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ABSTRACT
Turbulent entrainment processes may play an important role in the outflows from young stellar
objects at all stages of their evolution. In particular, lateral entrainment of ambient material
by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-
line velocity components observed in the microjet-scale outflows driven by classical T Tauri
stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited
mixing layer along the boundaries of the jet. We present a formalism for describing such a
mixing layer based on Reynolds decomposition of quantities measuring fundamental properties
of the gas. In this model, the molecular wind from large disc radii provides a continual supply
of material for entrainment. We calculate the total stress profile in the mixing layer, which
allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer.
We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in
[Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the
young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in
mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow.
Therefore, we propose that this component represents a turbulent mixing layer surrounding
the well-collimated jet in this object. Finally, we compare and contrast our model to previous
work in the field.

Key words: MHD – methods: analytical – stars: individual: DG Tauri – stars – jets – stars:
protostars.

1 IN T RO D U C T I O N

Outflows are a near-universal component of young stellar objects
(YSOs) throughout their evolution. They play a major role in star
formation, and drive both the CO outflows seen in early-stage form-
ing stars (e.g. Bachiller 1996; Reipurth & Bachiller 1997) and the
Herbig–Haro flows emanating from more mature protostars (e.g.
Reipurth & Bally 2001). These outflows are thought to be launched
either from the protostellar surface (e.g. Ferreira, Dougados &
Cabrit 2006), magnetocentrifugally from magnetic reconnection
points near the circumstellar disc truncation radius (the X-wind
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and related models; Shu et al. 1994; Romanova et al. 2009), or from
the disc surface at larger radii (disc winds; Blandford & Payne 1982;
Pudritz & Norman 1983). In fact, more than one launch mechanism
may be in operation (e.g. Larson 2003).

The advent of the Hubble Space Telescope and adaptive optics on
ground-based telescopes has allowed the few hundred au of proto-
stellar outflows closest to the protostar to be studied. The outflows
associated with optically revealed T Tauri stars take the form of
well-collimated ‘microjets’. The study of these microjets is impor-
tant because it is thought that they should not have interacted with
the wider interstellar medium so close to the star (although inter-
actions may occur if there is a remnant protostellar envelope, e.g.
White et al. 2014b). If so, such observations may provide informa-
tion on the outflow before it significantly interacts with the ambient
medium.

The small-scale outflows from YSOs typically show an onion-
like kinematic structure in optical and near-infrared (NIR) forbidden
lines, with a well-collimated, high-velocity jet surrounded by a less-
collimated, intermediate-velocity component (e.g. Hirth, Mundt &
Solf 1997; Woitas et al. 2002; Pyo et al. 2003; Coffey, Bacciotti
& Podio 2008; Rodrı́guez-González et al. 2012; Caratti o Garatti
et al. 2013). The nature of the high-velocity jets in many sources
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has been studied extensively, including searches for signs of jet ro-
tation (Bacciotti et al. 2000; Coffey et al. 2004, 2007; White et al.
2014a, hereafter Paper I), recollimation shocks (Paper I; Güdel et al.
2005, 2008; Günther, Matt & Li 2009; Bonito et al. 2011; Schneider
et al. 2013) and studies of the propagation of shock-excited moving
knots (Paper I; Burrows et al. 1996; Reipurth et al. 2002; Pyo et al.
2003; Agra-Amboage et al. 2011). The nature of the intermediate-
velocity emitting material is still debated. Many authors attribute
this emission to the presence of an intermediate-velocity disc–wind
outflow component (e.g. Podio et al. 2011), which bridges the
gap in launch radii between low-velocity (�50 km s−1) molecu-
lar winds (e.g. Takami et al. 2004; Beck et al. 2008; Agra-Amboage
et al. 2014) and high-velocity (>200 km s−1) jets. However, such an
explanation does not provide a natural mechanism for the generation
of forbidden optical- and NIR-line emission, which is attributed to
shock excitation (e.g. Nisini et al. 2002). It has yet to be explained
how a steady-state intermediate-velocity disc wind would undergo
shock excitation with relatively uniform intensity along the observ-
able length of the feature.

It has been proposed that the intermediate-velocity forbidden-line
emission components (IVCs) of small-scale protostellar outflows
result from the lateral entrainment of ambient material, or a disc
wind, by the high-velocity jet (e.g. Pyo et al. 2003). This sugges-
tion is based on the observation that in some objects, the spatial
width of the intermediate-velocity component increases with dis-
tance from the central star. Entrainment would cause the formation
of a turbulent mixing layer between the supersonic jet and the ma-
terial surrounding it, which would become shock excited and emit
in forbidden lines (e.g. Binette et al. 1999). Such a layer naturally
grows in thickness with distance along the jet, reproducing the ob-
servations of low- to intermediate-velocity forbidden-line emission
components in protostellar outflows (e.g. Cantó & Raga 1991; Raga,
Cabrit & Cantó 1995).

The entrainment explanation has fallen out of favour recently
for two reasons. First, jet simulations show that the jet pushes the
ambient medium aside as it is launched (López-Cámara & Raga
2010), preventing ambient material from interacting with the sides
of the jet. However, as suggested by Pyo et al. (2003) and Paper I, the
presence of a wide-angle molecular wind surrounding the central jet
could supply a constant reservoir of material for entrainment by the
jet. Secondly, hypersonic jets, such as protostellar microjets, should
not form lateral entrainment layers if they are regarded as high Mach
number, purely hydrodynamic flows. The formation of turbulent
mixing layers is driven by the action of the Kelvin–Helmholtz (KH)
instability at the jet-ambient material interface, and the growth rate
of the KH instability decreases as the Mach number difference
between the flows increases (Chernin et al. 1994; Trussoni 2008).
However, protostellar jets are expected to exhibit strong toroidal
magnetic fields (e.g. Zanni et al. 2007). The alignment of these fields
with respect to the interface between the jet and the surrounding
material, and their perpendicularity to the flow, may destabilize the
interface to the KH instability (Paper I; Miura & Pritchett 1982;
Ray & Ershkovich 1983). Therefore, entrainment remains an open
possibility in protostellar jets. For a more detailed discussion of this
argument, see Paper I, Section 4.2 therein.

Lateral entrainment in protostellar jets has been investigated
analytically by Cantó & Raga (1991) and Raga et al. (1995). Their
models provide useful predictions of mass entrainment rates and
radiative luminosities associated with mixing layers. These models
involve an ‘entrainment efficiency’ parameter, which determines
how effectively ambient material is drawn into the mixing layer by
the KH instability. They constrained this parameter using the results

of laboratory jet experiments, particularly those of Birch & Eggers
(1972). More recently, theoretical and experimental work has fo-
cused on the role of compressibility in supersonic mixing layers
(e.g. Papamoschou & Roshko 1988; Slessor, Zhuang & Dimotakis
2000; Vreman, Sandham & Luo 2006). Whilst these authors do not
determine an explicit ‘entrainment efficiency’, they demonstrate
that compressibility effects play an important role in the evolu-
tion of turbulent mixing layers, leading to an asymptotically steady
mixing layer growth rate with increasing Mach number difference
between the two flows. This effect will also assist in facilitating en-
trainment in highly supersonic outflows. This relationship is shown
by forming an explicit prescription for the turbulent stress within
the mixing layer. In this paper, we choose to develop an alternative
semi-empirical approach to radiative mixing layers, which relies
solely upon directly observable quantities. In this way, we generate
estimates for mixing layer bulk properties from our model based on
the observed parameters of YSO outflow components, and compare
them to observation.

This paper is organized as follows. In Section 2, we describe our
model, which parametrizes the physical properties of the mixing
layer using the observed layer growth rate. In Section 3, we first
compute a grid of shock models to determine the ratio between
the observable [Fe II] line emission of protostellar jet mixing lay-
ers, and the mixing layer bolometric luminosity estimated by our
model. We then directly compare our model to the [Fe II] IVC of
the approaching outflow from the YSO DG Tauri, and find that it is
in excellent agreement with observations. Section 4 compares our
model to the previous work of Cantó & Raga (1991) and Raga et al.
(1995), and includes an estimation of the laminar jet length in DG
Tau. We summarize our work in Section 5.

2 MO D EL

We construct an analytical, semi-empirical model of a two-
dimensional turbulent entrainment layer in order to interpret the
[Fe II] 1.644 μm IVC line emission observed in DG Tau.1 The
model describes the turbulent mixing layer that forms between a
high-velocity jet and a low-velocity wider-angle wind, and depends
only upon directly observable quantities, removing the requirement
to specify an ‘entrainment efficiency’ parameter (e.g. Cantó & Raga
1991; Raga et al. 1995). We use the observed spreading rate of the
layer to calculate the dissipation of turbulent energy in the entrain-
ment layer, and its resulting luminosity. The first step in this process
is the calculation of total turbulent stress, txy, in the mixing layer.

The model setup is shown in Fig. 1. A high-velocity jet with den-
sity ρ jet propagates at velocity vjet away from the star–disc system.
The jet is surrounded by a wider-angle molecular wind, with den-
sity ρw and velocity vw � vjet. We henceforth refer to this wind as
the ‘ambient wind’. A turbulent mixing layer forms at the interface
between the two flows, as a result of the KH instability. We approx-
imate this interface with a two-dimensional model. In this model,
the x-axis is defined as the unperturbed jet–wind boundary. This is
the streamwise direction; the transverse coordinate is y. The mixing
layer width, h(x), increases monotonically with distance from the
central star. We define the depth the mixing layer expands into the
jet as h1(x), and the depth it penetrates the ambient wind as h2(x),
where h2(x) < 0. Hence, h(x) = h1(x) − h2(x).

1 A two-dimensional model is an adequate representation of the jet edge,
given that the mixing layer width is not significantly greater than the jet
radius (see below).

MNRAS 455, 2042–2057 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/455/2/2042/1107330 by U
niversity of Southern Q

ueensland user on 22 July 2021



2044 M. C. White et al.

Figure 1. A representation of the model setup used throughout this paper. A
high-velocity, well-collimated jet is launched from a protostar-circumstellar
disc system. This jet is surrounded by a wider-angle disc wind (top panel).
The interface between the jet and the wind is approximated by a two-
dimensional turbulent shear layer (bottom panel). The x-axis of the model is
placed where the jet–wind interface would lie in the absence of the mixing
layer, and is parallel to the direction of the jet. Dashed arrows show the flow
direction of the components. Model components are not to scale.

An averaging prescription is used to describe the mean flow. We
adopt the mass-weighted statistical averaging prescription of Favre
(1969), which was introduced to the study of astrophysical flows
by Bicknell (1984); see also Kuncic & Bicknell (2004). All time-
varying quantities are decomposed into an average component and
a fluctuating component. Quantities such as pressure, p, density, ρ,
and magnetic field, B, are expressed in terms of mean (bar) and
fluctuating (primed) components, such that the time-average of the
fluctuating component (angle brackets) is zero:

p = p̄ + p′ where〈p′〉 = 0; (1)

ρ = ρ̄ + ρ ′ where 〈ρ ′〉 = 0; and (2)

Bi = B̄i + B ′
i where 〈B ′

i〉 = 0, (3)

where subscripts i and j represent generalized coordinates. As pre-
scribed by Favre (1969), the velocity, vi, is mass-weighted, and is
expressed as

vi = ṽi + v′
i , where 〈ρv′

i〉 = 0. (4)

This approach has two advantages. First, mass is conserved in the
mean flow (Favre 1969). Secondly, it prevents the generation of
an excessive number of terms when the dynamical equations are
statistically averaged; e.g. the mean value of the momentum flux is
simply expressed as

〈ρvivj 〉 = ρ̄ṽi ṽj + 〈ρv′
iv

′
j 〉. (5)

This approach is common in fluid dynamics, and has been used in
the theory of compressible turbulent jets and accretion discs (see
Bicknell 1984; Kuncic & Bicknell 2004).

2.1 Characteristic equations

Consider a compressible magnetized fluid with density ρ, velocity
v, pressure p, magnetic field B, in a gravitational potential field
φG. Averaging the mass continuity and momentum conservation
equations of magnetohydrodynamics (MHD, Section A1) yields,
for a quasi-steady state system,

∂(ρ̄ṽx)

∂x
+ ∂(ρ̄ṽy)

∂y
= 0, and (6)

∂(ρ̄ṽi ṽj )

∂xj

= −ρ̄
∂φG

∂xi

− ∂p̄

∂xi

+ ∂(tR
ij + tB

ij )

∂xj

. (7)

The magnetic stress tensor is defined as

tB
ij = 〈B ′

iB
′
j 〉

4π
− δij

〈B ′2〉
8π

, (8)

assuming that the magnetic field is dominated by its turbulent com-
ponent, so that B̄i = 0. We define the Reynolds stress tensor as

tR
ij = −〈ρv′

iv
′
j 〉 (9)

(Kuncic & Bicknell 2004). The total turbulent stress is

tij = tR
ij + tB

ij . (10)

The aim of our calculation is to estimate the mass entrainment
rate and bolometric luminosity of the mixing layer, based on directly
observed parameters. We consider the i = x momentum equation,
that is, the equation governing the streamwise evolution of mo-
mentum resulting from the lateral transfer of momentum within the
mixing layer. We neglect the streamwise pressure, magnetic and
gravitational gradients, so that

∂(ρ̄ṽ2
x)

∂x
+ ∂(ρ̄ṽx ṽy)

∂y
≡ ρ̄ṽx

∂ṽx

∂x
+ ρ̄ṽy

∂ṽx

∂y
= ∂txy

∂y
, (11)

where txy = tR
xy + tB

xy as per equation (10).
We analyse the orders of magnitude of the terms in equations (6)

and (11) in Appendix A2. We denote the characteristic advective
length scale of the mixing layer in the x-direction as L. In this anal-
ysis, we show that the following order of magnitude relationships
exist in our model:

ṽy ∼ h

L
ṽx, (12)

v′ ∼
(

h

L

)1/2

ṽx , and (13)

h′ ∼ h

L
. (14)

This analysis also justifies the neglecting of the Reynolds stress
term governing the streamwise transfer of momentum, ∂txx/∂x, in
equation (11).

In order to achieve our goal of estimating the rate of dissipation of
turbulence, we define a pseudo-self-similar variable in the transverse
direction,

ξ (x, y) = y

h(x)
(15)

⇒ ξ1 = y1(x)

h(x)
, and ξ2(x) = y2(x)

h(x)
. (16)
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We note that ξ 1 − ξ 2 = 1. It may also be shown that total (thermal
plus turbulent) pressure balance is maintained across the mixing
layer (Section A2):

ptot = p̄︸︷︷︸
pthermal

+ 〈ρv′2
y 〉︸ ︷︷ ︸

pturbulent

= const. (17)

This allows us to specify the quantity W (Section A2, equation A8),
and streamwise velocity, ṽx , in the mixing layer as a function of
transverse position. As the simplest approximation, we prescribe
linear profiles across the layer:

ṽx = U (ξ )vjet, and (18)

W = S(ξ )(Wjet − Ww) + Ww, where (19)

U (ξ ) = S(ξ ) = ξ − ξ2 = ξ − ξ1 + 1. (20)

2.2 Transverse density, velocity and turbulent stress profiles

We assume pressure equilibrium across the mixing layer.2 Let the
jet-to-ambient-wind density ratio be η = ρ jet/ρw. The density is
given by

ρ̄ = μm

kW p̄tot, (21)

where k is the Boltzmann constant, m is the atomic mass unit, and μ

is the molecular weight of the gas. It follows that the mixing layer
density profile is given by

ρ̄(η, ξ ) = ρjet

η + (1 − η)S(ξ )
. (22)

It is important to note that the density and temperature profiles are
intrinsically linked due to our assumption of constant pressure; it is
not possible for one profile to vary across the mixing layer unless
the other profile also varies.

We now calculate the transverse velocity and turbulent stress
profiles within the mixing layer. We transform equations (6) and
(11) into the (x, ξ ) coordinate system. The equation of continuity,
equation (6), becomes

∂(ρ̄ṽy)

∂ξ
= h′(x)ξ

∂ρ̄ṽx

∂ξ
. (23)

We can calculate the transverse velocity profile from this equa-
tion, after substituting in the density (equation 22) and streamwise
velocity (equation 18) profiles. This gives

ṽy(η, x, ξ ) = vjeth
′(x) [η + (1 − η)S(ξ )]

×
∫ ξ

ξ1

ξ ′ d

dξ ′

[
U (ξ ′)

η + (1 − η)S(ξ ′)

]
dξ ′. (24)

The integral factor in equation (24) occurs in many of the subsequent
expressions, and we define it as D(η, ξ ). This factor has a closed-
form solution (Section A3) after imposing the boundary condition
ṽy(ξ1) = 0, so the transverse velocity varies smoothly from vy = 0 in
the jet into the mixing layer. This is a reasonable boundary condition,
because the supersonic jet will approach the mixing layer boundary
so quickly that it will not be substantially deflected by turbulence
prior to impacting the mixing layer.

2 In the case of DG Tau, the presence of a stationary recollimation shock in
the jet channel (Paper I) indicates that the jet is in pressure equilibrium with
its environs downstream of this shock.

Figure 2. Position of the mixing layer boundaries with the jet (ξ1) and with
the ambient wind (ξ2) as a function of the jet-to-wind density ratio, η. The
position of the boundary between the jet and wind in the absence of a mixing
layer is shown by the dashed line.

Following transformation into the (x, ξ ) coordinate system, the
equation of downstream momentum conservation, equation (11),
can be rearranged to provide an equation for the turbulent stress:

∂txy

∂ξ
= ρjetv

2
j h′(x)

( −(ξ − ξ1 + 1)ξ

η + (1 − η)(ξ − ξ1 + 1)
+ D(η, ξ )

)
. (25)

Integration of equation (25) gives

txy(η, x, ξ ) = ρjetv
2
jet h

′(x)F (η, ξ ), (26)

where the function F (η, ξ ) is given in Section A3. We set
txy(ξ 1) = txy(ξ 2) = 0 since we expect the turbulence to be con-
fined primarily to the region ξ 2 < ξ < ξ 1. The condition txy(ξ 1) = 0
is used to compute the form of F (η, ξ ) (Section A3); the condi-
tion txy(ξ 2) = 0, and hence F (ξ2, η) = 0, allows us to calculate the
position of the jet-mixing layer boundary, ξ 1, in (x, ξ )-space as a
function of only the jet-to-wind density ratio η:

ξ1(η) = 2η2 log(η) + (4 − 3η)η − 1

2(η − 1)3
for η 
= 1, and

= 1

3
for η = 1. (27)

The position of the mixing layer boundaries as a function of η is
shown in Fig. 2. In the limit of a significantly underdense jet (η → 0),
the mixing layer penetrates the jet and wind evenly. In the limit of
a significantly overdense jet (η → ∞), the mixing layer almost
exclusively penetrates the ambient wind.

Knowledge of the position of the mixing layer boundaries allows
the forms of the transverse velocity and turbulent stress profiles to
be directly calculated as a function of position within the mixing
layer, ξ , and the jet-to-wind density ratio, η. The forms of these
expressions are algebraically complex, and are given in Section A4.
The mixing layer density, transverse velocity and turbulent stress
profiles are shown in Fig. 3.

As seen in Fig. 3(b), ambient wind material is pulled upwards
into the mixing layer at the wind-mixing layer boundary (ξ 2) with
an effective entrainment velocity,
vent = ṽy(η, x, ξ2) (28)

= vjeth
′(x)

η(η2 − 2η log(η) − 1)

2(η − 1)3
for η 
= 1, and

= vjeth
′(x)

1

6
for η = 1. (29)

This is equivalent to the entrainment velocity specified in the mod-
els of Cantó & Raga (1991) and Raga et al. (1995). However, it
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2046 M. C. White et al.

Figure 3. Normalized (a) density, (b) transverse velocity and (c) turbulent
stress profiles for the mixing layer described by this model. The profiles are
plotted between the mixing layer boundaries ξ2 and ξ1. The numerical values
that these boundaries take are different for different jet-to-wind density ratios
η, as per equation (27) and Fig. 2.

occurs naturally as a result of the boundary conditions of the prob-
lem, rather than being specified by an experimentally determined
‘entrainment efficiency’ parameter. We compare the entrainment
velocity of our model to the earlier work in Sections 3.3.3 and 4.1.
The normalized entrainment velocity, vy/(vjeth′(x)), is plotted as a
function of η in Fig. 4(a).

2.3 Mass flux and entrainment rate

We define the mixing layer mass flux to be

Ṁ(x) ≡
∫ ξ1

ξ2

ρ(ξ )vjetU (ξ )h(x) dξ (30)

The contribution to the mass flux from intercepted jet material is
simply given by

Ṁjet(x) = ρjetvjeth(x)ξ1(η) (31)

(cf. Raga et al. 1995). Therefore, the entrained mass flux is

Ṁent(x) ≡
∫ ξ1

ξ2

ρ(ξ )vjetU (ξ )h(x) dξ − ρjetvjeth1(x)ξ1(η). (32)

The mass entrainment rate from the ambient wind is simply the
derivative of equation (32) with respect to x. It can be shown
(Section A5) that

∂Ṁent

∂x
≡ Ṁ ′

ent = ρwvent, (33)

Figure 4. Mixing layer parameters which only depend on the jet-to-
ambient-wind density ratio, η. (a) Normalized entrainment velocity from
the ambient wind, from equation (29). (b) Normalized rate-of-change of the
mixing layer mass flux, Ṁ ′. The contribution to the rate-of-change of the
mixing layer mass flux from jet interception and wind entrainment (Ṁ ′

ent)
is shown by the dashed and dot–dashed curves, respectively. (c) Dimen-
sionless function G(η), for the determination of the rate of turbulent energy
production per unit area, from equation (39).

Figure 5. Percentage contribution to the rate-of-change of mixing layer
mass flux from jet interception (dashed curve) and ambient wind entrain-
ment (Ṁ ′

ent, dot–dashed curve) as a function of jet-to-ambient-wind density
ratio η.

as expected, since ambient wind material is being drawn into the
mixing layer with velocity vent (Section 2.2).

The rate-of-change of the mixing layer mass flux, ∂Ṁ/∂x ≡ Ṁ ′,
is shown in Fig. 4(b). The contribution of wind entrainment to
the mass flux of the mixing layer is greatest for an underdense jet
(Fig. 5).
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2.4 Turbulent energy production

The ultimate aim of this model is to determine the rate of
turbulent energy production and subsequent dissipation and
radiation in the mixing layer. The rate of turbulent energy pro-
duction, Ėturb = 2txysxy , where sxy is the shear in the mixing layer
(Kuncic & Bicknell 2004). The mean shear may be calculated from

sxy = 1

2

(
∂ṽx

∂y
+ ∂ṽy

∂x

)
≈ 1

2

∂ṽx

∂y
(34)

since the average transverse velocity, ṽy , varies slowly with respect
to x.

The rate of turbulent energy production in the mixing layer is
directly comparable to the observed luminosity of the mixing layer,
assuming that the cooling time of the gas is short, so that the tur-
bulent energy produced is radiated efficiently.3 This is a reasonable
assumption in DG Tau; based on a gas temperature of 104 K and
using the cooling function of Sutherland & Dopita (1993), we deter-
mine a cooling time for the IVC of 2.5 yr, which results in a cooling
length ∼60 au ≈ 0.26 arcsec projected distance for a flow speed of
110 km s−1. This cooling length is short compared to the length of
the mixing layer, which is �270 au (Section 3.3.1). Furthermore,
the fraction of turbulent energy required to dissociate the molecular
hydrogen entrained into the shear layer from the ambient wind is
small (Appendix B).

We now calculate the rate of turbulent energy production per unit
volume at a given point in the mixing layer:

dĖturb(x, ξ )

dV
= txy(x, ξ )

∂ṽx

∂y

= txy(x, ξ )
vjet

h(x)
(35)

= ρjetv
3
jet

h′(x)

h(x)
F (η, ξ ). (36)

We integrate over y to form an expression for the turbulent energy
produced per unit area:

dĖturb

dA
(x) =

∫ y1

y2

dĖturb(x, ξ )

dV
dy (37)

= ρjetv
3
jet h

′(x)G(η), where (38)

G(η) = 2η3 + 3η2 − 6η2 log(η) − 6η + 1

12(η − 1)4
for η 
= 1, and

= 1

24
for η = 1. (39)

For the purpose of comparing this model to observations of three-
dimensional protostellar jet mixing layers, this is the turbulent en-
ergy produced per unit circumference per unit length. Therefore,
total turbulent energy production in the layer is calculated by mul-
tiplying equation (38) by 2πRmix(x), where Rmix(x) is the mixing

3 Kuncic & Bicknell (2004) identified the various terms in the internal
energy equation relating to the advection of internal plus turbulent energy,
the generation of turbulent energy, and its emission via radiation. Since the
cooling length in the mixing layer is much less than the advective length,
this assumption effectively approximates the energy equation by equating
the production of turbulent energy to the emission of radiation. This is
similar to the approach taken in classical accretion disc theory (e.g. Shakura
& Sunyaev 1973).

layer radius, and then integrating over the observed mixing layer
length, L:

Ėtot =
∫ L

0
2πRmix(x)ρjetv

3
jeth

′(x)G(η) dx (40)

= 2πRmixLρjetv
3
jeth

′(x)G(η), (41)

assuming that Rmix and h′(x) are independent of x.

3 C O M PA R I S O N TO O B S E RVAT I O N S

3.1 [Fe II] 1.644 μm shock modelling

Our model provides estimates for the bolometric luminosity of a
protostellar outflow mixing layer (Section 3.3.1). However, obser-
vations of these outflows are typically made using specific optical
and NIR emission lines. Therefore, to compare with observations,
we estimate the [Fe II] line luminosities for a given total luminosity.
To this end, a grid of shock models capable of heating their post-
shock gas to between 2 × 104 and 6 × 104 K were computed using
the MAPPINGS IV code, version 4.0.1 (Sutherland & Dopita 1993;
Allen et al. 2008; Nicholls, Dopita & Sutherland 2012; Dopita
et al. 2013; Nicholls et al. 2013), covering both solar abundances
(Asplund et al. 2009) and iron-depleted abundances (Jenkins 2009,
2013). We use this grid as a representative model of partially ionized
gas being heated and subsequently cooling; we are not concerned
with the shock structure itself. Therefore, we chose pre-shock gas
parameters, summarized in Appendix C1, that yield densities and
temperatures in the post-shock region that are comparable to those
expected in the mixing layer. These pre-shock parameters are not
intended to be strictly representative of protostellar outflows, nor do
we imply that the IVC emission is generated in a single flat-planar
shock structure, which would not be a good approximation to the
shocks occurring in a turbulent mixing layer.

The shocks were driven into a pre-shock medium with a hydro-
gen number density of 104 cm−3, which approximately matches the
conditions in the DG Tau jet (Section 3.2.1). Pre-shock tempera-
tures were selected to explore a wide range of pre-shock ionization
parameters (Table C1), based on the MAPPINGS IV collisional ioniza-
tion excitation (CIE) model. Selecting a value of plasma β, that is,
the ratio of thermal to magnetic pressure in the pre-shock material,
and a post-shock temperature fixes the shock velocity. For the post-
shock temperatures given above, the resulting shock velocity is be-
tween 20 and 60 km s−1 for β = 1, in agreement with observations
(Paper I). This computed shock velocity was then used to calcu-
late the properties of the post-shock, cooling gas. The final [Fe II]
1.644 μm line emission from the shock is then expressed as a frac-
tion of the total of all the line emission plus the two-photon emission,
which can be a large contributor to total emission in these heated,
partially ionized models.

The results from this model grid are shown in Fig. 6. Across a
range of pre-shock ionizations and plasma β (a convenient proxy for
magnetic field strength), the fraction of shock luminosity emitted in
the [Fe II] 1.644 μm line is ∼10−2. For the purposes of our model,
this order of magnitude will suffice for comparing with observations.

The [Fe II] total emission affects the model structure, so that the
[Fe II] 1.644 μm luminosity does not simply scale with the gas phase
abundance of iron, but nearly so (see Appendix C2 for details).
The cooling fraction in [Fe II] 1.644 μm with undepleted gas is
� 1 × 10−2 (Fig. 6), and between 2 × 10−4 and 4 × 10−4 for the
depleted models (Fig. 7). It is therefore reasonable that the [Fe II]
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2048 M. C. White et al.

Figure 6. Contribution of [Fe II] 1.644 μm line emission to total shock
emission from a grid of MAPPINGS IV models, where the iron abundance
is not depleted from solar abundance values and the pre-shock number
density nH = 104. The percentage of shock emission which is radiated
as [Fe II] 1.644 μm line emission is shown as a function of the pre-shock
ionization fraction, χ . Models have been computed for a range of post-shock
temperatures and pre-shock values of plasma β as indicated. Points are
joined using a one-dimensional Akima spline interpolation (Akima 1970).
The vertical dotted line denotes the known DG Tau jet ionization, χ = 0.3
(Bacciotti et al. 2000).

Figure 7. As for Fig. 6, but with the pre-shock gas having an iron depletion
factor of 100.

1.644 μm line emission as a fraction of total cooling emission lies
between 10−2 and 10−4 for a range of iron depletion factors. We
parametrize the ratio between bolometric luminosity,Ltot, and [Fe II]
1.644 μm luminosity, L1.644, as4

L1.644 =
(

10−2

Fe depletion factor

)
× Ltot. (42)

4 Note that zero depletion corresponds to a depletion factor of 1.

3.2 Parameters of the DG Tau outflow

We summarize the parameters of the DG Tau jet required as inputs
to our model here. The main parameters are the jet density, ρ jet

(Section 3.2.1); the jet velocity, vjet (Section 3.2.2); the mixing
layer growth rate, h′(x) (Section 3.2.3); the mixing layer length, L
(Section 3.2.3); and the jet-to-ambient-wind density ratio, η (Section
3.2.4). To utilize our MAPPINGS IV models, we also need to know the
iron depletion factor in the DG Tau IVC (Section 3.2.5).

3.2.1 Jet density

The electron density may be determined from NIR observations
through the ratio of the [Fe II] emission lines at 1.533 and 1.644μm.
Pesenti et al. (2003) computed a relationship between this line ratio
and electron density for a 16-level model of an Fe+ atom. The
similar BE99 technique makes use of the ratio of the [S II] emission
lines at 6731 and 6716Å in the optical regime (Bacciotti & Eislöffel
1999; Maurri et al. 2014). These techniques have been applied to
the DG Tau jet (Paper 1; Bacciotti et al. 2000; Agra-Amboage et al.
2011; Maurri et al. 2014), yielding a typical electron density ne ∼
104cm−3. Maurri et al. (2014) reported higher electron densities, up
to 106cm−3, close to the central star. However, we do not observe
significant IVC emission at this position (Paper I, fig. 2.6 therein),
so we use the lower jet density corresponding to the region where
we observe a mixing layer.

Our model requires the jet mass density as an input. We con-
vert the measured electron density into physical density as in Pa-
per I, Section 4.1.4 therein. The hydrogen density is calculated from
nH = ne/χ e, where χ e is the ionization fraction of the gas. Although
the ionization fraction of the jet appears to vary with position (Mau-
rri et al. 2014), an average ionization fraction of χ e = 0.3 ± 0.1
is a reasonable approximation (Bacciotti et al. 2000). This yields
a hydrogen number density nH = 3.3 × 104cm−3. The mass den-
sity ρ = 1.4mnH for a gas consisting of 90 per cent hydrogen and
10 per cent helium, where m is the atomic mass unit. This calcula-
tion leads to a jet mass density ∼10−19 g cm−3, which we use as a
fiducial value for our model.

3.2.2 Jet velocity

The velocity of the DG Tau jet varies with time (Paper I; Bacciotti
et al. 2002; Pyo et al. 2003; Agra-Amboage et al. 2011), and this is
the likely cause of the observed moving shock-excited knots (e.g.
Raga et al. 1990). The jet velocity is typically measured from the
high-velocity peak of line emission (Pyo et al. 2003; Agra-Amboage
et al. 2011). More recently, we used multicomponent Gaussian fit-
ting, coupled with a statistical F-test, to rigorously separate the two
[Fe II] 1.644 μm line-emission components in the approaching DG
Tau outflow (Paper I). These fits show that the high-velocity compo-
nent of the outflow has a range of velocities from 215–315 km s−1

in the 2005 observing epoch. Therefore, we adopt an average jet
velocity of 265 km s−1 for use in our model.

3.2.3 Mixing layer length and growth rate

The deprojected length of the observed mixing layer, 1.2 arcsec
≈ 270 au, can be directly measured from our data (Paper I). The
separation of the line emission from the two approaching outflow
components allows for the calculation of the mixing layer growth
rate. The diameter of the HVC (jet), Djet, was determined by fitting
a Gaussian to the [Fe II] 1.644 μm line emission in the cross-jet
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Mixing layers in protostellar outflows 2049

Figure 8. Growth rates of the diameter of the approaching DG Tau out-
flow components. (a) Diameter of the approaching jet (circles) and IVC
(triangles) as a function of distance from the central star. Jet diameters were
measured using cross-jet Gaussian fits to the high-velocity component inten-
sity of [Fe II] 1.644 μm, and are approximately deconvolved from the PSF
(Paper I). IVC diameters were measured from direct inspection of images
and cross-outflow intensity profiles of the [Fe II] 1.644 μm intermediate-
velocity component. Linear fits to the growth of both components over the
region 0.5–1.1 arcsec from the central star are shown as solid lines; the
labels indicate the slope of the line (i.e. the growth rate of the component
diameter). (b) Inferred mixing layer widths over the region 0.5–1.1 arcsec
from the central star, as per equation (43).

direction, and approximately deconvolving the width of this Gaus-
sian from the PSF via the formula D2

jet = FWHM2
obs − FWHM2

PSF

(Paper I, Section 4.1.4 therein). The diameter of the IVC, DIVC, was
measured from both an image of that component (Paper I, fig. 2.6d
therein) and cross-outflow [Fe II] 1.644 μm IVC profiles at each
downstream position. IVC diameters could not be reliably deter-
mined beyond ∼1 arcsec from the central star, due to incomplete
line fitting coverage in this region, although conservative lower
limits could be inferred. The component diameters are shown as a
function of downstream position in Fig. 8(a). The inferred mixing
layer width is simply the difference between the observed radii, rjet

and rIVC, of the jet and IVC,

h(x) = rIVC − rjet = DIVC − Djet

2
. (43)

The growth rate of the mixing layer is then

h′(x) = (D′
IVC − D′

jet)/2. (44)

We determine the growth rate of the mixing layer as follows. We
construct linear fits to the lateral growth of both the jet and IVC in
the approaching DG Tau outflow in the 2005 observing epoch over
the region 0.5–1.1 arcsec from the central star (Fig. 8a).5 These fits
give growth rates of D′

IVC = 0.20 ± 0.03, and D′
jet = 0.10 ± 0.01.

From equation (44), the measured growth rates imply a mixing layer
growth rate of 0.05 ± 0.02.

5 The fits were made using the deprojected distance from the central star
and the physical diameter of each outflow component, thereby accounting
for the projection of the DG Tau outflows to the line of sight (38◦; Eislöffel
& Mundt 1998).

The inferred mixing layer width as a function of distance from
the central star is shown in Fig. 8(b). This is a noisier profile than
the individual jet diameters; therefore, it is preferable to determine
h′(x) from equation (44).

3.2.4 Jet-to-ambient-wind density ratio

The density of the jet is well defined (see Section 3.2.1). In order
to estimate the jet-to-ambient-wind density ratio, we make approx-
imations to the density of the wider-angle molecular wind in DG
Tau, based on the results of Takami et al. (2004). They reported a
flow that extended 40 au along the outflow axis following deprojec-
tion, and 80 au across the outflow direction, resulting in a total wind
opening angle of 90◦. By considering the K-band extinction towards
DG Tau, and the ratio of H2 1–0 S(1) 2.1218 μ m emitting mass to
total H2 mass, they determined a minimum total wind mass in this
region of 2.1 × 10−8 M�. This corresponds to a minimum average
wind H2 number density of 4 × 104 cm−3, assuming a filling factor
of 1 and a conical geometry.

We now make approximations about the flow geometry of this
wind in order to determine its density in the entrainment region
of the outflow. Consider a distance 0.8 arcsec ≈ 180 au from the
central star, which is halfway along the observed mixing layer. If
the wind undergoes no further collimation beyond what is observed
in H2 emission, and maintains a conical geometry, it will have a
total width of 360 au at this position. Assuming a constant wind
mass-loss rate, Ṁ , and wind velocity, v, the wind density, ρ, is
inversely proportional to the wind radius, R, squared:

Ṁ = ρπR2v = const. ⇒ ρ2

ρ1
= R2

1

R2
2

. (45)

Therefore, an increase in wind radius of a factor of 4.5 would
mean a decrease in wind density of a factor of ∼20, resulting in an
H2 number density ∼ 2 × 103 cm−3 at 360 au from the central star.
Assuming a gas composition of 90 per cent hydrogen and 10 per cent
helium by number density, this results in a mass density of 8.2 ×
10−21 g cm−3, and a jet-to-ambient-wind density ratio of 12.2.

Takami et al. (2004) notes that their estimates of H2 mass and
density in the wider-angle wind are lower limits, given that cold
gas may be present in the outflow, and the filling factor of the wind
may be less than unity. Hence, our estimate of the jet-to-ambient-
wind density ratio represents an upper limit to possible values for
this parameter. Therefore, whilst we consider it likely that η lies
between 1 and 10, we have investigated a parameter range of 0.1 ≤
η ≤ 10 for completeness.

3.2.5 Iron depletion

The iron depletion in the approaching outflow components from DG
Tau was measured by Agra-Amboage et al. (2011) via comparison
of [Fe II] 1.644 μm flux to the [O I] 6300 Å fluxes reported by
Lavalley-Fouquet, Cabrit & Dougados (2000). Through comparison
with shock wave models (Hartigan, Raymond & Pierson 2004), they
determined that the iron depletion factor in the approaching DG Tau
outflow is ∼3–4 in gas faster than −100 km s−1 (the jet), and ∼10–
12 for gas slower than −100 km s−1 (the IVC).

Agra-Amboage et al. (2011) noted that their measurements are
tentative, given that they were required to compare [Fe II] and [O I]
line fluxes obtained ∼8 yr apart. Furthermore, it is unlikely that the
DG Tau jet would exhibit any iron depletion, as we would expect
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dust grains to be destroyed by passage through the strong recol-
limation shock at the base of the approaching outflow (Paper I).
However, it is reasonable that the slower, wider-angle outflow com-
ponents would exhibit iron depletion, as they are launched from
wider disc radii and may be less shock processed (Agra-Amboage
et al. 2011). Indeed, higher depletion at lower flow velocities has
been observed in other YSOs (e.g. calcium in the HH 111 outflow;
Podio et al. 2009). The jet iron depletion measurement of Agra-
Amboage et al. may be contaminated by IVC emission, given those
authors made a simple velocity cut to separate outflow components,
rather than using line component fitting (e.g. Paper I; Lavalley et al.
1997). Therefore, we take a range of iron depletion factors, 3–10,
for the DG Tau approaching IVC.

3.3 Model estimates and comparison for DG Tau

We now compare the estimates from our model to our previous ob-
servations of the approaching DG Tau outflow intermediate-velocity
component (Paper I). These estimates are based on the outflow pa-
rameters for DG Tau detailed above (Section 3.2).

3.3.1 Mixing layer luminosity

The estimated mixing layer luminosity for DG Tau from our model
is shown in Fig. 9. We compute the total mixing layer bolometric
luminosity as per Section 2.4, in particular equation (41):

Lmix,tot = 2πRmixLρjetv
3
jeth

′(x)G(η). (46)

Figure 9. Estimates of the DG Tau mixing layer [Fe II] 1.644 μm luminosity,
from equations (42) and (46). Luminosities are calculated for a range of
iron depletion factors and jet-to-ambient-wind density ratios, assuming a
jet velocity of 265 km s−1 and a jet density of 1.0 × 10−19g cm−3. Solid
curves show the estimated luminosity for h′(x) = 0.05; the surrounding
greyed regions indicate the range of luminosities at a given iron depletion
factor for 0.03 ≤ h′(x) ≤ 0.07 (Section 3.2.3). Curves are labelled with the
corresponding iron depletion factor. The hatched region shows the parameter
range applicable to the DG Tau IVC (iron depletion factor ∼3–10; 3 � η �
10). The thick dashed line shows the observed [Fe II] 1.644 μm luminosity
of the DG Tau approaching IVC, 2.4 × 1028erg s−1.

We estimate the mixing layer radius, Rmix, to be ∼ 25 au (Fig. 8).
The mixing layer luminosity is estimated using a jet velocity of
265 km s−1 (Section 3.2.2) and a jet density of 10−19 g cm−3

(Section 3.2.1). We take a range of possible mixing layer growth
rates, h′(x) = 0.05 ± 0.02 (Section 3.2.3). We consider a range
of possible iron depletion factors and jet-to-ambient-wind density
ratios, as these are the least-constrained parameters (Sections 3.2.4
and 3.2.5).

We calculate the observed [Fe II] 1.644 μm IVC luminosity from
the approaching DG Tau outflow as follows. We consider every
spaxel covering the approaching outflow that was successfully fit-
ted with two [Fe II] 1.644 μm emission-line components (Paper I,
fig. 2.6 therein). We then calculate the flux from the fitted IVC
component in each spaxel, and sum across the entire outflow to pro-
duce a total [Fe II] 1.644 μm IVC luminosity of 2.4 × 1028 erg s−1,
assuming a distance to DG Tau of 140 pc (Elias 1978).

Our model estimates for the luminosity of a mixing layer in
the approaching DG Tau outflow are in good agreement with our
observations of the approaching IVC. For 3 � η � 10 (Section
3.2.1), and an iron depletion factor of ∼3–10, our model estimates
a mixing layer luminosity of (1.1–7.9) × 1028ergs−1. This is a good
level of agreement between model and observations, and constitutes
a strong indicator that the luminosity of this region of the outflows
is driven by turbulent dissipation.

3.3.2 Rate-of-change of mixing layer mass flux

In our model, mass enters the mixing layer from both the jet via
interception, and from the ambient wind via entrainment. From
equation (30), the rate at which material enters the mixing layer is

∂Ṁ

∂x
≡ Ṁ ′ = ρjetvjeth

′(x)

(−η + η log(η) + 1

(η − 1)2

)
. (47)

Multiplying by 2πRmix, where Rmix ≈ 25 au as per Section 3.3.1,
gives the entrainment rate per unit length in the outflow direction.
Finally, multiplying by the mixing layer length, L = 270 au (Section
3.2.3), gives the total mass being gained by the mixing layer at all
observed positions (cf. the calculation of the total turbulent energy
production in the mixing layer in Sections 2.4 and 3.3.1).

An important consistency check is that the total mass being gained
by the mixing layer at all positions cannot exceed the combined
mass-loss rates of the jet and the wind. Otherwise, the mixing layer
would cease to exist at some distance downstream, as it exhausts
the mass supply from both sources. For an overdense jet (1 ≤ η ≤
10, Section 3.2.4), our model estimates a total mass gain of (3.5–
10.0) × 10−9 M�yr−1 for the observed mixing layer (Fig. 10a).
By comparison, the mass-loss rate of the DG Tau jet is ∼ 5 ×
10−9 M� yr−1 (Paper I; Agra-Amboage et al. 2011) from [Fe II]
emission-line ratios; the total mass-loss rate of all ionized outflow
components (jet plus IVC) is (1–5) × 10−8 M� yr−1 from the VLA
data of Lynch et al. (2013). The mass-loss rate of the molecular wind
is lower, � 2.2 × 10−9 M� yr−1 (Takami et al. 2004). However, in
the overdense jet regime, mass interception from the jet is the main
contributor to the mass within the mixing layer (Fig. 5). Therefore,
we conclude that the total mass gain into the mixing layer estimated
by our model is less than the combined mass-loss rates of the DG
Tau jet and molecular wind, as required for consistency.

Recently, Maurri et al. (2014) performed an analysis of the DG
Tau approaching outflow using the BE99 technique for determin-
ing physical flow parameters from optical line ratios (Bacciotti &
Eislöffel 1999). They found that, over the first 0.7 arcsec of the
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Figure 10. Theoretical estimates for the DG Tau mixing layer. (a) Estimated
rate-of-change of the mixing layer mass flux (solid line), from equation
(47); contributions from the jet (dashed curve) and ambient wind (dot–
dashed curve) are also shown. Rate-of-change of mixing layer mass flux per
unit length (right-hand axis) is calculated assuming a mixing layer radius
of 25 au (Section 3.3.2). (b) Estimated entrainment velocity, from equation
(29). Estimates are computed using a jet velocity of 265 km s−1, a jet density
of 10−19g cm−3, and a mixing layer growth rate of 0.05. Greyed regions in
both panels show the estimated parameters for a range of mixing layer
growth rates, 0.03 ≤ h′(x) ≤ 0.07.

approaching outflow, the mass outflow rate of the jet (identified
as the high-velocity interval, or HVI, in their paper) decreased
by ∼0.5 dex. Over the same region, the mass outflow rate of the
medium-velocity interval (MVI, which is comparable to our IVC)
increased. This is what would be observed if the IVC/MVI repre-
sents a turbulent mixing layer which is primarily gaining material
from the central jet/HVI.

We compare the observations of Maurri et al. (2014) to our model
estimates for the rate-of-change of mixing layer mass flux per unit
length, and find them to be consistent. We performed a linear fit
to the MVI mass-loss rates of Maurri et al. (2014, fig. 15 therein),
and determine an increase in MVI mass-loss rate per unit length of
2 × 10−11 M� au−1 yr−1. For the observed parameters of the DG
Tau outflow (Section 3.2), our model estimates a rate-of-change in
mixing layer mass flux per unit length along the outflow direction
of (1.2–8.6) × 10−11 M� au−1 yr−1, with the lower rate-of-change
corresponding to a more overdense jet (Fig. 10a).6 The estimates
from our model strongly suggest that the approaching IVC of the
DG outflows is consistent with being the signature of a turbulent
mixing layer around the central jet.

3.3.3 Entrainment velocity and implied entrainment efficiency

In the jet entrainment models of Cantó & Raga (1991) and Raga et al.
(1995), material is injected into the mixing layer from the ambient

6 For 1 ≤ η ≤ 10, mass entrainment from the ambient wind contributes
20–33 per cent of the rate-of-change of mixing layer mass flux (Fig. 5), so
the mass entrainment per unit length from the ambient wind is (0.24–2.8) ×
10−11 M� au−1 yr−1.

medium/wind with a prescribed entrainment velocity. This velocity
is expressed as a fraction of the sound speed in the ambient wind,
cw, as it was argued that the ambient wind would be incapable of
supplying material at a velocity greater than the sound speed (Cantó
& Raga 1991, however, see Section 4.1). This fraction is defined as
the entrainment efficiency, ε ≤ 1, where the entrainment velocity is
written as vent = εcw.

The entrainment velocity of our model is given by equation (29),
and is shown as a dimensionless function of η in Fig. 4(a). For jet-
to-ambient-wind density ratios 10−1 ≤ η ≤ 101, the dimensionless
entrainment velocity, vent/(vjeth′(x)) varies between ∼0.005 and
∼0.36. For a jet velocity of 265 km s−1 and h′(x) = 0.03–0.07, we
estimate a range of entrainment velocities, 0.3 ≤ vent ≤ 6.7 km s−1.
For our inferred values of η � 10 and h′(x) = 0.05, equation (29)
estimates an entrainment velocity �5 km s−1 (Fig. 10b).

Assuming LTE, the H2 2.1218 μm emission observed in the ap-
proaching DG Tau outflow has a temperature of 2 × 103K (Beck
et al. 2008; Agra-Amboage et al. 2014). As the ambient wind is not
directly observable in the region where entrainment is occurring, we
may assume that the wind has cooled somewhat. Therefore, we take
an indicative temperature of 103K, which leads to a sound speed
of 2.2 km s−1 in the wind for a molecular gas with mean molecular
weight 2.3mH.

Direct comparison with the range of entrainment velocities pre-
dicted above implies a range of entrainment efficiencies between
0.13 and 3.05 for the full range of possible values for the mixing
layer growth rate and jet-to-ambient-wind density ratio. Adopting
the best-fitting value for the mixing layer growth rate, h′(x) = 0.05,
and assuming that the jet is likely to be overdense by up to a factor of
10 (Section 3.2.4), gives a range of implied entrainment efficiencies
from 1.00 to 2.3. We discuss this further in Section 4.1.

4 D ISCUSSION

4.1 Comparison with earlier models

Cantó & Raga (1991) and Raga et al. (1995) utilized laboratory
experiments (Birch & Eggers 1972) to estimate the entrainment ef-
ficiency, ε, of protostellar jet mixing layers. Raga et al. propose that
ε ∼ 0.03. Furthermore, both Cantó & Raga (1991) and Raga et al.
(1995) claimed that ε ≤ 1, because the ambient wind should not sup-
ply material at greater than the sound speed. However, our model,
based only on observable parameters of the protostellar outflows,
implies an entrainment efficiency 1 � ε � 2.5, in contradiction
to earlier models. We argue below that our estimated entrainment
efficiency is physically viable.

A detailed analysis of the laboratory experiments of Birch & Eg-
gers (1972) is beyond the scope of this paper. However, we make
several important points. First, the experiments of Birch & Eggers
concern adiabatic mixing layers. However, both observations (e.g.
Bacciotti et al. 2002) and analytical estimates of the mixing layer
cooling length (Section 2.4) indicate that the DG Tau IVC is radia-
tive. There are significant differences between the turbulent mixing
layers which form along the jet boundaries in adiabatic and radiative
jets, as evidenced by multiple numerical studies. For example, in
the adiabatic case, mixing between the jet and the ambient medium
results in a large transfer of energy into driving transverse motion of
the interacting gas, causing rapid expansion of the jet (e.g. Micono
et al. 2000). However, radiative effects assist the jet in forming a
turbulent mixing layer consistent with observations by (i) increas-
ing the level of mixing by ‘breaking’ KH-induced waves on the jet
surface (Downes & Ray 1998), and (ii) limiting the amount of jet
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spreading which occurs during mixing, keeping the jet collimated
to the large spatial distances observed in, e.g. HH outflows (Mi-
cono et al. 1998, 2000). This effect is particularly pronounced in
overdense jets, such as the DG Tau jet (Section 3.2.4).

Secondly, the experiments were conducted for jets of Mach num-
ber 1–5, whilst the DG Tau jet has a (thermal) Mach number of
18–25. More recent experimental work into compressible mixing
layers (e.g. Slessor et al. 2000) shows that the mixing layer growth
rates appear to approach a constant value for increasing Mach num-
ber difference between the flows, suggesting that it may be possible
to extract an entrainment efficiency for highly supersonic jets from
these experiments. Furthermore, magnetic fields within the jet may
lower the effective jet Mach number (Paper I) into the regime inves-
tigated by Birch & Eggers (1972) and Slessor et al. (2000). However,
these experiments do not account for magnetic effects and their po-
tential role in turbulence and entrainment, and as discussed above,
do not cover the dimensionless parameter space of protostellar jets.
Hence, our semi-empirical model is specifically designed to negate
a need to rely on laboratory results. We stress that our approach
should be considered a complimentary alternative to, rather than a
replacement for, the approach taken by, e.g. Cantó & Raga (1991)
and Raga et al. (1995).

We now address the issue of entrainment velocities greater than
the ambient sound speed. Cantó & Raga (1991) argued that the
entrainment velocity of the ambient material must be subsonic,
otherwise extra shocks would form along the mixing layer boundary
(e.g. Papamoschou & Roshko 1988), conflicting with observations.
However, a supersonic entrainment velocity does not invalidate our
model. Our work differs from that of Cantó & Raga (1991) by not
imparting the entrainment velocity on the ambient wind. Rather,
the ambient wind is stationary, and material is entrained via the
expansion of the shear layer. As ambient material in engulfed by
the mixing layer, it is then instantaneously accelerated to vent. This
velocity is supersonic with respect to the ambient wind sound speed,
and probably transonic with respect to the shear layer sound speed,
so shocks will result; however, these shocks will be standard tur-
bulence internal to the mixing layer, and are therefore consistent
with our general approach. There will be no global blunt body-type
shock along the shear layer boundary.

In reality, the transition from non-turbulent flow outside the mix-
ing layer to fully turbulent flow within would not be as abrupt as we
have modelled here. In particular, the sudden increase in y-velocity
at the shear layer-ambient wind boundary is likely an artefact from
our adoption of a linear shear layer temperature profile; the transi-
tion from low-density entraining molecular gas to high-density jet
gas is likely to be more gradual. However, even if there are com-
parable turbulent velocities within the molecular gas being drawn
into the layer as in the gas well within the mixing layer, the rate
of dissipation per unit volume, ∼ρv′3/lt, where ρ is the density, v′

is the turbulent velocity, and lt is the turbulent eddy scale size, is
lower in the molecular gas than in the mixing layer, because of the
lower density of the former.

4.2 The extent of the laminar jet

Jets that undergo lateral entrainment will eventually become com-
pletely turbulent, as the inner boundary of the mixing layer expands
into the jet and reaches the symmetry axis (e.g. Bicknell 1984;
Dash, Wolf & Seiner 1985). This does not appear to occur in the
DG Tau jet within 1.5 arcsec ∼ 340 au of the central star, as is evi-
denced by the low-velocity-dispersion core of the approaching high-
velocity [Fe II] 1.644 μm component (Paper I, fig. 2.6 c therein). It is

therefore relevant to determine if our model predicts the DG Tau jet
should remain laminar within the NIFS7 field. Whilst a fully three-
dimensional, axisymmetric model is formally required to make this
calculation (Cantó & Raga 1991), our model provides a useful pre-
liminary exploration.

The jet will become totally turbulent once the jet-mixing layer
boundary, y1, reaches the symmetry axis of the jet. The jet-mixing
layer boundary position is given by

y1(x) = h(x)ξ1(η) = h′(x)ξ1(η)x, (48)

assuming h(x) is linear in x. The downstream distance at which the
jet becomes completely turbulent, xturb, is then simply

xturb = rjet

h′(x)ξ1(η)
→ xturb

rjet
= (

h′(x)ξ1(η)
)−1

. (49)

For DG Tau, h′(x) = 0.05 (Section 3.2.3), ξ 1(η = 10) ∼ 0.2 (Sections
2.2 and 3.2.4), and the maximum observed jet radius rjet, max ∼ 20 au
(Fig. 8a). The distance from the central star where the DG Tau jet
becomes completely turbulent is then ∼2000 au ≈ 8.8 arcsec along
the outflow axis, accounting for projection effects. This is well
beyond the extent of the NIFS field, in agreement with our earlier
observations (Paper I).

5 C O N C L U S I O N S

We have constructed a model of the turbulent lateral entrainment
of ambient material by a supersonic, collimated jet (Section 2).
This model aims to explain the medium-/intermediate-velocity
forbidden-line emission that is often seen surrounding YSO jets. The
model statistically averages the conservation equations of MHD,
and uses directly observable outflow parameters as inputs. Our
model calculates the total production, and subsequent dissipation,
of energy in a turbulent mixing layer between the jet and the sur-
rounding molecular wind, via calculation of the total turbulent stress
within the layer. This allows theoretical estimates of, e.g. the lumi-
nosity and entrainment rate of the mixing layer to be formed.

We computed estimates for the bulk properties of the [Fe II]
1.644 μm IVC observed in the approaching outflow from the YSO
DG Tauri (Section 3). We calculated a grid of shock models using
the MAPPINGS IV code, to facilitate comparison between the observed
[Fe II] luminosity of the component, and the estimated bolometric
luminosity from our model. Our model accurately estimates the
luminosity and rate-of-change of mass flux of the DG Tau IVC,
leading us to conclude that the IVC does indeed represent a tur-
bulent mixing layer between the DG Tau high-velocity jet, and
wider-angle disc wind.

We compared our work with previous models of turbulent en-
trainment by jets, specifically those of Cantó & Raga (1991) and
Raga et al. (1995). Unlike the previous models, our adoption of
an alternative semi-empirical approach means our model is not de-
pendent upon an ‘entrainment efficiency’ parameter, which must be
estimated from laboratory experiments. We argued that the require-
ment for subsonic ‘entrainment velocities’ from the ambient wind
is not necessary in the context of our model. We also estimated the
extent of laminar jet flow in DG Tau (Section 4.2), although we note
that this is simply an illustrative case due to the limitations of our
two-dimensional model (see below).

As observed by Cantó & Raga (1991), three-dimensional ax-
isymmetric models of turbulent entrainment by jets are required

7 Near-infrared Integral Field Spectrograph, on Gemini North.
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for definitive analysis of radiative mixing layers. An obvious next
step would be to extend the model presented here to three dimen-
sions, and to remove the restriction on the ambient wind having
zero streamwise velocity. MHD simulations of turbulent entrain-
ment would also be helpful for characterizing the efficiency of the
entrainment process, as well as determining the effects of the jet
magnetic field on turbulent entrainment.
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758

Coffey D., Bacciotti F., Ray T. P., Eislöffel J., Woitas J., 2007, ApJ, 663,
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Güdel M., Skinner S. L., Briggs K. R., Audard M., Arzner K., Telleschi A.,

2005, ApJ, 626, L53
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Schneider P. C., Eislöffel J., Güdel M., Günther H. M., Herczeg G. J.,
Robrade J., Schmitt J. H. M. M., 2013, A&A, 550, L1

Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Shu F. H., Najita J. R., Ostriker E. C., Wilkin F., Ruden S. P., Lizano S.,

1994, ApJ, 429, 781
Slessor M. D., Zhuang M., Dimotakis P. E., 2000, J. Fluid Mech., 414, 35
Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
Takami M., Chrysostomou A., Ray T. P., Davis C. J., Dent W. R. F., Bailey

J., Tamura M., Terada H., 2004, A&A, 416, 213
Trussoni E., 2008, in Massaglia S., Bodo G., Mignone A., Rossi P., eds,

Lecture Notes in Physics, Vol. 754, Jets from Young Stars III. Springer-
Verlag, Berlin, p. 105

Vreman A. W., Sandham N. D., Luo K. H., 2006, J. Fluid Mech., 320, 235
White M. C., McGregor P. J., Bicknell G. V., Salmeron R., Beck T. L.,

2014a, MNRAS, 441, 1681 (Paper I)
White M. C., Bicknell G. V., McGregor P. J., Salmeron R., 2014b, MNRAS,

442, 28
Woitas J., Ray T. P., Bacciotti F., Davis C. J., Eislöffel J., 2002, ApJ, 580,

336
Zanni C., Ferrari A., Rosner R., Bodo G., Massaglia S., 2007, A&A, 469,

811

APPENDIX A : SUPPLEMENTA RY
C A L C U L ATI O N S

A1 Characteristic equations of MHD

For MHD fluids with density ρ, velocity v, pressure p, viscous stress
tensor tv

ij , magnetic field B immersed in a gravitational potential
φG, the equation of mass continuity can be written in Cartesian
coordinate notation thus:

∂ρ

∂t
+ ∂(ρvi)

∂xi

= 0. (A1)

Similarly, the equation of momentum conservation is written as

∂(ρvi)

∂t
+ ∂(ρvivj )

∂xj

= −ρ
∂φG

∂xi

− ∂p

∂xi

+ ∂tB
ij

∂xj

+ ∂tv
ij

∂xj

(A2)

(Kuncic & Bicknell 2004).
Time-averaging equation (A1) is trivial, yielding equation (6).

Averaging the momentum conservation equation, equation (A2), is
more complex. The viscous stress tensor, tv

ij , is disregarded, as it
is unimportant to the transfer of momentum on large scales. The
Reynolds stress tensor, tR

ij , appears in equation (7) as a result of
averaging the second term on the left-hand side of equation (A2).
This may then be combined with the magnetic stress tensor, tBij ,
to form a single term encapsulating the total stress in the system,
tij = tR

ij + tB
ij .

A2 Order of magnitude calculations

In this section, we conduct an order of magnitude analysis of the
characteristic equations in Section 2.1. Our aims in this section are:

(i) justify the dropping of the txx term from equation (11);
(ii) demonstrate the constancy of total (thermal plus turbulent)

pressure across the mixing layer.

Consider the orders of magnitude of the terms in the equation of
mass continuity, equation (6), as shown by the expressions beneath
the braces:

∂(ρ̄ṽx)

∂x︸ ︷︷ ︸
ρ̄ṽx /L

+ ∂(ρ̄ṽy)

∂y︸ ︷︷ ︸
ρ̄ṽy /h

= 0 ⇒ ṽy ∼ h

L
ṽx. (A3)

It can be shown from our definition of ξ , equation (15), and
the transformed equation of mass continuity, equation (23), that
h/L ∼ h′.

It then follows that the orders of magnitude in the equation of
conservation of streamwise momentum, equation (11), are:

∂(ρ̄ṽ2
x)

∂x︸ ︷︷ ︸
ρv2/L

+ ∂(ρ̄ṽx ṽy)

∂y︸ ︷︷ ︸
ρv2/L

= − ∂〈ρv′2
x 〉

∂x︸ ︷︷ ︸
(R1):ρv2

t /L

− ∂〈ρv′
xv

′
y〉

∂y︸ ︷︷ ︸
(R2):ρv2

t /h

+ ∂

∂x

(
〈B ′2

x 〉 − 〈B ′2
y 〉 − 〈B ′2

z 〉
8π

)
︸ ︷︷ ︸

(R3):B2
t /8πL

+ ∂

∂y

( 〈B ′
xB

′
y〉

4π

)
︸ ︷︷ ︸

(R4):B2
t /4πh

. (A4)

Note that we have expanded the stress terms, and for the purposes
of expressing orders of magnitude, have replaced ρ̄ with ρ, ṽx with
v, and have denoted the generic turbulent velocity, typically v′, as
vt for clarity. Because h′ � 1 ⇒ L � h, terms (R2) and (R4) of
equation (A4) are the most important terms on the right-hand side.
Therefore, the txx component of the turbulent stress (encapsulated in
the third term on the right-hand side of equation A4) is unimportant
(Section 2.1).

We now must determine which of terms (R2) and (R4) in equation
(A4) is most important. The observed full width at half-maximum
(FWHM) of the blueshifted [Fe II] 1.644 μm emission-line com-
ponent from DG Tau is � 60 km s−1 (Paper I), indicating that the
turbulent velocity in the mixing layer, vt, is of that order. Recalling
that we assume that the magnetic field is dominated by its turbulent
component within the mixing layer (Section 2.1), we may compute
the turbulent Alfvén velocity, vA,t = B/

√
4πρ, using the inferred

magnetic field strength in the DG Tau jet, which is in the range
30–100 μG (Lavalley-Fouquet et al. 2000; Ainsworth et al. 2014).
Assuming an equipartition magnetic field of ∼60 μG, this yields a
turbulent Alfvén velocity of ∼1.7 km s−1 � vt; hence, the turbulent
velocity term, (R2), is dominant. This implies that

ρv2

L
∼ ρv2

t

h
⇒ v2

t ∼ h

L
v2. (A5)

Consider the equation for the conservation of transverse momen-
tum, i.e. the i = y expansion of equation (7):

∂(ρ̄ṽx ṽy)

∂x︸ ︷︷ ︸
L1:(ρv2/L)(h/L)

+ ∂(ρ̄ṽ2
y)

∂y︸ ︷︷ ︸
L2:(ρv2/L)(h/L)

= −∂p̄

∂y︸ ︷︷ ︸
(R1):p/h

− ∂〈ρv′
xv

′
y〉

∂x︸ ︷︷ ︸
(R2):(ρv2/L)(h/L)

− ∂〈ρv′2
y 〉

∂y︸ ︷︷ ︸
(R3):ρv2/L

+ ∂

∂x

( 〈B ′
xB

′
y〉

4π

)
︸ ︷︷ ︸

(R4):B2
t /4tL

+ ∂

∂y

(
〈B ′2

y 〉 − 〈B ′2
x 〉 − 〈B ′2

z 〉
8π

)
︸ ︷︷ ︸

(R5):B2
t /8πh

. (A6)
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On the right-hand side of this equation, terms (R3) and (R5) dom-
inate terms (R2) and (R4); then, as in equation (A4), the turbulent
velocity term (R3) dominates the turbulent magnetic field term (R5).
It can also be seen that term (R3) also dominates both of the terms
on the left-hand side of the equation because h/L � 1. Therefore,
the two dominant terms of equation (A6) are terms (R1) and (R3).

Discarding the unimportant terms of equation (A6), and integrat-
ing over y, yields the ‘total’ pressure,

ptot ≡ p̄ + 〈ρv′2
y 〉 = const. (A7)

This relationship allows us to define a new quantity, W:

W ≡ T̃thermal + μm〈ρv′2
y 〉

kρ̄
, (A8)

which is related to density and total pressure thus:

ptot = ρ̄k

μm
W . (A9)

We approximate W as being linear across the mixing layer, with
bounds given by equation (19). This is a reasonable approximation,
given:

(i) the constancy of total pressure across the mixing layer
(equation A7);

(ii) the fact that turbulent velocities (that is, velocity dispersion),
are present in at least both the mixing layer and the jet (Paper I,
fig. 6 therein).

A3 Dimensionless functions

The dimensionless function D(η, ξ ) in the mixing layer transverse
velocity profile, equation (24), is given by

D(η, ξ ) =
∫ ξ

ξ1

ξ ′ d

dξ ′

(
U (ξ ′)

η + (1 − η)S(ξ ′)

)
dξ ′ (A10)

= η

(η − 1)2

{
(η − 1)

[
ξ

(η − 1)(ξ1 − ξ ) + 1
− ξ1

]

+ log [(η − 1)(ξ1 − ξ ) + 1]

}
. (A11)

The dimensionless function F (η, ξ ) in the mixing layer transverse
turbulent stress profile, equation (26), is given by

F (η, ξ ) =
∫ ξ

ξ1

−ξ ′ ξ ′ − ξ1 + 1

η + (1 − η)(ξ ′ − ξ1 + 1)
+ D(η, ξ ′) dξ ′

(A12)

= 1

2(η − 1)3
{2η [(1 − η)(ξ1 − ξ ) − 1]

× log [(η − 1)(ξ1 − ξ ) + 1]

− [(η − 1)(2η − 1)ξ1 − η(ξ − 2) + ξ ] (η − 1) (ξ − ξ1) }.
(A13)

A4 Mixing layer transverse velocity and turbulent
stress profiles

The transverse velocity profile across the mixing layer, ṽy(η, ξ ),
may be found by substituting the expression for ξ 1(η),

equation (27), into equation (24):

ṽy(η, ξ ) = vjeth
′(x)η

4(η − 1)6

⎧⎨
⎩ [

η2(2 log(η) − 1) + 1
] [

3η2 − 2η2 log(η)

+ 2(η − 1)3ξ − 4η + 1
]

−2(η − 1)2
[
η2 − 2η2 log(η) + 2(η − 1)3ξ − 1

]
× log

(
−η2(1 − 2 log(η)) + 2(η − 1)3ξ − 1

2(η − 1)2

) ⎫⎬
⎭.

(A14)

The turbulent stress profile across the mixing layer, txy(η, ξ ), may
be found in the same way, using equation (26):

txy(η, ξ )

= ρjetv
2
jeth

′(x)

8(η − 1)7

⎧⎨
⎩4η

[
(η − 1)2

[
η2(1 − 2 log(η)) + 2(η − 1)3ξ − 1

]

× log

(
−η2(1 − 2 log(η)) + 2(η − 1)3ξ − 1

2(η − 1)2

)
+ η log(η)(η(−4η2 − 2(η − 1)3ξ + 7η − 4)

+ (2η − 1)η2 log(η) + 1)

]
+ (η − 1)2[4(η − 1)4ξ 2 + 4η(η + 1)(η − 1)2ξ

+ η(η(6η − 5) + 4) − 1]

⎫⎬
⎭. (A15)

A5 Calculation of the mass entrainment rate

The mass entrainment rate is given by taking the x-derivative of
equation (32),

Ṁ ′
ent = d

dx

∫ ξ1

ξ2

ρ(ξ )vx(x, ξ )h(x) dξ − ρjetvjeth
′(x)ξ1(η) (A16)

= ρ̄(ξ1)ṽx(ξ1)h(x)
dξ1

dx
− ρ̄(ξ2)ṽx(ξ2)h(x)

dξ2

dx

+
∫ ξ1

ξ2

d

dx
[ρ(ξ )vx(x, ξ )h(x)] dξ − ρjetvjeth

′(x)ξ1(η).

(A17)

The first two terms of the above are zero in (x, ξ )-space. The trans-
formed equation of continuity, equation (23), may be written as

∂

∂x
(ρ̄ṽxh(x)) = h′(x)

∂

∂ξ
(ξ ρ̄ṽx) − ∂

∂ξ

(
ρ̄ṽy

)
, (A18)

which reduces equation (A17) to

Ṁ ′
ent = h′(x)

[
ρjetvjetξ1 − ρwvwξ2

] − ρjetṽy(x, ξ1)

+ ρwṽy(x, ξ2) − ρjetvjetξ1h
′(x). (A19)

Most of these terms are zero, or cancel, leaving

Ṁ ′
ent = ρwṽy(x, ξ2) (A20)

= ρwvent by definition. (A21)
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Figure B1. The ratio of the energy required to dissociate all the H2

molecules entrained into the turbulent mixing layer to the total turbulent
energy produced within the mixing layer. The ratio is plotted as a function
of the jet-to-ambient-wind density ratio, η. The ratio is computed assuming
a jet velocity of 265 km s−1, a mixing layer growth rate of 0.05, and a jet
density of 1.0 × 10−19 g cm−3, as for DG Tau (Section 3.2).

APP ENDIX B: D ISSOCIATION O F ENTRAINED
M O L E C U L A R H Y D RO G E N W I T H I N TH E
M I X I N G L AY E R

The calculation presented in this paper does not account for the
energy required to dissociate hydrogen molecules (H2) that are
entrained into the mixing layer. In this Appendix, we show that
the energy required to dissociate the entrained H2 is of the order
of 1 per cent of all turbulent energy produced in the mixing layer,
and hence has a negligible effect on the comparison to the observed
mixing layer luminosity in Section 3.3.1.

The mass of molecular material being entrained into the mixing
layer, Ṁent, may be computed in a similar fashion to the total rate-
of-change of mixing layer mass flux (Section 3.3.2), by multiplying
the local instantaneous mass entrainment rate (Ṁ ′

ent, equation 32)
by the mixing layer length L, and by 2πRmix, where Rmix is an
approximation of the mixing layer radius. Therefore, the total mass
of molecular wind material entering the mixing layer at any one
time is

Ment = ρjet

η︸︷︷︸
ρw

vjeth
′(x)

η(η2 − 2η log(η) − 1)

2(η − 1)3︸ ︷︷ ︸
vent

2πRmixL. (B1)

The bond dissociation energy of molecular hydrogen is 4.52 eV
per molecule = 2.2 × 1012 erg g−1 (Blanksby & Ellison 2003). The
total energy required to dissociate all of the molecular hydrogen
present in the mixing layer may then be calculated by multiplying
this value by equation (B1). The ratio of this required energy is
compared to the total turbulent energy produced within the mixing
layer, equation (41), in Fig. B1. The energy required to dissociate
the entrained molecular material is of the order of 1 per cent of the
total turbulent energy produced. Given that our shock models indi-
cate that at most 1 per cent of the total turbulent energy produced
is radiated away as [Fe II] 1.644 μm emission, the effect on our pre-
dicted [Fe II] mixing layer luminosity is of the order of 0.01 per cent,
i.e. negligible.

A P P E N D I X C : SH O C K MO D E L L I N G
SUPPLEMENTA RY I NFORMATI ON

C1 Pre-shock gas parameters

A collisional ionization equilibrium (CIE) model was used to de-
termine the relative abundances of various ions in the pre-shock
gas. The results of these models are shown in Table C1. Conver-
sion of these fractions to number densities was then achieved by
multiplying by the relevant elemental abundances (Asplund et al.
2009 for solar abundances, and Jenkins 2009, 2013 for the depleted
case). The weak dependence of [Fe II] 1.644 μm luminosity fraction
on pre-shock ionization fraction (Figs 6 and 7) can be seen in this
table; the relative fraction of iron in the singly ionized state does
not vary significantly with hydrogen ionization.

C2 Effect of varying pre-shock density and iron depletion

Shown in Figs C1 and C2 are the dependences of the fraction of
total emission generated by [Fe II] 1.644 μm line emission as a
function of pre-shock ionization and pre-shock number density (cf.
Figs 6 and 7, where we show the [Fe II] 1.644 μm line emission
fraction as a function of pre-shock ionization and plasma β), for
solar abundances (Fig. C1) and for iron depleted by a factor of 100
below solar abundance (Fig. C2). As for variations with pre-shock
plasma β, for the purposes of our study, there is relatively little
effect on the fraction of total luminosity emitted in [Fe II] 1.644 μm;
the fraction is ∼10−2 for solar abundances, and ∼10−4 for an iron
depletion factor of 100.

Table C1. Pre-shock ionization fractions based on CIE models.

χ = 0.01a χ = 0.05 χ = 0.1
T = 1.167 × 104 Kb T = 1.253 × 104 K T = 1.312 × 104 K

Species I II III I II III I II III

H 0.991 0.009 – 0.951 0.049 – 0.899 0.101 –
He 1.000 0.000 0.000 1.000 0.000 0.000 0.997 0.003 0.000
Fe 0.368 0.631 0.001 0.291 0.706 0.003 0.247 0.746 0.007

χ = 0.3 χ = 0.5 χ = 0.7
T = 1.445 × 104 K T = 1.549 × 104 K T = 1.671 × 104 K

I II III I II III I II III
H 0.699 0.301 – 0.502 0.498 – 0.301 0.699 –
He 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
Fe 0.170 0.797 0.033 0.125 0.789 0.085 0.083 0.712 0.205

Notes: aShown are the fractions of each species in the neutral (I), singly ionized (II) and doubly ionized (III) states as a function of
hydrogen ionization fraction, χ .
bTemperatures determined from the CIE model.
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Figure C1. Contribution of [Fe II] 1.644 μm line emission to total shock
emission from a grid of MAPPINGS IV models, where the iron abundance
is not depleted from solar abundance values and the pre-shock hydrogen
ionization χ = 0.3. The percentage of shock emission which is radiated
as [Fe II] 1.644 μm line emission is shown as a function of the pre-shock
ionization fraction, χ . Models have been computed for a range of post-
shock temperatures and pre-shock number densities as indicated. Points are
joined using a one-dimensional Akima spline interpolation (Akima 1970).
The vertical dotted line denotes the known jet ionization, χ = 0.3 (Bacciotti
et al. 2000).

The total emission from these partially ionized slow shocks arises
from a non-linear, time-dependent ionization state. This situation
comes about via competition between collisional ionization caused
by the post-shock temperature jump, and recombination that follows
as the gas cools quickly. The ionization balance is generally far from
equilibrium and is somewhat dependent on the initial ionization
fractions, as the shocks never reach the hot equilibrium post-shock
phase seen in faster shocks (e.g. Allen et al. 2008). This makes
the initial ionization state important in determining the final shock
emission spectra. The cooling arises primarily from the collisional
excitation of lines (e.g. H α, Ly α) and two-photon continuum
emission of hydrogen, as well as a large number of forbidden and
fine-structure transitions in metal species such as neutral oxygen or
Fe II. As the pre-ionization state changes, the availability of electrons
and the changing mean molecular weight (which alters the post-
shock temperature), combined with the changing initial values for
ion abundances and magnetic pressure, means that the integrated
contribution of a particular line in a particular species (such as [Fe II]
1.644 μm) can vary both up and down as the mix of competing
processes and species change.

Figure C2. As for Fig. C1, but with an iron depletion factor of 100.

For example, the density reached when an important ion is most
abundant may vary between models, depending on the temperature
profile and the contribution of magnetic pressure support. Density
‘quenching’ via collisional de-excitation can change the emission
from some lines but not others, depending on their critical densities
(cf. Dopita & Sutherland 2003). Therefore, in any given model, the
emission contribution from species competing with [Fe II] 1.644 μm
emission will change, and so the Fe II cooling fraction will also
change. Fortunately, the overall integrated variations in the [Fe II]
fraction range over only factors of a few for the range of pre-shock
conditions considered here. The relatively small variations in the
initial CIE Fe II fractions in Table C1 may contribute to the rough
stability of the [Fe II] 1.644 μm emission efficiency.

Additionally, the collisional excitation of neutral hydrogen in
particular, enhancing H α, Ly α and the two-photon continuum are
in many models a dominant coolant, and as the neutral hydrogen
species is common throughout all the models, the overall cooling
is not as variable as it would be if the cooling were dominated by
fleeting species. Likewise, the Fe II ion is often the most common
Fe ion in the models. However, in any given model, the detailed
efficiency outcome is difficult to predict in this highly non-linear
system, so the variations seen in Figs 6, 7, C1, and C2 are best
interpreted in general terms, as specifics are difficult to isolate and
prove.
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