, Bi-LSTM, RVFL, and bagging. The 
results again confirmed that the hybrid EWT and TVF-EMD models were 
more accurate for Brisbane station, while the standalone models did not 
achieve the optimum precision (Table 5). 

Fig. 7 shows the comparisons of the TVF-EMD based, EWT based, and 
standalone/single baseline models for forecasting weekly GSE in forms 
of binomial distribution plots (left) and scatter plots (right) for both 
Brisbane and Perth Airport stations. For Brisbane station, ED-TVFL-EWT 
achieved higher accuracy with a binomial distribution against the 
observed distribution of the weekly GSE and attained a higher value of R 
(0.9218) than all other models. The ED-TVFL-TVF-EMD model showed the 
best accuracy for Perth Airport station based on a binomial distribution 
and the scatter plot with R = 0.9665 In summary, the ED-TVFL-EWT mode 
(for Brisbane station) and the ED-TVFL-TVF-EMD model (for Perth Airport 
station) provided better simulations of weekly GSE. 

Fig. 8 shows the Taylor diagrams of the reference and forecasted 
weekly GSE generated by the ED-TVFL-TVF-EMD, Bi-LSTM-TVF-EMD, RVFL- 
TVF-EMD, Bagging-TVF-EMD, ED-TVFL-EWT, Bi-LSTM-EWT, RVFL-EWT, Bagging- 
EWT, ED-TVFL, Bi-LSTM, RVFL, and bagging models for Brisbane and 
Perth airport stations. The Taylor diagrams (Taylor, 2001) provide a 
thorough and comprehensive assessment by comparing the model sim
ulations with the reference values based on standard deviation and 
correlation coefficient. As shown in Fig. 8, The GSE from TVFL-TVF-EMD 
(green dot) is close to the reference GSE within the arc of 0.95–0.99 for 
both Brisbane and Perth Airport stations, followed by RVFL-TVF-EMD, Bi- 

LSTM-TVF-EMD. Thus, TVFL-TVF-EMD is the most precise model for weekly 
GSE forecasting for both stations. 

Fig. 9 exhibits the spider plots based on RMSE and MAE (right), and 
R, NSE, KGE, and IA (left) for the weekly GSE generated by the ED-TVFL- 
TVF-EMD, Bi-LSTM-TVF-EMD, RVFL-TVF-EMD, Bagging-TVF-EMD, ED-TVFL-EWT, Bi- 

LSTM-EWT, RVFL-EWT, Bagging-EWT, ED-TVFL, Bi-LSTM, RVFL, and bagging 
models for Brisbane and Perth Airport stations. The spider plots revealed 
that the ED-TVFL-EWT model acquired the largest spider web radius of R, 
NSE, KGE, and IA, and the lowest values of RMSE and MAE for Brisbane 
station, compared to other models. The ED-TVFL-TVF-EMD model gener
ated the largest spider web radius based on R, NSE, KGE, and IA, and the 
lowest values of RMSE and MAE for Perth Airport station. The results 
demonstrated that the ED-TVFL model, hybridized with the EWT and 
TVF-EMD decommission methods, improved the modeling accuracy for 
both stations in the forecast of weekly GSE. 

Fig. 10 shows the comparisons of the models in terms of MAPE and 
U5% to forecast weekly GSE for both Brisbane and Perth Airport stations. 
ED-TVFL-EWT and ED-TVFL-TVF-EMD showed similar performances for 
Brisbane station, although ED-TVFL-EWT acquired slightly lower MAPE 
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and U95% values. The other models attained higher MAPE and U95% 
values (or lower accuracy) for Brisbane station. Similar results were 
obtained for Perth Airport station. ED-TVFL-TVF-EMD was slightly better 
than ED-TVFL-EWT, while the other benchmarking models performed 
poorly in this regard. As shown in Fig. 10, both ED-TVFL-TVF-EMD and ED- 
TVFL-EWT provided better forecasting of weekly GSE with reasonably 
good accuracy for both stations. 

Fig. 11 displays the temporal trends of GSE values simulated by 
different models over the testing period for Brisbane and Perth Airport 
stations. The ED-TVFL-EWT and ED-TVFL-TVF-EMD models appeared to be 
the most accurate in forecasting weekly GSE and showed a similar trend 
against the observed GSE data for Brisbane station. Similarly, the fore
casting trend for Perth Airport station from the ED-TVFL-EWT and ED- 
TVFL-TVF-EMD models were also very close to the observed GSE data. 
Thus, the ED-TVFL-EWT and ED-TVFL-TVF-EMD models had better accuracy 
in the time-series plots of weekly GSE for both stations. 

A boxplot is an alternative way to show a straightforward compari
son and assessment of the models. Fig. 12 displays the boxplots of the 
forecasted GSE along with Q25%, Median, Q75%, Mean, and IQR for the 
hybrid models. For the Brisbane station, the ED-TVFL-EWT model 
exhibited the lowest boxplot distribution with Q25% = − 7.471, Median 
= -0.3819, Q75% = 5.828, Mean = − 1.595, and IQR = 13.299 for the 
forecast of weekly GSE, followed by Bi-LSTM-TVF-EMD, ED-TVFL-TVF-EMD, 
Bagging-EWT, and Bagging-TVF-EMD. The ED-TVFL-TVF-EMD model acquired 
better precision [Q25% = − 7.644, Median = − 1.921, Q75% = 4.879, 
Mean = − 1.922, IQR = 12.523] than other models in the forecast of 
weekly GSE. 

Fig. 13 shows the absolute forecasting relative deviation (|AFRD|) in 
terms of the empirical cumulative distribution function (ECDF) of the 
weekly GSE generated by the hybrid version of TVF-EMD, and EWT 
models (i.e., ED-TVFL-TVF-EMD, Bi-LSTM-TVF-EMD, RVFL-TVF-EMD, Bagging-TVF- 

EMD, ED-TVFL-EWT, Bi-LSTM-EWT, RVFL-EWT, and Bagging-EWT) for Brisbane 
and Perth Airport stations. By comparing, the ECDF of the |AFRD| (MJ/ 
m2) with range = 20 indicates that ED-TVFL-TVF-EMD and ED-TVFL-EWT 
achieved a very close profile with ECDF convergence above 0.90% for 
both Brisbane and Perth Airport stations in contrast to the benchmark Bi- 

LSTM-TVF-EMD, RVFL-TVF-EMD, Bagging-TVF-EMD, Bi-LSTM-EWT, RVFL-EWT, and 
Bagging-EWT models, which further demonstrated the better perfor
mances of the ED-TVFL-TVF-EMD and ED-TVFL-EWT models to forecast 
weekly GSE. 

4. Conclusion 

In this research, a novel modelling approach was developed based on 
time-varying filter-based empirical mode decomposition (TVF-EMD) 
unified with ensemble deep-RVFL (i.e., ED-RVFL-TVF-EMD) to forecast 
weekly GSE for Brisbane and Perth Airport stations. The extra tree 
feature selection algorithm was used to determine the most significant 
antecedent information, or the lagged-time components of each pre
dictor. The TVF-EMD technique was applied to decompose the signifi
cant lagged-time components into the IMFs and residual components. 
Another significant aspect of this study lies in the development of the 
TVF-EMD with empirical wavelet transformation (EWT) and the ED- 
TVFL-EWT model. The pre-processing decomposition methods TVF-EMD 
and EWT were implemented to solve the non-stationarity and non- 
linearity issues associated with the data. Furthermore, along with the 
main ML model (i.e., ED-RVFL), the RVFL, Bi-LSTM, and bagging models 
were hybridized with the TVF-EMD and EWT models, forming the Bi- 

LSTM-TVF-EMD, RVFL-TVF-EMD, Bagging-TVF-EMD, Bi-LSTM-EWT, RVFL-EWT, and 
Bagging-EWT models for forecasting weekly GSE. The analyses demon
strated the advantages of the extra tree feature selection, ED-TVF and 
EWT pre-processing models, which significantly improved the fore
casting accuracy of the ED-RVFL model. The results confirmed that the 
ED-TVFL-TVF-EMD and ED-TVFL-EWT were significantly better than the 
benchmarking models in the forecast of weekly GSE for both stations. It 
was noted that the ED-TVFL-TVF-EMD (R = 0.9665, RMSE = 1.9193 MJ/ 

m2, and KGE = 0.9565) and ED-TVFL-EWT (R = 0.9218, RMSE = 1.9708 
MJ/m2, and KGE = 0.8552) models achieved 6% − 7% and 7% − 8% 
improvement in accuracy for Perth airport and Brisbane stations in 
comparison with the benchmarking models. 

In the future studies, more advanced techniques such as quantum 
algorithms can be used for optimization. Explainable AI models can be 
integrated to overcome the limitations of the black-box nature to un
derstand and validate the complex relationships among the predictor 
data during the learning stage. The scope of this research can be further 
broadened to solve various environmental, hydrological, and agricul
tural problems, and assist decision makers in accurate forecasts to better 
cope with the issues related to climate change, agriculture, and energy 
crisis. 
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uncertainties and variations in PV modules degradation rates and lifetime 
predictions using physical models. Solar Energy, 218, 354–367. 

Kang, H., Yang, S., Huang, J., & Oh, J. (2020). Time Series Prediction of Wastewater 
Flow Rate by Bidirectional LSTM Deep Learning. International Journal of Control, 
Automation and Systems, 18(12), 3023–3030. https://doi.org/10.1007/s12555-019- 
0984-6 

Kannan, N., & Vakeesan, D. (2016). Solar energy for future world:-A review. Renewable 
and Sustainable Energy Reviews, 62, 1092–1105. 

Keerin, P., & Boongoen, T. (2021). Improved knn imputation for missing values in gene 
expression data. Computers, Materials & Continua. 

Khosravi, A., Koury, R. N. N., Machado, L., & Pabon, J. J. G. (2018). Prediction of hourly 
solar radiation in Abu Musa Island using machine learning algorithms. Journal of 
Cleaner Production, 176, 63–75. https://doi.org/10.1016/j.jclepro.2017.12.065 

Kisi, O., Heddam, S., & Yaseen, Z. M. (2019). The implementation of univariable scheme- 
based air temperature for solar radiation prediction: New development of dynamic 
evolving neural-fuzzy inference system model. Applied Energy, 241, 184–195. 
https://doi.org/10.1016/j.apenergy.2019.03.089 

Kumari, P., & Toshniwal, D. (2021a). Deep learning models for solar irradiance 
forecasting: A comprehensive review. Journal of Cleaner Production, 318, Article 
128566. 

Kumari, P., & Toshniwal, D. (2021b). Extreme gradient boosting and deep neural 
network based ensemble learning approach to forecast hourly solar irradiance. 
Journal of Cleaner Production, 279, Article 123285. 

Le, X.-H., Nguyen, D.-H., Jung, S., Yeon, M., & Lee, G. (2021). Comparison of Deep 
Learning Techniques for River Streamflow Forecasting. IEEE Access, 9, 
71805–71820. https://doi.org/10.1109/ACCESS.2021.3077703 

Li, F., Ma, G., Chen, S., & Huang, W. (2021). An Ensemble Modeling Approach to 
Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory 
(Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method. 
Water Resources Management, 35(9), 2941–2963. https://doi.org/10.1007/s11269- 
021-02879-3 

Li, H., Li, Z., & Mo, W. (2017). A time varying filter approach for empirical mode 
decomposition. Signal Processing, 138, 146–158. https://doi.org/10.1016/j. 
sigpro.2017.03.019 

Li, Y.-H., Harfiya, L. N., Purwandari, K., & Lin, Y.-D. (2020). Real-Time Cuffless 
Continuous Blood Pressure Estimation Using Deep Learning Model. Sensors, 20(19), 
5606. https://doi.org/10.3390/s20195606 

Liang, S., Wang, D., Wu, J., Wang, R., & Wang, R. (2021). Method of Bidirectional LSTM 
Modelling for the Atmospheric Temperature. Intelligent Automation & Soft Computing, 
29(3), 701–714. 10.32604/iasc.2021.020010. 

Maddu, R., Vanga, A. R., Sajja, J. K., Basha, G., & Shaik, R. (2021). Prediction of land 
surface temperature of major coastal cities of India using bidirectional LSTM neural 
networks. Journal of Water and Climate Change, 12(8), 3801–3819. https://doi.org/ 
10.2166/wcc.2021.460 

Manieniyan, V., Thambidurai, M., & Selvakumar, R. (2009). Study on energy crisis and 
the future of fossil fuels. Proceedings of SHEE, 10, 2234–3689. 

Masrur Ahmed, A. A., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. 
(2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm 
for streamflow forecasting with climate mode indices, rainfall, and periodicity. 
Journal of Hydrology, 599(August 2020), 126350. 10.1016/j.jhydrol.2021.126350. 

Minh-Tuan, N., & Kim, Y.-H. (2019). Bidirectional Long Short-Term Memory Neural 
Networks for Linear Sum Assignment Problems. Applied Sciences, 9(17), 3470. 
https://doi.org/10.3390/app9173470 

Mishra, G., Sulieman, M. M., Kaya, F., Francaviglia, R., Keshavarzi, A., Bakhshandeh, E., 
… Elmobarak, A. (2022). Machine learning for cation exchange capacity prediction 
in different land uses. CATENA, 216, Article 106404. 

Monjoly, S., Andrï, M., Calif, R., & Soubdhan, T. (2017). Hourly forecasting of global 
solar radiation based on multiscale decomposition methods: A hybrid approach. 
Energy, 119, 288–298. https://doi.org/10.1016/j.energy.2016.11.061 

Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and Water 
Quality Models: Performance Measures and Evaluation Criteria. Transactions of the 
ASABE, 58(6), 1763–1785. 10.13031/trans.58.10715. 

Mostafavi, E. S., Ramiyani, S. S., Sarvar, R., Moud, H. I., & Mousavi, S. M. (2013). 
A hybrid computational approach to estimate solar global radiation: An empirical 
evidence from Iran. Energy, 49(1), 204–210. https://doi.org/10.1016/j. 
energy.2012.11.023 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models 
part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https:// 
doi.org/10.1016/0022-1694(70)90255-6 

Nie, N. H., Bent, D. H., & Hull, C. H. (1975). SPSS: Statistical package for the social sciences, 
227. McGraw-Hill New York.  
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