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Abstract 

 

John Bolton is regarded by many to be the pre-eminent Australian astronomer of his 

generation.  In the late 1940s he and his colleagues discovered the first discrete 

sources of radio emission.  Born in Sheffield in 1922 and educated at Cambridge 

University, in 1946 Bolton joined the Radiophysics Laboratory in Sydney, part of 

Australia’s Council for Scientific and Industrial Research.  Radio astronomy was then 

in its infancy.  Radio waves from space had been discovered by the American 

physicist Karl Jansky in 1932, followed by Grote Reber who mapped the emission 

strength across the sky, but very little was known about the origin or properties of the 

emission.  This thesis will examine how the next major step forward was made by 

Bolton and colleagues Gordon Stanley and Bruce Slee.  In June 1947, observing at the 

Dover Heights field station, they were able to show that strong radio emission from the 

Cygnus constellation came from a compact point-like source.  By the end of 1947 the 

group had discovered a further five of these discrete radio sources, or ‘radio stars’ as 

they were known, revealing a new class of previously-unknown astronomical objects. 

 

By early 1949 the Dover Heights group had measured celestial positions for the 

sources accurately enough to identify three of them with known optical objects.  One 

coincided with an unusual object in the local Galaxy and two coincided with peculiar 

extragalactic objects.  As I will show, the optical identifications built a bridge between 

traditional astronomy and the fledgling radio astronomy.  The identifications also 

marked the birth of extragalactic radio astronomy, which was to have a major impact 

on the development of astronomy in the second half of the twentieth century. 

 

In the early 1950s, with improved instrumentation, the Dover Heights group carried 

out a sky survey that revealed over 100 radio sources, consolidating its position as the 

world’s leading group for ‘cosmic’ radio astronomy.  To conclude, I will briefly 

survey Bolton’s career after the closure of Dover Heights in 1954.  Bolton had the 

unusual distinction of being the inaugural director of two major observatories, first at 

the California Institute of Technology (1955–60) and then at the Parkes Observatory 

(1961–81) in central NSW.  No astronomer did more over his career to establish radio 

astronomy as a mature and powerful branch of astronomy. 
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Chapter 1 

 

Introduction 

 

John Bolton is regarded by many to be the pre-eminent Australian astronomer of his 

generation.  His career consisted of three distinct periods: the years 1946–53 at the 

Dover Heights field station in Sydney; the years 1955–60 at the California Institute of 

Technology (Caltech) in Pasadena; and the years 1961–81 at the Parkes telescope in 

central New South Wales.  This thesis will focus almost entirely on the Dover 

Heights period.  It was during this time that Bolton, together with colleagues Gordon 

Stanley and Bruce Slee, discovered and identified the first discrete radio sources, or 

radio ‘stars’ as they were known, one of the most important discoveries in twentieth 

century astronomy. 

 

The research for this thesis has been carried out in parallel with the first full-length 

biography of Bolton, which is currently in preparation.  The Dover Heights period 

will be covered in three chapters of the biography.  The thesis will be a far more 

detailed and rigorous study of this period than is possible in the book.  In the present 

chapter, we will review the relevant published sources, discuss the unpublished 

sources, and conclude with a brief outline of each of the other seven chapters. 

 

1.1  Literature Review 

The origins and early development of radio astronomy in Australia is possibly the 

most intensively-studied chapter in the history of Australian science.  Radio 

astronomy began immediately after the end of World War II in the Radiophysics 

Laboratory in Sydney, a division of the Council for Scientific and Industrial Research 

(the forerunner of the Commonwealth Scientific and Industrial Research Organisation 

– CSIRO).  In the late 1940s and early 1950s the Radiophysics Lab operated up to 

eight field stations in and around Sydney.  The radio observations at each site were 

under the general supervision of the head of the radio astronomy group, Joseph Lade 

Pawsey (1908–62).  The early radio observations at a number of these field stations 

have been the focus of two recent PhD theses.  Ron Stewart (2010) has examined the 

solar radio astronomy carried out at the Penrith and Dapto field stations, while Harry 
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Wendt (2009) has examined the contributions of the Potts Hill and Murraybank field 

stations to international radio astronomy.  The current thesis will focus on the 

research program carried out at the cliff-top field station at Dover Heights, 5 km 

south of the entrance to Sydney Harbour. 

 

Among the first to write about the history of Australian radio astronomy were the 

early practitioners, the radio astronomers themselves.  The overview by Pawsey 

(1953) appears to be the earliest – see also Pawsey (1961).  Other personal 

reminiscences have been given by Bolton (1982), Bowen (1988), Mills (2006), Slee 

(2005) and Wild (1972).  Early Australian radio astronomy has also attracted the 

interest of historians of science, both amateur and professional.  The books by 

Robertson (1992) on the history of the Parkes radio telescope and by Haynes et al. 

(1996) on the history of Australian astronomy both devote lengthy sections to the 

early years of radio astronomy. 

 

The first professional historian to research the early history was Woodruff Sullivan at 

the University of Washington, Seattle.  His landmark publication (Sullivan 1984) 

contained historical chapters by five Australian pioneers (Bowen, Bracewell, 

Christiansen, Kerr and Mills).  In 1988 Sullivan published the first detailed history of 

early Australian radio astronomy in the book ‘Australian Science in the Making’, a 

volume marking the bicentenary of Australian science.  More recently Sullivan 

(2009) has published the study ‘Cosmic Noise: A History of Early Radio Astronomy’, 

widely regarded as the most comprehensive and definitive book on the subject.  The 

book devotes well over a chapter to the Radiophysics Lab during the period 1945–52 

and is based on his earlier study on the beginnings of Australian radio astronomy 

(Sullivan 2005). 

 

By far the most prolific writer on the early history of Australian radio astronomy has 

been the Australian historian of science Wayne Orchiston.  Over the past twenty years 

he has edited several books and written numerous book chapters and journal articles, 

many of them coauthored by Bruce Slee, one of Bolton’s principal colleagues at the 

Dover Heights field station (see e.g. Orchiston 2004, 2005a, 2005b; Orchiston and 

Slee 2002, 2005; Robertson et al. 2014).  This thesis will attempt to build on this 
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existing body of work and provide a deeper insight into the discoveries at Dover 

Heights. 

 

Another valuable source of information is Goddard and Haynes (1994), a special 

issue of the Australian Journal of Physics (at this time the present author was the 

managing editor of the AJP).  The issue consists of papers presented at a symposium 

in memory of Bolton held at the Parkes telescope in December 1993.  Papers by 

Bruce Slee, Gordon Stanley and Kevin Westfold are devoted to the Dover Heights 

years, while another paper by Wayne Orchiston describes the expedition to New 

Zealand by Bolton and Stanley in 1948 (see Chapter 4). 

 

In 1965 Bolton was elected a fellow of the Australian Academy of Science.  In 1973 

he was elected a fellow of the Royal Society of London, becoming the fourth 

Australian radio astronomer to receive the honour following Joe Pawsey (1954), 

Bernard Mills (1963) and Paul Wild (1970).  As is customary for fellows, Bolton 

prepared lengthy autobiographical notes which would be used as the basis of his 

official memoir by Wild and Radhakrishnan (1995), published by both the Australian 

Academy and the Royal Society.  Three other biographical memoirs have been 

published by Radhakrishnan (1993), Kellermann (1996) and Kellermann and 

Orchiston (2008).  Biographical articles have also been published for Bolton’s two 

principal collaborators at Dover Heights – Gordon Stanley (Kellermann et al. 2005) 

and Bruce Slee (Orchiston 2004, 2005a). 

 

Finally, there were 23 research papers produced by the Dover Heights group and 

published over the period 1947–57 (see the Appendix).  Bolton was the sole author or 

co-author on all but four.  Seven of the papers were short communications in the 

prestigious British journal Nature, while 12 papers were published in the Australian 

Journal of Scientific Research (Series A) (commenced 1948) or its successor the 

Australian Journal of Physics (commenced 1953).  

 

1.2  Discussion of Unpublished Sources 

After Bolton died in July 1993 his family arranged for his personal papers to be 

deposited in the National Library of Australia in Canberra where they could be 

properly sorted and catalogued.  The collection is arranged into five series: Series 1 – 
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correspondence (1940–93); Series 2 – published articles and papers (1947–93); Series 

3 – newspaper cuttings (1948–93); Series 4 – photographs (1951–89); and Series 5 – 

general papers (1968–91). 

 

In 2008 I spent two extended periods in Canberra studying the Bolton papers, 

supported by a Harold White Fellowship awarded by the National Library.  The 

following year I spent a third extended period in Canberra, supported by a residential 

fellowship at Manning Clark House, and completed my examination of the Bolton 

papers.  My research has involved a number of visits to Sydney where most of 

Bolton’s family and former colleagues currently live.  The Radiophysics Lab 

correspondence files relevant to the Dover Heights period are held in the NSW 

branch of the National Archives of Australia in the Sydney suburb of Chester Hill. 

 

Correspondence 

There is very little correspondence relevant to this thesis among Bolton’s personal 

papers in the National Library, but this was anticipated.  In 1984 Bolton told me that 

his personal papers from the Dover Heights years had been lost.  He could not recall 

exactly when, but it may have been during one of the several occasions he moved 

house in California.  There are a few documents relating to his Cambridge degree and 

his discharge from the Royal Navy, but nothing else of relevance. 

 

In complete contrast, the Radiophysics Lab correspondence files held in the National 

Archives provide a wealth of relevant material.  Whenever a research officer 

corresponded with a person or institution outside the Lab, or with a Radiophysics 

colleague overseas, it was considered official business.  The research officer was 

obliged to have the letter typed by the Lab’s pool of secretaries and arrange for a 

carbon copy to be added to the relevant file.  The result was a remarkably complete 

and comprehensive coverage of the Lab’s activities during the postwar years.  Most 

of the files were transferred from Radiophysics to the National Archives in the mid-

1990s.  Since then many of the files have been digitised and are available online.  The 

existence of this excellent resource has been a significant reason behind the surge in 

interest by historians in the early history of Australian radio astronomy, as discussed 

above. 
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Illustrations 

The majority of photographs reproduced in this thesis are previously unpublished and 

have been obtained from a variety of sources.  The major source is the Radio 

Astronomy Image Archive (RAIA) managed by the Australia Telescope National 

Facility (successor to the Radiophysics Lab) (see https://imagearchive.atnf.csiro.au).  

Other significant sources include the Bolton and Stanley families and the Bolton 

papers in the National Library. 

 

Most of the line diagrams are reproduced from various Dover Heights research papers 

and credit is given to the relevant publisher. 

 

Interviews 

Bolton carried out three major interviews later in his career and transcripts are 

available for each: 

 

 Interview by Lennard Bickel at University House, Canberra, in January 1975.  

The interview was conducted on behalf of the Oral History Section of the 

National Library as part of its ongoing project to interview prominent Australians.  

At the time Bickel was science correspondent for The Australian newspaper 

 

 Interview by Woody Sullivan at Jodrell Bank, UK, in August 1976, and at Parkes, 

NSW, in March 1978.  The interview was part of Sullivan’s research into the 

early history of radio astronomy and led to the publications cited above (Sullivan 

1988, 2005, 2009).  Sullivan has also provided me with transcripts of interviews 

he conducted with Gordon Stanley (Owens Valley, California, June 1974) and 

Bruce Slee (Marsfield, NSW, March 1978) 

 

 Interview by the author at Buderim, Qld, in April 1984.  This interview was part 

of my research on the history of the Parkes telescope (Robertson 1984, 1992) 

 

In addition to Bolton himself, I have interviewed various family members including 

his wife Letty Bolton (Round Corner, NSW, November 2006 and July 2007) and his 

son Brian Bolton (Melbourne, April 2007).  I have also interviewed three of the five 

members of the Dover Heights group: Richard (‘Dick’) McGee (Eastwood, NSW, 
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November 2006), Bruce Slee (Marsfield, NSW, November 2006) and Kevin Westfold 

(Monash University, Vic., March 1984).  I did not have an opportunity to interview 

Gordon Stanley who died in 2001.  I did however have the opportunity in May 2010 

to examine his personal papers, held by one of his daughters at her home in northern 

California.  These papers were recently donated to the archives of the California 

Institute of Technology, where Stanley spent most of his career after the closure of 

the Dover Heights field station in 1954. 

 

1.3  Summary of Chapters 

The thesis will consist of eight chapters.  Chapter 2 will set the scene up to when 

Bolton joined the Radiophysics Lab in 1946, while Chapters 3–6 will cover the Dover 

Heights years 1946 –53.  Chapter 7 will consist of an overview of the remainder of 

Bolton’s career, while the final chapter will present my concluding remarks. 

 

Chapter 2 – From Radar to Radio Astronomy  

John Gatenby Bolton was born in Sheffield in 1922 and both his parents were 

teachers.  He attended the leading secondary school in Sheffield and won a 

scholarship to study science at Trinity College, Cambridge.  After graduating in 1942 

he enlisted in the Royal Navy and spent two years carrying out research in airborne 

radar, before being appointed the radio officer on a British aircraft carrier. 

 

The Radiophysics Laboratory in Sydney was formed in 1940 to carry out secret 

wartime research in radar.  At the end of the war the Lab investigated a wide range of 

peacetime applications of radar.  Radio astronomy turned out to be the wild card in 

the pack.  By 1950 approximately half the resources of the Lab were devoted to radio 

astronomy. 

 

In this chapter we also look at the origins of radio astronomy itself, beginning with 

the discovery of radio waves from space by Karl Jansky, a physicist at the Bell 

Telephone Laboratories in New Jersey.  Jansky’s discovery was followed up by a 

radio engineer, Grote Reber, who built his own radio telescope in his hometown near 

Chicago.  Reber produced the first maps showing the intensity of radio emission 

across the sky. 
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Chapter 3 – Discovery of the First ‘Radio Stars’ 

When Bolton joined the Radiophysics Lab in September 1946 he was stationed at a 

field station at Dover Heights, a short distance south of the entrance to Sydney 

Harbour.  Bolton was assigned the task of observing and analysing the radio emission 

from the Sun.  With colleague Bruce Slee, he tried to detect radio emission from other 

astronomical objects such as the Moon and the planets, but the attempt failed. 

 

Several months later Bolton decided to investigate a report by an English group that 

there is unusually strong radio emission coming from the constellation of Cygnus.  

With colleague Gordon Stanley, Bolton used a technique known as sea interferometry 

which uses a simple aerial similar to a TV antenna.  The aerial is pointed out to sea 

where it picks up the direct radio signal from above the horizon and the signal 

reflected from the sea surface to create an interference pattern.  In June 1947 they 

succeeded in detecting the emission from Cygnus and, from its distinctive 

interference pattern, they were able to conclude that the emission came from a very 

compact point-like source.  By the end of 1947 Bolton, Stanley and Slee had found a 

further five of these point-like sources.  Here was evidence that the Dover group had 

discovered a new class of astronomical object previously unknown to astronomers. 

 

Chapter 4 – Identification of the First Radio Sources 

The celestial positions of these first few sources were known only approximately and 

so it was not possible to identify them with any visible objects.  Bolton decided to 

find a better observing site than Dover Heights.  He needed a site where the cliffs 

were much higher (and thus give better resolution) and where he could observe the 

sources rise above the horizon in the east and then set below the horizon in the west.  

Nothing suitable could be found on the eastern seaboard of Australia, so Bolton chose 

the north island of New Zealand where there were very high cliffs on both the east 

and west coasts.  Gordon Stanley built a sea interferometer on a mobile trailer which 

was shipped to New Zealand in June 1948. 

 

Bolton and Stanley returned to Sydney after three months of observations.  It took 

Bolton several months to analyse the data and by the end of the year he had derived 

accurate positions for four sources.  The Cygnus position was still not accurate 

enough to make a positive identification, but the other three all coincided with very 
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unusual objects.  One coincided with the Galactic object known as the Crab Nebula, a 

supernova remnant which had been studied intensely by astronomers.  The other two 

coincided with extragalactic objects which provided an even bigger surprise – how 

could objects at such vast distances radiate so much radio energy?  Bolton, Stanley 

and Slee published their first three identifications in a short note to Nature.  They had 

now established a bridge between traditional optical astronomy and the fledgling new 

radio astronomy.  

 

Chapter 5 – The Emergence of Radio Astronomy in Australia and England 

By 1950 the Dover Heights group was only one of a number of Radiophysics groups 

involved in radio astronomy at field stations in and around Sydney.  Approximately 

one-half of radio astronomy resources were devoted to radio studies of the Sun.  

Collectively, the Radiophysics radio astronomy group under Joe Pawsey’s leadership 

was the largest in the world.  The two main rivals to Radiophysics were the group at 

the University of Cambridge led by Martin Ryle and the group at the University of 

Manchester led by Bernard Lovell.  Both these groups were however relatively small 

and during the postwar austerity in England could not match the resources available 

at Radiophysics. 

 

Bolton spent most of 1950 touring the major astronomical observatories and the 

emerging radio astronomy centres in England, Europe and the United States.  He 

lectured extensively on the research at Dover Heights and helped to publicise the 

work at Radiophysics.  On his return to Sydney, Bolton was undoubtedly one of the 

best connected and most knowledgeable of the growing band of scientists referring to 

themselves as ‘radio astronomers’. 

 

Chapter 6 – Consolidation and Competition:  The Dover Heights Years 1951–54 

In the early 1950s the Dover Heights group built a series of new instruments 

culminating in the so-called 12-yagi sea interferometer.  This instrument was used to 

carry out a sky survey that detected and catalogued over 100 new radio sources.  

Another major instrument was a parabolic dish dug out of the ground known as the 

hole-in-the-ground telescope.  With new recruit Dick McGee, Bolton used this 

instrument to carry out a survey of radio emission along the plane of the Milky Way 

and this led to the discovery of the nucleus of the Galaxy. 
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Bolton wanted to build an even larger instrument at Dover Heights in 1953 but was 

unsuccessful.  Joe Pawsey and the Radiophysics group decided instead to build a new 

cross-type instrument devised by Bernard Mills.  Bolton decided to temporarily leave 

radio astronomy and move into the other major research activity at Radiophysics – 

the cloud physics and rainmaking group. 

 

Chapter 7 – Beyond Dover Heights:  An Overview of Bolton’s Career 1955–81 

Bolton had the unusual distinction of being the foundation director of not one but two 

major radio astronomy observatories.  Although the Americans Karl Jansky and Grote 

Reber pioneered radio astronomy in the 1930s, the US did not build on its lead after 

the war.  This changed in 1955 when the California Institute of Technology (Caltech) 

invited Bolton and Gordon Stanley to build a new radio astronomy observatory.  They 

chose a site at Owens Valley near the Sierra Nevada Mountains and designed an 

interferometer consisting of two large parabolic dishes.  In 1960 Bolton returned to 

Australia to become the inaugural director of the Parkes telescope in central NSW. 

 

This chapter will show that the remainder of Bolton’s career did not deviate too far 

from the original program at Dover Heights.  During the 1970s he led a sky survey at 

Parkes that discovered and catalogued over 8000 radio sources, many of which were a 

new class of object known as quasars.  Over his career no one had done more to 

establish radio astronomy as a mature new science. 

 

Chapter 8 – Concluding Remarks 

In the final chapter I will attempt to draw together the main points and conclusions of 

John Bolton’s career during the Dover Heights years 1946–53.  In a series of bullet 

points I will summarise Bolton’s personal achievements, the significance of the 

research by the Dover Heights group, and the contribution of the Radiophysics Lab to 

the development of radio astronomy.  Next, I will suggest a few topics related to this 

thesis which might prove fruitful areas to investigate by future researchers.  Finally, I 

will make a few remarks about Bolton’s later years, showing that the Dover Heights 

period was just the first stage of what turned out to be a remarkable and influential 

career in astronomy – both radio and optical. 
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Chapter 2 

 

From Radar to Radio Astronomy 

 

In 1983 the pioneer radio astronomer Robert Hanbury Brown wrote a brief article that 

discussed the role of serendipity in science.  He concluded with the amusing 

observation: ‘How can you plan serendipity?  I think that you need the right man in 

the right place at the right time, but he must be a man who doesn’t know too much!’ 

[1].  In retrospect we can see that John Bolton makes an excellent case study of 

Hanbury Brown’s aphorism. 

 

In terms of his background and training, Bolton qualified as the right man to be a 

pioneer of radio astronomy.  Bolton did not begin school until grade 6 in primary 

school.  His mother, a former teacher, taught him the basics, but otherwise Bolton 

was self-taught and independent in his thinking.  He showed his academic talent at 

secondary school and in his final year won two scholarships to study at Trinity 

College, Cambridge.  He majored in mathematics and physics in his Bachelor of 

Science degree which provided a solid theoretical foundation for his career ahead.  

Bolton enlisted in the Royal Navy in 1942 and spent two years developing airborne 

radar equipment and then a further two years as a radio officer onboard an aircraft 

carrier.  He became an expert in getting radio and electronic equipment to operate 

correctly, often in difficult physical conditions and often under the urgency of 

wartime deadlines.  Bolton once remarked that his four years in the navy were far 

better preparation for a career in radio astronomy than any postgraduate training at a 

university [2]. 

 

Bolton was also in the right place.  In 1946 he joined the Radiophysics Laboratory in 

Sydney, part of the Council for Scientific and Industrial Research (the forerunner of 

CSIRO).  The Radiophysics Lab had been formed in 1940 to carry out secret wartime 

research on radar for the armed forces.  By the end of the war the Lab had a highly 

skilled staff and was the best-equipped laboratory of any in Australia.  The Lab 

investigated a wide range of possible peacetime applications of radar.  Radio 
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astronomy proved to be the wild card in the pack.  By 1950 half the resources of the 

Lab were devoted to radio astronomy.  If Bolton had joined a government research 

lab with a rigid research program it seems unlikely that radio astronomy would have 

emerged to become one of the great success stories of Australian science. 

 

It was also the right time to begin a career in radio astronomy.  The discovery of radio 

waves from space was made in 1932 by the physicist Karl Jansky, who worked for 

the Bell Telephone Laboratories in New Jersey.  Jansky was given the task of 

identifying the sources of interference to a new trans-Atlantic radio communication 

service.  In a fine example of serendipity in science, Jansky found that there was a 

steady component in the interference that appeared to have no terrestrial origin.  

Jansky’s discovery was followed up by a radio engineer, Grote Reber, who built his 

own radio telescope at his parents’ home near Chicago.  Reber produced sky maps of 

the radio emission which seemed to suggest that the emission was produced by 

ionised clouds of matter in interstellar space.  At the end of the war, the time was ripe 

for other enterprising radio engineers and physicists to take the next step. 

 

Bolton also qualified for Hanbury Brown’s final criterion of being a man who doesn’t 

know too much.  Like almost all of the generation of postwar radio astronomers, 

Bolton had no formal training in astronomy.  Similar to his early self-taught years 

before starting school, he became a self-taught astronomer.  He used the night-time 

observing runs to read textbooks and back issues of the research journals.  His 

Cambridge degree made it relatively easy for him to pick up what he needed on the 

run.  

 

2.1 Early Life:  From Sheffield to Sydney 

John Gatenby Bolton was born in Sheffield, Yorkshire, in 1922.  He shared the same 

name as both his father and grandfather.  John’s father and mother both came from 

Yorkshire families with humble beginnings.  The Bolton family can be traced back to 

John’s great grandparents.  In 1850 Thomas Bolton, a farm labourer, married 

Elizabeth Gatenby, a dressmaker, in a small town on the edge of the Yorkshire Dales.  

They are believed to have had three sons and two daughters.  The second son was 

born in 1852 and christened John Gatenby Bolton, in keeping with a Yorkshire 

custom of adopting the mother’s maiden name as the child’s middle name.  Thomas 
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and Elizabeth seem to have done reasonably well for themselves.  The Yorkshire 

census from 1871 records them as having a combined grocery and drapers shop [3]. 

 

In 1875 John’s grandfather, the first John Gatenby Bolton, married Annie Andrew 

and they settled in the mining town of Skelton-in-Cleveland.  They had five children, 

though they lost their fourth child, a two-year old girl, when a typhoid epidemic 

swept through the district in the early 1880s.  Their fifth child, a boy and very much 

an afterthought, arrived ten years later and was named after his father.  John’s 

grandfather spent his entire career working for South Skelton Mines as a cashier, 

making up the pay packets of the miners.  He was also on call night and day to 

organise rescue missions whenever there had been an accident at the mine, not an 

infrequent occurrence in those times.  Known for his financial skills, grandfather 

Bolton was the founder of the Skelton branch of the Yorkshire Penny Bank, one of 

dozens of branches that sprang up in Yorkshire at this time.  These non-profit 

community banks, staffed by volunteers, introduced the practice of banking to the 

working class. 

 

Similar to his father, John’s mother was also an afterthought in her family.  Ethel 

Kettlewell was born 15 years after her sister and almost 20 years after her brother.   

Although Kettlewell came originally from the name of a small Yorkshire village, the 

Kettlewell family were farmers from Lincolnshire, the county to the south of 

Yorkshire.  It was John’s maternal grandfather, Thomas Kettlewell, who made the 

break from rural life.  He and his wife Elisabeth moved to Goole in East Yorkshire 

where he had ambitions to be a railway engine driver.  However, an accident left him 

partially disabled and he had to settle for a career as a railway guard [4]. 

 

Both John’s parents were schoolteachers and, most unusual for the time, both had 

university degrees.  His mother, Ethel Kettlewell, graduated from Leeds University 

with an Arts degree and taught in Leeds for a short while before returning home to 

teach botany at the Goole Grammar School, a public co-educational school.  John’s 

father, John Bolton senior, was educated at a grammar school near Skelton-in-

Cleveland.  He then went to Exeter College on the south coast of England, part of the 

University of London, and in 1915 he was awarded a Bachelor of Science degree, 

with a major in mathematics, together with a Bachelor of Education.  He tried to 
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enlist but was spared the carnage of World War I when he failed the medical.  John 

took up teaching instead and in 1916 was appointed the mathematics master at Goole 

Grammar.  A history of Goole noted that their grammar school ‘was fortunate in 

having the services of a brilliant mathematician, J. G. Bolton, who also played the 

piano for morning assembly and later married Miss Kettlewell, the botany mistress’ 

[5].  

 

 

 

Figure 2.1.  Bolton with his mother Ethel and sister Joanne on holiday in Bridlington on the North 

Sea coast.  [courtesy: Wheatley family] 

 

John and Ethel married in July 1921 at the Methodist Chapel in Goole and spent their 

honeymoon in Exeter.  Upon returning to Goole they began preparing to set up home 

when a letter arrived which led to a sudden change of plans.  John had been offered 

the position of senior mathematics teacher at one of Sheffield’s leading schools, an 

offer he accepted immediately.  They moved to Sheffield in late 1921 and rented a 

small terrace house in a rundown area near the centre of the city.  On 5 June 1922, 

less than a year after their marriage, Ethel gave birth to a boy, John Gatenby Bolton.  

Two and half years later a daughter Joanne arrived (see Figure 2.1). 
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When John was five the family moved to a new and more spacious house in 

Abbeydale, a rural area on the southern outskirts of Sheffield.  Two attempts were 

made to start John in primary school and both failed.  He seemed unable to accept the 

authority of his teacher or understand the need for discipline within the classroom.  

Fortunately, at this time there was a law in Yorkshire that, if either parent was a 

teacher, then it was not compulsory to send the child to primary school.  After these 

two early failures John’s parents decided to tutor him at home.  His mother, who 

stopped teaching after her marriage, took care of his introduction to the three R’s.  

John read widely and was largely self-taught.  He spent much of his time roaming 

around the surrounding farms.  Although he made friends in the neighbourhood, 

John’s primary school years were a lonely time, a time when most children are being 

thoroughly socialised at school [6]. 

 

When John was 11 his parents decided to move back closer to the centre of Sheffield.  

John’s father taught at Central High School and the house they rented when they first 

moved to Sheffield was within walking distance.  When the family moved out to 

Abbeydale it was easy enough for him to catch the bus to work.  However, in 1933 

the school decided to relocate from the inner city to a new campus built on the 

school’s playing fields, south-west of the city, an area known as High Storrs near the 

foothills of the Peninnes.  Renamed High Storrs Grammar School, John’s father 

would spend the rest of his career at the new school.  The family moved to Ecclesall, 

a town near the new campus and soon to become a suburb of an expanding Sheffield.  

 

Another reason his parents decided to move is that John would need to spend at least 

six months at a primary school to be able to sit the entrance examination for 

secondary school.  Towards the end of their stay at Abbeydale, John had overcome 

his aversion to the classroom and attended a small private school.  In Ecclesall both 

John and sister Joanne were enrolled at nearby Greystones Primary School.  As a 

preview of an outstanding academic career ahead, John passed the entrance 

examination to secondary school and won a scholarship as well. 

 

There were two main secondary schools in Sheffield in the 1930s.  One was High 

Storrs Grammar, where John’s father taught, and which was co-educational to the 

extent that the boy’s school and the girl’s school were located on the same campus.  
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John’s father decided that daughter Joanne would go to High Storrs, while John 

would attend its major rival, the boys-only King Edward VII School.  Known 

popularly as King Ted’s, the school was formed in 1905 by the merger of two smaller 

schools and named after the reigning monarch who had succeeded Queen Victoria in 

1901.  The school underwent a major growth in the 1920s when it became the school 

of first choice among Sheffield’s growing middle class.  Its reputation meant it could 

attract the most talented teachers.  When John started in September 1933 over three-

quarters of the staff were graduates from Oxford or Cambridge.  Although technically 

King Ted’s could not count itself among the elite public schools, it certainly thought 

itself as the equal of one [7]. 

 

In his first year John studied English, geography, history, mathematics, Latin, French 

and science.  Latin was compulsory for the first three years and each student was 

required to take a heavy load of six periods a week in the subject.  John found Latin 

with its systematic structure easy to learn and he also found that he had inherited 

some of his father’s talent for mathematics.  John’s future career was very nearly 

nipped in the bud when he failed the first-year science subject and for the next two 

years he transferred to the classics stream of languages, history and mathematics [8].  

After four years in middle school, John was awarded the School Certificate with 

credits in five subjects, but with mediocre results in Latin and Greek.  At the 

beginning of senior school he decided to reverse the disastrous start in science in his 

first year by choosing physics and mathematics as his two major subjects.  In July 

1939 John completed the two years of Sixth Form, known rather unimaginatively as 

the Lower Sixth and the Upper Sixth. 

 

As was the custom for boys planning to go to university, John then spent a year 

preparing for the Oxford and Cambridge Schools Examination.  John’s secret weapon 

was his father.  Both King Ted’s and High Storrs School had a high success rate in 

getting their brightest students accepted into Oxford or Cambridge, or Oxbridge as it 

was collectively known.  At High Storrs, John’s father had specialised in coaching 

students for the examination.  At any one time he had at least one former student 

studying at Oxbridge and he would personally supervise John’s preparation.  John sat 

the examination at the end of both the Lower and Upper Sixth years and passed both 

times, but these were only practice runs for the third and final sitting in June 1940. 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 17 

 

 

 

Figure 2.2.  Bolton at the time he entered Trinity College, Cambridge.  Because of wartime conditions 

his three-year Bachelor of Science degree was compressed into two years.  [courtesy: Bolton family] 

 

Bolton passed the Oxford and Cambridge Schools Examination with flying colours 

and won a place to study mathematics at Trinity College, Cambridge (see Figure 2.2).  

He was awarded not one, but two scholarships.  One was the Sheffield Town Trust 

Scholarship worth 50 pounds a year.  The other and more prestigious was known as a 

State Scholarship, awarded by the England Board of Education, and would pay his 

undergraduate fees as well as provide a living allowance of 100 pounds per year.  He 

arrived at Trinity College in October 1940 and was assigned a room looking out onto 

Great Court, a large rectangular area at the centre of the college.  Across Great Court 

John could see the first floor windows where Trinity’s most famous resident once 

lived, the mathematician and natural philosopher Isaac Newton (1642–1727).  Most 

of the boys at Trinity were the products of the leading public schools in southern 

England and many were from wealthy and privileged families.  John was conscious of 

his Yorkshire accent and with his competitive instincts was determined to outdo them 

all.  He was one of 136 new students entering Trinity that year, down by about a third 

of those who entered the year before, partly a result of students deciding to enlist in 

the armed services rather than study.  Another reason is that, because of wartime 
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conditions, the usual three-year bachelor’s degree would be compressed into two 

years.  There would be little opportunity for Bolton and his friends to engage in the 

normal social and recreational activities that are part of university life in peacetime 

[9]. 

 

In terms of student numbers, Trinity was the largest of all the Cambridge colleges, 

with a rich history dating back to its foundation in 1546.  Its library, designed by 

Christopher Wren and completed in 1695, is an architectural marvel and, after King’s 

College, is considered to be the most historically important building in Cambridge.  

Trinity is also the wealthiest of the colleges having built up an extraordinarily large 

portfolio of property and investments over the years.  A list of Trinity alumni reads 

almost like a Who’s Who of British history.  As one example, up to 1940, the five 

men to have been director of the Cavendish Laboratory in Cambridge, the most 

famous of all physics laboratories, were all Trinity men.  To date, Trinity has 

produced over thirty Nobel Laureates, more than all of France [10]. 

 

Mathematics was considered the jewel in the Cambridge academic crown. The 

mathematics faculty was undoubtedly the most talented group in any British 

university and it attracted the most number of students.  There was no lecture room in 

Cambridge large enough to hold all the students enrolled in the mathematics tripos, so 

the lectures were given twice with students divided into a slow stream and a fast 

stream.  John joined the fast stream which consisted of about one half of gifted 

students entering their first year of university.  The other half consisted of students 

who were considerably older and who had already completed a mathematics degree at 

another university in Britain or in Commonwealth countries such as Australia.  These 

mature age students came to Cambridge for a final topping up at the finest 

mathematics school in the world [11]. 

 

The full name of the mathematics tripos was ‘pure mathematics and natural 

philosophy’, with the latter including any branch of applied mathematics, theoretical 

physics, theoretical chemistry and theoretical astronomy.  In John’s first year he 

attended lectures in subjects such as algebra, mechanics, electromagnetism, statistics 

and geometry.  One of John’s lecturers was the astrophysicist Arthur Eddington, who 

was best known for leading an expedition to Brazil in 1919 to observe a solar eclipse.  
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The expedition confirmed a prediction made by Albert Einstein that light from a 

distant star would bend slightly as it passes through the gravitational field of the Sun.  

The successful prediction soon made Einstein an international celebrity.  Eddington 

was also a renowned science writer and John had read and been inspired by several of 

his popular books on astronomy.  

 

At the end of his first year John passed the examinations for Part I of the mathematics 

tripos with first class honours, doing well enough to be awarded a Book Prize and a 

Trinity College Exhibition, worth 40 pounds per annum.  Added to the two 

scholarships he had won at King Ted’s, John now had three separate sources of 

income, though in practice he was no better off.  The England Board of Education 

had a firm policy on what it considered double dipping, and so John’s annual 

allowance from his State Scholarship was cut from 100 pounds to 60 pounds, leaving 

him with exactly the same income. 

 

At the end of his first year John moved from Great Court into a slightly larger room 

in another part of Trinity known as Whewell’s Court.  For his second year John chose 

the Physics tripos instead of Mathematics.  Because his degree was compressed into 

two years, he had to spend the summer holidays of 1941 completing the practical 

laboratory classes, before the lectures commenced for Part II Natural Sciences in 

Physics in the Michaelmas term.  In May 1942 John completed the second and final 

year of his abbreviated degree by passing the examinations.  He finished in the top 

half of students awarded second class honours.  This was not quite as good as the first 

class honours in his first year, but the reason was understandable.  His mother Ethel 

had been diagnosed with a heart condition shortly after John was born.  Her health 

slowly deteriorated over the years and, aged only 48, she died of a heart attack in May 

1942, the same month as John’s examinations [12]. 

 

Similar to most of his Cambridge friends, Bolton enlisted as soon as the final 

examinations were over.  The navy was the logical choice.  John had a love of ships 

that came from the holidays with his mother’s family in Goole.  At age 16 his 

ambition had been to attend Dartmouth Naval College and study to become a naval 

architect.  One of his Kettlewell cousins was the captain of a frigate and had been 

presented a medal by no less than the King for sinking a German U-boat.  During his 
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second year John made contact with the novelist C. P. Snow who was the Royal 

Navy’s recruitment man in Cambridge.  Snow arranged for him to apply for a 

commission, which involved attending an interview at the Navy Board in London.  

The interview was a formality and soon after the Admiralty appointed John a Sub-

Lieutenant in the Royal Navy Voluntary Reserve.  As the name indicates, the RNVR 

consisted of volunteers, unlike the career personnel in the Royal Navy.  The 

volunteers were distinguished from the Royal Navy regulars by having wavy gold 

stripes of rank on their sleeves.  They were popularly known as the ‘wavy navy’ [13]. 

 

In June 1942, a few days after his twentieth birthday, John reported for duty at 

Portsmouth Naval Barracks.  He was shocked by what he saw.  Unlike the relatively 

cosy, sheltered environment of Cambridge, this port on the south coast was of major 

strategic importance and it had been heavily bombed.  Large sections of the city had 

been completely destroyed.  John spent the first week at the college learning how to 

become ‘an officer and a gentleman’ and then a month completing a crash course in 

naval electronics and radar.  He came top of the class which meant he was given first 

choice for his next assignment.  John chose to do research and development of 

airborne radar. 

 

The word radar was an acronym coined by the Americans in 1940 to describe what 

for many years had been known as radio direction finding.  As early as 1922 

Guglielmo Marconi and others had suggested that it might be possible to locate ships 

at sea by means of reflected radio waves.  In 1931 engineers at the British Post Office 

built a workable system for detecting nearby ships.  At about the same time radio 

operators reported radio interference apparently caused by planes flying in the 

vicinity, leading to speculation that this effect might be used as a way of detecting 

aircraft.  In January 1935 Robert Watson Watt wrote a confidential report arguing that 

this effect should be developed into a major part of Britain’s system of air defence.  

Against scepticism in official circles, an air ministry committee chaired by Henry 

Tizard decided to provide financial backing to test the idea.  A secret research station 

was established near the small village of Bawdsey on the English Channel.  An 

encouraging start was made in June 1935 when echoes were detected bouncing off an 

aircraft at a distance of 30 km.  Three months later the detection range of the 

equipment had been extended to 150 km.  After intensive development this radar 
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equipment formed the basis of the air warning system which proved crucial to 

eventual success in the Battle of Britain [14]. 

 

Bolton’s first posting after the Portsmouth Naval Barracks was at the coastal town of 

Dram, on the Firth of Forth in Scotland, where the navy had established a night 

fighter squadron and training school.  He was placed in charge of two coastal radar 

stations, either side of the Firth, and took part in fitting out and testing the latest radar 

sets in night fighters.  At the end of 1942 Bolton was transferred to the 

Telecommunications Research Establishment, the headquarters of Britain’s radar 

research and development.  The TRE was located at Malvern in Worcester, a county 

far enough west to be out of range of German bombers, but still flat enough to 

provide operational airfields.  It was housed in a boy’s boarding school and staffed by 

hundreds of Britain’s most talented scientists and engineers.  Some of the people John 

met – Robert Hanbury Brown, Bernard Lovell and Martin Ryle – would become 

leaders in the emerging field of radio astronomy in postwar Britain. 

 

Bolton joined the group developing a new airborne radar system operating at 3 

centimetres.  The first few months were spent at a lab bench, but then flight testing 

became an increasing part of his work.  This involved making running repairs, 

changing parts, diagnosing problems and getting the equipment to work in a hurry.   It 

was demanding and at times dangerous.  He was becoming an expert in getting 

temperamental electronic systems to perform in physically demanding conditions, at 

top speed.  John could not know it then, but he was getting a first-class training for a 

future career as a radio astronomer [15]. 

 

The D-Day invasion of France by Allied forces in June 1944 marked the beginning of 

the end of the European war.  It also marked the end of two years active service for 

Bolton.  By then he had grown tired of flight testing radar and needed a change.  The 

hundreds of hours of flying, the rapid ascents and descents, had left him partially deaf 

in his right ear.  Through a contact in the Admiralty, John was offered a position as 

radio officer on the British aircraft carrier, HMS Unicorn, stationed at the time in Sri 

Lanka.  He would be one of the 50 officers among a complement of over 1100 men 

(see e.g. Figure 2.3).  He would be responsible for all airborne electronics, ship-to-

aircraft communication and navigational aids.  John was given a berth on a troop ship  
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Figure 2.3.  The chaplain of HMS Unicorn, John Tyrrel (seated with pipe), organised a weekly 

discussion group for the crew.  Bolton is standing at far left.  He and Tyrrel became good friends after 

the war.  [courtesy: Tyrrel family] 

 

heading to the Far East.  Not all British forces were required for the D-Day invasion 

and his ship was part of a large convoy being sent to fight the Japanese. 

 

Early in 1945 the Unicorn loaded up a hundred US aircraft in Bombay and set sail for 

Australia where she would join the British Pacific Fleet. The first port of call was 

Fremantle, where Bolton set foot on Australian soil for the first time.  Upon arrival in 

Sydney Harbour, thousands turned out to see the largest ship in the British Navy and 

there was much speculation about whether the tall mast would fit under the Harbour 

Bridge.  The British Pacific Fleet joined forces with the much larger American fleet 

in the island hopping campaign that pushed the Japanese back to the north.  The role 

of the Unicorn was to provide support for the four British carriers on the front line 

and to urgently repair aircraft damaged in battle.  The ship was stationed in the 

Admiralty Islands north of New Guinea for several months and, as the Japanese 

retreated, home base was then moved further north to the Philippines.  The Unicorn 

had a charmed life, a very lucky war, partly because she was away from the front line, 

but there had been plenty of other non-combat ships that were attacked and sunk by 

kamikaze planes.  The most serious incident came while at anchor when a ship on the 
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other side of the harbour accidentally fired a torpedo that narrowly missed the 

Unicorn and sank the ship next to her [16]. 

 

The decisive victory at Okinawa saw the Allied forces ready to launch an invasion of 

the Japanese mainland.  However, the invasion proved unnecessary when the two 

atomic bombs dropped on Japan in August 1945 brought a sudden, unexpected end to 

the war.  VJ Day marked the end of the war for the Unicorn, but not the end of the 

campaign.  The cavernous hangars and flight deck made her the ideal vessel for the 

task of ferrying men, aircraft and cargo back to Sydney and Brisbane.  After three 

trips back and forth to the Admiralty Islands, John transferred to an airbase in the 

western suburbs of Sydney.  The final task at the airbase was to dispose of all the 

unwanted equipment.  Items of value such as clocks and altimeters were unofficially 

stripped and ended up as private property.  Equipment still on the secret list was 

destroyed in high temperature ovens and anything that might have a future use, such 

as motors, instruments, pumps and gearboxes, was trucked to the government stores 

at Botany Bay.  Hundreds of gutted aircraft were taken out beyond Sydney Heads and 

dumped at sea [17]. 

 

When the Unicorn set sail for England in December 1945 Bolton decided to stay 

behind in Sydney.  There were several reasons for his decision and one of them was 

his health.  He found that the climate of Sydney had cured him of the asthma that at 

times had made his childhood miserable.  With the outdoor life and a fair share of 

physical work, he had never felt physically fitter.  Another less pleasant reason was a 

letter he received from the Cavendish Laboratory in Cambridge.  Earlier John had 

written to the Cavendish asking whether he could be accepted as a post-graduate 

student in physics after the war was over.  The letter was a polite but firm no.  It 

stated that the head of the Cavendish, Lawrence Bragg, had personally considered 

John’s request and decided that his abbreviated wartime degree did not provide 

adequate training for post-graduate study.  The various scholarships he had won and 

his first and second class honours as an undergraduate were apparently not good 

enough.  John was deeply disappointed and no doubt wondered whether he would 

ever have an opportunity to prove them wrong [18]. 
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When John left the Unicorn he transferred to the Australian Navy and it was a further 

six months before he was discharged.  He had built up a network of navy friends 

around Sydney and was hoping to pick up a job through one of them.  On the day of 

his discharge John went to the Sydney Showgrounds, completed the necessary forms, 

and was interviewed by an official about his future employment plans.  The official 

explained that he was looking for carpenters, bricklayers and other tradesmen and 

there was not much he could offer a Cambridge graduate.  After a couple of phone 

calls another official arranged an appointment for John with the Chief of the 

Radiophysics Laboratory, part of the Council for Scientific and Industrial Research 

(CSIR), Australia’s leading research organisation [19]. 

 

Bolton met E. G. ‘Taffy’ Bowen the following morning in his office in the grounds of 

the University of Sydney.  They had never met but John knew that Taffy had at one 

time been a senior figure at the Telecommunications Research Establishment and that 

he had gone to the United States to become the chief liaison officer between British 

and American radar research.  They knew a lot of people in common.  Taffy gave 

John a tour of the Lab and was clearly impressed by the young Yorkshireman.  He 

told John that the Lab was about to advertise for a new research officer position and 

he encouraged him to apply.  John’s future career was basically sorted out less than 

24 hours after his discharge.  Bowen would have more influence over the course of 

Bolton’s career than any other person. 

 

The advertisement for the position specified the duties as ‘Research and development 

in connection with the application of radar techniques’ and that the applicant must 

have a ‘University degree in electrical engineering or science with physics as a major, 

or equivalent qualifications’.  In order to attract the best scientific talent it was CSIR 

policy to advertise research positions Australia-wide and also in London and 

Washington.  It was a lengthy process and positions usually took about three months 

to fill.  John put in his application before the deadline in early July 1946.  For the first 

time since his school days, he had time on his hands.  In September he received the 

letter that he had been anxiously waiting on: ‘I have pleasure in informing you that 

your application has been successful and hereby offer you appointment as an 

Assistant Research Officer of the Council for Scientific and Industrial Research’ [20]. 
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2.2  Origins of the Radiophysics Laboratory 

Australia had played a significant part in the development of radar.  Early in 1939 

Britain decided to share its knowledge of radar with several countries in the British 

Commonwealth.   Each country was invited to send its best-qualified physicist to 

learn of the secret research.  Australia chose David Martyn for the clandestine 

mission, who had already gained an international reputation for his theoretical studies 

on the upper atmosphere.  During 1939 Martyn spent five months touring British 

radar establishments and returned to Sydney with a large trunk containing classified 

reports and numerous blueprints and technical specifications for constructing radar 

equipment.  Martyn reported to two key figures in Australian science.  One was 

David Rivett, chief executive officer of CSIR, and the other was John Madsen, 

professor of electrical engineering at the University of Sydney.  The three men drew 

up a set of recommendations for the establishment of a national laboratory for radar 

research, and then travelled to Canberra to present their proposal to the federal 

government.  Their recommendations were accepted without change and funds were 

immediately allocated for a new building, fitted out with the best laboratory and 

workshop equipment available.  The name chosen – the Radiophysics Laboratory – 

was a fairly innocuous one, designed to disguise its real purpose to carry out secret 

radar research [21]. 

 

 

 

Figure 2.4.  The Radiophysics Laboratory was built in 1940 in the grounds of the University of Sydney. 

In 1968 the Lab moved to new headquarters in the north–west suburb of Marsfield.  [courtesy: RAIA] 
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The site chosen for the new laboratory was in the grounds of the University of 

Sydney.  CSIR had already begun construction of a National Standards Laboratory on 

the site and the first stage had been completed late in 1939.  The new radar laboratory 

would form an additional wing of the main laboratory which would have the 

advantage of making its secret work less conspicuous.  Under the urgency of war the 

construction pushed ahead rapidly and by March 1940, only three months after the 

foundations had been laid, the building was near enough to completion for staff to 

move in.  David Martyn was appointed chief of the new laboratory and by the end of 

1940 about forty scientists, engineers and support staff had been recruited (see Figure 

2.4). 

 

Among the first to join the new Radiophysics Laboratory was Joseph Lade Pawsey, 

recruited to lead the theoretical research group.  Born at Ararat in Victoria in 1908, 

Joe Pawsey studied physics at the University of Melbourne and then began a PhD 

thesis at the Cavendish Laboratory in Cambridge on the phenomenon of broadcast 

fading, caused by the irregular reflection of radio waves by the ionosphere.  After 

completing his doctorate in 1934, Pawsey joined Electronic and Musical Industries 

(EMI), a firm that had recently won a BBC contract to develop a national television 

system.  At the BBC station at Alexandra Palace, Pawsey was responsible for the 

design of transmission lines and aerials necessary for television’s broad bandwidth 

[22]. 

 

Initially, the Radiophysics Laboratory concentrated on constructing radar sets to suit 

the needs of the three Australian armed services.  In 1940 it seemed that the most 

likely attack on Australia would come from the sea.  In response, the first major 

project was the development on behalf of the Army of a shore defence radar system 

to be used by coastal artillery for locating enemy ships.  A prototype model was 

erected in May 1940 at an army testing ground on the cliff-tops of Dover Heights, 

south of the entrance to Sydney Harbour (Figure 2.5).  The trials were promising and 

led to a major innovation by Joe Pawsey and Harry Minnett, who developed an 

ingenious switching device so that only one tower and one aerial were needed for 

both transmission and reception of the radar signal.  In England at this time, radar 
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systems had their transmitting and receiving equipment isolated on separate towers 

which added substantially to the cost of the system. 

 

 

 

Figure 2.5.  The Dover Heights field station operated by the Radiophysics Lab, south of the entrance to 

Sydney Harbour, in 1943.  The radar unit on top of the blockhouse was originally used for the detection 

of ships along the Australian coast, but then a new version was hurriedly developed for air warning 

following the Japanese attack on Pearl Harbor in December 1941.  The radar unit was removed early in 

1947. The cottage at left was occupied by the site caretaker.  This site was later to become one of the 

main Radiophysics field stations for radio astronomy.  The blockhouse was to be Bolton’s workplace 

over the period 1946–53.  [courtesy: RAIA]  

 

After Pearl Harbor in December 1941 it became obvious that air attack would be the 

greatest danger to Australia.  A Radiophysics group worked at top speed to improvise 

an air-warning system based on the shore defence developed for the detection of 

ships.  In its first week of trials at Dover Heights the new system detected aircraft at 

distances more than 100 km out to sea.  The prototype was rushed into production and 

the new radar hurriedly installed along the east coast of Australia.  Arrangements 

were also made to set up the system in Darwin on the north coast of Australia, but an 

argument broke out over which of the three armed services should bear the cost and 

the installation was delayed.  In February 1942, without warning, the Japanese staged 

a devastating bombing raid.   A Radiophysics group immediately flew to Darwin and 

assisted in getting the system operational in time to detect the approach of a further 

Japanese bombing raid three days later.  The Japanese eventually made over fifty air 
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raids on Darwin, despite brave resistance from the hopelessly outnumbered 

Australian and American aircraft.  The number of deaths caused by the Darwin raids 

was much larger than the number killed in the single attack on Pearl Harbor. 

 

The Radiophysics Lab expanded rapidly as the war progressed with the number of 

staff and the size of the budget increasing each year in leaps and bounds.  There was 

also a change of leadership which would later prove crucial to the Lab’s postwar 

future.  Although a brilliant scientist, Martyn’s ability as a manager was poor and 

tensions soon arose between the Lab and the three armed services.  By early 1942 the 

CSIR Executive was forced to act.  Martyn was transferred sideways to an army 

operational research group and, to replace him, an approach was made to Frederick 

White, the professor of physics at Canterbury University College in Christchurch, 

New Zealand.  With a background similar to that of several of the Radiophysics staff, 

White had completed a doctorate at Cambridge in 1932 and then been appointed 

lecturer in physics at King’s College, London.  White returned to New Zealand in 

1937 and began a vigorous program of radio research in Christchurch.  He was 

officially installed as the new chief of the Radiophysics Lab in September 1942 [23]. 

 

 

      

 

Figure 2.6.  E. G. ‘Taffy’ Bowen (left) joined the Radiophysics Lab in 1944 and was promoted to chief 

early in 1946.  (right)  By the end of the war the staff of the Radiophysics Laboratory had grown to over 

300.  In the foreground are Frank Kerr (left) who became one of the senior radio astronomers, and 

Arthur Higgs who became the chief administrative officer under Taffy Bowen.  [courtesy: RAIA] 
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Fred White soon proved himself a gifted manager with the qualities to steer a firm 

course through the complex and often contradictory priorities faced by the Lab.  In 

mid 1943 he toured radar establishments in Britain and the United States.  At the MIT 

Radiation Lab in Boston he met with E. G. ‘Taffy’ Bowen (Figure 2.6) and renewed a 

friendship that had begun at King’s College when Bowen had been a research student 

and White a lecturer.  In an inspired move, White invited Bowen to become assistant 

chief of the Radiophysics Lab and to take charge of the research activities.  Bowen 

agreed and arrived in Sydney in January 1944, pleased with what he found [24]: 

 

‘It was already a flourishing concern with a staff of two hundred people; it had an 

excellent mix of highly qualified scientists and engineers and the permanent building 

included first-rate workshop facilities.  For its size, it was one of the best equipped 

laboratories in which I had worked up to that time.  The laboratory had good connections 

with industry and in spite of the enormous distances and the difficulties of wartime travel, 

it had kept closely in touch with radar research in Britain and America.’ 

 

By the time of Bowen’s arrival, the war in the Pacific had swung decisively in favour 

of the Allied forces.  As the immediate danger to Australia receded, there was a 

gradual shift in emphasis in the Lab away from a total commitment to applied 

military projects towards longer term studies in basic research.  The time had come to 

make plans for the postwar era.  The Lab itself had grown rapidly with staff numbers 

peaking at 300 by war’s end, 60 of whom were classified as research scientists (see 

Figure 2.6).  By 1945 the Lab had outgrown most of the other CSIR divisions, even 

though CSIR itself had grown rapidly during the war.  The Lab’s workshops and 

laboratory benches were fitted out with the most advanced equipment available.  At 

least in the physical sciences, the staff formed the most talented and motivated group 

of scientists ever assembled in Australia, a group that had been right at the forefront 

of research and development of wartime radar [25]. 

 

A critical decision made at the end of the war, largely at the insistence of the chief 

executive officer David Rivett, was that CSIR would turn over all secret military 

work to other government agencies.  CSIR was to concentrate solely on research that 

would bring direct economic benefit to Australia or add to the general store of 

scientific knowledge.  Two options were open.  First, the Radiophysics Lab could 
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fulfil its military commitments and then steadily wind down its staff to more modest 

peacetime proportions.  This was the course followed at the two largest radar centres 

overseas, the Telecommunications Research Establishment in England and the MIT 

Rad Lab in the United States.  At the end of the war hundreds of scientists in both 

countries made a mass exodus back to the universities and corporate research 

laboratories from where they had been recruited.  However, a high proportion of the 

Radiophysics scientists had been recruited as students straight from university and the 

possibility of pursuing a full-time research career in any of the Australian universities 

in the 1940s was very limited, even more so in industry. For most of the staff, the 

second option open to the Radiophysics Lab was the one they preferred:  basically to 

keep the Lab intact even though this would mean a major reorientation of its research 

program.  

 

Early in 1945 Taffy Bowen set about the challenging task of drawing up a list of 

possible peacetime research areas.  In Bowen’s view, the Lab would need to pass 

through a transition phase lasting about two years.  This would consist of a type of 

postwar spring cleaning where the knowledge and techniques of radar would be 

handed over to the armed services and, where appropriate, to other areas of 

government and industry.  At the same time the Lab would begin to strengthen its 

commitment to fundamental research and this would require recruiting new staff to 

replace the relatively small number of those who decided to go their own way after 

the war.   

 

Bowen drafted a report which divided the proposed research program into nine main 

areas, ranging from studies of radio propagation, radio methods of air and marine 

navigation, airborne surveying techniques, vacuum tube research, through to radar 

studies of cloud and rain formation.  The first of these nine areas, under the heading 

‘Propagation of radio waves’, was further subdivided into five categories covering 

topics such as ionospheric propagation and the scattering of radio waves in various 

layers of the atmosphere.  In the second of these five subcategories, with the 

innocuous title of ‘Radio noise’, Bowen noted that there is a certain type of radio 

noise which is thought to originate in the stars or in interstellar space:  ‘Little is 

known of this noise and a comparatively simple series of observations on short 

wavelengths might lead to the discovery of new phenomena or to the introduction of 
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new techniques.’  This seemed a humble sentence, but it contained the seed of a 

major new science in Australia [26]. 

 

In July 1945 Bowen’s future program for the Radiophysics Lab was presented to a 

meeting of the CSIR Council, the organisation’s full governing body.  The document 

was assured of a favourable reception.  Earlier in the year Fred White had been 

promoted to the CSIR Executive in recognition of the leadership skills he had 

displayed during the tough baptism of war.  Having been groomed for the position by 

White, Bowen’s appointment as chief of Radiophysics early in 1946 completed the 

formalities.  The enthusiastic endorsement of Bowen’s postwar research program 

signalled a major reorientation in CSIR.  There had been increasing political pressure 

on CSIR to move away from its traditional emphasis on research in the agricultural 

and mining industries.  The new emphasis was to be on areas of modern technology 

which underpinned Australia’s emerging manufacturing industries, some of the newer 

fields of research pointed to in Bowen’s report. 

 

The Executive’s support of Bowen’s program also carried with it an implicit 

understanding.  As chief, Bowen would be free to direct the research program of 

Radiophysics with a minimum amount of interference by the Executive.  This idea of 

individual responsibility in CSIR had been championed by the chief executive Rivett 

who believed that the best science comes from choosing the best qualified people and 

then giving them a free hand.  Rivett maintained that CSIR’s approach to research 

should be in line with the academic freedom offered to university scientists, rather 

than the approach usually adopted in government laboratories where scientists were 

moulded to fit structured research programs [27].  This promise of research freedom 

had in fact been an important precondition in Bowen’s decision to accept the position 

of chief.  At the relatively young age of 35, brimming with self-confidence, Bowen 

shared Rivett’s ideals and his faith in the value of small, independent research teams.  

A proposal at this time to amalgamate the Radiophysics Laboratory with the National 

Standards Laboratory to form a monolithic Commonwealth Physical Laboratory was 

successfully opposed by Bowen for just these reasons. 

 

With a free hand to pursue any of the research fields listed in his report, Bowen’s 

strategy was simple and flexible.  Small groups would be turned loose on a wide 
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variety of topics, but then a kind of Darwinian natural selection would prevail.  

Projects that showed early promise would be rewarded with the support of more staff 

and funds at the expense of those that failed to make headway.  Promising starts were 

made in a number of fields, but by 1950 only two areas had flourished in the contest 

of ‘survival of the fittest’ – radio astronomy and cloud and rain physics.  Radio 

astronomy proved to be the wild card in the pack, emerging in just a few years to 

become the largest and by far the most successful of the Lab’s activities. 

 

2.3  A Mysterious Cosmic Hiss: Karl Jansky and Grote Reber 

To understand how Bolton’s career developed during the late 1940s, we need to trace 

the origins of radio astronomy, some years earlier. The first attempt to detect radio 

waves from space now goes back over 120 years.  In 1887 laboratory experiments by 

the German physicist Heinrich Hertz conclusively demonstrated the existence of radio 

waves, which had been predicted earlier by the Scot James Clerk Maxwell in his 

theory of electromagnetic radiation.  The experiments by Hertz showed that radio 

waves are simply another type of electromagnetic radiation, differing from visible 

light only in that their characteristic wavelengths are very much longer.  Besides 

opening up a range of potential applications in communications, the discovery of 

radio waves raised an obvious question – are there any natural sources of radio 

emission on the Earth, or from the stars above? 

 

The first attempt to detect radio waves from the Sun was made shortly afterwards in 

1890 by the brilliant American inventor Thomas Edison. Edison planned to suspend a 

long loop of telephone wire around the perimeter of a large deposit of iron-ore in a 

New Jersey field.  He reasoned that if radio waves are produced from violent 

electromagnetic disturbances on the Sun, their arrival on Earth might magnetise the 

iron-ore and set up a small flow of electric current in the telephone wire.  It appears 

that the wooden poles for the telephone wire were delivered to the field, but there is 

no evidence that this huge radio receiver was ever erected.  Another unsuccessful 

attempt was made in 1901 by the Frenchman Charles Nordmann, who decided to get 

well away from industrial sources of radio interference by setting up an aerial on a 

glacier high in the French Alps.  Nordmann guessed correctly that radio emission 

from the Sun, if it did exist, might originate from the violent disturbances associated 

with sunspots.  Unfortunately, Nordmann gave up the search after only a few days.  



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 33 

With more perseverance he might have succeeded as 1901 turned out to be a year of 

minimum sunspot activity [28]. 

 

Many new fields of science have started as a result of good fortune rather than 

planning, serendipity rather than design.  Radio astronomy is a shining example.  

After graduating in physics from the University of Wisconsin-Madison, Karl Jansky 

joined the Bell Telephone Laboratories in 1928 and was assigned the task of 

investigating any source of atmospheric static which might interfere with a new trans-

Atlantic radio communication system then under development.  In 1931, at Bell’s 

field station near Holmdel, New Jersey, an aerial array 30 metres long and 4 metres 

high was constructed from timber and brass pipes.  The array was mounted on four 

wheels taken from an old model T Ford, with a small motor and chain drive which 

could turn the array through one revolution every twenty minutes.  The contraption 

earned the name the ‘merry-go-round’ (see Figure 2.7). 

 

Jansky was able to distinguish three distinct types of radio static.  The first arose from 

the intermittent crashes of local thunderstorms and the second was a weaker, steadier 

static due to the combined effect of many storms far off in the atmosphere.  The third 

type was composed of a very weak and steady hiss of unknown origin. Initially 

Jansky thought that this weak hiss was caused by some source of industrial 

interference, but then he noticed that the maximum strength of the signal came from a 

direction which moved around the sky each day and seemed to correspond roughly 

with the position of the Sun.  The observations continued throughout 1932 and Jansky 

found that with the passing of the months, contrary to what he first believed, the 

direction of the static began to drift further and further away from the position of the 

Sun.  Obviously the Sun could not be the source of the radio noise.  The daily period 

of variation of the noise in fact turned out to be 23 hours and 56 minutes, four 

minutes less than the daily period of the Sun.  This is known as the sidereal day – the 

period of the Earth’s rotation with respect to the stars – and so Jansky could conclude 

that the source of the noise must lie beyond the Sun, and beyond the Solar System as 

well. 

 

In a paper published early in 1933, Jansky could cautiously state in the journal Nature 

that ‘the source of the noise is located in a region that is stationary with respect to the 
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Figure 2.7.  Karl Jansky and the ‘merry-go-round’ aerial at the field station operated by Bell Telephone 

Laboratories near Holmdel, New Jersey.  In 1932 the aerial was used to discover radio waves from 

space.  [courtesy: AIP Emilio Segré Visual Archives (above); NRAO (below)] 

 

stars’ [29].   The distribution of the cosmic noise across the sky was shown to 

approximately coincide with the distribution of stars, dust and gas visible to us along 

the plane of the Milky Way.  Because he had been unable to detect radio waves from 

the Sun itself, Jansky ruled out the far more distant stars as the source of this cosmic 
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static.  Instead, he speculated that the source of this new radiation arose from charged 

particles in rapid motion through interstellar space. 

 

The publicity department at Bell Labs made sure that Jansky’s discovery received 

wide exposure.  In May 1933 the New York Times carried a front-page report with the 

banner ‘New radio waves traced to center of Milky Way’ and a radio station featured 

a special evening program in which radio astronomy went on air for the first time.  

Cosmic static picked up by Jansky’s aerial in New Jersey was relayed to the New 

York station, and the ‘hiss of the Universe’ then broadcast to a national audience.  

Despite this initial interest, Jansky did not pursue his discovery any further.  From the 

point of view of Bell Labs, Jansky had completed his original project to identify the 

sources of static noise and their effects on radio communication.  Jansky continued 

his work on terrestrial sources of radio interference, a research program he carried out 

until his premature death at age 44 [30]. 

 

Jansky’s discovery opened up an entirely new approach to astronomy.  Until 1932 

almost our entire knowledge of the Universe had been gained from a narrow section 

of the electromagnetic spectrum – the optical region extending from the red through 

to the violet.  Radiation from astronomical objects in this part of the spectrum 

penetrates the Earth’s atmosphere without appreciable absorption, and so this part of 

the spectrum provides a ‘window’ to look out to the Universe.  The new window 

opened up by Jansky provided an opportunity to observe the Universe in a completely 

new ‘light’.  The radio window is about a thousand times wider than its visible or 

optical counterpart, covering a range of wavelengths from roughly a centimetre in 

length up to several tens of metres.  The lower cut-off at wavelengths shorter than one 

centimetre is caused by oxygen and water vapour in the atmosphere, while the upper 

cut-off at long wavelengths is caused by reflection or absorption of incoming radio 

waves by the ionosphere, a layer of charged particles high in the atmosphere. 

 

In 1936, a year after Jansky published his final paper on cosmic noise, his discovery 

was confirmed by Gennady Potapenko, a professor of physics at the California 

Institute of Technology (Caltech) in Pasadena.  Potapenko and his graduate student 

Donald Folland built a receiver and antenna and they began observing on the roof of a 

Caltech building.  However, Pasadena proved too radio noisy so they moved their 
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equipment to the Mojave Desert where they succeeded in confirming Jansky’s results.  

Although their work was never published, it was a promising start and showed the 

need for a much larger antenna.  They made a rough design for a large rotating 

rhombic antenna, but they were unable to find funding and the project did not go 

ahead.  It is interesting to note that in 1955, almost twenty years later, Caltech re-

entered the field of radio astronomy when John Bolton and his close colleague 

Gordon Stanley arrived from Australia (see Chapter 7) [31]. 

 

Although Jansky’s work created some interest among astronomers, none of the US 

observatories decided to follow up his discovery – for the simple reason that no 

astronomer knew enough about radio engineering.  The new science of radio 

astronomy might have fallen into limbo had it not been for the extraordinary initiative 

of Grote Reber, a young engineer with a passion for all aspects of radio science.  As a 

teenager Reber had built his own transmitter–receiver and, from his hometown in 

Wheaton, Illinois, communicated with fellow radio ‘hams’ all over the world.  Reber 

read Jansky’s research papers and immediately understood their significance [32]. 

 

Jansky had exploited his discovery to the technical limits of his merry-go-round 

aerial, so Reber realised further progress would require the construction of new 

equipment specifically designed to observe the cosmic static.  The ‘radio telescope’ 

would need not only to determine in sharper detail how the intensity of cosmic 

radiation is distributed over the sky, but also how the intensity varies with 

wavelength.  The best solution seemed to be a large parabolic reflector or ‘dish’ 

which could be accurately pointed at any selected position in the sky.  Incoming radio 

waves would be reflected from the dish’s surface and focused to a single point.  

Different radio wavelengths could be investigated by installing the appropriate 

receiver at the focus of the dish.  

 

Reber decided to build the radio telescope himself, in the backyard of his parents’ 

home in Wheaton.  The dish was surfaced in sheet metal and mounted on a movable 

wooden support structure.  Apart from a few parts ordered from a local blacksmith, 

Reber made each component and completed the entire construction by himself over a 

period of four months (see Figure 2.8).  By the standards of 1937, the cost of $1300 

was a large sum for a young engineer in pursuit of an untried idea.  Reber’s first  
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Figure 2.8.  Grote Reber and the radio telescope he built in the backyard of his parents’ home in 

Wheaton, Illinois.  Reber used the telescope to map the strength of radio emission across the sky.  As a 

tribute to Reber’s pioneering efforts, a replica of the telescope was later erected at the US National 

Radio Astronomy Observatory at Green Bank, West Virginia.  [courtesy: NRAO] 

 

attempts to detect radio waves from prominent objects such as the Sun, Moon, planets 

and several bright stars produced no response.  Over a year passed and Reber feared 
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that his wild idea was doomed to failure.  He persevered and built a new receiver 

working at a wavelength just short of 2 metres.  Early in 1939 he was at last rewarded 

by receiving signals from the plane of the Milky Way.  Full of enthusiasm, Reber 

then launched into an observing schedule that would have tested any astronomer.  At 

night he carried out measurements from midnight to 6 am when local radio 

interference was at a minimum, and then caught a train to his job with a Chicago 

radio company.  After the evening meal he would sleep to midnight, and then resume 

the observations. 

 

In his first paper, published in the same radio engineering journal used by Jansky, 

Reber reported that the cosmic static is strongest along the plane of the Milky Way, 

thereby confirming Jansky’s earlier discovery [33].  Unlike Jansky’s aerial, Reber’s 

telescope could be pointed fairly accurately (though with extremely low resolution), 

which meant that he was able to make detailed measurements of the variation in radio 

strength across the sky.  Plotting the contours of strength gave a celestial radio map – 

similar in appearance to the maps which show the elevation of the Earth’s terrain.  In 

addition to the main radio strength which peaked near the centre of the Galaxy in the 

Sagittarius constellation, other subsidiary peaks were prominent in the constellations 

of Cygnus and Cassiopeia.  At that time, however, Reber could not detect emission 

from the Sun, which seemed to support Jansky’s hunch that the radio emission did not 

originate from the stars themselves, but probably from energetic charged particles 

moving freely in interstellar space. 

 

While Jansky’s discovery laid the first foundations for the new science of radio 

astronomy, Grote Reber became its first practitioner.  For a lone-hand working in his 

spare time, his achievement was exceptional.  The Wheaton radio maps of the sky 

were not improved upon until the work of the Radiophysics group at Dover Heights 

in the late 1940s.  Reber can also claim credit for having built the first successful 

radio telescope, his parabolic dish beginning a line of development of similar 

instruments which, as we see in Chapter 7, included the large Parkes telescope over 

twenty years later [34]. 
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Chapter 3 

 

Discovery of the First ‘Radio Stars’ 

 

Radio astronomy was not completely dormant during the war years.  In fact, the next 

major development came, again through serendipity, as a direct result of wartime 

radar research.  Late in February 1942 radar stations throughout England reported 

severe bursts of radio noise which had made normal operation impossible for several 

days.  The War Office knew that the Germans had been developing methods of 

jamming radar and assigned J. Stanley Hey of the Army Operational Research Group 

the top priority task of investigating the problem.  After an analysis of the records, 

Hey [1] realised that the mysterious interference was not the result of enemy 

jamming, but came from a direction in the sky which seemed to coincide with the 

Sun.  Hey checked with the Royal Greenwich Observatory and learnt that during the 

days of maximum interference an exceptionally active sunspot had been in transit 

across the solar disc.  In his secret report Hey concluded that despite previous 

German successes in jamming British radar, this time the reason had been the Sun.  

Across the Atlantic, at about the same time, George Southworth and a group at the 

Bell Telephone Labs – colleagues of Karl Jansky – made the same discovery.  

 

3.1  The Beginning of Radio Astronomy in Australia 

The existence of solar radio emission had been known in the Radiophysics Lab well 

before the end of WWII.  Both Taffy Bowen and Joe Pawsey (Figure 3.1) had visited 

the Bell Telephone Labs and learnt of Southworth’s work.  Early in 1944 Frank Kerr 

made some preliminary observations but then had to abandon the project to 

concentrate on more urgent wartime work.   Similarly, in April 1944 Pawsey made a 

somewhat half-hearted attempt to detect sources of extraterrestrial radio noise, one 

that can at least be admired for its simplicity.  Pawsey stuck a small parabolic dish out 

a laboratory window and pointed it around the sky, hoping to register an increase in 

the noise level above that generated by the receiver.  The experiment failed but the 

attempt can be said to mark the birth of radio astronomy in Australia [2]. 
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Figure 3.1.  Joe Pawsey was head of the Radio Astronomy Group and deputy 

chief of the Radiophysics Lab.  [courtesy: RAIA] 

 

 

 

Figure 3.2.  Sydney localities referred to in the text: 1 = Collaroy, 2 = Dover Heights, 3 = Long Reef, 

4 = Parramatta Observatory, 5 = Potts Hill, 6 = Radiophysics Laboratory, 7 = Georges Heights, 

8 = West Head.   [courtesy: Wayne Orchiston] 
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About a year later Pawsey’s curiosity was again aroused by the receipt of two reports 

that supported Southworth’s work.  The first dealt with the so-called ‘Norfolk Island 

effect’, bursts of radio noise from the Sun detected by New Zealand radar operators 

stationed on this small island in the Tasman Sea.  A report on these bursts had been 

prepared by Elizabeth Alexander at the Radio Development Laboratory in Wellington 

(the Kiwi equivalent of the Radiophysics Lab) [3].  Shortly afterwards, Pawsey was 

spurred into action by a letter from Stanley Hey enclosing a copy of his secret 1942 

report.  Assisted by Ruby Payne-Scott and Lindsay McCready, Pawsey began 

observations in October 1945 using an RAAF radar antenna overlooking the sea at 

Collaroy, a northern Sydney suburb (see Figures 3.2 and 3.5).  Success came 

immediately.  Their observations not only confirmed the overseas reports, but then an 

analysis of certain features in the signals, received at a wavelength of 1.5 metres, 

yielded a very surprising result.  Even with sunspot activity at a minimum, the 

strength of the radio emission indicated that some regions of the Sun were at 

temperatures as high as one million degrees.  Their results, anticipated on theoretical 

grounds by David Martyn then at the Commonwealth Observatory at Mt Stromlo, 

were summarised in two letters to Nature, published in early in 1946.  As an 

indication of how radio astronomy was still in its infancy, the first letter contained 

only four references to earlier work – the papers by Jansky and Reber, and the 

wartime reports by Hey in England and Alexander in New Zealand [4, 5]. 

 

Radio astronomy in Australia was now underway.  The historian Woody Sullivan has 

eloquently noted the significance of Pawsey’s work [6]:   

 

‘Australia’s history was linked with astronomy from the start  –  Captain Cook’s first 

voyage was as much to observe the 1769 transit of Venus across the solar disc in Tahiti 

as it was to explore for Terra Australis Incognita, leading to the discovery of Australia’s 

eastern coast the following year.  But 175 years would pass before Australians became 

part of the first rank of world astronomical research.  And when this happened, from cliff 

edges only a few miles removed from Cook’s landing site at Botany Bay, it was in a most 

unlikely manner, for they did their astronomy not with glass lenses, but with rods of 

metal.’ 
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Figure 3.3.  Bolton at the Dover Heights blockhouse in May 1947, a month before the detection of the 

Cygnus source.  (left) Two of the Yagi antennas used for solar observations at 100 MHz (left) and 60 

MHz.  The 200 MHz antenna was on the far corner and is not visible.  Note the WWII camouflage paint 

on the blockhouse.  (right) The two elements of the 100 MHz Yagi were orthogonal to each other in the 

attempt to detect polarisation in the solar emission.  The two elements could be positioned horizontally, 

pointing to the eastern horizon, to form a sea interferometer. This aerial was used for the discovery of 

the first eight discrete sources.  [courtesy: Stanley family] 

          

John Bolton commenced work at the Radiophysics Lab in September 1946 and was 

assigned to Pawsey’s solar group [7].   He was given the task of investigating the 

polarisation properties of the sunspot radiation, an area of interest to David Martyn.  

Bolton spent the first month designing and building an antenna in the Radiophysics 

workshop.  The antenna consisted of two Yagi aerials (named after the Japanese 

physicist Hidetsuga Yagi), basically the same as the first television aerials. The 

antenna was mounted on a movable platform, so that it could track the Sun, and 

connected to a modified radar receiver operating at 60 MHz.  Bolton installed the 

antenna at the Dover Heights field station near the entrance to Sydney Harbour (see 

Figure 3.3).  He was assisted by another new recruit to Radiophysics, Bruce Slee (see 

Figure 3.4), who would become Bolton’s first scientific collaborator. 
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Owen Bruce Slee had an interesting background leading up to his appointment.  

During the war he had worked as a radar mechanic at an RAAF station at Lee Point 

near Darwin.  On several occasions late in 1945 he noticed that when his radar set 

faced west out to sea at sunset there was a sudden increase in radio noise, which he 

soon showed came from the Sun.  Slee became yet another wartime radar operator to 

have independently discovered solar radiation.  He reported his discovery to the 

Radiophysics Lab in March 1946 [8]: 

 

‘In a recent newspaper article, I saw that the Council was investigating and measuring the 

signal strength of electromagnetic radiations in the radio-frequency spectrum from the 

Sun.  For some months past I have been noticing that when the radar set was turned on 

around sunset, that a peculiar C.W. interference made itself evident on a certain bearing: 

this bearing is almost due west.  I am now convinced that the interference is solar 

radiation as the bearing is looking out to sea and there can be no other radio apparatus out 

there to cause that effect. … If you want any further observations carried out, I shall of 

course be only too pleased to cooperate.’ 

 

 

 

Figure 3.4.  Bruce Slee was John Bolton’s first collaborator at Dover Heights and part of 

the team that discovered the first discrete radio sources.  Slee was born in Adelaide in 

1924 and trained as a radar technician.  After serving at a number of radar stations in 

WWII, he joined the Radiophysics Laboratory in November 1946. [courtesy: Bruce Slee] 

 

Slee enquired whether there might be an opportunity to join the Radiophysics staff.   

Pawsey was impressed and, following a meeting in Slee’s home town of Adelaide, 

offered him a job on the spot.  It was the beginning of a remarkable career.  Slee 
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started as a lowly technical assistant; studied evenings, eventually being awarded 

B.Sc. (Hons) and D.Sc. degrees; and worked his way up the ranks to become one of 

Australia’s most distinguished radio astronomers [9].  Slee recalled some of the 

privations during the early days at Dover Heights [10]: 

 

‘In these late-1946 and early-1947 days, John lived at Bellevue Hill and I at Bondi Beach.  

We would catch the bus from Bondi to Dover Heights and return the same way.  The 

weather was seldom good, the Sun was rather uncooperative and the exposed position made 

any outside work very uncomfortable.  I remember we spent much of our time in the 

blockhouse reading astronomical texts, for we were both unfamiliar with astronomy.  It was 

a time of severe postwar shortages.  I recall having difficulty in getting cigarette papers for 

making our own cigarettes and, at one stage, we were reduced to rolling tobacco in used 

bus tickets.  Power blackouts were frequent, especially during cold weather, and the power 

supply itself was very unstable in voltage and frequency.’ 

 

The attempt by Bolton and Slee to detect polarisation in the sunspot radiation was a 

failure.  The Sun had entered a dormant period with no sunspots visible on its surface.  

However, Bolton had another idea.  He had learnt of Jansky’s discovery of cosmic 

noise while a student at Cambridge.  He was also aware from his time on The 

Unicorn that pointing a radar aerial along the plane of the Milky Way would lead to a 

significant increase in the amount of radio interference.  For most radar operators, 

Jansky’s noise was considered an operational nuisance rather than an important 

astronomical discovery.  However, Bolton speculated that if the Sun can emit strong 

radiation, could there be other astronomical objects that contribute to Jansky’s noise?  

He later noted [11]: 

 

‘I went back to my wartime interest in this extraterrestrial radiation associated with the 

Milky Way.  I had reasoned that if one had eyes with the directional ability of a radio 

aerial, one would not see the Milky Way as a set of stars; one would see it as a great blur.  

So I wanted to try and break this blur up into individual stars, and the way to do this was 

to point an aerial over the sea.  The effective resolution is determined by the ratio of the 

wavelength to the height of the cliff and not the wavelength to the size of the antenna.  So 

I started doing this with Bruce.  A lot of the time when we were supposed to be looking at 

the Sun, we in fact pointed our aerials over the sea and just watched to see if anything 

came up with a telltale pattern.’  
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Figure 3.5.  Radio astronomy began in Australia with the sea interferometer observations of the Sun by 

Joe Pawsey, Lindsay McCready and Ruby Payne-Scott.  The cliff-top aerial combines the direct signal 

with the signal reflected from the sea to create an interference pattern. As the differential pathlength 

between the direct and reflected signals changes, the interference pattern goes through a series of 

maxima and minima.  The reflected signal simulates an imaginary aerial, spaced from the real aerial at 

a distance equal to twice the height of the aerial above sea level.  The difference in pathlength between 

the direct and reflected signals is given by 2h sinα, where h is the height of the aerial above sea level 

and α is the angle of incidence of the reflected signal to the sea surface, corrected for the curvature of 

the Earth and atmospheric refraction of the signal (see equation 4.2 next chapter).  Sea interferometry 

was also known as ‘cliff’ or ‘sea-cliff’ interferometry. The technique is the radio analogue of Lloyd’s 

mirror in classical optics, named after the Irish physicist Humphrey Lloyd (1800–81).  In 1834 Lloyd 

demonstrated that a monochromatic beam of light reflected from a glass surface, at a low angle of 

incidence, combines with the direct beam to produce an interference pattern, strong evidence at the 

time for the wave-like nature of light.  [after Stanley and Slee, 1950: Fig. 1] 

 

Bolton and Slee reconfigured their 60 MHz solar antenna and pointed the two Yagi 

aerials towards the eastern horizon to work as a sea interferometer [see Bolton and 

Slee (1953) and Figure 3.5 for an explanation of the technique].  They consulted an 

astronomy textbook to make guesses as to which types of object might have strong 

radio emission, and then a star atlas to find the position of the brightest candidate in 

each class, both texts borrowed from the local municipal library [12].  After a couple 

of weeks attempting to detect a number of objects as they rose above the sea, the 

project was cut short by an unexpected visit from their boss Joe Pawsey, who saw 

immediately that their 60 MHz antenna was not pointing at the Sun.  Pawsey was not 

impressed and ordered the pair back to the Radiophysics Lab [13]. 
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Figure 3.6.  Gordon Stanley was the third member of  the Dover Heights 

team. He was born near Auckland in New Zealand in 1921 and trained as an 

engineer.  He joined the Radiophysics Lab in 1944 where he specialised in 

receivers and electronics.  [courtesy: Stanley family] 

 

At the time Pawsey was planning an expedition to Brazil to observe a total eclipse of 

the Sun.  The passage of the Moon across the solar disc would allow the location of 

the sunspot radiation to be measured with far greater precision than Pawsey could 

achieve with a sea interferometer.  Pawsey reassigned Bolton to work with Gordon 

Stanley (see Figure 3.6) who was building equipment for the expedition.  It was the 

start not only of a lifelong friendship, but also of a collaboration that would be the 

most important of both their careers.  Gordon James Stanley was born in 1921 in the 

small town of Cambridge, south–east of Auckland, New Zealand.  His father suffered 

from tuberculosis and so the family decided to move to the warmer and dryer climate 

of Sydney when Gordon was six.  He left school early and joined a company that 

manufactured a wide range of electrical products, where he began to show an 

exceptional talent for understanding the operation of anything electrical.  Dividing his 

time between work and study he earned his high school diploma and then a Diploma 

of Engineering from the Sydney Technical College (now the University of New South 

Wales).  When war broke out Stanley enlisted in the army for a period and then in 

1943 he was transferred to the Radiophysics Lab where the authorities thought he 

would be of more value to the country’s war effort [14]. 
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As it turned out, the expense and the logistical difficulties of getting personnel and 

equipment halfway round the world to Brazil proved too great and the eclipse 

expedition was cancelled [15].  Bolton recalled [16]: 

 

‘Towards the end of February 1947 Pawsey came into the room where Gordon and I were 

working and told us that the expedition to Brazil was not to take place.  He then said, “If 

you can think of anything to do with all this equipment – you can have it.”  As he reached 

the door he turned around and, almost as an afterthought, and in typical Pawsey fashion, 

said, “If you can think of anything to do with Gordon – you can have him too!”.’ 

 

It was an opportunity too good to miss.  Bolton and Stanley spent an afternoon 

loading up a truck with the eclipse equipment, together with tools, spares and test 

equipment, and next morning headed out to the blockhouse at Dover Heights.  Their 

first priority was to rig up a radio so that they could listen to a broadcast of the fifth 

Test Match between England and Australia, starting later that day at the Sydney 

Cricket Ground.  They managed to install two of the solar receivers, operating at 100 

and 60 MHz (see Figure 3.3), when one of the largest sunspots seen for several years 

appeared on the limb (edge) of the Sun and began its transit across the solar surface.  

The sunspot was inactive for almost a week until one afternoon when Bolton was 

about to start an observing shift.  He heard the chart recorder for the 100 MHz 

antenna jump off scale and he moved quickly to turn the gain setting down as low as 

possible.  After several minutes the strength of the signal began to decrease when 

suddenly the 60 MHz recorder also went off scale.  After about 15 minutes the signal 

from both antennas had dropped back to normal. 

 

The 200 MHz antenna was not in operation at the time, so Bolton checked with the 

Mt Stromlo observatory which had been monitoring the Sun with its own 200 MHz 

antenna (see note [5]).  It had also gone off scale, but two minutes before the 100 

MHz recording at Dover.  Further work confirmed that the outburst was caused by a 

large solar flare which generated intense radio emission first at the higher frequency 

of 200 MHz, followed by intervals of several minutes to the lower 100 and 60 MHz 

frequencies.  The explosive force of the flare ejected a column of ionised material out 

through the solar atmosphere at speeds of up to 1500 km per second.  The arrival of 

the ionised material in the Earth’s atmosphere a day or so later caused auroral 
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displays and strong magnetic storms.  The following day a bright aurora could be 

seen in the Sydney sky, a rare event at this latitude (nearly 34° S) and demonstrating 

just how powerful the solar flare had been. 

 

The flare observations led to the first research paper of Bolton’s career [17], a two-

page article in Nature, which was co-authored by Ruby Payne-Scott and Don Yabsley 

(Gordon Stanley was overlooked).   Payne-Scott and Yabsley had also been observing 

the Sun at Dover Heights and noticed a time delay, from high to low frequencies, for 

another type of outburst which lasts only a few seconds.  Bolton and Stanley 

continued to monitor the emission from the sunspot region.  A month after the 

occurrence of the solar flare, during the second transit of the sunspot across the solar 

disc, they were able to observe circular polarisation in the sunspot radiation, 

succeeding where previously Bolton and Slee had failed.  They could also confirm a 

prediction by David Martyn that the circular polarisation would reverse its direction 

of rotation when the sunspot is halfway across the disc.  As it turned out, this would 

be Bolton’s final contribution to solar radio astronomy. 

 

 

 

Figure 3.7.  J. Stanley Hey pioneered radio astronomy in Britain.  As well as his wartime studies of the 

Sun, Hey made two other important discoveries.  One was that radar could be used to detect and track 

meteors more accurately than visual observations.  Hey and his group were also the first to report 

variations in the strength of radio emission from a region in Cygnus constellation.  The detection led 

directly to the discovery of the first discrete radio sources by the Radiophysics group in Sydney.  After 

the war, Hey established a radio astronomy group at the Royal Radar Establishment in Worcestershire. 

[courtesy: RR Establishment] 
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3.2  Cygnus A: The First Discrete Radio Source 

By May 1947 the Sun had again entered a phase of low activity so Bolton and Stanley 

decided to return to the topic which Pawsey had brought to an abrupt halt six months 

earlier.  Pawsey had said they could use the Brazil equipment for any purpose they 

liked, so they would take him at his word.  By day they would continue routine 

monitoring of the Sun, but at night they would renew the search for other radio 

objects in the sky previously carried out late in 1946 by Bolton and Slee.  To begin 

they decided to see whether they could confirm a recent report by Stanley Hey, the 

discoverer of radio emission from the Sun in 1942 (see Figure 3.7). 

 

After the war Hey, James Phillips and John Parsons at the Army Operational 

Research Group near London carried out a sky survey of radio emission at 60 MHz, 

producing isophote maps similar to those published earlier by Grote Reber [18].  Hey 

and his group noticed that whereas radio signals from any given direction were 

relatively constant in strength, emission from the constellation of Cygnus exhibited 

peculiar fluctuations, changing in intensity during times as short as a minute.  In a 

Nature letter reporting this discovery, Hey, Parsons and Phillips argued on physical 

grounds that this variable emission must come from a relatively small region of space, 

possibly from some unknown astronomical object [19].  As we shall see in the next 

chapter, this assumption turned out to be correct, but for the wrong reason. 

 

In August 1946 the chief of the Radiophysics Lab, Taffy Bowen, was visiting 

England and sent Pawsey a reprint of the letter on the Cygnus fluctuations by Hey’s 

group and encouraged him to try and confirm the discovery.  Within a few days of 

receiving Bowen’s letter Pawsey was able to announce the detection of the variable 

source in Cygnus.  Pawsey reported to Richard Woolley, the director of the 

Commonwealth Observatory [20]: 

 

‘… we immediately made some confirmatory measurements on 60 and 75 Mc/s, 

obtaining similar fluctuations of the same form as the “bursts” observed in solar noise.  

We have no hint of the source of this surprising phenomenon.’ 
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Pawsey continued the observations hoping to find the cause of the phenomenon.  The 

initial success, however, seems to have been followed by a period of conflicting 

observations, during which the reality of the Cygnus fluctuations came into question.  

In the end Pawsey stopped investigating Cygnus, unsure of whether or not he had 

confirmed the existence of Hey’s source [21]. 

 

As mentioned above, late in 1946 Bolton and Slee had searched for radio sources by 

targeting specific objects they thought might be radio emitters.  They were aware of 

the Hey et al. paper and of Pawsey’s inconclusive attempt to confirm the source, and 

had in fact made their own brief but unsuccessful attempt to detect Cygnus [22].  In 

contrast, rather than target specific objects, Bolton and Stanley decided to carry out 

an empirical search of the southern sky with their 200 MHz antenna and the northern 

sky with the 100 MHz one.  Bolton recalled [23]: 

 

‘We had found what we thought was one source in the south with our 200 MHz 

equipment when something suddenly went wrong with it.  I had to go up on the roof and 

resolder the connection to the aerial.  All of a sudden something electrical went wrong 

with the soldering iron and it exploded in a great shower of sparks.  So we were limited 

to our other 100 MHz antenna at that time.  So we thought, why don’t we have a look at 

the region where Hey reported this variation?  Sure enough, we did get a sea interference 

pattern of this object which showed its basic pattern modulated by a short period pattern.  

The basic sea interference pattern was about 10 minutes between one maximum and the 

next maximum, but modulating this were variations of 20 or 30 seconds on top of it.’ 

 

The signal was not as strong as the solar bursts they had been observing, but the 

source did produce the distinctive fringe pattern on their chart recorder (see Figures 

3.8 and 3.9).  They continued the observations as the source rose each night and, by 

the end of June, they had enough data for Bolton to give a brief talk at the 

Radiophysics Lab, with the title ‘Variations in cosmic noise from the constellation 

Cygnus’ [24]. 

 

Bolton could report that the source had been detected at 100 and 60 MHz, but not yet 

at 200 MHz, and he gave an approximate position for the source which differed by 

about 3° from the one listed by Hey.  Bolton also reported that no polarisation had  
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Figure 3.8.  (A) Interference pattern for the Cygnus source recorded at 100 MHz after 10 pm on the 

evening of 19 June 1947 at Dover Heights (from right to left).  Note the spiky fluctuations superimposed 

on the Cygnus fringes and the sloping baseline from decreasing Galactic noise (referred to as ‘cosmic 

noise decline’ in Figure 3.9).  The dashed curve shows the base level of the variable component.  (B) 

For comparison, the interference pattern recorded for the Sun at dawn on 24 June 1947.  [after Bolton 

and Stanley 1948b, p. 60] 

 

 

 

 

Figure 3.9.  An enlarged section of the Cygnus record in Figure 3.8 showing how the maxima and 

minima of the constant and variable components are identified.  The dashed curve results from the 

sinusoidal variation in path difference given by 2h sinα (see Figure 3.5).  Note that the amplitude 

variations never fall below the dashed curve.  The relative heights of the maxima and minima in the 

dashed curve provide an upper limit on the angular size of the source.  [after Bolton and Stanley  

1948b, p. 63] 
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been detected at 100 MHz.  There was some evidence for another weaker source near 

Cygnus and also the possibility a source much further south in the Centaurus 

constellation:  ‘A large part of the southern sky has been surveyed now with negative 

results except for the Centaurus region which shows very small fluctuations.  The 

source if any is probably circumpolar [i.e. permanently above the horizon at Sydney’s 

latitude] which adds considerably to the difficulties of detection.’  The difficulty was 

of course that the sea interferometer is far less effective if the source does not rise 

above the horizon.  Despite several attempts Bolton and Stanley were unable to verify 

the Centaurus source as their signal-to-noise ratio was too poor. 

 

A week after his Radiophysics talk, Bolton reported to David Martyn [25]: 

 

‘Work on Cygnus has progressed quite well.  The exact locality of the source is not 

known with sufficient accuracy yet.  The approximate position is RA 20 hours, 

declination 40 deg, but errors are still of the order of 3 minutes in RA and 20 minutes in 

declination.  A further attempt at localisation is going to be made this week.  As you 

know, the source is rather variable and I am at present studying these factors.  I hope to 

be able to have the general features a bit clearer before the joint colloquium at the end of 

July.  The size of the source is certainly less than 8 minutes; again further investigations 

are proposed for a more accurate determination.’ 

 

The most important quantity in Bolton’s letter was an upper limit to the angular size 

of the source, which he derived from the interference fringes, using the following 

formula: 

 

W = ( /h) (3R)½ ,                                                    (3.1) 

 

where W is the equivalent radiating strip,  is the wavelength, h is the height of the 

aerial above sea level, and R is the ratio of the heights of the interference fringe 

maxima and minima above an extrapolated cosmic drift background level.  Bolton’s 

figure of <8′ was an improvement by a factor of 15 on the value arrived at by Hey’s 

group.  The beamwidth of Hey’s aerial was 2°, so that the aerial could not resolve any 

detail smaller than a patch of sky equal to about four times the angular width of the 
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Moon.  Hey had argued that the Cygnus source was most likely compact because of 

the rapid variations in its signal strength.  Whereas Hey had inferred a small size, the 

Dover Heights data provided the first proof that Cygnus was indeed a compact star-

like object.  The existence of the first ‘radio star’, the first discrete radio source, had 

now been established.  Years later, Bolton explained how the ratio of fringe maxima 

to minima provided an upper limit on the angular size of the source [26]: 

 

‘I can give a crude analogy.  If you have a picket fence and you roll a marble up and 

down over the pickets, the marble will describe almost exactly the form of the top of the 

picket fence.  If you take a tennis ball, then it doesn’t go up and down as far.  If you take 

a basketball, you might as well be running it over a flat plane.  There’s an analogy in the 

sea interferometer.  If the source is larger than the separation between the maxima or 

minima, then it won’t give you a pattern.  If it’s intermediate, it will give you a minimum 

which is not a perfect minimum, a maximum which is not a perfect maximum.  So we 

were immediately able to say, “We’ve got an upper limit on its diameter”.’ 

 

The main priority now was to measure a more precise right ascension and declination 

for the source, as the approximate position reported by Bolton in his talk was far too 

imprecise to be able to identify the source with a visible object.  Both coordinates 

could only be measured with any accuracy by observing the source setting in the 

north-west and combining the data with Cygnus rising in the north-east at Dover 

Heights. 

 

Early in July 1947 Bolton and Stanley towed a trailer fitted out with their 100 MHz 

antenna to two headlands north of Sydney.  The first of the sites, known as Long Reef 

near the suburb of Collaroy, had an elevation of only 30 metres above sea level, but it 

had the advantage of covering the whole hour angle range from rising to setting (see 

Figures 3.2 and 3.10).  Observations made over a week enabled them to measure a 

right ascension accurate to ±1´.  It was difficult work and there was no option but to 

camp out mid-winter to guard against their equipment being stolen or vandalized.  

Bowen wrote to CSIR head office to request out-of-pocket expenses for Bolton and 

Stanley [27]: 
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Figure 3.10.  Two sites where Bolton and Stanley carried out observations on the Cygnus A source in 

July 1947:  (above)  Long Reef looking east to the Tasman Sea.  The site is a short distance south of 

the northern Sydney suburb of Collaroy, close to where Joe Pawsey and his group made the first radio 

observations of the Sun in October 1945.  (below)  West Head looking north with Lion Island at right.  

The site is in the Ku-Ring-Gai Chase National Park, approximately 30 km north of Sydney.  

[courtesy: author] 

 

‘In our investigations into “cosmic noise” it became necessary to observe the radio noise 

received from the time of rising to the time of setting of certain constellations which at 

present are above the horizon only during the night.  Over-water rising and setting were 
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essential and the most convenient point for these observations was found to be at 

Collaroy, an outer northern suburb of Sydney.  The necessary equipment was mounted in 

a trailer and taken to this point, and the observations were made by Messrs Stanley and 

Bolton who “camped” on the site over the abovementioned period.  They worked all 

night and slept in shifts by day, one or other of them being on duty for most of the day to 

take calibration measurements on the Sun, to charge batteries and to guard the equipment.  

On this account it was not considered practicable or advisable for either of them to return 

to their homes throughout this period.  Only bed and bedding could be provided for them 

and they were obliged to obtain all their meals at cafes nearby.’ 

 

The second site further north was an isolated promontory called West Head, accessed 

by a dirt track in the rugged Ku-Ring-Gai Chase National Park.  The site was at an 

elevation of 120 m above sea level (50% higher than Dover Heights) and overlooked 

the wide estuary of the Hawkesbury River.  A nearby island and opposing cliffs 

blocked most of the hour angle track, but Cygnus could be observed for a short period 

before and after culmination.  The approximate right ascension from the Long Reef 

site could then be used to identify the corresponding fringe minima at the second site.  

The elevation path of Cygnus was then reconstructed by plotting the elevations of 

fringe minima (corrected for refraction and Earth curvature) against sidereal time.  

The declination was then computed from the latitude of West Head and the duration 

of the semi-diurnal arc.  This process was repeated on a number of nights and the 

derived positions were averaged to give the final position. 

 

By September 1947, after three months of observations, Bolton and Stanley had 

enough data to publish.  Taffy Bowen thought that the Cygnus discovery was 

important enough to be published in the Proceedings of the Royal Society of London, 

the most prestigious science journal in the British Commonwealth.  However the 

‘Royal’, as it was known, was experiencing publication delays of over a year and 

there was a danger that the Cygnus discovery might be scooped by another group.  

After some debate it was decided to make a brief announcement in Nature (see Figure 

3.11), followed by a detailed paper in the new Australian Journal of Scientific 

Research [28].  The AJSR was about to be launched by CSIR head office in 

Melbourne and would be the first nationwide science journal published in Australia.  

The Cygnus paper appeared in the first issue of volume 1 early in 1948.  A brief 
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Figure 3.11.  Part of the first page of the letter by Bolton and Stanley announcing the discovery of the 

discrete source in Cygnus.  The letter to Nature was submitted on 4 December 1947 and published on 

28 February 1948.  [courtesy: Nature and Bolton papers, National Library of Australia] 

 

announcement letter in Nature, followed by a detailed AJSR paper, became the 

standard publishing practice for the Dover Heights group over the following years. 

 

Before the Cygnus paper was submitted to Nature a draft copy was sent to the 

Commonwealth Observatory, where it was read by David Martyn and the director of 

the observatory, Richard Woolley.  A copy was also given to the professor of 

electrical engineering at the University of Sydney, John Madsen, a senior figure who 

had played a significant role in the foundation of the Radiophysics Lab (see Section 

2.2).  Several senior Radiophysics staff also read the draft, including Arthur Higgs 

(see Figure 2.6) who found a glaring error in the calculation of the Cygnus position.  

Bolton and Stanley, still trying to learn the rudiments of astronomy, had overlooked 

the Earth’s precession, the slow periodic change in the direction of the Earth’s axis of 

rotation [29]. 
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Although the problem was soon fixed, the position of Cygnus turned into somewhat 

of a saga.  After the paper had been dispatched to Nature, Bolton discovered that he 

had used the wrong longitudes for the Dover Heights and West Head sites.  He 

recalculated the right ascension and then Bowen sent the new position to the 

Australian Scientific Liaison Office (ASLO) in London, which coordinated the 

publication of CSIR articles in British journals.  Three weeks later Bowen discovered 

there had been a typographical error in his letter which gave the declination as +41° 

41´ ±7´, instead of Bolton’s value of +41° 47´ ±7´.  Bowen sent off a second letter to 

ASLO requesting a further change, but it seems this letter was overlooked as the 

Nature paper appeared with the incorrect value of declination [30].  This however 

was not the end of the story.  As we see in Chapter 5, continuing uncertainty over the 

true position for Cygnus became a contentious issue between the Radiophysics Lab in 

Sydney and the Cavendish Lab in Cambridge. 

 

In the detailed paper in the AJSR the ‘correct’ position was given for Cygnus: 

 

Right ascension:  19 hr  58 min  47 sec ± 10 sec   Declination:  +41°  47´ ± 7´, 

 

a vast improvement on Hey’s position which was known to no better than 5° 

accuracy.  Bolton and Stanley announced that the angular width of Cygnus was less 

than 8´ of arc and that its radio emission has two components, one believed constant, 

and the other showing considerable variations with time.  In the discussion of their 

results they noted [31]: 

 

‘Reference to star catalogues, in particular the Henry Draper Catalogue, shows that the 

source is in a region of the Galaxy distinguished by the absence of bright stars and 

objects such as nebulae, double and variable stars, i.e. the radio noise received from this 

region is out of all proportion to the optical radiation.  Although the experimental 

technique allows only an upper limit to be placed on the size of the source, this is 

believed to be effectively a point and therefore a single object.  The determined position 

lies in a less crowded area of the Milky Way and the only obvious stellar objects close to 

the stated limits of accuracy are two seventh magnitude stars.  There is certainly no 

comparable optical radiation from this region.’ [my italics] 
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Astronomers at the Commonwealth Observatory at Mt Stromlo carried out a close 

examination of this region and produced a photographic plate that confirmed the 

Henry Draper Catalogue. The plate together with a semi-transparent overlay were 

reproduced in the AJSR paper  There were two unremarkable stars of seventh 

magnitude close to the position – HD189957 and HD190112 – but no object that 

appeared in anyway unusual.  The identity of Cygnus would remain a mystery for 

some time to come. 

 

The AJSR paper also reported the detection of the source at 60, 85, 100 and 200 MHz, 

providing the first spectrum of the source.  The intensity of the radio emission rose 

from 60 to 85 MHz, peaked at 100 MHz, and then fell away to about half the 

maximum intensity at 200 MHz.  Thus, although the position, angular size and the 

spectral features were known in some detail, the distance to the object was unknown.  

Bolton and Stanley attempted to estimate a lower limit and an upper limit of distance.  

For the lower limit they noted that if the variations extended over the whole source, it 

is unlikely that the width of the source would exceed the product of the velocity of 

light and the period of the shortest variation.  Assuming an angular width of 8´ and a 

period of variation of 0.25 minute, the distance of the source cannot exceed 100 light-

minutes, which of course would place it well within the Solar System.  As there had 

been no discernable parallax in the position of the source over several months, Bolton 

and Stanley argued that this was further evidence that the angular width of the source 

must be much less than 8´, and therefore that the source is much further away. 

 

For the upper limit of distance, they assumed the source to be an average star but with 

its total energy output in the radio frequency spectrum.  Taking a mean intensity of 2 

× 10–23 W m–2 Hz–1 for the source spread over a bandwidth of 1000 MHz, the total 

radiation would be 2 × 10–14 W m–2 [32].  The Sun considered as an average star has a 

total radiation of about 1 kW m–2.  Applying an inverse square law, this gives a 

source distance of approximately 3000 light-years.  Thus, according to Bolton and 

Stanley, it seemed likely that the Cygnus source was somewhere between 2 × 10–4 

and 3000 light-years from Earth!  As we see later, the upper limit proved hopelessly 

inadequate. 
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To conclude their paper, Bolton and Stanley speculated on a possible emission 

mechanism for Cygnus.  They noted that if the size of the source was less than 8´, the 

effective temperature at 100 MHz would be greater than 4 × 106 K, making a thermal 

origin of the radiation improbable.  Instead, they noted that a mechanism similar to 

the one proposed ‘… to account for the steady enhanced noise from a large active 

sunspot – perhaps the association of moving ionised matter and strong magnetic fields 

– is quite possible.’ [33]   In broad terms, Bolton and Stanley had correctly 

anticipated the mechanism later known as synchrotron emission (fast electrons 

spiralling around magnetic field lines), which was verified by theoretical work in the 

early 1950s (see Chapter 6). 

 

The Dover Heights work was becoming known outside the Radiophysics Lab.  In 

September 1947 Bowen enthusiastically wrote to CSIR chief executive David Rivett 

in Melbourne [34]: 

 

‘One of Pawsey’s brightest men is Bolton … He has proved himself one of the best 

youngsters we have appointed for some time.  He has exactly the right outlook for 

research and is full of original ideas.  Just at present his chief interest is in the noise from 

the constellation Cygnus and he has obtained results which prove fairly conclusively that 

it comes from a confined source whose characteristics are similar to those of the Sun.  

This is quite contrary to existing theories of cosmic noise, which postulate that it 

originates in interstellar space.’   

 

The Cygnus results also caught the attention of a number of prominent astronomers 

overseas.  In September 1947 Joe Pawsey (see Figure 3.12) embarked on a year-long 

trip to the United States and Europe.  As a brief aside, it is interesting to note here that 

it was during this trip that Pawsey coined the term ‘radio astronomy’.  Since Karl 

Jansky’s discovery in 1932, the study of extraterrestrial radio waves had been 

variously known as ‘cosmic static’, ‘cosmic noise’ or ‘galactic noise’.  In December 

1947 Pawsey received an invitation from Charles Burrows at Cornell University to 

attend a conference on ‘Microwave Astronomy’.  Neither Pawsey nor Bowen warmed 

to the new term.  Bowen noted: ‘I don’t think much of Burrows’ invention of the title 

“Microwave Astronomy”.  A lot of it is certainly not microwave and I am not at all 

sure whether it is astronomy.’  As an example, the observations at Dover Heights 
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spanned the frequency range 60–200 MHz, corresponding to a wavelength range 1.5–

5.0 m, whereas microwave radiation was normally associated with the wavelength 

range 1 mm to 1 m.  Pawsey first used the term ‘Radio Astronomy’ in a letter dated 

14 January 1948, which immediately met with Bowen’s approval: ‘Incidentally, I like 

the term “Radio Astronomy” much better than Burrows’ effort and we might very 

well consider adopting it generally.’ [35]   

 

 

 

Figure 3.12.  From left: John Bolton, Gordon Stanley and Joe Pawsey in one of the workshop 

rooms at the Radiophysics Laboratory.  [courtesy: Bolton papers, National Library of Australia] 

 

Pawsey’s first stop in the United States was to the Mt Wilson Observatory near 

Pasadena, home to the 100-inch Hooker Telescope, the largest in the world (but soon 

to be overtaken by the 200-inch Hale Telescope further south in California on 

Palomar Mountain).  Pawsey reported to Bolton and Bowen [36]: 

 

‘I discussed the Cygnus work in some detail with the Mt Wilson people and found them 

intensely interested.  They immediately searched out the region given in Bolton and 

Stanley’s paper but found nothing.  Further, they promised to take further relevant 
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photographs.  I consider this collaboration is very worthwhile and told them we would be 

very happy to work in with them.  At present, I think this collaboration will simply 

involve exchange of information.’ 

 

This source became of special interest to Rudolph Minkowski, one of the senior Mt 

Wilson astronomers, who would later play a significant role in Bolton’s career (see 

Section 6.3 and Figure 4.12).  In November, Pawsey visited the Yerkes Observatory 

near Chicago and held discussions with its director Gerard Kuiper and two visiting 

astronomers, Jan Oort (director of the Leiden Observatory) and Bengt Strömgren 

(director of the Copenhagen Observatory).  As Pawsey reported to Bolton [37]: 

 

‘These people were exceedingly interested in your work on Cygnus.  In fact, we had a 

session which lasted nearly three hours, so you see, your work is appreciated.  Out of that 

discussion came one suggestion which I think you should consider.  One of them 

suggested that it is possible that the fluctuations in the source are due to the refractive 

effects in the ionosphere, causing fluctuations analogous to the twinkling of stars. … I 

don’t think that this explanation is correct, but I do not have enough evidence to exclude 

it, and I should advise you to think it over rather carefully.  If you do not have 

observations which can be used to check this possibility, I suggest that it might be 

worthwhile doing a spaced receiver experiment because this seems to be a fairly direct 

method of testing the suggestion.’ 

 

Later correspondence revealed that it was Kuiper who had argued that the ionosphere 

might be the cause of the fluctuations [38]. 

 

Early in 1948 Bolton and Stanley took up Pawsey’s suggestion and carried out further 

observations at 100 MHz at the Long Reef site, about 15 km north of Dover Heights.  

A comparison between the signals recorded at both sites showed a good correlation 

between the rapid fluctuations, confirming Bolton’s own view that the fluctuations 

were intrinsic to the source and not caused by the ionosphere.  As he wrote to Pawsey 

[39]: 

 

‘I am afraid I can’t agree with the ionospheric cause of Cygnus’ variations.  To start with 

the variations are definitely on top of an apparently constant effect and at times they may 

be very large … As circumstantial evidence we have two other variable sources and five 
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constant ones at 100 Mc/s.  Of course the constant ones need not necessarily be point 

sources.  I suspect though that some of the constant ones may show variations with a 

reduced bandwidth and give a clue as to their distance – stretching my imagination to its 

limit.’ 

 

In his reply Pawsey insisted that Bolton needed to resolve the issue [40]:  ‘The 

question of ionospheric effects possibly causing variations must be met in your next 

paper.  You have a number of lines of evidence but these must be followed in 

sufficient detail to leave no reasonable loophole.’ [his italics] 

 

As it turned out Bolton was wrong.  With the Long Reef site almost due north of 

Dover and, with Cygnus relatively low (~15° maximum) on the northern horizon, the 

signals at each site essentially passed through the same column of the ionosphere.  If 

the observations had been done instead with 15 km separation in an east–west 

direction, there would have been a much poorer correlation between the Cygnus 

fluctuations at each site.  We return to the nature of the Cygnus fluctuations in the 

next chapter. 

 

3.3  A New Class of Astronomical Objects 

Bruce Slee rejoined the Dover Heights team in September 1947 to assist Bolton and 

Stanley with improvements to the receivers and antennas.  The operation of 

equipment needed to be monitored at all times and there were routine tasks to perform 

such as maintaining the flow of paper to the chart recorder.  Slee recalled [41]: 

 

‘It was left to us entirely how we allocated our time at Dover Heights.  It was like John 

would do a shift and go home to sleep and then one of us would come on and, say, do  

work on the receivers.  In some ways it was similar to the way we worked during the war, 

doing odd shifts around the clock, so it wasn’t really a shock to the system.  Plus we were 

young in those days!’ 

 

Security was another issue.  Earlier when the solar observations were in progress the 

blockhouse had been left unattended at night.  Even though the site was fenced and a 

caretaker lived on site, on several occasions vandals had climbed onto the blockhouse 

roof and damaged the antennas.  To guard against further damage a fringe of barbed 
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wire was installed around the roof and the external ladder was removed and replaced 

by an internal one with a steel hatch.  A new steel door and steel shutters on the 

windows completed the vandal-proofing. 

 

To while away the night-time hours Bolton taught himself astronomy.  Although he 

had read popular books on astronomy, such as those by his former Cambridge lecturer 

Arthur Eddington, he was in the same position as the other Radiophysics staff who 

were starting up projects in radio astronomy.  Almost all had been trained as 

physicists or engineers and had to pick up the basics of astronomy on the run.  Bolton 

began by reading back issues of astronomy journals borrowed from the physics 

department library at the University of Sydney.  The two most useful were the leading 

American Astrophysical Journal and the leading British journal Monthly Notices of 

the Royal Astronomical Society.  Bolton also began to have occasional contact with 

the astronomers at the Commonwealth Observatory at Mt Stromlo, although as he 

wrote to one astronomer [42]: 

 

‘In Australia all our knowledge and information on astronomy is gained from books and 

papers and very little from personal contact.  Although we have a rapidly developing 

observatory at Mt Stromlo, the interest there is mainly solar and of little value to those of 

us whose work has taken them into the realm of general astronomy.’ 

 

During daylight hours Bolton’s group shared the Dover Heights field station with 

other Radiophysics staff, notably Ruby Payne-Scott who continued her studies on the 

various types of solar radiation.  Payne-Scott shared the distinction with Elizabeth 

Alexander in New Zealand of being the first two female radio astronomers.  As noted 

in Section 3.1, during the war Alexander had discovered that solar radio emission was 

the cause of the interference experienced at New Zealand radar bases, independent of 

the same discovery by Stanley Hey and others.  Although Payne-Scott had been the 

senior author on Bolton’s first research paper, there was no direct collaboration 

between the two.  Soon tensions began to develop between the two groups.  Part of 

the problem was that both groups often wanted to use the same piece of equipment at 

the same time, or one group wanted to carry out routine maintenance which might 

create radio interference for the other group. With space in the blockhouse limited, 

the two groups were getting in each other’s way. 
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The main problem however was a personality clash between Bolton and Payne-Scott.  

At a time when women physicists were a rarity, Ruby was regarded as one of the 

most talented physicists in the Lab and Bolton did in fact have a high opinion of her 

ability.  However, it is doubtful whether he had ever come across anyone like her. 

Most of his life had been spent in a largely all-male environment, from grammar 

school, to Trinity College, and then to the navy.  Ruby had forthright views on all 

sorts of issues such as politics and women’s rights.  Many of the young Radiophysics 

staff held left-wing views, but Payne-Scott went one step further.  She and her 

husband were card-carrying members of the Communist Party, earning her the 

nickname ‘Red Ruby’.  Their feud at Dover Heights became well known back at the 

Lab.  Pawsey was informed of these developments during his overseas trip by his 

right-hand man Lindsay McCready [43]:  

 

‘To cut a long story short, Bolton and Ruby have had a “bust up” at Dover – partly due to 

technicalities … and partly due to, I fear, her personality, and last but not least both 

parties wanting to use the same gear for different experiments at the same time!  Anyhow 

after careful examination of the rights of all and facts we decided it would be better if 

Ruby moved to Hornsby.  No-one objects and she … is quite happy about it.’ 

 

Although Pawsey was sympathetic to Payne-Scott: ‘I think that Bolton has, through 

his hard work and effective results, earned the right to take control of Dover, so that 

anyone working there shall be doing so at his invitation.’ [44] 

  

In parallel with the Cygnus observations the search continued for other possible radio 

sources by scanning the sky at different declinations and looking for the telltale 

interference pattern.  As mentioned above, just before the initial detection of Cygnus 

in June 1947, Bolton and Stanley thought they had found a source in the Centaurus 

constellation.  However, repeated attempts to confirm the detection proved a 

frustrating failure.  It soon became apparent that – if indeed other sources did exist – 

the sensitivity of the antenna systems was not good enough to pick out sources from 

the background noise:  short time variations in the receiver noise were drowning out 

any signals fainter than the strong Cygnus source.  Stanley made the crucial 

breakthrough in October 1947 when he developed a high-tension power supply that 
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eliminated most of the noise variations in the receivers.  The receiver output was 

stable to about one part in several thousand, so much fainter signals could now be 

detected.  Early in November the Dover Heights team was rewarded by the detection 

of a second source in the Taurus constellation, followed early in December by a third 

in Coma Berenices and then (the one that had eluded them) a fourth in Centaurus.  

Taffy Bowen wrote excitedly to Pawsey in Washington, DC [45]: 

 

‘Bolton has now discovered three more discrete sources of cosmic noise, two in Taurus 

and one near the north galactic pole.  The intensities of the former are about one-fifth that 

of Cygnus, the latter one-fiftieth.  He is quite certain of the results but not too sure of 

their positions as yet.  We are naturally very excited about this and Bolton is pushing it as 

hard as he can. …  I think, too, it would be wise not to be too specific about them in the 

US and UK until Bolton has had a chance of finalising his observations and getting them 

published.  I will be sure to keep you informed of progress.’ [his italics] 

 

Pawsey reassured Bolton that he was being non-committal when questioned about the 

existence of further sources [46]: 

 

‘I hope your work is progressing very satisfactorily at Dover.  I have heard from Bowen 

of the new sources which you think you have discovered, and this sounds very interesting 

indeed.  With regard to discussions over here, I am simply saying that you suspect there 

are other sources, but are not sure yet of the results.  It might be worthwhile at a fairly 

early stage, discussing the location of these new sources with the Mt Wilson people.  I 

think they are the best crowd to collaborate with in this work, but I shall leave this for 

you people in the laboratory to decide.’ 

 

By Christmas 1947 a fifth and a sixth source had been added to the list [47]. 

 

It had been a vintage year for the Dover Heights group.  It began in March with the 

lucky observation of a giant solar flare and was followed by the discovery in June that 

Cygnus is a point-like source.  Evidence was now emerging for the existence of a 

whole new class of objects previously unknown to astronomers.  As we see in the 

next chapter, most of 1948 was spent measuring more accurate positions for the radio 

sources in an attempt to identify some of them with known optical objects. 
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Chapter 4 

 

Identification of the First Radio Sources 

 

In March 1948 Bolton took a break from searching for new radio sources.  He 

married Letty Leslie at Sydney’s Registry Office and they spent their honeymoon on 

an island resort in the Whitsundays in Queensland.  The couple had met in 1946 

before Bolton’s discharge from the navy and no doubt Letty was an important reason 

why John had decided not to return to England.  Letty had first married Ernest Leslie 

in 1940 and they had two sons (who later John would formally adopt).  Ernest went to 

England where he trained to be a navigator in the Royal Air Force.  During a raid on a 

German submarine base his aircraft was shot down over France, killing all but one of 

the crew members [1]. 

 

In early April 1948 Bolton wrote up a further Nature paper on the new sources [2].  

Aside from Cygnus, six new sources were now known at 100 MHz and approximate 

positions had been found for three of them (see Table 4.1).  All six were weaker than 

Cygnus with radio intensities ranging from 0.25 down to 0.03 that of Cygnus.  

Initially Bolton named each source in the order it was found, followed by the year it 

was found; thus, source 1.46 corresponded to Cygnus, 2.47 to Taurus, etc.  Later, this 

convention was dropped in favour of naming each source after the constellation 

where it was found, followed by a letter A, B, … to indicate that it was the strongest, 

second strongest source, etc. in that constellation.  This naming convention was 

quickly adopted by radio astronomers around the world and it is still partly in use 

today. (For conciseness we omit the ‘A’ below unless it is explicitly required.) 

 

When writing up the Nature paper Bolton was advised by the former Radiophysics 

chief David Martyn, then based at the Commonwealth Observatory near Canberra, to 

simply present the data on the new sources and not to engage in speculation on their 

possible nature [3].  However, Bolton felt that because the Dover Heights group had 

discovered the sources he had as much right as anyone else to put forward ideas.  

With Taffy Bowen’s blessing, half the paper was a discussion of the possible origin 

and distribution of galactic radiation.  Bowen sent a copy of the manuscript to 

Pawsey, then in London [4]: 
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Table 4.1:  Radio sources detected at Dover Heights up to 1 February 1948 
(adapted from Bolton 1948, p. 141) 

 

Temporary 
designation A 

Position Intensity at 
100 MHz (Jy) B 

Angular 
width 

Type 

RA Dec 

Cygnus A (1.46) 
 

19h  59m +41° 47′ 6000 <  8′ Variable 

Taurus A (2.47) 
 

05h  13m +28° 1000 <30° Variable? 

Coma Berenices A 

 
12h  04m +20° 30′ 1500 <15′ Constant 

Hercules A (7.48) 
 

16h  21m +15°   200 <  1° – 

8.48 
 

– –   200 – Constant 

5.47 
 

– –   300 <  1° Constant 

Centaurus A (6.47) 
 

– – 1000 <15′ Variable? 

 
A  A second source in Taurus (3.47) was later shown to be fictitious.  Coma Berenices A (4.47) was later 
renamed Virgo A (see next section). 
 

B The source intensities were originally given in units of watts m–2 (c/s) –1, equivalent to the 
contemporary unit of 1 Jansky ≡ 1 Jy ≡ 1 × 10–26 W m–2 Hz–1. 
 

 

‘After a few delays here and at Head Office we have finally sent off Bolton’s letter to 

Nature about his new sources of cosmic noise. … You will see that in addition to the 

experimental data he has had a fling at interpretation.  We debated this a little and finally 

decided it couldn’t do much harm in a letter to Nature and might do some good.’ 

 

Pawsey replied that he was pleased to hear that the letter was to be published [5]: ‘In 

particular it relieves me from the embarrassment of having to answer a question as to 

the existence of more discrete sources with a statement that I do not know.’  Bolton 

also justified his theorising to Pawsey [6]: 

 

‘I hope you don’t think the letter to Nature was a bit too ‘sensational’ – as a matter of fact 

it is exactly as I first drafted it.  I passed the draft to Bowen and the next thing I knew it 

had been typed and posted.  Martyn reckoned I should have just cut it to the existence of 

the new sources.  I said that as far as theorising went my guess was as good as anybody’s 

at the moment and that at least I had some observational evidence to present.’ 

 

In the Nature letter Bolton proposed that the radiation had three components, the first 

being the free–free transitions of charged particles in interstellar space, the 

mechanism favoured earlier by Reber and others (see Chapter 2).  The second 
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component was the aggregate of emissions from individual stars in regions of high 

star density.  For the third component: 

 

‘A contribution from individual discrete sources, which may be distinct ‘radio-types’ and 

for which a place might have to be found in the sequence of stellar evolution.  Purely 

electromagnetic disturbances as an origin of these have been discussed by several writers, 

and the following additional possibilities are envisaged:  (a) A pre-main sequence model 

consisting of a large cool gas sphere, gravitational energy of contraction being radiated in 

the radio frequency spectrum.  (b) A post-main sequence model – possibly a development 

of the planetary nebula consisting of an intensely hot central star, with its radiation in the 

far ultra-violet, surrounded by a shell of predominantly stripped atoms.’ 

 

Both pre- and post-main sequence models may have seemed plausible at the time, but 

neither turned out to be correct.  However, Bolton’s possibility (a) involving 

‘gravitational energy of contraction’ did anticipate modern theories of supermassive 

black hole formation, the difference being that the black hole may be a billion times 

more massive than a main sequence star.  We return to theories of radio emission in 

Chapter 6. 

 

4.1  The Expedition to New Zealand  

After the despatch of the Nature letter, the overriding priority was to measure precise 

positions for the new sources in the hope of identifying some of them with known 

optical objects.  A relatively accurate position for Cygnus had been found by 

observing the source rising at Dover Heights, combined with the observations at Long 

Reef and West Head.  However, the six new sources were all at declinations well 

south of Cygnus.  At Long Reef and West Head these sources would either rise or set 

over land and so a suitable fringe pattern could not be obtained.  Bolton began 

scouting around for a new and better site.  An island near Coffs Harbour, north of 

Sydney, was briefly in contention, but it soon became apparent that there was nothing 

suitable on the eastern seaboard of Australia.  Lord Howe Island and Norfolk Island 

in the Tasman Sea were also investigated, but the best candidate appeared to be the 

region close to Auckland in New Zealand where there were exceptionally high cliffs 

on both the east and west coasts [7]. 
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Taffy Bowen gave his immediate support to the planned expedition and began by 

contacting the Surveyor-General of New Zealand in Wellington [8]: 

 

‘We are planning to make a special series of observations of cosmic noise from the 

constellation of Cygnus and find that there is no site readily available in Australia for this 

purpose.  It appears that we are much more likely to find a suitable spot in New Zealand, 

possibly in the North Auckland area, and we would be very much obliged if your 

Department could supply maps and some information relating to this area. … Such a 

position should be accessible by a three-ton military trailer, i.e. road unnecessary if 

country between road and site is flat or slightly undulating with firm ground.’ 

 

In March 1948 Bowen wrote to CSIR head office requesting its support [9]: 

 

‘To determine as precisely as possible the positions and upper limits of angular width of 

the variable sources of cosmic noise already approximately determined by observations 

from Dover Heights.  At present some seven such sources have been found.  The 

accuracy with which these determinations may be made is considerably improved if both 

the rising and setting of the sources can be observed over a sea path.  No site on the east 

coast of Australia satisfies these requirements. … All the radio gear has been assembled 

in a trailer and will be taken to New Zealand by boat, to arrive by 1 June next.’ 

 

Bowen also asked head office to contact its Kiwi counterpart – the Department of 

Scientific and Industrial Research (DSIR) – and request its support.  The 

Radiophysics Lab would fully fund the project, but backup support on the ground 

would be needed.  The DSIR agreed to arrange for the hire of a four-wheel drive 

truck for the duration of the expedition and for Alan Gardner from its Ionosphere 

Section to act as liaison officer.  Bowen also contacted a number of local authorities 

in New Zealand.  The Post Master General’s department reported on whether there 

were any significant sources of man-made radio interference in the region.  Similarly, 

the Weather Bureau in Auckland made meteorological records available at potential 

sites, including various items such as relative humidity and temperature, rainfall and 

concentration, thunder and atmospherics, wind velocities, tides, and roughness of sea. 

 

Bolton decided the expedition would start in June 1948 primarily because Cygnus, 

the main target of the trip, would rise in the evening about 10 pm and set about 4 am, 
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the optimum times for making accurate observations.  The other sources would have 

at least one rise or set time at night.  Stanley spent April and May converting an ex-

Army radar trailer into a mobile sea interferometer (see Figure 4.1).  Five sites on the 

North Island were investigated with Cape Reinga on the northern-most tip considered 

to be the best, but then ruled out because of poor road access and, with the nearest 

town 100 km away, just too isolated.  Instead, two sites were chosen, one on the east 

coast and the other on the west coast. 

 

 

 

Figure 4.1.  The ex-Army radar trailer in the grounds of the Radiophysics Lab.  This mobile 

sea interferometer featured four Yagi aerials, a new 100 MHz receiver, recorders, 

chronometers, weather recording instruments and all the tools and backup equipment 

needed to operate reliably at a remote location.  [courtesy: RAIA] 

 

 

 

Figure 4.2.  Both Bolton and Stanley travelled to Auckland by flying boat.  Stanley arrived on 29 May 

1948 and arranged for the mobile sea interferometer to be towed to the site at Pakiri Hill.  Bolton arrived 

a week later.  [courtesy: Stanley family] 
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For the east-coast observations a sheep farm ‘Springbank’ in an area known as Pakiri 

Hill was chosen, a short distance north of the small coastal town of Leigh and about 

70 km north of Auckland.  At an elevation of 280 metres, the site was over three 

times the height of the Dover Heights cliffs, so that the angular resolution of the sea 

interferometer would be over three times better.  This section of the coastline ran 

roughly east–west which would give a view of Cygnus rising in the north–east and 

setting in the north–west.  The North Auckland Land and Survey Board surveyed the 

exact spot where the trailer would be parked.  The longitude and latitude were known 

to an accuracy of 10 metres, while the elevation above mean sea level was measured 

to an accuracy of 25 cm.  The site was excellent, but not perfect.  An island group to 

the north–west known as the Hen and Chickens cut off some of the setting, but 

otherwise Cygnus could be observed throughout its six-hour transit across the 

northern sky. 

 

 

 

Figure 4.3.  The observing site at Pakiri Hill north of the Leigh township showing (above) the local plan 

and (below) a map of the district (with the site marked by a circle).   The coastline at the site runs 

approximately east–west and allowed Cygnus to be observed rising in the north–east and setting in the 

north–west.  [courtesy: NAA file A1/3/14A] 
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The trailer was shipped to Auckland in mid-May, with Stanley flying over to arrange 

for its transport to the Pakiri Hill farm (Figure 4.2).  Bolton arrived a week later and 

introduced himself to the Greenwood family who had owned the farm since the first 

European settlement of the district in the 1860s (Figure 4.3).  Bolton was able to 

report to Bowen [10]: 

 

‘When I arrived at Leigh a week last Sunday I found the trailer on site but with no power, 

Stanley with a very bad cold, myself with an incipient one and a public holiday the 

following day.  Since then I am pleased to say things have gone better. … Cooperation 

both official and unofficial has been magnificent.  The farmer on whose land we are sited 

has raised no objection to us using his timber, digging holes in his paddocks etc. – in fact 

has done everything to assist.  They even brought us tea and sandwiches at five o’clock in 

the morning on the last two nights – for which we are very grateful.  Nine hours at a 

stretch without Dover’s comforts is just a little tough.’ 

 

Although initially there were problems getting the power connected, Bolton and 

Stanley settled into a routine of ten observing days, followed by four days of rest and 

recreation (see Figures 4.4 and 4.5).  Typically each observing day consisted of about 

16 hours broken into two shifts.  Most of each shift was spent seated at a small desk 

inside the trailer cabin checking that the receivers and the various instruments were 

operating correctly.  A control panel was used to rotate the cabin mounted on the 

trailer and point the antenna to different declinations along the eastern horizon.  The 

main problem was the variable power output from the 3 kW transformer installed on 

site which made the chart recorders run at speeds varying by up to 10%.  The time 

given by the chronometer, accurate to half a second, was written on the chart record 

at regular intervals.  The accuracy of the chronometer was checked every hour, and 

recalibrated if necessary, by listening for the hourly time beeps broadcast by the local 

radio station.   The heat generated by the bank of instruments had to be ventilated 

from the cabin by an electric fan, but at least the cabin could be kept warm during the 

freezing winter nights. The weather at times was appalling and operations were often 

shutdown with the cabin lashed by storms rolling in from the Pacific Ocean. 
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Figure 4.4.  The mobile sea interferometer on the Greenwood farm at Pakiri Hill in June 1948.  The 

cabin mounted on the trailer could swivel in azimuth to observe sources rising at different declinations 

along the horizon.  [courtesy: Stanley family] 

 

 

           

 

Figure 4.5.  John Bolton (left) and Gordon Stanley stayed in the Cumberland Hotel in Leigh during their 

two-month observing run at Pakiri Hill.  Gordon not only went fishing, but also visited relatives he had 

not seen since leaving New Zealand at the age of six.  [courtesy: Stanley family] 
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Figure 4.6.  The expedition featured on the front page of the local newspaper.  The article 

appeared under the pen name ‘Kia Ora’, the Maori term for ‘good luck’.  [courtesy: Bolton papers, 

National Library of Australia] 

 

Despite the isolation of the Pakiri site, the expedition began to generate a fair amount 

of interest (see e.g. Figure 4.6).  In May, even before the trailer had arrived, the New 

Zealand Herald ran a story on the forthcoming field trip and how the site near Leigh 

was much superior to the Sydney headlands.  A couple of weeks after observations 

began, reporters from both the Auckland Star and the NZ Herald visited the site.  The 

Herald opened its story ‘Cosmic Noise from Region of the Milky Way’ with the 

flowery paragraphs [11]: 

 

‘More of the deep mysteries of the Universe, which has yielded so many secrets to man 

in recent years, are being probed in a little trailer laboratory on a hill-top north of Leigh, 

overlooking the Hen and Chickens.  Here the slow, silent tracing of inked pointers across 

graphs unwinding through the dark nights record the arrival at the Earth of mysterious 

radiations from outer space known as cosmic noise.’ 

 

‘Two young scientists from Australia share the night watches, and collate the data for 

further study.  Their enthusiasm for their abstruse studies in the realm of pure research 
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derives largely from the knowledge that they are pioneers and perhaps leaders in one of 

the newest fields of science.’  

 

The reporter concluded the story by asking Bolton whether the observations would be 

of any particular use.  He replied by repeating the well-known story told about the 

British physicist Michael Faraday.  When asked whether his discoveries on electric 

currents would be of any use, he replied: ‘Madam, what is the use of a newborn 

baby?’ 

 

Most scientists will go out of their way to get publicity for their research.  It reflects 

well on their university or research organisation, it helps to generate funding for their 

research, and it attracts young scientists to work in their group.  Curiously, Bolton did 

not welcome the attention of the Auckland reporters and considered it both an 

intrusion and a distraction.  He was particularly angry at the Auckland Star reporter, 

who turned up unannounced, and he refused to be interviewed.  He tried 

unsuccessfully to persuade the reporter not to run a story, arguing that he and Stanley 

were not seeking publicity.  The two NZ Herald reporters fared a little better and were 

permitted to stay overnight.  In the morning John vetted their copy before giving them 

permission to publish. 

 

Although Bolton’s hostility now seems puzzling, it was in fact not unusual and should 

be seen within the context of the times.  The prevailing view in CSIR, from chief 

executive David Rivett down to scientists at the laboratory bench, was that publicity 

should be avoided whenever possible.  For the Radiophysics Lab this was partly a 

hangover from the wartime years when its work was shrouded in secrecy and 

publicity of any sort was unwelcome.  There was also the view that reporters, in their 

attempts to simplify material for a general audience, were more likely to misquote or 

misinterpret a scientist and end up creating more bad publicity than good.  (Skilled 

journalists who specialised in science reporting were a long way in the future.)  When 

Bolton complained about the journalists, which he referred to as a ‘menace’, Bowen 

commiserated: ‘Don’t worry about the attentions of the press.  It is just one of the 

misfortunes of this life and should be treated as such.’ [12]  We return to this theme in 

the next chapter. 
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Not all visitors to the site were unwelcome.  Several DSIR scientists came to discuss 

the observations and also a group of physicists, which included Percy Burbidge, the 

professor of physics at Auckland University College (now the University of 

Auckland).  Burbidge was an ionospheric physicist who, like Pawsey, did his PhD at 

the Cavendish Laboratory in Cambridge.  Another visitor was Alan Maxwell, a young 

graduate student who was writing a masters thesis based on his observations of the 

Sun using a two Yagi antenna [13].  Burbidge invited Bolton to visit Auckland in 

August and give a public lecture, but Bolton refused for the same reasons he was 

reluctant to talk to the press.  He did however agree to give a talk to the physics 

department, which he did later in August after the completion of the observations on 

the west coast.  His talk presented a potted history of radio astronomy starting with 

Karl Jansky through to the Cygnus observations.   Bolton pointed out that New 

Zealand had missed an opportunity of getting in on the ground floor of the new 

astronomy.  New Zealand radar operators had discovered bursts of solar radio noise 

during the war and Elizabeth Alexander from the Radar Development Laboratory had 

followed up with a detailed report on the ‘Norfolk Island effect’, but since then there 

had been no significant developments in the country.  Ironically, a detailed account of 

Bolton’s talk appeared in the NZ Herald [14]. 

 

 

 

Figure 4.7.  Record of sources (8.48) and Taurus obtained at Pakiri Hill on 13 July 1948 at a frequency 

of 100 MHz.  Note the modulation of the Taurus interference pattern caused by a third source in this 

region.  Note also the absence of the spiky structure observed for Cygnus (see Figures 3.8 and 3.9), a 

result of Taurus being an extended source with angular dimensions of 4′ × 6′ (see Section 4.3).  [after 

Bolton and Stanley 1949, p. 141] 

 

By the end of July, Bolton and Stanley had obtained good records for Cygnus on 

thirty nights and for Taurus on five nights (see e.g. Figure 4.7), and a handful of 

records for some of the other weaker northern sources.  With the work at Pakiri Hill  
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Figure 4.8.  (above) Bolton overlooks the resort town of Piha and Lion Rock, west of Auckland.  (below) 

Early in August 1948 Bolton and Stanley stationed their trailer at a former WWII radar station, a short 

distance south of Piha.  [courtesy: Stanley family] 

 

completed, the trailer was then towed over to the west coast to start observations on 

the sources setting.  The site chosen was a former WWII radar station a few 

kilometres south of Piha, a popular resort town about 30 km due west of Auckland 

(see Figure 4.8).  The site had a number of advantages, including a very stable power 
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supply which avoided the problem faced with the chart recorders at Pakiri Hill.  The 

level of man-made interference compared with Sydney was so low that good quality 

records could be obtained for some sources that set during the daytime.  The on-site 

accommodation meant that the truck could be rested from driving to and from the 

site.  The weather was excellent and records were obtained over a two-week period 

for the four sources Cygnus, Taurus, Centaurus and Virgo.  The Virgo source had 

previously been labelled Coma Berenices (see Table 4.1), but the Dover Heights 

declination turned out to be inaccurate by a massive 8°.  The Piha observations meant 

that the source had to be moved from one constellation to another! 

 

 

4.2  Analysis of the New Zealand Data  

Bolton returned to Sydney in mid-August 1948, while Stanley stayed on for a few 

days to arrange shipment of their mobile sea interferometer.  The expedition had been  

a major success on a number of levels.  A further six discrete sources had been 

discovered, bringing the known number to 13, and there was strong evidence that  

there might be up to fifty more.  The sources were far too faint to examine in any 

detail during the expedition, but could be followed up later at Dover Heights. 

 

The Cygnus fluctuations also provided a further major discovery.  During the 

expedition Bruce Slee had continued observations of Cygnus at Dover Heights.  A 

comparison of the fluctuations in the Dover and New Zealand records, taken at a 

distance apart of 2100 km, showed no correlation between the two.  As a control 

experiment, observations at both Dover and Piha had been made of a group of 

sunspots that had appeared on the Sun over a three-day period early in August.  As 

expected, there was a strong correlation between the two sets of records.  Thus, here 

was compelling evidence (but not yet conclusive) that the Cygnus fluctuations were 

not intrinsic to the source itself, but were caused by the radio signal passing through 

the Earth’s ionosphere.  Bolton’s earlier belief that the fluctuations originated in the 

source was incorrect.  The suggestion by Gerard Kuiper at the Yerkes Observatory, 

made to Pawsey in November 1947, that the Cygnus fluctuations might be analogous 

to the twinkling of starlight turned out to be correct [15]. 
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Late in August 1948 Bolton began the long and laborious task of analysing the 

previous three months of observations.  Bruce Slee recalled [16]: 

 

‘John set up a trestle table in the Dover Heights blockhouse where he did his 

computations and corrections.  There were staff at the Radiophysics Lab who could do 

some of the calculations, but he made no use of them.  He had an adding machine, one of 

those you crank by hand, but that was all.  It was a complex task and took several 

months.  He had to knit together records taken on the east and west coast of New Zealand 

to determine the right ascensions and declinations of the sources.’ 

 

Bolton decided to concentrate on calculating the celestial coordinates of the four 

strongest sources.  Records for Cygnus and Taurus had been obtained at both Pakiri 

and Piha, but there were no records for Centaurus and Virgo from Pakiri as both 

sources rose over land rather than the sea.  For these two sources it would be 

necessary to rely on the Piha observations of setting in the west and on further 

observations at Dover Heights of rising in the east.  With the two sites 2100 km apart, 

the records would need to be ‘normalised’ before the data from each site could be 

combined.  The calculation of declination had to take into account the different 

latitude at each site.  Similarly, the calculation of Right Ascension had to take into 

account the longitude of each site and also the two-hour time difference between New 

Zealand and Australian Eastern Standard times.  Bolton also had to take into account 

that the observations took place at different times of the year and convert solar times 

to sidereal times.  Many of the calculations needed a good knowledge of 

trigonometry. 

 

In mid-October 1948 Bolton took a break from the analysis to join in another 

expedition.  On 1 November the Sun was to undergo a partial eclipse and the 

Radiophysics Lab planned to carry out observations from several sites in Australia, 

including Strahan on the west coast of Tasmania.  Similar to the failed Brazil 

expedition two years earlier, the aim was to use the passage of the Moon to study the 

correlation between radio emission and visible features on the solar surface.  Gordon 

Stanley spent a month converting the New Zealand trailer for solar work and he and 

Bolton teamed up with Don Yabsley and John Murray who were planning a separate 

observation at Strahan using different equipment (see Figure 4.9).   In addition to the 
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eclipse, Bolton and Stanley wanted to make further mountain-top observations of 

Taurus setting at night over the Southern Ocean.   At Piha the setting had taken place 

in the afternoon and their records had been degraded by solar noise.  Several 1000 

metre peaks near Strahan were investigated as a possible site for the observations. 

 

 

 

Figure 4.9.  The Radiophysics Lab mounted an expedition to Strahan on the west coast of Tasmania to 

observe an eclipse of the Sun on 1 November 1948.  The mobile sea interferometer used in New 

Zealand was modified by Gordon Stanley to observe the eclipse.  The 3 m diameter dish was 

assembled on site and successfully observed the eclipse. From left are John Bolton, John Murray and 

Don Yabsley.  [courtesy: Stanley family]. 

 

In contrast to the New Zealand expedition, which was shaping up as a great success, 

the eclipse expedition turned out to be a dismal failure.  The trailer was towed from 

Sydney to Melbourne, but a dock strike delayed its shipment to Devonport on 

Tasmania’s north coast, leaving little time to spare [17].  An ex-Army truck was used 

to transport the trailer to Strahan, but then Bolton and Stanley were unable to get the 

power generator working properly.  Unknown to them, the generator had been 

drained of all fluids as a travel precaution, including its air filter, and by the time the 

problem was diagnosed it was too late to produce any usable records of the eclipse.  

To make matters worse, their plans for the mountain-top Taurus observations had to 

be abandoned because of unseasonal snowfalls.   As a final straw, on their way back 

to Devonport, sparks from a hole in the truck’s muffler set fire to an electrical cable 

and the fire quickly spread to the wooden tray and tarpaulin.  A fire extinguisher from  
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Figure 4.10.  After his return from New Zealand, Bolton prepared short unpublished 

reports on the position of each of the four sources Cygnus A, Taurus A, Virgo A and 

Centaurus A.  [courtesy: NAA file A1/3/14B] 

 

a passing bus was used to put out the blaze, but not before extensive damage to the 

truck and the loss of John’s briefcase.  Stanley recalled [18]: ‘The expedition had the 

worst of everything one could imagine.  Fire, snow, equipment failure, injury, near 

train wreck and fatigue.  If I have left anything out you can assume that happened 

too.’ 

 

Back in Sydney, Bolton prepared a series of brief internal Radiophysics reports 

setting out his calculations for each of the four sources [19] (see e.g. Figure 4.10).  

For Cygnus, the angular size of the object was shown to be less than one minute of 

arc, eight times smaller than the earlier measurement at Dover Heights and proving 

without doubt the point-like nature of the source.  The new position for Cygnus 

differed considerably from the old one and showed that the previous estimate of 

atmospheric refraction had been significantly in error [20] (no errors were given for 

either new coordinate): 

 

Old position:     RA 19 hr  58 min  47 sec ± 10 sec   Dec  +41°  47´ ± 7´ 

     New position:    RA 19 hr  58 min  16 sec                 Dec  +40°  36´ 
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Bolton studied the star charts with this new position, but to his great disappointment 

he could not see any object within the error box that seemed a likely candidate.  The 

New Zealand expedition had been organised primarily to try to reveal the identity of 

the object – the time of the year when it would rise and set at night and the site at 

Pakiri Hill with its view of the source low in the northern sky – but frustratingly 

Cygnus continued to elude them.  It would be almost three years before Cygnus was 

finally identified.  As we will see in Chapter 5, in 1951 Graham Smith at Cambridge 

measured a new and far more accurate position for the source [21].  This prompted 

Rudolph Minkowski and Walter Baade at the Mt Wilson–Palomar Observatories to 

make extended observations of the position, revealing a very faint object at the 

extraordinary distance of approximately 1000 million light-years. 

 

4.3  Optical Identifications of the First Three Sources  

The disappointment of Cygnus was soon swept away by the results for the other three 

sources.  The position measured for Taurus almost coincided with an ordinary star 

but, as Bolton noted [22]: 

 

‘The source is close to the star ζ Taurus as far as identification from a star map is 

concerned but the limits of position enclose the most remarkable object in this region – 

NGC 1952 or the Crab Nebula.  This nebula is believed to be the remains of a supernova 

Type I of about AD 1054 judging both from its rate of expansion and the reported 

appearance of a supernova in this area in Chinese history.  The dimensions of the nebula 

are 4´ × 6´ and the present expansion rate 0.13 arcsecond per year.  Doppler shift 

measurements show an expansion velocity of 1300 km per sec which with the angular 

rate gives a distance of 4200 light-years.’ 

 

Bolton’s observation was a considerable understatement.  The object is not only 

remarkable in this region of the sky, but it is one of the most remarkable in the entire 

sky.  Aside from objects within the Solar System, it has been estimated that there 

have been more research papers written about the Crab Nebula than any other 

astronomical object [23].  The Crab Nebula is a supernova remnant, the remains of a 

star that violently exploded in the year AD 1054.  No account of this supernova can 

be found in European chronicles surviving from this time, but there are various 
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Arabic, Chinese, Japanese and Korean records of it [24].  In particular, astrologers in 

the court of the Chinese emperor kept a detailed record of this spectacular event.  The 

supernova appeared suddenly and was said to develop spikes leaving it in all 

directions.  Its reddish-white colour remained clearly visible even in bright daylight 

for three weeks and for months afterwards it dominated the night sky [25]. 

 

Bolton felt confident enough of the Taurus identification for him and Stanley to 

publish a detailed account in the Australian journal, with the title ‘The position and 

probable identification of the source of galactic radio-frequency radiation Taurus-A’ 

[26].  They gave a slightly revised position of RA 05 h 31 m 20 s ± 30 s and Dec. 

+22° 02′ ± 8′ and concluded the paper (p. 145): 

 

‘The limits in the position of the source enclose NGC 1952, otherwise known as the Crab 

Nebula.  According to [Walter] Baade this nebula is the remains of the supernova of AD 

1054 observed by Chinese astronomers.  The angular dimensions of the nebula are 4´ by 

6´ and the angular rate of expansion is 0.13ʺ per year. ... The measurements on 100 Mc/s 

give an effective temperature of two million degrees, assuming a source size of 5′ for 

Taurus-A.  From the present values of temperature and density in the Crab Nebula it 

would be difficult to explain this result in terms of strictly thermal processes.  However, 

it is not unlikely that non-thermal components would arise from differential expansion 

within the nebula and general expansion into interstellar matter. In view of this and the 

close agreement between the positions of the Crab Nebula and the source Taurus-A, it is 

suggested that the Crab Nebula is a strong source of radio-frequency radiation.’ (my 

italics). 

 

The paper was praised by Grote Reber [27]: ‘I have been greatly impressed by your 

series of publications upon discrete sources of galactic radio waves.  The last one, in 

the June 1949 issue of the Australian Journal of Scientific Research, is a beautiful 

piece of work.’  Not all shared Reber’s enthusiasm for the Taurus identification.  An 

authority on the Crab Nebula, Simon Mitton, has noted [28]: 

 

‘The first suggested identification of a discrete radio source with an optical object came 

in 1948 from Australia.  John Bolton and G. J. Stanley of Sydney suggested that radio 

source Taurus A could be matched to the Crab Nebula.  Initially this finding did not 

cause any stir among astronomers in the northern hemisphere.  They either felt that the 
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positional information from far-off Australia was not good enough, or rejected the notion 

because it did not fit their own ideas as to what radio sources might be. Even four years 

after the initial suggestion, one of Britain’s leading radio astronomers said that the 

coincidence of Taurus A with the Crab Nebula should not be taken too seriously.’ 

 

The two other radio sources, Centaurus and Virgo, provided an even bigger surprise, 

though initially Bolton did not realise the full significance of his identifications.  For 

Virgo, Bolton noted [29]:  ‘The limits enclose M87 (or NGC 4486) one of the large 

group of nebulae and clusters in the Coma Berenices – Virgo area.  The spectrum of 

this object is not known but its radial velocity has been measured and found normal 

for the group of clusters.’  The object is distinguished by a bright blue jet of material 

extending from its centre, an extremely unusual feature (see Figure 4.11). 

 

            

 

Figure 4.11.  The first three radio sources to be identified with visible objects by the Dover Heights team 

(from left): Taurus A with the Crab Nebula (NGC 1952); Centaurus A with NGC 5128; and Virgo A with 

M87 (NGC 4486).  [courtesy: RAIA] 

 

The other source Centaurus turned out to be a bright and peculiar object with a dark 

dust band straddling its disc (see Figure 4.11).  In his internal report (see Figure 4.10), 

Bolton noted [30]: 

 

‘The limits in position of the source RA 13 h 22 m 20 s + 1 m, Declination –42° 37′ + 8′ 

enclose NGC 5128.  This object is classed as an extragalactic nebula.  It is a seventh 

magnitude object with a peculiar spectrum.  [Walter] Baade calls it a freak and it is 

referred to by [Harlow] Shapley as a “pathological specimen” though no details are 

known at present as to the exact nature of its peculiarity.  It will be an interesting object 

to study with the Stromlo nebular spectrograph during the late summer months.’ 

 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 94 

Of the four sources studied by Bolton, Centaurus was the only one located in the 

southern half of the sky.  In an interesting historical twist, its optical counterpart NGC 

5128 was first observed not far from Dover Heights, over 120 years earlier, by James 

Dunlop at the Parramatta Observatory, west of Sydney (see Figure 3.2).  A brief 

digression is worth while. 

 

In 1821 Sir Thomas Brisbane arrived in Sydney to become the sixth governor of the 

colony of New South Wales.  Brisbane was a keen amateur astronomer and decided 

to build the first observatory in the country.  Although a rudimentary observatory had 

been established soon after British settlement in 1788, it was used primarily for time 

keeping and as a navigational aid and did not produce any astronomical observations 

of significance.  Brisbane built his observatory at Parramatta, 20 km west of Sydney, 

fitted it out with his own instruments and personal library shipped from Scotland, and 

hired two assistants, all at his own expense.  Unfortunately, Brisbane’s term as 

governor was not a success and he was recalled to England just four years later.  One 

of his assistants, James Dunlop, stayed on and commenced a survey of southern 

nebulae and star clusters early in 1826.  In April he observed and sketched NGC 

5128; however, from his written description it was clear that he had been misled by 

the dark dust band that lies across the object.  Dunlop thought that NGC 5128 

consisted of two independent nebulae of similar shape that, by pure coincidence, are 

positioned side by side.  Dunlop’s catalogue totalling 629 southern objects was 

published in England two years later, one of the first astronomy papers produced from 

Australia [31].  

 

Bolton’s identifications of the three radio sources with optical objects all turned out to 

be correct, though it would take several years before most astronomers were fully 

convinced.  Each identification was to some degree a lucky guess.  The error box 

around each radio source contained a fair number of possible candidates and there 

was no logical reason to rule them out.  The Taurus identification seemed the safest as 

a great deal was known about the Crab Nebula and it is seemed quite plausible that it 

could be an intense radio emitter.  Bolton knew however that many of the possible 

candidates were relatively ordinary stars and that, if they were similar to the Sun, they 

could not be the source of such intense radio emission.  He guessed that the optical 
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object was more likely to be something new and unusual and here his intuition proved 

correct. 

 

Although Bolton was confident of the Taurus identification, the other two sources 

presented a difficult dilemma.  He spent a week in February 1949 at the 

Commonwealth Observatory at Mt Stromlo talking to astronomers and scouring the 

literature for information on NGC 5128 and M87.  Although both objects were 

classified as extragalactic, the evidence was not strong.  Individual stars had not been 

resolved in either object which would prove that both were indeed galaxies outside 

our Galaxy.  Since Centaurus and Virgo were among the strongest of the known radio 

sources, it seemed logical that both objects must be relatively close within the Galaxy 

and not at vast extragalactic distances.  Bolton was concerned that an extragalactic 

claim for Centaurus and Virgo would be seen as sure evidence that he had guessed 

incorrectly for both and that other Galactic objects within the error boxes must be the 

actual sources of the strong radio emission.  He suspected that the journal referees 

would probably come to the same conclusion, and in all probability his paper would 

be rejected for publication. 

 

In March 1949 Bolton drafted a brief paper summarising the optical identifications of 

the three radio sources.  The title made clear his decision: ‘Positions of three sources 

of Galactic radio-frequency radiation’.  Before submitting the paper he wrote to 

Rudolph Minkowski at the Mt Wilson–Palomar Observatories (see Figure 4.12).  

Minkowski was familiar with the work at Dover Heights following his discussions in 

November 1947 with Joe Pawsey during his overseas trip (see Section 3.2).  

Minkowski and his colleague Walter Baade had in fact carried out the detective work 

that proved the Crab Nebula is the remnant of the supernova observed by the Chinese 

in AD 1054 [32].  In his letter Bolton gave the positions of the three sources and then 

noted [33]: 

 

‘The most interesting of these is the source in Taurus whose position corresponds very 

closely to that of the Crab Nebula.  I referred to papers on this object by Baade and 

yourself in the Astrophysical Journal.  The intensity of the radiation at 100 Mc/s gives an 

equivalent temperature of about a million degrees for an angular width of 5′.  From your 

results on temperature and density in the Crab Nebula it seems unlikely that this  
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Figure 4.12.  Rudolph Minkowski (left) from the Mt Wilson–Palomar Observatories 

with Bernard Mills during a visit to the Radiophysics Lab in 1956.  Minkowski was the 

first prominent astronomer to realise the importance of the discovery of the first 

discrete radio sources by the Dover Heights group.  Minkowski was an expert on the 

Crab Nebula and so the identification of the Taurus A source with the Crab was of 

particular significance.  [courtesy: Sydney Morning Herald]   

 

equivalent temperature could be due to strictly thermal processes in the nebula. …   I 

would be interested to hear your opinion on this.’ 

 

Minkowski replied providing the latest information available on the three optical 

objects, including new evidence that strengthened the case that Centaurus and Virgo 

were indeed external galaxies.  Bolton was not persuaded and continued to maintain 

that both were Galactic objects [34]. 

 

Early in May 1949 Bolton, with co-authors Stanley and Slee, dispatched the letter to 

Nature where it was published on 16 July [35].  The heart of the paper was a brief 

table (see Table 4.2) giving the positions of the three sources and their possible 

associated visible objects (see Figure 4.11):  ‘It is found that all three sources 

correspond within limits of experimental error to positions of certain nebulous 

objects.’  A strong case was made for the identification of Taurus with the Crab 

Nebula and how the emission was unlikely to arise from thermal processes: ‘The 

present estimates of density and temperature in the Crab Nebula would fall well short 

of explaining this result by strictly thermal processes.  Non-thermal components 
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resulting from the expansion of the nebula do not, however, seem unlikely.’  Their 

suggestion of ‘non-thermal components’ in the radiation proved to be an important 

step in the acceptance of the synchrotron emission mechanism developed in the 1950s 

(see Section 6.1 and note [16] in Chapter 6). 

 

Table 4.2:  Three radio sources and their possible associated visible objects 
(adapted from Bolton, Stanley and Slee, 1949: 101) 

 

Source Position (Epoch 1948) Possible associated visible object 
 

 R.A. Dec. Object Remarks 
 

Taurus A 05h 31m 00s ± 30s +22° 01′  ± 07′ NGC 1952 A 
(Messier 1) 

Crab nebula, expanding 
shell of an old supernova 

 

Virgo A 12h 28m 06s ± 37s +12° 41′ ± 10′ NGC 4486 
(Messier 87) 

Spherical nebula –  
unresolved 

 

Centaurus A 13h 22m 20s ± 60s –42° 37′ ± 08′ NGC 5128 B Unresolved nebula crossed 
by a marked obscuring 
band 

 
A  Weak emission lines of H, He, forbidden lines of N, O and Si 
 
B  Weak emission lines, Hβ, Hγ, Hδ, and λ4686 

 

In contrast to the confident Crab Nebula identification, NGC 5128 and M87 were 

described as ‘unresolved nebula’ and the case made for them to be Galactic objects 

[36]: 

 

‘Neither of these objects has been resolved into stars, so there is little definite evidence to 

decide whether they are true extragalactic nebulae or diffuse nebulosities within our own 

Galaxy.  If the identification of these objects with the discrete sources of radio-frequency 

energy can be accepted, it would tend to favour the latter alternative, for the possibility of 

an unusual object in our own Galaxy seems greater than a large accumulation of such 

objects at a great distance.’ 

 

As indicated in the last sentence, Bolton believed that if the sources were 

extragalactic they must consist of a large number of unusual objects to account for 

such intense emission.  It appears he did not consider the idea that the emission could 

come from a single extragalactic object.  Bolton expressed this view more colourfully 

in further correspondence with Minkowski [37]: ‘In a letter to Nature (written before 

I consulted you) I have suggested that these objects may be within our own Galaxy – 
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on the basis that a close “freak” is more probable than a large collection of “freaks” at 

a great distance.’ 

 

Bolton turned out to be spectacularly wrong.  Baade and Minkowski made further 

observations of NGC 5128 and M87 and were able to resolve individual stars in both 

objects, proving almost certainly that they were external galaxies.  Later, NGC 5128 

was shown to be a peculiar galaxy at a distance of 15 million light-years, while M87 

turned out to be a giant elliptical galaxy at the even greater distance of 30 million 

light-years [38].  It was an extraordinary development.  The discovery of the two 

extragalactic objects did not diminish the importance of the Nature letter – on the 

contrary it raised some profound questions.  What was the mechanism responsible for 

this prodigious output of radio energy?  If two of the strongest radio sources were 

distant galaxies could some of the fainter sources be even more distant?  Might the 

fledgling field of radio astronomy be able to ‘see’ much further out into the Universe 

than traditional astronomy?  The historian of radio astronomy Woody Sullivan has 

summed up the significance of the paper [39]: 

 

‘The short paper by Bolton, Stanley and Slee (1949) was one of the most important in 

early radio astronomy, presenting a first plausible link between “galactic noise” and 

traditional astronomy.  And what an exciting link it was, too, for this handful of intense 

radio stars was being associated with objects that were much fainter than any of the five 

thousand objects visible to the naked eye, yet still unusual enough to be included in 

manuals such as Norton’s Star Atlas, the amateur astronomer’s vade mecum that was 

frequently consulted by Bolton’s group.’ 

 

The short interval from June 1947, when the initial detection of Cygnus took place, 

through to July 1949, when the letter in Nature letter was published, was an 

extraordinarily productive period by the Dover Heights group.  Bolton, Stanley and 

Slee had shown how some of the radio emission studied by Jansky, Reber and Hey 

could be resolved into discrete radio sources.  The group had succeeded in measuring 

the positions of some of the sources with sufficient precision to identify a handful 

with known optical objects.  And now the most astonishing result of all – the 

discovery of a new class of astronomical objects with strange and intriguing 

properties.  The youthful trio of Bolton, Stanley and Slee would all go on to carve out 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 99 

distinguished careers in radio astronomy, but none would produce another paper to 

rival the importance of their 1949 Nature letter.  A new branch of astronomy had 

been founded – extragalactic radio astronomy. 
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also wrote to Jan Oort (Leiden) and Bengt Strömgren (Copenhagen) and received enthusiastic 

responses from both [see e.g. Bolton (1982), p. 352].  It seems his memory failed him on this 

occasion.  Searches of both the Oort papers and the Strömgren papers have failed to find any 

evidence of these letters.  The earliest letter by Bolton to Oort is almost certainly one dated 5 

October 1949 in which he discusses his work with Kevin Westfold on the structure of the 

Galaxy (see Section 5.4).  Oort sent a positive reply and the following month Bolton 

submitted a letter on this work to Nature [see Bolton and Westfold (1950c)].  Bolton appears 

to have confused this exchange with the Nature letter on the optical identifications published 

earlier in July 1949.  I am especially grateful to Jet Katgert-Merkelijn (Leiden Observatory) 

and to Henrik Knudsen (Aarhus University, DK), respectively, for carrying out these searches 

of the Oort and Strömgren papers on my behalf. 

 

[35]  Bolton, Stanley and Slee (1949). 

 

[36]  The letter cited a 1935 paper by J. S. Paraskevoulus in the Harvard Bulletin that noted 

the dark dust band in NGC 5128 is normally seen in Galactic nebula viewed on edge. 

 

[37]  Bolton to Minkowski, 20 May 1949, see note [33]. 
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[38]  Robertson (1992), p. 49. 

 

[39]  Sullivan (2009), p. 324.  The Bolton–Stanley–Slee (1949) paper is the most cited of all 

the publications produced by the Dover Heights group, with the number of citations more 

than double the next best – see the Appendix. 
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Chapter 5 

 

The Emergence of Radio Astronomy in 

Australia and England 

 

In Chapters 3 and 4 we looked in depth at the research at the Dover Heights field 

station that led to the discovery and identification of the first discrete radio sources.  

The Dover Heights research was only one of a number of programs pursued by the 

Radiophysics Lab in the post-war years and, in turn, the Lab was only one of many 

divisions making up the Council for Scientific and Industrial Research.  In Section 

5.1 we see that CSIR came under sustained political attack during 1948 which 

threatened the future of radio astronomy within the organisation.  In 1949 CSIR made 

the transition to CSIRO with the new body granted a fair degree of autonomy to be 

able to decide its own research programs. 

 

Radio astronomy flourished in the new CSIRO.  In addition to Dover Heights a 

number of field stations were established in and around Sydney, staffed by small 

groups working largely independently of each other.  By 1950 radio astronomy made 

up about one-half of the Radiophysics research program, split about equally between 

solar and cosmic studies.  In Section 5.2 we give a brief overview of the other 

research programs at Radiophysics, together with the radio astronomy program as a 

whole. 

 

Until 1950 the only significant rival to Radiophysics was the radio astronomy group 

at the Cavendish Laboratory in Cambridge, England.  As we see in Section 5.3, 

initially there were goodwill attempts to share information and ideas between the two 

groups and to avoid unnecessary duplication of research work.  These attempts were 

however largely resisted by the Cambridge group so that, rather than a spirit of 

cooperation, a significant rivalry developed between the two centres. 

 

Finally, to conclude this rather lengthy chapter, Section 5.4 will look at Australian 

radio astronomy in the context of developments elsewhere in the world.  In 1950 

Bolton spent nine months touring astronomy centres, both radio and optical, in 
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England, the Continent and North America.  On his return to Australia, John could 

lay claim to being one of the world’s most knowledgeable radio astronomers with a 

wide personal network of people working in the field. 

 

5.1  Transition of CSIR to CSIRO 

The fledgling careers of the Dover Heights group almost came to an abrupt halt at the 

time of their 1949 Nature letter.  The group was largely self-contained and relatively 

isolated from the activities of the other groups in the Radiophysics Lab.  Even more 

so, the group was completely isolated from the other activities of their employer, the 

Council for Scientific and Industrial Research (CSIR).  Bolton went to the Lab about 

once a fortnight, usually to attend a meeting, to hear a talk or to arrange some typing, 

but he did not have an office or even a desk of his own.  Bruce Slee rarely went into 

the Lab at all and, apart from his evening classes at the Sydney Technical College, he 

simply commuted to and from the Dover blockhouse and his home in nearby Bondi.  

Gordon Stanley was the exception.  He lived in Mosman on the North Shore and 

frequently dropped in to the Lab on his way out to Dover Heights, usually to attend to 

equipment being built or under repair in the workshops.  Gordon got to know many of 

the other staff and had a good idea of the progress being made by the other 

Radiophysics groups [1]. 

 

 

 

Figure 5.1.  David Rivett was chief executive and then chairman of Australia’s Council for Scientific and 

Industrial Research from 1926 to 1948.  His forthright views on science enabled new fields such as 

radio astronomy to flourish within CSIR. [courtesy: CSIRO Archives] 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 107 

 

In Chapter 2 we saw how the Radiophysics Lab near the end of WWII made the 

transition from secret radar research to peacetime applications of radar and its 

associated technology.  Although Radiophysics no longer carried out classified 

research, there were still pockets of CSIR that were involved in defence related 

research, most notably the Aeronautical Research Lab in Melbourne with close links 

to the Royal Australian Air Force.  Despite the relatively minor amount of defence 

research, early in 1948 a series of articles in a Sydney magazine, under the byline of a 

British scientist, accused CSIR of being loose on security and of allowing scientists 

who were members of the Communist Party to work on defence-related projects.  The 

federal Opposition, consisting of a coalition of conservative Liberal and Country 

Parties, took up the issue and launched an attack on the Labor government.  At first 

the Labor prime minister Ben Chifley ignored the attacks after being reassured by 

CSIR chief executive David Rivett (see Figure 5.1) that any sensitive research being 

carried out by CSIR had adequate security.  The official CSIRO historian Brad Collis 

has noted [2]: 

 

‘But the attacks intensified through 1948 when the Opposition began a campaign of 

smear and innuendo against the CSIR and some universities for employing researchers 

who, it claimed, were professed communists.  The Opposition claimed vital, secret 

information was being denied to Australia by the United States and Britain.  Several 

metropolitan newspapers had adopted strident anti-communist positions and often 

implicated Rivett and the CSIR in their indiscriminate salvos.’ 

 

In an attempt to diffuse the issue the Minister for CSIR John Dedman decided to 

remove both the Aeronautical Research Lab and the Radiophysics Lab from CSIR 

and place them within the federal Department of Supply in Canberra.  Dedman was 

also Minister for Defence and he took the view that, although Radiophysics was not 

currently engaged in defence-related research, it may be needed to do so in the future.  

The staff of both labs would become Commonwealth public servants and be subject 

to stricter controls on their recruitment and the terms and conditions of their 

employment.  Rivett was horrified and travelled to Canberra to negotiate with 

Dedman.  Rivett wrote to Taffy Bowen: ‘Naturally this stirred up all my instincts of 

CSIR self-preservation … I do not know just what the political game is; but the sad 
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fact is that CSIR has somehow or other become a pawn in the game’ [3].  Rivett 

managed to persuade Dedman to keep Radiophysics within CSIR, at least for the time 

being, but in the process conceded the loss of the Aeronautical Research Lab.  He had 

narrowly avoided losing both. 

 

We can speculate on what might have happened if control of the Radiophysics Lab 

had been transferred to Canberra.  Within weeks there would have been a review of 

its research program and no doubt radio astronomy would have come under close 

scrutiny.  The solar radio studies may have survived the review.  The observations of 

sunspots and solar bursts gave advance warning of possible disruptions to 

communication and navigational systems and therefore were of some practical value.  

On the other hand, studies of cosmic radio noise appeared to have no obvious 

practical value.   While cosmic noise might be of academic interest, it had no 

contribution to make to the economic prosperity of the nation.  Most probably the 

Dover Heights team would have been reassigned to a more ‘productive’ line of 

research. 

 

A week after Rivett’s meeting with Dedman, the conservative Opposition intensified 

its attack on CSIR in parliament, targeting Rivett in particular, and hammering the 

view that communists and communist sympathizers in CSIR were a threat to national 

security.  For Rivett, the attack on CSIR went against his belief in scientific freedom 

[4]: 

 

‘Unless we can keep CSIR free from all the straitjackets that are all too freely offered to 

it from all sides, we are not going to count very much in 20 years’ time, even if we do 

succeed in the meantime in doing a job or two that wins favour from the press, populace 

and politicians.  I fully believe ... that we shall fail in the end unless quite 50% of our 

effort is directed to finding out how the machine of Nature works, without a thought as to 

whether that knowledge may or may not be useful in this decade, or next century, in 

showing farmers how to save sixpence or politicians how to increase revenue from 

taxation.’  

 

The unprecedented personal attacks on Rivett led scientists across Australia to speak 

out in his support.  Hundreds of letters, petitions and telegrams were sent to Canberra, 
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probably the first occasion Australian scientists had protested collectively and 

publicly en masse.  Bowen spoke on behalf of Radiophysics [5]:  ‘I am writing to say 

how sorry I am that your name and that of CSIR has been used so badly by a minority 

in the House.  Everyone I have spoken to in and out of CSIR is aghast at the 

statements being made.  Need I say that we are wholeheartedly behind you and the 

point of view you have taken.’ 

 

The new recruit to the Dover Heights team, Kevin Westfold also weighed in to the 

controversy, writing to his local member Eric Harrison, the deputy leader of the 

Liberal Party who lead the attack in parliament.  The conservatives argued that the 

only way to rid CSIR of communists and make it secure was to bring the whole 

organisation under the control of the Public Service Board.  Westfold strongly 

supported Rivett’s views on scientific autonomy and freedom [6]: 

 

‘People generally are agreed that scientific research on defence problems should be 

carried out under conditions of adequate security and secrecy.  In introducing measures to 

implement such security, however, every effort must be made to ensure that in the sphere 

of civil scientific research the freedom from direct governmental control, which up to the 

present time has contributed so greatly to the effective conduct of such research in 

Australia, should be retained.  Eminent scientific thinkers throughout the world are of the 

unanimous opinion that scientific research can be satisfactorily pursued only if 

completely unhampered by political control …’. 

 

Westfold pointed to the Department of Scientific and Industrial Research in New 

Zealand which operated under public service control and, in comparison with CSIR, 

was widely regarded as second rate in its scientific output. 

 

In March 1949 the Labor government drafted a bill abolishing the CSIR and replacing 

it with the Commonwealth Scientific and Industrial Research Organisation (CSIRO).  

At Fred White’s insistence the new name was kept as close as possible to the original 

to maintain the reputation and goodwill CSIR had established within Australia and 

internationally [7].  The new CSIRO reached a reasonable solution to the controversy 

of the previous year, with all defence-related research transferred to other government 
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departments and the organisation established as an autonomous statutory authority 

independent of the Commonwealth public service. 

 

Following the resignation of Rivett in April 1949, the young veterinarian Ian Clunies 

Ross was elevated from the previous CSIR Executive to become the new chairman of 

CSIRO.  A charismatic figure, Clunies Ross became the public face of the new 

organisation and soon turned it into one of the most admired and respected 

institutions in Australia [8].  Clunies Ross entrusted most of the management of 

CSIRO to his loyal chief executive Fred White.  Under White’s patronage, Taffy 

Bowen and Joe Pawsey would be given a free hand over the next decade to develop 

the new field of radio astronomy.  The 1950s would become the golden age of 

Australian radio astronomy. 

 

5.2  Postwar Growth of the Radiophysics Lab 

As we saw in Chapter 2, at the end of WWII Taffy Bowen drew up a list of possible 

research fields for investigation as the Radiophysics Lab made the transition from 

secret wartime research to peacetime applications of radar and radio technology.  

Small groups were to be assigned to investigate a wide variety of topics, but then a 

kind of Darwinian natural selection would prevail.  Projects that showed early 

promise would be rewarded with the support of more staff and funds at the expense of 

those that failed to make headway.  Promising starts were made in a number of fields 

including the application of radar to air navigation.  During the war radar had been 

developed to guide aircraft to and from their home bases, and the main task in 

peacetime was to adapt this military equipment to civil aircraft.  Numerous proposals 

for navigation systems were made around the world and among the most successful 

was the distance-measuring equipment (DME) developed by a Radiophysics group 

led by Brian Cooper.  First installed on commercial aircraft in 1950, the DME 

provided pilots with a direct and reliable reading of the distance to and from airports 

[9]. 

 

Another successful project at Radiophysics was the design and construction of one of 

the first all-electronic computers.  Immediately after the war, construction of the first 

computers began at several centres in the United States, Britain and Germany.  Not 

far behind, Trevor Pearcey and Maston Beard at Radiophysics began building 
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Australia’s first computer in 1947.  Christened the CSIRAC, the computer came into 

operation in June 1951 at about the same time as two machines known as ILLIAC 

(University of Illinois) and EDSAC (Cambridge University).  With over 1500 radio 

valves and able to carry out 500 arithmetical calculations per second, the CSIRAC 

eased the workload of a roomful of ‘calculators’ (mainly women) who had done most 

of the laborious, repetitive ‘number crunching’ calculations using electric desktop 

calculators.  For the next five years, the CSIRAC not only provided a service for the 

research programs at Radiophysics, but also for a number of outside organisations.  

One task was the design of power-generation systems for the Snowy Mountains 

Project, a vast hydro-electric scheme built in Australia in the 1950s [10]. 

 

Despite these promising starts in air navigation, computing and other areas such as 

accelerator physics, by about 1950 the Radiophysics Lab had evolved into two main 

and quite independent groups.  In addition to radio astronomy, research into cloud 

and rain physics became the other program to flourish at Radiophysics over the long 

term.  During the war radar operators had become familiar with the echoes produced 

by cloud and rain.  Earlier, laboratory experiments had revealed, at least in broad 

outline, how clouds form and also the important role played by condensation nuclei, 

but by 1945 surprisingly little was known about the fundamental causes of rain 

formation.  The main barrier had been the difficulty of making direct measurements 

within clouds of the complex and interrelated physical quantities involved.  This had 

to await the technological developments that occurred during the war – suitable 

aircraft to provide an airborne laboratory and radar to provide a way of probing deep 

within cloud systems. 

 

The cloud and rain physics group at Radiophysics grew steadily after the war and by 

1950 rivalled the radio astronomy group in staff numbers.  With fewer expensive 

items such as large radio telescopes, however, the cloud and rain physics group 

consumed a comparatively smaller proportion of the Radiophysics budget.  The 

aircraft and aircrew used in the experiments and trials were, for example, supplied 

free of charge by the RAAF.  The research program developed into three closely 

related fields:  cloud physics, the physics of rain formation, and the artificial 

stimulation of rain.  The third field, rain-making, became the one most intensively 

studied and the one, even more than radio astronomy, that gave Radiophysics a high 
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public profile.  Great expectations were held for the success of this work.  To a 

country noted alike for its droughts and floods, and still largely dependent for its 

prosperity on agricultural and pastoral industries, no natural phenomenon is more 

important.  Since the time of the first settlers, farmers had alternated between elation 

and despair over the unpredictable patterns of rainfall.  If the processes of rain 

formation could be understood well enough for even a small degree of control to be 

exercised, the consequences for primary industry and the national economy would be 

far-reaching [11]. 

 

The radio astronomy group itself evolved into two main subgroups of approximately 

equal size.  The solar radio astronomy group continued on from the pioneering 

observations carried out by Pawsey and colleagues late in 1945.  There were two 

broad research programs: one was to record radio bursts from short-lived phenomena 

such as solar flares and, the other, to map the radio brightness of the ‘quiet’ Sun and 

slowly varying features such as sunspots.  The first line of research was led by Paul 

Wild and the second by Chris Christiansen (see Figure 5.2).  The other main 

subgroup, which included the Dover Heights team, was known as the cosmic radio 

astronomy group.  To avoid duplication of effort, Joe Pawsey assigned each of the 

cosmic teams a particular frequency range.  The Dover Heights group was assigned 

the range 60 – 200 MHz, though observations had occasionally been made at 40 MHz 

(see e.g. Figure 6.1).  For frequencies higher than 200 MHz, Jack Piddington and 

Harry Minnett led the research, while the low frequency region below 60 MHz was 

the domain of Alex Shain, Charles Higgins and others.  These frequency ranges were 

not rigid and changed over time. 

 

A key feature of the Radiophysics group was the number of field stations to which the 

Lab had access, some of them (such as Dover Heights) former wartime radar sites 

(see Figure 5.3).  These sites enabled the rapidly growing group to split up into a 

number of small and independent teams, each pursuing a particular line of 

investigation.  On a practical level this had the advantage that one group carrying out 

observations would not be disturbed by another group needing, for example, to start 

up electrical machinery to carry out maintenance work.  On another level, this relative 

isolation promoted a healthy degree of self-reliance and inventiveness.  Each group 

had essentially a free hand in dealing with their day-to-day problems and, in the long 
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Figure 5.2.  (above) Paul Wild at the Dapto field station south of Sydney and (below) Chris Christiansen 

at the Potts Hill field station in suburban Sydney.  Wild’s group studied short-lived phenomena such as 

violent flares in the solar atmosphere, while Christiansen led the group studying radio emission from the 

‘quiet’ Sun and slowly varying features such as sunspots.  [courtesy: RAIA] 
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Figure 5.3.  The field stations used by the Radiophysics Lab for radio astronomy during 1945–60. 

[courtesy: Woody Sullivan] 

 

term, in determining the direction their research would take.  A large part of the time 

at these field stations was spent outdoors, so the new radio astronomers felt like 

pioneers in the physical sense as well.  Chris Christiansen recalled [12]: 

 

‘Each morning people set off in open trucks to the field stations where their equipment, 

mainly salvaged and modified from radar installations, had been installed in ex-army and 

navy huts.  At the field stations the atmosphere was completely informal and egalitarian, 

with dirty jobs shared by all.  Thermionic valves were in frequent need of replacement 

and old and well-used coaxial connectors were a constant source of trouble.  All receivers 

suffered from drifts in gain and ‘system-noise’ of hundreds or thousands of degrees 

represented the state of the art.  During this period there was no place for observers who 
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were incapable of repairing and maintaining the equipment.  One constantly expected 

trouble.’ 

 

The radio astronomers joked that for them the letters PhD stood for Post-hole Digger.  

Joe Pawsey oversaw the whole operation.  He had effectively sacrificed his personal 

research career in order to guide and coordinate the activities at these various sites.  

He suggested research projects, helped in the design of equipment, advised on the 

most suitable observational methods, assisted with some observations and, most 

importantly of all, became a tough and dependable critic when it came to analysing 

the data and writing it up for publication.  Paul Wild wrote [13]: 

 

‘Pawsey’s role at this time was quite central.  Most people of his group – though perhaps 

there were a couple who liked to think themselves self-sufficient – looked to him for 

advice, encouragement and inspiration, which were freely and selflessly given.  About 

once a fortnight the research staff would meet together with Pawsey in the chair.  Each 

person or group would report their progress and Pawsey would ask questions and make 

suggestions.  At other times when one ran into problems, half-an-hour’s discussion with 

Joe tended to be both soothing and rewarding.  Then on some days he would arrive 

unexpectedly at one’s field station, usually at lunch time (accompanied by a type of 

sticky cake known as the lamington, which he found irresistible) or else infuriatingly near 

knock-off time.  During all such visits one had to watch him like a hawk because he was 

a compulsive knob-twiddler.  Some experimenters even claimed to have built into their 

equipment prominent functionless knobs as decoys, especially for Pawsey’s benefit.’ 

 

Pawsey provided the guidance and inspiration during the formative years of the radio 

astronomy group.  During the 1950s the group would steadily grow and consolidate 

its position at the cutting edge of the new astronomy. 

 

5.3  A Rather Distant Outpost:  The Radiophysics and Cavendish Labs 

The Australian historian Geoffrey Blainey coined the term ‘tyranny of distance’ to 

describe how the distance and isolation from the mother country Britain has done 

much to shape the course of Australian history [14].  The same is also true for 

Australian science.  Very few Australian scientists could make a name for themselves 

internationally without spending much of their career working at the main centres of 

science in Europe or North America.  The University of Melbourne was the first 
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Australian university to offer a PhD program in 1948, but until then the common 

practice had been for young researchers to carry out their PhD research at a British 

university, with the two most prestigious destinations being Cambridge and Oxford.  

Many of the most talented scientists never returned.  Woody Sullivan has described 

how the ‘tyranny of distance’ affected the Radiophysics Lab [15]: 

 

‘The early Radiophysics years are rife with examples of things that would have gone 

differently if RP had not been located 10,000 miles from its sister institutions, but instead 

100, or even 1000.  The best airline connections to Europe required a gruelling three days 

(or a civilised week) and more common passage by ship took about four weeks; 

moreover, the cost of a ship’s berth amounted to one or two months’ pay for an RP staff 

member.  The RP staff (and Australian science in general) were constantly bedevilled by 

their inability to have frequent contact with colleagues from other institutions, the long 

interval before learning about research conducted elsewhere, the delays (sometimes 

inordinate) in publishing Australian results in the prestigious British journals, and the 

lack of foreign readership of Australian journals.’ 

 

The distance and isolation worked in the other direction too.  Until the international 

URSI Congress held in Sydney in August 1952 (see next chapter), there is no record 

of a single radio astronomer from overseas visiting the Radiophysics Lab, despite it 

being the world leader in most areas of radio astronomy [16].  If not for the tyranny of 

distance, Radiophysics might have become a mecca for young researchers from other 

countries eager to break into the new and fast-moving branch of astronomy.  

 

In the late 1940s the main rival to the Radiophysics Lab was the Cavendish 

Laboratory in Cambridge (the Jodrell Bank group published its first radio astronomy 

paper in 1950 and soon joined Sydney and Cambridge as one of the top three centres 

internationally – see later).  The contrast between the Radiophysics and Cavendish 

Labs could hardly have been more extreme.  As we see in the next section, in contrast 

to the isolation of Radiophysics, the Cavendish complained of just the opposite 

problem – too many visitors wanting a tour of the Lab and causing too much 

distraction for its researchers.  Until 1945 Radiophysics did not officially exist and in 

the years following WWII it was virtually unknown in scientific circles in the 

northern hemisphere.  In complete contrast, the Cavendish Lab since its foundation in 
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1874 had long been considered the finest centre for physics in the English speaking 

world.  In 1919 its reputation received a further boost when the New Zealander Ernest 

Rutherford replaced J. J. Thomson as head of the Cavendish.  Rutherford focussed the 

research effort into nuclear physics.  The 1920s was the decade of atomic physics and 

the foundation of quantum mechanics, but in the 1930s the new glamour field became 

nuclear physics.  As a powerful illustration of the Cavendish’s pre-eminence, the staff 

photo in 1932 (with the tall graduate student Joe Pawsey in the back row) included 

nine current or future Nobel Laureates [17]. 

 

After Rutherford’s premature death in 1937, the Adelaide-born Lawrence Bragg was 

appointed the new head of the Cavendish.  In 1915 he and his father William Bragg 

were awarded the Nobel Prize for Physics for their development of the new field of 

crystallography [18].  Bragg foresaw correctly that with the advent of large and 

expensive particle accelerators, the Cavendish would be unable to compete against 

the growing number of nuclear physics centres in the United States.  Against 

considerable opposition, Bragg decided to diversify the research program into new 

areas, such as his own field of crystallography.  His decision paid handsomely in 

1953 when Cavendish crystallographer Francis Crick and visiting American James 

Watson announced the double helix structure of DNA, one of the most important 

discoveries of the twentieth century. 

 

At the end of WWII Bragg also supported the formation of a small radio astronomy 

group under the supervision of the ionospheric physicist Jack Ratcliffe.  Ratcliffe had 

been a leading authority on the physics of the upper atmosphere before spending the 

war years engaged in radar research at the Telecommunications Research 

Establishment.  On returning to Cambridge he recruited several young radar scientists 

to his department at the Cavendish Laboratory, among them Martin Ryle (see Figure 

5.4), and then later Graham Smith and Antony Hewish.  The Cavendish group began 

by making observations of the Sun and was able to confirm the discovery by 

Pawsey’s group that sunspots were a source of intense radio emission.  The early 

Cambridge work provided a depressing example of how the Radiophysics Lab was 

disadvantaged by the ‘tyranny of distance’ referred to above.  The paper by Pawsey’s 

group reporting the discovery of sunspots as the source of intense radio emission had 

been submitted to the prestigious Proc. Roy. Soc. London.  The English referee ‘sat’ 
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on the paper for months and it was over a year before the paper got into print.  In the 

meantime the Cavendish group made the same discovery and rushed into print within 

two weeks, their Nature paper appearing six months before the Pawsey paper.  The 

Cambridge group was widely credited for making the discovery even though their 

observations were made six months after those at Radiophysics [19]. 

 

 

 

Figure 5.4.  Martin Ryle founded the radio astronomy group at the Cavendish Laboratory 

in Cambridge.  In 1974 he and Antony Hewish received the Nobel Prize for Physics, the 

first occasion it was awarded to radio astronomers.  [courtesy: Cavendish Laboratory]  

 

Early in 1948 Ryle’s interests turned from solar radio astronomy to cosmic radio 

astronomy.  His change of interest was probably reinforced by Joe Pawsey who spent 

May 1948 at the Cavendish during his world tour as the guest of Jack Ratcliffe, his 

former PhD supervisor.  Pawsey reported at length on the success of the Dover 

Heights group, including Bolton’s solo paper listing seven discrete sources which had 

been submitted to Nature the previous month (see Table 4.1).  In the same month as 

Pawsey’s visit, Ryle and Graham Smith built a four-Yagi antenna operating at 80 

MHz and were able to detect Cygnus A on their first attempt.  They also showed that 

its angular size was less than 6´, confirming the point-like size of the source.  On the 

same night they detected a second source in the Cassiopeia constellation that was an 

even stronger source of emission than Cygnus A, making it therefore (apart from the 

Sun) the most powerful of the known discrete sources.  Cassiopeia A was later 

identified with a supernova remnant (see Section 6.1), joining the Crab Nebula as the 
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second example of how these objects can be powerful radio emitters [20].  Solar 

observations continued at Cambridge for several years, but from May 1948 the course 

of the Cavendish group was firmly set on cosmic radio astronomy. 

 

During the period September 1946 to December 1949 well over thirty letters were 

exchanged between Pawsey and Bolton in Sydney and Ratcliffe and Ryle in 

Cambridge, many of them quite detailed (and some unfortunately that have not 

survived).  At face value this would suggest a fruitful and cooperative collaboration 

between the two groups which were, at this stage in the development of radio 

astronomy, the two most important.  There were also the personal ties – Pawsey to his 

PhD supervisor Ratcliffe and Bolton to his alma mater where he had completed his 

Bachelors degree in 1942 [21].  However, as we see in the next section, the 

relationship between Radiophysics and the Cavendish turned out to be far from 

harmonious. 

 

The first exchange between the two groups came after Pawsey received a reprint of 

the Cavendish paper reporting the sunspot radiation which, as mentioned above, was 

based on observations made six months after the original discovery by Pawsey’s 

group [22]: 

 

‘I got rather a shock when I received Ryle’s note enclosing a copy of the letter to 

‘Nature’ contributed by himself and Vonberg.  As you will see from the paper describing 

our work … the Cavendish and Radiophysics Laboratories have unfortunately succeeded 

in duplicating a very considerable part of the work. … I do not know what we can do 

about this duplication or how we can avoid it in the future.’ 

 

Ratcliffe replied that some amount of duplication may not be such a bad thing: 

 

‘As you know, we have embarked on a big program of this kind, and, as you mentioned 

in your letter, there has been, and probably will be, a certain amount of overlap between 

us.  I do not think there is any harm in this.  The methods which we are using are in many 

respects very different. … I do not view with any more dismay the possibility of overlap 

here than I do in the case of ionospheric research, for example.  Now that the air mail 

works so quickly … we will make a special attempt to keep you fully in touch with what 

we are doing.’ 
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After the initial detection of the Cygnus source by Ryle and Smith in May 1948, the 

main point of contention between the two groups was the position of the source.  In 

their discovery paper Bolton and Stanley (1948) gave a position which they claimed 

was accurate in right ascension to ±10 sec and in declination to ±7´.  In stark contrast, 

the Cambridge position was a full 2° away from the Dover Heights position.  After 

Pawsey’s visit, Ryle informed Bolton [23]: 

 

‘We have had lengthy discussions with Pawsey on the possibility of systematic errors in 

either of our methods of determining declination, but have failed to think of anything 

which could account for the large discrepancy.  However it is clear that one of us must be 

wrong – unless the source has moved. … It is obviously very important to see whether 

the source has moved, and we are wondering if you will be able to make another 

measurement soon.  If you still get your original figure we will have to work out which of 

our systems is giving the wrong answer, but if you find it has moved – then the 

astrophysicists must think again!’ 

 

Pawsey also commented on the worrying discrepancy [24]: 

 

‘Ratcliffe, Ryle and I have talked it over and reached the following conclusion.  We 

could not find the reason for the difference, so have no justification for saying that either 

Ryle or Bolton is wrong.  It seems to be something which can best be resolved by direct 

discussions between Bolton and Ryle. … I have no clues.  It is up to Bolton and Ryle to 

sort it out.  I wish them luck.’ [his italics] 

 

Over the next few months both Bolton and Ryle seriously considered the possibility 

that Cygnus was moving, i.e. undergoing proper motion so that its apparent celestial 

position changes over time.  As mentioned in Chapter 4, at the Pakiri Hill site Bolton 

and Stanley had obtained good records for Cygnus on thirty nights.  However, there 

was a substantial scatter in the records, not seen in the records for the other three 

sources Taurus, Centaurus and Virgo.  As one example, the scatter in the rising times 

for Cygnus was up to 7 or 8 minutes, whereas the rise times for the Taurus source 

hardly showed any scatter.  Bolton began to consider that the amplitude fluctuations 

in intensity in Cygnus might somehow be the result of the source moving.  For his 

part, Ryle became convinced that Cygnus moved and that it tended to be at either of 
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two distinct positions.  By early November 1948, Bolton had almost completed his 

analysis of the New Zealand data.  His new position for Cygnus was the average of 

the thirty Pakiri records, as he reported to Ryle [25]: 

 

‘Subject to arithmetical errors undetected as yet, the ‘mean apparent position’ for some 

six weeks of June and July was: 

RA:  19h 58m 14s   Dec:  40° 36´. 

Statistically the errors are only ±7 sec and ±2´ but I think the source probably lies within 

1 deg of this position!  You will note that the declination is half way between your two 

groups although I have no evidence of the two distinct groups you speak of.  However, 

observing for some seven hours per night the source wanders off the ‘mean apparent 

path’ up to about a degree for periods varying between a few minutes and a few hours.  I 

have no evidence of two sources as suggested by your beats.’ 

 

The new position reduced the discrepancy between the Cambridge and Dover 

positions from 2° to less than 1°, but it still could not rule out the possibility that the 

source was moving.  Bolton also commented on the amplitude variations in the same 

letter: 

 

‘A further result of the New Zealand Expedition is that the variations are ‘local’ – there 

was no correspondence between Dover Heights and NZ records.  I am beginning to 

wonder whether there might be some hard radiation from the source in addition to RF 

[radio frequency] which affects the ionosphere particularly along the line of sight.’ 

 

By ‘hard radiation’ Bolton presumably meant that Cygnus might emit high energy 

particles or photons that interact with the ionosphere in such a way as to cause the 

large amplitude fluctuations at radio frequencies.  Although Bolton soon abandoned 

the idea, it was one that was in keeping with the times.  In the early post-war years 

there was considerable interest in ultra-high energy cosmic rays that collide with 

particles in the atmosphere and produce extensive showers of charged subatomic 

particles.  The Nobel Prize for Physics in 1948 was awarded to Patrick Blackett at the 

University of Manchester for his studies of nuclear reactions and cosmic rays.  

Blackett was a mentor to Bernard Lovell and he encouraged Lovell to investigate the 

use of radar to track the paths of cosmic ray showers. The project at the Jodrell Bank 

field station in Cheshire was unsuccessful, though radar did prove to be an effective 
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way of detecting the paths of meteors.  In 1948 Lovell and his group made the 

transition from radar research to radio astronomy (see next section) [26]. 

 

By November 1948 Pawsey felt that the time had come to publish the results of the 

two groups, as he wrote to Ratcliffe [27]: 

 

‘It seems to me that Ryle and Bolton have uncovered a major mystery and it is worth 

raising the question of publication at this stage.  Bolton’s present thought is that it might 

be best for Ryle and him to publish detailed observations separately but that it might be 

appropriate for them to send a joint letter to ‘Nature’ describing the peculiar property of 

the Cygnus source.  What do you think it would be best to do?’ 

 

Ratcliffe turned down the suggestion of a joint letter, noting that Ryle wanted to 

complete an extended series of observations before publishing [28]: 

 

‘These extended results would of course contain his discovery [my italics] that the source 

in Cygnus moves.  You say that Bolton has also found out this point.  Of course it is 

never profitable to ask who got it first, but you will recall that when I questioned you here 

you were quite satisfied that the source had not moved in the last six months, and I think 

you thought that Ryle’s experimental results were due to an error in his apparatus.  Is not 

the proper procedure for each to go ahead in his own way and to publish his results when 

he feels they justify it?  …  You will see therefore that I am inclined to accept Bolton’s 

attitude to the subject, i.e. that they should both publish separately.’ 

 

Ratcliffe’s disingenuous remark that ‘it is never profitable to ask who got it first’ was 

at odds with his claim that Ryle deserved priority for the discovery.  If Ratcliffe had 

supported the idea of a joint paper it would have, presumably, led to the first 

internationally co-authored paper in radio astronomy. 

 

Nevertheless, Pawsey persisted and argued that something needed to be published to 

avoid the possibility of another group making the same discovery [29]: 

 

‘The question arises as to whether some interim note should be published primarily 

guarding against the discovery of the peculiar behaviour of this source by perhaps an 

American observer.  I myself think that the discovery is sufficiently unusual to warrant a 
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note to ‘Nature’ and was rather favouring the suggestion that Bolton and Ryle should 

combine in a note which would be very brief and would state the fact that the apparent 

position varies, and perhaps add the details – (a) that the variations are different when 

observed at places 2000 miles apart and (b) that the variations in position are absent on 

about 200 Mc/s.  This seems to be a reasonable balance between the contributions of the 

two people.’ 

 

On this occasion, Ryle replied to Pawsey, rather than Ratcliffe [30]: 

 

‘I have had a very full discussion with Ratcliffe on the question of the early publication 

of the results on Cygnus. … Your point about publication by some American observer is 

a very strong argument!  We did not feel very happy about a joint letter to ‘Nature’, both 

because of the complications of writing a co-operative account by remote control and 

also because of inevitable differences in belief (e.g. we are not yet convinced that the 

fluctuations we observe in Cygnus are due to local effects).’ 

 

After further correspondence a compromise was finally reached, as Bolton wrote to 

Ryle [31]: 

 

‘Many thanks for your recent letters.  I think your proposal of simultaneous letters to 

‘Nature’ is an excellent one.  I have roughed out my contribution.  This will have to be 

sent on to CSIR Executive in Melbourne for approval.  After that I will forward it to you 

to send on to ‘Nature’ when convenient.’   

 

‘The outline of my letter is as follows: (1) The new mean position from NZ observations. 

(2) Short period variations in position on individual nights. (3) Differences in position 

between individual nights. (4) No correspondence in amplitude between NZ and Sydney 

observations. (5) Certain considerations which may invalidate (4) such as low angle 

effects, interference method etc. (6) A mention of Taurus-A observations between NZ 

and Dover as a partial ‘control’ in (4).  All observations were made on 100 Mc/s.’ 

 

Despite the numerous letters on the publication issue over a four-month period, the 

proposal to have back-to-back letters in Nature came to nothing.  In December 1948 

Ryle and his group installed a new array at their Grange Road field station, known as 

the Long Michelson interferometer (see Figure 5.5).  Ryle informed Pawsey in 

February 1949 [32]: 
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‘I am still not happy about our experimental evidence for the movement of the source in 

Cygnus and I have delayed replying until we had carried out a re-analysis of some of our 

old records.  Since we have had our new aerial in operation (December) we have obtained 

a large number of observations of the position of the source (and of that of Cassiopeia) on 

80 Mc/s.  The measurements have generally been of considerably greater accuracy than 

our previous ones … The results obtained show that during this period the source in 

Cygnus has remained stationary to within ±20´ in declination and ±½ minutes in R.A. … 

[From] observations during this period we would not have concluded that Cygnus moves. 

…  The question now arises as to whether our earlier measurements were as accurate as 

we thought …’ 

  

Ryle’s assertion of a moving Cygnus source was quietly buried. 

 

It took most of 1949 before the two groups agreed on the origin of the amplitude 

fluctuations in Cygnus.  As seen in the correspondence above, on at least two 

 

 

 

Figure 5.5.  Graham Smith (left) and Martin Ryle working on the Long Michelson interferometer at their 

field station outside Cambridge.  The interferometer was used to compile the first Cambridge catalogue 

listing 50 discrete sources.  [courtesy: Woody Sullivan; credit: Bruce Elsmore]. 
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occasions Bolton informed Ryle that there was no correlation between the Cygnus 

fluctuations observed simultaneously in New Zealand and in Sydney.  In the previous 

chapter, we noted that simultaneous observations of the fluctuations at Dover Heights 

and Long Reef in January 1948, at a separation of 15 km, appeared to show a 

reasonable correlation between the two sites.  Before publishing the New Zealand–

Sydney finding, Bolton wanted to have independent confirmation of the lack of 

correlation and so he encouraged Ryle to carry out simultaneous observations of 

Cygnus with Lovell’s group at Jodrell Bank.  If there was no significant correlation 

over the Cambridge–Manchester distance of 210 km, then it would confirm why there 

was no correlation over the Tasman Sea baseline of 2100 km.  In January 1949 Ryle 

wrote to Pawsey [33]: 

 

‘I am very anxious to know your views on the New Zealand results.  As I said in my last 

letter to Bolton, the results, if true, are most significant.  The possibility that fluctuations 

are introduced by tropospheric or ionospheric refraction seems so important that we 

would like to see some similar experiments carried out … I have suggested to Lovell that 

we might carry out such experiments jointly.  Although the distance is only … 130 miles, 

any local effects (whether tropospheric or ionospheric) should be different at that 

distance.’ 

 

‘I should be very glad to have your comments on the desirability of doing this experiment 

as soon as possible as it will involve Lovell in the construction of a new aerial if we do 

decide to do it.  If you feel that your New Zealand results may be due to local refraction 

effects, but that there are also genuine sudden fluctuations inherent in the radiation from 

the source, then we might not think it worth doing the experiment.  If you think that all 

the fluctuations are due to local effects we would want to try a normal-incidence 

experiment.’ [his italics] 

 

Four months later Ryle reported: ‘We have so far obtained no conclusive results 

either way in our experiment with Lovell on the short period variations.’  In addition 

to the observations at 81 MHz in cooperation with Lovell, the Cavendish group 

carried out independent observations at 45 MHz using aerials spaced up to 180 km 

from Cambridge.  Similarly, the Jodrell Bank group carried out independent 

observations at 81 MHz with aerial spacings of 100 m and 4 km.  By September 1949 
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Ryle could confidently claim to have confirmed the New Zealand–Sydney finding 

[34]: 

 

‘The main conclusion so far is that the greater part of the recent fluctuations is different, 

and therefore agrees with your New Zealand–Australia results; we must therefore 

conclude that some of the fluctuations are caused by some relatively local effect. … 

There is no doubt that your original experiment was most important in shewing the 

existence of an uncorrelated component – I think otherwise everyone would have 

assumed that it must be due to the source.’  

 

We return to the Cygnus fluctuations in the next section. 

 

5.4  A Tour of Radio Astronomy Centres 

In the previous section we noted how the ‘tyranny of distance’ made it difficult for 

the Radiophysics radio astronomers to interact with the other radio astronomy groups 

emerging in Britain and elsewhere.  Taffy Bowen and Joe Pawsey realised very early 

that the best way to counteract the isolation of the Radiophysics Lab was to send staff 

on fact-finding, intelligence-gathering tours of the research centres in the northern 

hemisphere.  Bowen was the first to go in 1946, sending back lengthy letters 

summarising the work at various centres including, as noted earlier, an early alert of 

Hey’s discovery of the intensity fluctuations in Cygnus.  Pawsey was the next to go, 

embarking on a marathon 13-month tour in September 1947.  Pawsey established 

personal contacts with a number of prominent astronomers in the US and Europe and 

gave first-hand accounts of the research at Dover Heights. 

 

Late in 1949 Bowen decided that Bolton would be the next to go, partly as a reward 

for his achievements over the previous three years and partly because he was the best 

qualified to assess the progress of radio astronomy centres elsewhere.  The 

centrepiece of the tour would be for Bolton to represent the Radiophysics Lab in 

Zurich at the general assembly of the peak international body for radio science, 

known by its French name Union Radio Scientifique Internationale (URSI).  In 

November 1949 Bowen sought support for Bolton’s trip from the CSIRO Executive, 

requesting five months in Europe, followed by three months in North America [35]. 
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‘I would like now to recommend that Mr John Bolton should proceed overseas in some 

months’ time in connection with his work on radio astronomy.  As you are aware Bolton 

came into the Laboratory soon after the war without much previous experience but in the 

last four years has developed into a first class researcher with a number of completed 

pieces of work to his credit.  …’ 

 

‘During his visit overseas a year ago Dr Pawsey found that while experimental work in 

radio astronomy was further advanced in England than in the United States there was 

much greater interest in the implications of the work of astronomy in the Observatories in 

America such as Harvard, Yerkes, Mount Wilson, Michigan, and Princeton.  Dr Pawsey 

was invited to describe the Australian work at each of the above Observatories and I feel 

sure that in view of Bolton’s recent work they would be just as interested in hearing from 

him.  In view of these facts I would like to recommend most strongly that in addition to 

proceeding to England and Switzerland for the URSI Conference Bolton should proceed 

to America for a period of approximately three months.’ 

 

The CSIRO Executive closely vetted all overseas travel requests by its officers, wary 

that the new organisation could not risk a repeat of the political attacks that had 

brought down its predecessor CSIR.  In turn, the Executive requested ministerial 

approval for Bolton’s trip.  Its letter was promptly returned with a handwritten 

annotation by no less than the prime minister: ‘Yes, Robert G. Menzies, 28 January 

1950’ [36]. 

 

Before we describe Bolton’s tour in some detail, it will be useful to return to Dover 

Heights and another research project carried out during 1949.  After submitting the 

Nature letter on the possible optical identifications of Taurus, Centaurus and Virgo in 

May 1949, Bolton returned to a project he and new recruit Kevin Westfold (Figure 

5.6) had begun earlier in the year, a project independent of the hunt for more discrete 

sources.  Earlier, Grote Reber in the US and Stanley Hey and his group in England 

had carried out surveys of the northern sky, producing contour maps of radio strength 

at the frequencies of 160 and 480 MHz (Reber) and at 64 MHz (Hey) [37].  Bolton 

and Westfold aimed to carry out the first southern survey and then combine the 

results with the Reber and Hey maps to produce the first all-sky survey.  To carry out 

the survey the Dover group constructed a new array consisting of nine Yagi aerials 
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Figure 5.6.  Kevin Westfold became the fourth member of the Dover Heights team in December 1948.  

He joined the Radiophysics Lab after receiving a Bachelors degree from the University of Melbourne 

and then a Masters degree from the University of Tasmania.  [courtesy:  Woody Sullivan] 

 

and operating at 100 MHz (see Figure 5.7).  Rather than pointing the aerial to the 

horizon to operate as a sea interferometer, the array was on an equatorial mount so 

that it could be swept across the sky, recording for each sweep the radio strength 

along a thin strip of sky. 

 

As expected, the dominant feature in the southern map was the strong radio emission 

from along the Galactic plane.  The Galactic centre passes almost overhead at 

Sydney’s latitude, but is low on the horizon in the northern hemisphere, and so this 

strong emission did not feature as prominently in the Reber and Hey maps (see Figure 

5.8).  Bolton and Westfold noted that the emission reached a maximum in the 

direction of the Galactic centre but then moving outwards from the centre, along the 

Galactic plane, the intensity fell away to just one-fifth of the maximum.  On the 

assumption that the radio intensity was proportional to the amount of Galactic 

material along the line of sight, their results were consistent with the Solar System 

being located in a spiral arm somewhere in the outer regions of the Milky Way.  

Looking along the spiral arm to the crowded Galactic centre would produce a 
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Figure 5.7.  The nine-Yagi array was the first of the purpose-built radio telescopes at Dover Heights.  (left) 

The array on its equatorial mounting was used to carry out the first survey of the southern sky at 100 MHz. 

(right) The array in its sea interferometer mounting.  [courtesy: RAIA] 

 

 

 

Figure 5.8.  Equal-area charts of equivalent black-body temperature at 100 MHz over the celestial sphere.  

The contours are labelled in units of 100 K in brightness temperature.  The Galactic centre features 

prominently in the chart for galactic longitude 330°.  [after Bolton and Westfold (1950a), Fig. 5A] 

 

maximum intensity, while looking out at right angles into the sparsely populated dark 

alley separating two spiral arms would produce a minimum intensity. 
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Before publishing the results Bolton wrote to Jan Oort at the Leiden Observatory, an 

authority on the structure of the Galaxy, who replied [38]: 

 

‘The extension of surveys of the distribution of galactic noise in the southern hemisphere 

is in my opinion one of the most important jobs that can be undertaken.  And it is a very 

happy circumstance that in this branch of astronomy the southern hemisphere is 

competing so beautifully with the northern.  This cannot be said of most other parts of 

astronomy where our knowledge of the southern skies remains very far behind.  I am 

looking forward very intensely to the details of your investigation.’ 

 

Following the usual Dover Heights practice, Bolton and Westfold sent an 

announcement letter to Nature and two detailed papers to the Australian Journal of 

Scientific Research [39].  The first Australian paper presented the observational data, 

while the second Australian paper compared their observations with those by Hey and 

Reber in the region of sky where the southern and northern surveys overlapped.  The 

second paper also discussed the evidence for a spiral structure and also the sense of 

rotation of the Galaxy.  The Nature letter noted: 

 

‘These observations can be interpreted as placing the Sun in or near the arm of a spiral 

galaxy, this arm extending from Carina through the region of the Sun to Cygnus. …  The   

direction of rotation of the Galaxy is known from astronomical observations of the 

apparent motion of stars and star clusters, and if the radio observations can be interpreted 

in terms of a spiral structure with an arm opening out in the direction of Cygnus, the 

sense of rotation is that of a spiral unwinding.  This sense of rotation has not been 

previously established.’ 

 

The conclusive proof of the spiral structure would follow shortly after with the 

discovery of the 21 cm hydrogen line (see below). 

 

***** 

 

Bolton and his wife Letty boarded the Himalaya in late February 1950 and arrived at 

Tilbury dock in London a month later.  Bolton’s first priority was to catch a train to 

Sheffield and spend a week with his father, John Bolton, senior.  Although they 

corresponded from time to time, he had not seen his father for six years, not since he 
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had signed on to the Unicorn as its radio officer.  After John’s mother died in 1942, 

his father had remarried a younger woman but their relationship broke down and they 

separated after just three years.  His father had then employed a live-in housekeeper 

who had her own daughter.  It was the last time Bolton saw his father.  The following 

year he was diagnosed with cancer.  Despite three operations he continued teaching 

mathematics, stoically refusing to take extended sick leave, but died shortly after, 

aged 58. 

 

The Boltons were struck immediately by the austere conditions in England.  In 

contrast to Sydney’s booming economy in 1950, life remained difficult for most 

people.  On his first day in Sheffield Bolton had collected a ration card.  Although the 

war had ended five years earlier, the British economy took many years to recover.  

Rationing actually became stricter after the war and was at its harshest during 1949–

50 [40]. 

 

Bolton spent a day in the Sheffield Public Library catching up on the latest 

publications.  The most recent Nature issue contained his letter with Westfold on 

Galactic structure.  Bolton was surprised to see in the same issue two back-to-back 

letters reporting the results of the spaced aerial experiment between Cambridge and 

Jodrell Bank.  The first letter by Graham Smith reported the Cambridge observations, 

while the second by Bernard Lovell and his graduate student Gordon Little reported 

the Jodrell Bank results [41].  Smith noted: 

 

‘In a private communication, Dr J. L. Pawsey has described some experiments by Bolton, 

in which the source in Cygnus was observed simultaneously from sites in Australia and 

New Zealand.  The records of fluctuations obtained in these experiments were markedly 

different at the two sites, and therefore suggested a comparatively local origin.’ 

 

Smith also noted that the Australia–New Zealand records were for Cygnus very low 

on the horizon and so it was important to make observations for Cygnus near to 

normal incidence (12° from the zenith).  After his analysis of the observations, he 

concluded: 
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‘It therefore seems likely that two separate mechanisms are responsible for the observed 

fluctuations.  One appears to be related to variations of the emission from the sources; the 

brief duration of these ‘bursts’ suggests that the sources are of stellar dimensions.  The 

other appears to be due to diffraction in a comparatively local region.’ 

 

The Jodrell Bank letter by Little and Lovell made no mention of the Australian work, 

even though Pawsey had informed Lovell over a year earlier that [42]:  ‘… 

observations taken simultaneously in Sydney and New Zealand which show 

amplitude variations [are] uncorrelated at the two places.’  In contrast to Smith’s 

letter, Little and Lovell concluded correctly that the fluctuations were solely the result 

of terrestrial causes: 

 

‘It therefore seems likely that these fluctuations in the received intensity of the radio 

waves from the galactic sources are introduced in a local terrestrial medium, and are 

analogous to the twinkling of stars on optical wavelengths.’ 

 

Initially, Bolton was unperturbed by the two letters to Nature.  He informed Bowen 

[43]:  ‘There appears to be ample acknowledgment of our own efforts in this 

direction.’  Later, after visits to Cambridge and Jodrell Bank (see below), Bolton’s 

attitude hardened.  Lovell told him that he was not aware that the idea for the joint 

Cambridge–Jodrell Bank observations had come from Radiophysics – Ryle had not 

told him.  Bolton explained that he had held off publishing the Sydney–New Zealand 

results until the Cambridge–Jodrell Bank observations were completed, so that both 

findings could be published together.  Later, at the URSI Congress in Zurich, Lovell 

publicly apologised to Bolton for the oversight [44]. 

 

As we saw in the previous section, there were numerous letters over several months 

between the Radiophysics and Cavendish Labs, discussing what form their joint 

publications would take, but they were now irrelevant.  Six months after the two 

Nature letters, Gordon Stanley and Bruce Slee published the Sydney–New Zealand 

results in the Australian journal [45], but by then the priority for the discovery of the 

nature of the Cygnus fluctuations had gone to Cambridge and Jodrell Bank.  As we 

saw earlier with the case of Pawsey and the discovery of sunspot radiation, this was 

the second occasion that Radiophysics had missed out on priority for an important 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 133 

discovery and a further illustration of the ‘tyranny of distance’ discussed in the 

previous section.  

 

 

 

Figure 5.9.  The Boltons and Westfolds on a bicycle tour at Bridge of Ray near Oxford (from left):  

John, Joan, Letty and Kevin.  [courtesy: Bolton family] 

 

Oxford was to be home base for the Boltons during their stay in England (see Figures 

5.9 and 5.10).  Kevin Westfold had been awarded a prestigious CSIRO studentship 

and he decided to do his PhD under the distinguished Oxford astrophysicist Edward 

Milne.  Westfold and his wife Joan were housesitting for an Oxford professor who 

was on sabbatical in the United States.  The house was a converted hotel and could 

easily accommodate two couples [46].  Bolton’s first official visit was to the physics 

department at the University of Birmingham, where Marc Oliphant (see note [17]) 

and his group were building one of the world’s first synchrotrons.  Bolton gave a talk 

on the research at Radiophysics, concluding with his own work at Dover Heights. 

 

Next was a visit to Stanley Hey at the Army Operational Research Group at Byfleet, 

west of London.  Bolton was disappointed by what he found.  Hey had been 

appointed superintendent of the group and was completely preoccupied with 

administrative duties.  Galactic observations had stopped two years ago and, although 

solar observations were in progress, Bolton estimated that they were about eighteen 

months behind Paul Wild’s group.  Hey had even lost his two principal collaborators.  

John Parsons had joined an electronics firm, while James Phillips had decided that 
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managing an orchard would provide a more rewarding career.  Hey was however still 

well connected to the astronomical community and he arranged for Bolton to give a 

talk the following month to the Royal Astronomical Society in London [47]. 

 

 

 

Figure 5.10.  Bolton near Keswick during a tour of the Lake District in 

August 1950.  [courtesy: Bolton family] 

 

A visit to Cambridge was the most eagerly anticipated event in Bolton’s itinerary.  As 

a teenager Cambridge had been Bolton’s ticket out of Sheffield and, though the 

lifestyle at Trinity College had been spartan, he had fond memories of the two years 

studying for his bachelor’s degree.  He had been bitterly disappointed in 1945 when 

his application to do postgraduate study at Cambridge had been turned down (see  

Chapter 2, note 18), but in retrospect the rejection seemed to have turned out for the 

better.  Now, happily married, and with a well paid and exceptionally fulfilling job, 

the cards had certainly fallen his way since arriving in Sydney. 

 

On his way to Cambridge Bolton visited the Australian Scientific Liaison Office in 

London to check his mail.  ASLO had been established to assist Australian scientists 

travelling and working in Europe and was the place to go to receive letters, to get 

letters and manuscripts typed, to make travel bookings, and to browse through recent 
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issues of the journals.  There was a letter from Lawrence Bragg, the Australian-born 

director of the Cavendish, which Bolton assumed would discuss a few housekeeping 

details for the three-week visit he had arranged with Ryle.  However, he was shocked 

to read [48]: 

 

‘The number of visitors to the Cavendish is very large indeed.  If I do not try to ration 

them somewhat, the research men spend all their time showing people round and the 

interruption to work is very great. … The difficulty is greatest when a visitor proposes to 

spend two or three weeks here, because it means effectively a research man looking after 

him for all that time … Ryle has had a particularly heavy burden lately because his work 

has aroused general interest and many have wished to include it in their tour of the 

laboratory.  At the same time, his work, just because it is at an exciting and formative 

stage, ought to be free from such interruptions.’ 

 

Bragg made it clear that Bolton was welcome to visit for a day or two, or even spend 

a year working in the Cavendish as a research fellow, but a three-week visit was an 

unacceptable distraction to Ryle and his group.  Bolton forwarded Bragg’s letter to 

Taffy Bowen who was furious at the rejection.  He replied [49]: 

 

‘I have just seen the letter from Bragg in response to your request to Ratcliffe and Ryle to 

visit the Cavendish in a few days’ time.  I am terribly sorry that Bragg and presumably 

Ratcliffe have taken this point of view and the only suggestion which I can make at this 

stage is to say with some regret that, as we cannot agree to your staying in Cambridge for 

a whole year, you had better confine yourself to one day.  I feel that Bragg ought to be 

reminded of Kettering’s dictum that in closing the doors of the laboratory they shut out 

more than they shut in.’ 

 

In typically colourful language Bowen informed Fred White at CSIRO head office 

[50]: 

 

‘I find it hard to comment on this letter in a dispassionate way and my first reaction as a 

Welshman was to throw things and make loud noises.  On sober reflection it is quite clear 

that Bragg has a right to run his laboratory in any way he chooses and there is little or 

nothing we can do about it.  I have therefore written to Bolton saying how sorry I am that 
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his old University has treated him in this way and, as we cannot agree to his staying at the 

Cavendish for a year, he had better confine his visit to a single day.’ 

 

‘Bragg’s letter raises one issue as far as CSIRO is concerned.  It is that overseas visits are 

an important way of maintaining contacts with scientists in England and America and in 

keeping our own work in proper perspective with respect to work done overseas.  CSIRO 

goes to considerable trouble and expense to support such visits but clearly a good case 

could not be made for an officer travelling 12,000 miles to spend one day only at a 

laboratory he hopes to visit.  You may therefore want to discuss this letter with your 

colleagues on the Executive and you may decide that some action should be taken.’ 

  

Bowen was puzzled why the Australian-born Bragg had not gone out of his way to 

make Bolton welcome.  Based on his Cavendish visit two years earlier, Pawsey 

believed Bragg wrote the letter without being properly briefed by Ryle [51]: 

 

‘May I add the following comments from my own experience.  Ryle is egotistical, 

impetuous and superficially at any rate, extremely confident of his own work.  He is an 

excellent experimenter but not so good at interpretation – I think he is immature as yet.  

Nevertheless quite likeable.  Ratcliffe has all the balance which Ryle lacks but, when I 

was there, he left Ryle to run the cosmic and solar noise work with very little supervision.  

My guess is therefore that … Bragg acted with insufficient knowledge having too great 

confidence in Ryle.’ 

 

Bolton spent three days in discussion with Ryle and his group, but kept the visit to 

minimum.  As he reported home, Ryle was guarded in the information he was 

prepared to share [52]: 

 

‘There is undoubtedly a visitors’ problem at the Cavendish but in spite of this they are 

both jealous and scared of Radiophysics.  Ryle himself said that he could make some 

suggestion as to an experiment he could make – I could write back to RP and have it done 

and the results published before even he built the equipment.  I said that such a situation 

was quite unthinkable – we had quite enough to do without resorting to dishonesty!’ 

 

There was however one unexpected and beneficial outcome of the brief visit.  Bolton 

got to know the astrophysicist Fred Hoyle who had read the Nature article on the 
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optical identifications of the first three discrete sources and realised the importance of 

the work.  Hoyle introduced him to his colleagues Herman Bondi, Tom Gold and Ray 

Lyttleton and invited him to spend time at his home base in St Johns College.  Hoyle 

and his colleagues were developing the steady state theory of the Universe, a 

cosmology that would rival the big bang theory and spark a fierce controversy later in 

the 1950s.  It was the beginning of a long friendship between the two [53]: 

 

‘During my last week I spent two days with Hoyle and one with Gold and got on 

extremely well with both of them.  Hoyle is short, rather tubby, has curly black hair, 

wears horn rimmed spectacles and speaks with a strong Yorkshire accent.  He would look 

more at home in a north country saleyard than in St Johns.  He has wide interests outside 

his own subject and is very keen on cricket.  Most of our discussions were held in the 

members stand at Fenners!’ 

 

 

 

Figure 5.11. The Jodrell Bank group in 1951 with Bernard Lovell (centre front row).  In 1950 Cyril 

Hazard (second from left) and Robert Hanbury Brown (absent) detected radio emission from the 

Andromeda (M31) galaxy, leading to the second radio astronomy paper by the group.  In 1963 Hazard 

played a major role in the discovery of quasars (see Section 7.2).  [courtesy: Woody Sullivan] 
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Bolton’s reception at the University of Manchester was as warm as the Cavendish had 

been frosty.  Bernard Lovell’s career in radio astronomy began in December 1945 

when a trailer loaded with ex-Army radar gear was towed onto the university’s 

horticultural field station, known as Jodrell Bank (see Figure 5.11). As noted in the 

previous section, Lovell’s first experiment was an attempt to detect radio waves 

reflected from the trails of cosmic rays.  Instead of cosmic rays, Lovell inadvertently 

succeeded in detecting meteors, which produce a similar but much larger trail of 

ionised particles in the atmosphere, and so confirmed the discovery made by Stanley 

Hey’s group a year earlier of the radar echoes produced by meteor trails.  In 1947 

Lovell and John Clegg constructed a fixed parabolic aerial 220 feet (67 m) in 

diameter consisting of a spider’s web of wire suspended on upright tubular supports.  

Although initially intended for radar studies of cosmic rays and meteors, the 220 ft 

aerial was used increasingly as a radio telescope to study cosmic emissions [54, 55]. 

 

When Bolton visited in June 1950, Robert Hanbury Brown and Cyril Hazard had 

begun an ambitious attempt to detect radio emission from the Andromeda (M31) 

galaxy.  They reasoned that if Andromeda emitted radio energy with a strength 

comparable to our own Galaxy, it should be possible to detect the emission even at 

this vast extragalactic distance.  Although the observations were seriously hampered 

by radio interference from a nearby motorway (made worse by the recent lifting of 

petrol rationing), the data obtained over 90 nights confirmed that Andromeda was 

indeed a radio emitter similar in strength to the Milky Way.  Andromeda was the first 

extragalactic object to be positively identified as a radio source [56, 57].  However, 

the fact that Andromeda was approximately 10,000 times less luminous than 

Centaurus (NGC 5128) and Virgo (M87) threw further doubt on whether these two 

Dover Heights sources could in fact be extragalactic objects.  As we saw in Chapter 

4, in the 1949 Nature paper Bolton had argued that it was far more plausible to 

reclassify NGC 5128 and M87 as Galactic objects, rather than claim them to be 

immensely powerful radio sources at extragalactic distances. 

 

In July Bolton and Westfold made the first of two tours to radio astronomy centres on 

the Continent.  Their first stop was to northern Germany with Albrecht Unsöld and 

his group at the University of Kiel, which was temporarily housed in an old factory.  

Bolton was shocked by the scale of the Allied bombing which had destroyed almost 
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the entire centre of the city, including the old university and observatory. Because of 

a lack of funds, the emphasis at Kiel was on theoretical work and a few simple solar 

observations.  At the Leiden Observatory in Holland he met Jan Oort who, as we saw 

earlier, gave his enthusiastic support for the work at Dover Heights on the structure of 

the Galaxy [58]. 

 

Oort and his colleague Henk van de Hulst were primarily interested in the structure 

and dynamics of the Milky Way and were eager to discuss the Bolton–Westfold paper 

on the evidence for a spiral structure.  During WWII, van de Hulst had predicted that 

interstellar hydrogen emits radiation at a wavelength of 21 cm (or frequency 1420 

MHz).  For many years astronomers had theorised that a significant fraction of the 

total material in the local Galaxy consists of atomic hydrogen, left in interstellar space 

after the earlier formation of stars.  Some of this hydrogen in the vicinity of very hot 

stars becomes ionised and can be observed optically, but the vast bulk remains as a 

cold, neutral and extremely rarefied gas dispersed throughout the Milky Way and 

invisible to optical telescopes.  If van de Hulst’s prediction was correct, the 21 cm 

radiation would provide a way to map the distribution and density of this interstellar 

hydrogen. 

 

Oort and Alex Muller began the search for the 21 cm line but suffered a setback early 

in 1950 when most of their receiving equipment was lost in a fire.  In the meantime 

Edward Purcell at Harvard and his PhD student Harold ‘Doc’ Ewen began their own 

search and were able to announce the detection of the hydrogen line in March 1951.  

Two months later the Dutch group were able to confirm the discovery.  When news of 

the discovery reached Radiophysics, Chris Christiansen and Jim Hindman set aside 

their solar work and embarked on a crash program to assemble the necessary 

equipment at the Potts Hill field station.  They were able to confirm the discovery, the 

product of almost two years work by the Harvard group, in a little over two months.  

At Purcell’s suggestion the first papers from Harvard and Leiden on the hydrogen line 

were published in the same issue of Nature, accompanied by a cable from Pawsey 

announcing Sydney’s confirmation.  In contrast to the rivalry we have seen between 

the Radiophysics and Cavendish labs, the collaboration between the American, Dutch 

and Australian groups proved to be the first example of international cooperation in 

radio astronomy [59]. 
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The discovery was a golden opportunity missed at Radiophysics.  Pawsey learnt of 

van de Hulst’s prediction while visiting Washington early in January 1948, as he 

reported to Bowen [60]: 

 

‘Mr Reber gave me some very valuable information.  He tells me that there is an 

absorption line of hydrogen atoms on a frequency of 1420 MHz … This is derived from 

theory and from laboratory work which he thinks is published, but which I have not yet 

seen.  It may be in the Physical Review and is probably by the Columbia University 

people.  If this is correct, there may be very considerable interest in searching for either 

cosmic or solar noise absorption or emission bands at this frequency.’ 

 

However, both Bowen and Pawsey believed the detection of the hydrogen line was 

too much of a longshot to justify diverting resources away from other Radiophysics 

projects.  They were proved wrong when Christiansen and Hindman were able to 

confirm the Harvard discovery in just two months.  After such an illustrious start, this 

was the first major mistake, or rather major misjudgment, made by the Radiophysics 

group. 

 

After visits to Utrecht and Eindhoven, the next stop for Bolton and Westfold was 

Paris where groups at the Ecole Normale Superieure and at the Institut 

d’Astrophysique were concentrating on solar observations.  Most of the centres they 

visited had one or more Würzburg reflectors, former radar dishes which had been 

abandoned by retreating German forces near the end of the war (see Figure 6.2).  The 

precision-engineered dishes could easily be converted from radar to radio astronomy 

at very little cost.  Returning to Oxford, Bolton reported [61]: 

 

‘As regards publications – my trip so far has convinced me that in work done and in work 

being done we still have a considerable lead.  But in work published and distributed to 

those who are most interested in it – we occupy a very bad last place. … Most important 

is to realise the great interest of the ordinary astronomer in the radio observations.  This is 

quite clearly brought out in the Royal Astronomical Society’s support for Lovell and 

Ryle and also in Holland where a national effort is being made in radio astronomy. … 

Our recent visit to Germany, Holland and France was I think a success from both the 
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propaganda point of view and information gained.  The greatest interest is quite definitely 

in Paul Wild’s work – discrete sources are now taking a back seat!’ 

 

Westfold was also impressed by the reception they had received [62]: 

 

‘As Bolton has told you, we have just returned from an interesting and stimulating tour of 

Kiel, Leiden and Paris.  All the astronomers in these countries are very keen on the 

prospects of radio astronomy and gave us some pretty strenuous sessions on what is being 

done in Australia and where things are going.  We ourselves got great benefit from 

discussions on astronomical questions.  I was encouraged to find some people interested 

in theoretical aspects of radio astronomy.’ 

 

Two months later Bolton and Westfold made their second tour of the Continent, 

beginning with the URSI General Assembly in Zurich.  Founded in 1919, URSI 

consisted of six commissions each dealing with a particular branch of radio science 

and its applications.  At its previous assembly in Stockholm in 1948 URSI decided to 

form a new commission with the title ‘Extraterrestrial Radio Noise’.  In recognition 

of Australia’s major contribution to the field, David Martyn (Commonwealth 

Observatory at Mt Stromlo) was appointed inaugural president of the commission, 

with Joe Pawsey as secretary.  At the Zurich meeting the name of the commission 

was changed to ‘Radio Astronomy’ and use of the word ‘noise’ was officially 

discouraged because of its misleading acoustic connotation.  No doubt Pawsey 

lobbied delegates for the name change.  As we saw earlier, Pawsey coined the term 

‘radio astronomy’ in January 1948 and was eager to see its use widely adopted [63]. 

 

After Zurich, Bolton and Westfield toured Scandinavia, visiting Bengt Strömgren in 

Copenhagen, Hannes Alfvén and Bertil Lindblad in Stockholm, Svein Rosseland in 

Oslo and Olof Rydbeck in Göteborg [64].  Westfold recalled [65]: 

 

‘We chose those places because most of our understanding of astronomical matters had 

come from the writings of people in these institutions.  We were gratified by the intense 

interest that was shown in our work, and the work of the Radiophysics Lab in general 

which, in many areas, seemed to be in advance of theirs.  Indeed, we got the impression 

that the optical astronomers on the Continent were taking radio astronomy rather more 

seriously than their counterparts in England and Australia.’ 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 142 

 

At the end of October 1950 Letty Bolton boarded a ship to Australia, while Bolton 

began the North American leg of his tour.  Originally, Bowen wanted him to spend 

three months in North America but this was cut back to a month, partly because the 

European leg had been extended by three months from the original plan and partly 

because currency restrictions in the US limited the travel funds available to about a 

month.  Bolton’s first stop was at the National Research Council in Ottawa (the 

Canadian equivalent of CSIRO), where Arthur Covington led a small group 

monitoring the Sun at centimetre wavelengths.  After visits to Harvard, Cornell and 

Washington, Bolton flew to Pasadena on the west coast for the last stop of his tour 

where he met Walter Baade and Rudolph Minkowski at the Mt Wilson and Palomar 

Observatories.  In 1948 the MWPO had commissioned the 200-inch Hale telescope, 

the largest and most powerful instrument in the world and, as we shall see in the next 

chapter, one that would play an important role in the further development of radio 

astronomy.  Bolton could not have foreseen that, in exactly four years time, Pasadena 

would be his new home [66]. 
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in September 1950, Chapman was appointed as Westfold’s supervisor.  Westfold to Pawsey, 

23 October 1950, NAA file F1/4/WES. 

 

[47]  Bolton to Bowen, 14 April 1950, NAA file F1/4/BOL/1.  Bowen replied on 10 May 

(same file):  ‘Your letter about Hey prompts me to raise with him the question of whether he 

would like to come out to work in Australia.  Both Joe and I have approached him before 

without success but from what you say we might succeed if we tried again …’. 

 

[48]  Bragg to Bolton, 2 May 1950, NAA file F1/4/BOL/1.  Earlier, Ryle had written to 

Pawsey:  ‘We are very much looking forward to seeing Bolton, and to hearing about some of 
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the more recent work at Radiophysics.’ Ryle to Pawsey, 21 March 1950, NAA file A1/1/1.  

Bolton replied to Bragg who, in turn, agreed to extend Bolton’s visit to three days. Bolton to 

Bowen, 18 May 1950, NAA file F1/4/BOL/1. 

 

[49]  Bowen to Bolton, 10 May 1950, NAA file F1/4/BOL/1. 

 

[50]  Bowen to White, 12 May 1950, NAA file PH/BOL/5B, part 1.  A copy of Bragg’s letter 

was sent to former CEO David Rivett who made clear his displeasure at Bolton’s treatment.  

In White’s view:  ‘I would feel inclined myself not to do anything about the matter.  It would 

be better to suffer some injustice rather than to cause a permanent breach with the 

Cavendish.’ White to Bowen, 30 May 1950, same file. 

 

[51]  Pawsey to White, 6 June 1950, NAA file PH/BOL/5B, part 1.  White replied on 13 June 

(same file): ‘I felt right from the beginning that Ratcliffe would have handled the matter 

otherwise.  Ryle seems to be a very funny sort of chap.’ 

 

[52]  Bolton to Bowen, 18 May 1950, NAA file PH/BOL/5B, part 1.  Bolton gathered enough 

material to write a detailed report covering the Cavendish research on solar noise and the 

discrete sources.  On leaving Cambridge, Bolton noted:  ‘I didn’t get the opportunity of a 

private talk with Ratcliffe, in fact I didn’t say goodbye to either Ratcliffe or Bragg.  This may 

have been a mistake but I could hardly thank them for their kind reception and hospitality etc. 

after what had happened!’  Bolton to Pawsey, 17 July 1950, NAA file F1/4/BOL/1. 

 

[53]  Bolton to Bowen, 31 May 1950, NAA file F1/4/BOL/1.  Fenners is the home of the 

Cambridge University Cricket Club.  Hoyle and Ryle had developed an intense dislike of 

each other.  In his autobiography Hoyle (1994, p. 268) wrote of Bolton’s visit: ‘But it is an ill 

wind that blows nobody any good.  I owed the start of a lifelong friendship with the 

Australian radio astronomer John Bolton to Ryle’s acute dislike of anybody from outside 

visiting his own tightly controlled group.’ 

 

[54]  It is interesting to note that in May 1947 Lovell was offered a chair in physics at the 

University of Sydney, with a salary more than double his Manchester one.  Lovell turned 

down the offer and also a similar one from the University of Adelaide the following year.  

Radio astronomy at Jodrell Bank may have never developed if Lovell had accepted either 

offer – see Saward (1984), p. 135. 

 

[55]  See Lovell (1968) for the history of Jodrell Bank.  Bolton made two lengthy visits to 

Jodrell Bank:  ‘When I arrived on my first visit, Bernard Lovell handed me a dog-eared 

school exercise book containing the mathematical formulation of the Hanbury Brown–Twiss 

intensity interferometer and asked me to see if I could find any errors.  After a week of very 

long evenings I reported back that I could find no errors, but was at a loss for any physical 

understanding.  The experimental proof of validity came later that year when the diameter of 

the Sun was measured …’.  See Bolton (1982), p. 353. 

 

[56]  Hanbury Brown and Hazard (1951), Mon. Not. R. Astron. Soc. 111, 357–67.  Hanbury 

Brown joked about the radio noisy site at Jodrell Bank:  ‘In radio astronomy it is only too 

easy to ascribe cosmical significance to what is, in effect, activity in the local tramway 

system.’  Hanbury Brown to Bowen, 30 April 1950, NAA file A1/1/1. 

 

[57]  See Hanbury Brown’s autobiography (1991, p. 102).  During the war Hanbury Brown 

had been a member of Bowen’s airborne radar group.  Bowen had a high opinion of him and 

tried unsuccessfully to recruit him to Radiophysics.  Bowen to Bolton, 3 April 1950, NAA 

file F1/4/BOL/1.  Hanbury Brown eventually came to Australia in 1962, though it was to the 

University of Sydney where he built the first full-scale intensity interferometer (see note 

[55]). 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 148 

 

[58]  At the time Oort had correctly predicted that comets originate from a reservoir of debris 

lying far beyond the Solar System.  The reservoir is now known as the Oort cloud – see e.g. 

Katgert-Merkelijn (1997), p. xxiii. 

 

[59]  See Robertson (1992), p. 81.  For an account of the detection of the 21 cm hydrogen line 

at Radiophysics see Wendt et al. (2008b). 

 

[60]  Pawsey to Bowen, 23 January 1948, F1/4/PAW, part 1.  Several Radiophysics staff 

became interested in the 21 cm prediction, including Paul Wild who wrote two theoretical 

internal reports on the subject, but no attempt was made to detect the line. 

 

[61]  Bolton to Pawsey, 17 July 1950, NAA file F1/4/BOL/1.  Bowen’s predecessor as chief 

of Radiophysics, John Briton, had enquired about bringing a Würzburg aerial to Sydney late 

in 1945:  ‘We understand that there is a good possibility of sidetracking one of the German 

Würzburg equipments from the Royal Air Force.  We would be very glad indeed to acquire 

one of these.  We would set it up at our new field testing site at Georges Heights, Sydney, 

where it would be very useful for a number of purposes …’.  Briton to G. B. Gresford, 6 

November 1945, NAA file A1/1/1 [see Figure 3.2 for the location of the Georges Heights 

site].  However, nothing came of the proposal.   

 

[62]  Westfold to Pawsey, 18 July 1950, NAA file F1/4/WES. 

 

[63]  See Section 3.2.  As well as Martyn, Pawsey, Bolton and Westfold, Jim Roberts from 

Radiophysics was the fifth Australian at the Zurich congress.  Roberts was studying for his 

PhD at Cambridge, supervised by Fred Hoyle and supported by a CSIRO studentship.  Later, 

he became one of Bolton’s principal collaborators at Caltech and Parkes (see Chapter 7). 

 

[64]  For an account of early Swedish radio astronomy see Radhakrishnan (2006).  A brief 

report and photo of the visit by Bolton and Westfold appeared in a Göteborg newspaper under 

the heading [my translation]:  ‘Researchers from Australia with Swedish radio astronomers’ 

[NLA papers, Series 3, Press clippings].  Bolton reported:  ‘Since leaving Zurich I seem to 

have spent half my time giving talks and half in railway trains.’  Bolton to Pawsey, 2 October 

1950, NAA file F1/4/BOL/1. 

 

[65]  See Westfold (1994), p. 538. 

 

[66]  After his return to Sydney, Bolton became critically ill and was rushed to hospital.  At 

first it was thought that he had contracted tuberculosis, but the diagnosis was changed to an 

acute bladder infection [Letty Bolton to author, 1 October 2009].  His lengthy illness delayed 

plans to build the so-called hole-in-the-ground telescope at Dover Heights – see Section 6.3. 
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 Chapter 6 

 

Consolidation and Competition: 

The Dover Heights Years 1951–54  

 

In this chapter we examine the second half of the Dover Heights years, covering the 

period 1951–54.  It was a time of consolidation that built on the successes of the late 

1940s.  A succession of larger Yagi arrays and improvements to receivers and 

electronics led to a significant improvement in the sensitivity and resolution of the sea 

interferometers.  Similarly it was a period of increasing competition from other 

groups, both from within the Radiophysics Lab and from a number of emerging 

groups overseas. 

 

In Section 6.1 we return to the source Cygnus A which, as we saw in Chapters 3 and 

4, was the primary focus of the Dover Heights group during 1947–49.  Unlike Taurus 

A, Centaurus A and Virgo A, all attempts to identify Cygnus A with an optical object 

turned out to be frustrating failures.  Increasingly accurate positions for the source 

derived by Bernard Mills at Radiophysics and then Graham Smith at Cambridge 

finally led astronomers at Mt Wilson–Palomar to identify the source with a distant 

object that appeared to be two galaxies in collision. 

 

In Section 6.2 we briefly examine the relationship between the Radiophysics radio 

astronomers and the outside world of media and public relations.  In the late 1940s 

the Radiophysics Lab shunned any publicity, a legacy of its secret wartime activities.  

By about 1950 this attitude began to change when it was realised that the Lab’s 

achievements were being overlooked both in Australia and internationally.  A new 

approach to promote and publicise the Lab’s activities reached its zenith at a major 

international congress held in Sydney in 1952.  The congress made clear to the 

international delegates that Radiophysics was the world’s premier radio astronomy 

group. 

 

Until the early 1950s the Dover Heights observing program was based largely on the 

technique of sea interferometry.  As we see in Section 6.3, in 1952 the group 
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branched out by building a large parabolic dish in the sandy surface of the field 

station.  The dish was used to discover the exact position of the Galactic nucleus, an 

achievement that had been beyond the power of traditional astronomy.  The discovery 

later helped to prompt the International Astronomical Union to define a new set of 

Galactic coordinates based on the new position. 

 

Finally, in Section 6.4 we see that by 1953 the technique of sea interferometry had 

been exploited to its limit.  The Dover Heights group needed to develop a new 

direction, but there was increasing competition from the other Radiophysics groups, 

all wanting to build new and increasingly expensive instruments. 

 

***** 

 

In Section 5.4 we described how early in 1949 Bolton and Westfold carried out a 100 

MHz survey of the southern sky using the aerial system in Figure 5.7, producing a  

contour map of radio strength over the declination range +30° to –90°.  A valuable 

byproduct of the survey was the discovery of a further six discrete sources.  During 

Bolton’s absence overseas in 1950, Gordon Stanley and Bruce Slee published [1] a 

summary of the data on the known discrete sources, which now numbered 22 (see 

Table 6.1).  The positions and source fluxes for the four strongest sources Cygnus A, 

Taurus A, Virgo A and Centaurus A differed significantly from the crude values 

Bolton had published in 1948 (see Table 4.1), a result of the more accurate 

observations made during the New Zealand expedition.  Approximate positions were 

given for most of the other weaker sources with right ascensions known to 1 minute 

accuracy and declinations to 1° accuracy.  As can be seen from the last column in 

Table 6.1, the four strongest sources had been studied extensively.  Some of the 

weaker sources were first detected during the few hours before dawn when levels of 

background interference were at their lowest and not all could be easily confirmed.  

As a result, sources with less than four records available were omitted from the table 

(numbers 3, 13, 14 and 16).  The Stanley–Slee paper also broke new ground by 

publishing the first spectra of the four strongest sources over the range 40–160 MHz 

(see Figure 6.1).  The spectra for Cygnus A, Virgo A and Centaurus A show a steep 

fall in intensity with increasing frequency.  The fall is steeper than a similar fall for 

the unresolved background radiation.  In sharp contrast Taurus A shows a very flat  
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Table 6.1:  List of confirmed discrete sources detected at Dover Heights between 
June 1947 and October 1949 [adapted from Stanley and Slee (1950) p. 238] 

 

Number & 
year of 

discovery A 

 

Temporary 
designation 

Intensity at  
100 MHz B 

(Jy) 

Angular 
width 

(arcmin) 

Coordinates (epoch 1948) 
 

RA                Dec 

Number of 
observa- 

tions 

1 – 1946 
 

Cygnus A 12500 <1.5 19h 58m 14s     +40° 36´ 320 

2 – 1947 
 

Taurus A 1850 < 6 05h 31m 30s     +22° 10´ 80 

4 – 1947 
 

Virgo A 1250 < 5 12h 28m 06s     +12° 41´ 100 

5 – 1947 
 

(Centaurus) 800 <30  10 

6 – 1947 
 

Centaurus A 1850 < 7 13h 22m 20s     –42°  37´ 50 

7 – 1948 
 

 Hercules A 200 <30 16h 50m     +05° 30 

8 – 1948 
 

 Taurus C 300 <15 04h 38m     +28° 
 

15 

9 – 1948 
 

 Taurus B 600 <30 05h 32m     +24° 15 

10 – 1948 
 

 Fornax A 200 <15 03h 11m     –36° 15 

11 – 1948 
 

 Serpans– 
   Cauda A 

300 <15 18h 43m     +05° 6 

12 – 1948 
 

(Centaurus)C 200 <30  4 

15 – 1948 
 

 (Leo) D 100 <30 11h 52m     +17° 5 

17 – 1949 
 

 Scorpius A 200 <30  5 

18 – 1949 
 

 Serpans– 
   Cauda B 

200 <30 18h 11m    –15°  5 

19 – 1949 
 

  Sextans A 200 <30 09h 55m    –05°   4 

20 – 1949 
 

 (Columba– 
   Caelum) 

200 <30 05h 01m     –36° 10 

21 – 1949 
 

 Puppis A 300 <30 08h 18m     –42° 8 

22 – 1949 
 

 Pictor A 300 <30 05h 18m     –44° 6 

 
A Sources 3, 13, 14 and 16 are unconfirmed. 
 
B Original units used were (watts m–2 (c/s) –1) × 10–24 ≡ 100 Jy. 
 
C Rises before Centaurus A, almost circumpolar at Dover Heights latitude. 
 
D Rises just before Virgo A. 

 

spectrum, which was later shown to be a feature of radio emission from a small class 

of supernova remnants.  The paper gave the ‘possible’ optical identifications for 

Taurus A, Virgo A and Centaurus A, but otherwise made no attempt to suggest 

identifications for the other sources. 

 

To conclude the paper, belatedly, Stanley and Slee commented on the Cygnus 

fluctuations and what they had known before anyone else: 
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Figure 6.1.  Spectra of the four strongest discrete sources where the error bars indicate the range of 

observed intensities.  Measurements were made on Cygnus A and Taurus A at the five frequencies 40, 

60, 85, 100 and 160 MHz.  The measurements on the sources Virgo A and Centaurus A were made 

during daylight when the terrestrial noise fluctuations were too great to obtain results at 40 MHz. [after 

Stanley and Slee (1950), Fig. 4] 

 

 ‘There are four features of the fluctuation phenomenon which would suggest an origin in 

the ionosphere: 

(1)  The spaced aerial observations on Cygnus. 

(2)  The annual variation in the Cygnus fluctuations. 

(3)  The increasing degree of fluctuation with decreasing frequency. 

(4)  Marked fluctuations in most cases at low altitude. 

The absence of fluctuations in some of the minor sources may be due to angular width.  If 

the fluctuations are due to irregularities in the ionosphere it is likely that the effect would 

be more pronounced in the case of sources of small angular width.  Recent measurements 

indicate that the source in Cygnus has an angular width of less than 1ʹ 30ʺ whereas the 

angular widths of a number of the minor sources are believed to be several minutes of 

arc.  This suggestion may be compared with the “twinkling” of stars and the steady 

appearance of planets.’ 
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6.1  Cygnus A Revisited:  Galaxies in Collision? 

As we saw in Chapter 4, in July 1949 Bolton, Stanley and Slee published optical 

identifications for three of their strong sources, but the identity of the strongest source 

Cygnus A had remained a mystery.  The identifications created a fair amount of 

interest, but did not set the astronomical world on fire.  The event that really caught 

the attention of astronomers was the identification of Cygnus A.  In May 1949 

Bernard Mills took up the challenge of measuring a more accurate position for the 

source.  Mills had joined the Radiophysics Lab in 1942 after completing a degree in 

electrical engineering at the University of Sydney.  After the war he spent time 

working on CSIRAC, Australia’s first digital computer (see Section 5.2), but in 1948 

Mills was forced to take extended leave after contracting tuberculosis.  On his return 

to Radiophysics, Mills was persuaded by Pawsey to transfer to the radio astronomy 

group and to consider two possible projects – an attempt to detect the 21 cm hydrogen 

line predicted by van de Hulst (see Section 5.4) or to investigate the nature of the 

discrete sources, independent of the Dover Heights group.  Mills recalled [2]: 

 

‘If I had been a trained astronomer and therefore aware of the possible great importance 

of the H line no doubt this would have been my choice, but I looked on it as merely a 

technical challenge, whereas I was intrigued by the mystery of the discrete sources and 

had no hesitation in choosing this option.  This did ensure some friction within the group 

as John Bolton had made discrete sources his own, following his use of the sea 

interferometer to discover the first such source and to establish the existence of this class 

of object by finding several others.’ 

 

Mills and fellow electrical engineer Adin Thomas began observations on Cygnus in 

May 1949 at the Potts Hill field station (Figure 5.3).  They used an interferometer, 

previously built for solar work, consisting of three Yagi aerials mounted at 

approximately 300 metre intervals in an east–west direction.  Each aerial was 

connected through a coaxial switch to a pre-amplifier and then by cable to the main 

receiver.  The operating frequency of 97 MHz was in the range of 40–200 MHz 

assigned to the Dover Heights group, but Pawsey thought that the two interferometer 

techniques were sufficiently different to justify the overlap. 
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Over a six-month observing period Mills and Thomas took painstaking care to 

minimise all sources of error.  The position measured was a significant improvement 

on the Dover value, derived after the New Zealand expedition, with a reduction by a 

factor of 4 in the area of the error box: 

 

  Dover Heights:     RA   19h  58m  16s     Dec   +40°  36ʹ 

               

                         Potts Hill:      RA   19h  57m  36s     Dec   +40°  31ʹ 

 

Next Mills examined photographs of this region of the sky that Bolton had earlier 

received from Rudolph Minkowski, taken with the 100-inch Hooker telescope on Mt 

Wilson.  Mills found a faint nebulous object very close to the measured position, 

which he assumed was probably a nearby object in the local Galaxy.  The radio 

position differed from the object’s position by only 2 sec in RA and 2ʹ in Dec.  Before 

announcing a possible identification, Mills wrote to Minkowski to inform him of the 

close coincidence of the radio and optical positions and noted the previous 

discrepancy between the positions measured by the Dover and Cavendish groups [3]: 

 

‘For some time my colleagues and I have been observing the discrete source of radio 

noise in the Cygnus region, using a double aerial interferometer similar to that of Ryle.  

As you know a number of different positions have been quoted for this source in the past, 

illustrating the difficulty of making accurate measurements at radio frequencies … Mr 

Bolton has shown us your photographs of the region and we find that the source can quite 

reasonably be identified with an object which you have marked as an extragalactic nebula 

… How certain is it that the object in question is extragalactic?’ 

 

Mills hoped that Minkowski would re-examine the nebulous object, possibly with the 

new and more powerful 200-inch Hale telescope which had been commissioned the 

year before.   To Mills’ disappointment, Minkowski replied that on the evidence 

available the object appeared to be an external galaxy at great distance.  He firmly 

advised against announcing the object as the Cygnus source [4]: 

 

‘It is gratifying to see the gradual improvement of the determination of position.  

Ultimately, this should make it possible to investigate the spectra of the brighter stars 

within the area outlined by the probable errors.  But, in a field as rich as the Cygnus field 
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this does not yet seem to be a reasonably promising method of attack.  From the 

astronomical side, the most useful bit of work would be the search for a star with high 

proper motion … I do not think that it’s permissible to identify the source with one of the 

faint extragalactic nebulae in the area.  These nebulae are undoubtedly extragalactic, at a 

distance of the order 107 parsec or more … This leaves either a bright star at a very large 

distance or an intrinsically faint star nearby.  The search for a proper motion star should 

be the best way to decide between the alternatives.’ 

 

Mills was now confronted with the same dilemma that Bolton had faced early in 1949 

with the Centaurus and Virgo sources.  It seemed highly improbable that a galaxy at 

such a great distance could radiate such an extraordinary amount of radio energy.  

Mills decided against publishing such a claim.  In December 1950 Mills and Thomas 

submitted their results to the Australian journal and played safe by concluding [5]:  

‘On the evidence presented it would seem most likely that the source is located in 

some nearby faint star of abnormal properties.  A proper-motion search of the field 

would therefore be of the greatest interest.’ 

 

Radio astronomers elsewhere were now on the track of the elusive source.  At Jodrell 

Bank, Hanbury Brown and Hazard used the above-ground 67 m paraboloid (Section 

5.4) to measure a position for Cygnus, but the errors bars were too large for the 

position to be of interest to Minkowski.  In August 1951 Graham Smith, carrying out 

research for his doctorate at Cambridge, announced new positions for the four sources 

Cygnus, Cassiopeia, Taurus and Virgo (Centaurus was too far south to be observed 

from Cambridge).  Smith made observations with two interferometers: the Long 

Michelson interferometer used to conduct the first Cambridge sky survey (see Figure 

5.5) and a second consisting of two parabolic Würzburg dishes operating at 80 and 

215 MHz (see Figure 6.2).  In the meantime Mills had moved to the Badgery’s Creek 

field station (Figure 5.3), south–west of Potts Hill, where he established a new form 

of broadside interferometer (see Figure 6.3).  Mills used the array to measure accurate 

positions for Cygnus and the five sources in Centaurus, Virgo, Hydra, Taurus and 

Fornax [6].  The Radiophysics and Cavendish positions for Cygnus were now in close 

agreement: 
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Figure 6.2.  Graham Smith with the Cambridge interferometer, consisting of two former wartime 

Würzburg dishes.  Smith used the interferometer in 1951 to measure a precise position for the Cygnus 

A source as part of his PhD thesis.  It was the beginning of a distinguished career for Smith.  In 1982 he 

was appointed Britain’s Astronomer Royal.  [courtesy: Graham Smith; credit: Bruce Elsmore] 

 

           Revised Mills:     RA   19h  57m  44±2.5s      Dec   +40°  34±1.5ʹ 

               

                                          Smith:      RA   19h  57m  45.3±1s      Dec   +40°  35.0±1ʹ 

 

More importantly, the error box for Smith’s position was almost twenty times smaller 

than the Mills–Thomas one that had originally been sent to Minkowski.  Smith wrote 

to Walter Baade at Mt Wilson (Minkowski’s close colleague), encouraged by 

Roderick Redman, director of the Cambridge University Observatory [7]: 

 

‘I have just completed a series of measurements of the positions of four major radio stars, 

and I have been discussing with Professor Redman the problem of attempting to identify 

them with visible objects.  The accuracy of location has been considerably improved by 

new interferometric techniques, and he suggested that you might consider it worth while 

to investigate those positions with the 200-inch telescope.’ 
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Figure 6.3.  One of the three broadside antennas erected at the Badgery’s Creek field station 

in late 1949.  The three-element interferometer operated at 101 MHz and was positioned along 

an east–west baseline.  In 1950 Mills used the interferometer with baselines of 60 and 270 m 

to obtain the positions of 77 discrete sources, including a new and more accurate position for 

Cygnus A.  Each of the broadside antennas could be rotated in elevation on its horizontal axis, 

allowing a transit survey of the whole sky.  [courtesy: RAIA]  

 

Baade replied [8]: ‘Your latest measures have reduced so much the uncertainties in 

the positions of the radio stars in Cygnus and Cassiopeia that a serious effort should 

be made to identify them, if possible, with visible stars.’  Baade did not include 

Taurus or Virgo in this ‘serious effort’ because he believed that the identifications 

made by the Dover Heights group two years earlier were correct for Taurus and 

probably correct for Virgo: 

 

‘Regarding the Taurus source I have no doubt that the identification with the Crab nebula 

– the remnant of the supernova of 1054AD – is the correct one.  Not only is the Crab 

nebula astrophysically in a class by itself but it also seems to differ from the common 

radio sources in respect to the wavelength dependence of its radiation (Bolton).’ 

 

‘The radio source in Virgo coincides with one of the brightest galaxies of the Virgo 

cluster of nebulae, NGC4486 + Messier 87.  This coincidence could of course be 

accidental.  But Messier 87, a giant ellipsoidal galaxy, is unique among all the galaxies of 

its kind on account of a most unusual feature:  a huge, thin jet of matter emanating from 
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its nucleus.  The nature of this jet is a complete mystery at present.  Nonetheless, one 

begins to wonder whether the coincidence of the radio source and Messier 87 is merely 

accidental.’   

 

Baade noted that he would examine the colour of stars in the vicinity of the radio 

positions, particularly their behaviour in the infrared, while Minkowski would take 

spectrograms of the same stars in the hope that the radio star might show an unusual 

spectrum:  ‘Both lines of attack are of course straight gambling and there is every 

indication that the identification of the radio sources with visible stars may be very 

difficult.’ 

 

Two months later Baade could report [9]: 

 

‘I would like to let you know that my search for the Cassiopeia radio source at the 200 

inch has turned up an exceedingly interesting object close to your measured position.  It 

is an emission nebulosity 2.8 minutes of arc long of a most abnormal type.  In fact the 

only nebulosity with which it can be compared in its intricate structure is the well known 

Crab nebula! … Although the present data do not yet establish the identity of radio 

source and nebulosity the coincidence of the radio source with a very abnormal 

astronomical object appears certainly suggestive.’ 

 

Cygnus remained the only one of Smith’s four radio sources with accurate positions 

yet to be identified.  After many hours of observation with the 200-inch Hale 

telescope, Baade and Minkowski became convinced that the Cygnus source was the 

very same nebulous object proposed by Mills and Thomas two years earlier and 

which Minkowski had dismissed.  Next came the major surprise.  An analysis of the 

faint light from the object showed sharp emission lines greatly shifted towards red 

wavelengths, indicating that the Cygnus source was at the extraordinary distance of 

1000 million light-years.  The Mills–Thomas identification had been correct all along.  

If Minkowski had trusted their Cygnus position, the credit for this remarkable 

discovery might well have gone to them.  Later, in their paper giving the optical 

identification, Baade and Minkowski added a footnote justifying their actions [10]: 

  

‘This coincidence was already noted in 1951 by Mills and Thomas … but it seemed 

unlikely at that time that a distant galaxy could be the radio emitter.  Moreover, the 
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coincidence established by them was not convincing, since, besides the nebula in 

question, three of the brighter members of the cluster fall into the area defined by the 

uncertainty of the position.  Minkowski therefore wrote Mills that he did not think it was 

permissible to identify the source with one of the faint extragalactic nebulae in the area 

and emphasized that what was wanted was a more accurate radio position.  The accuracy 

of Smith’s position was needed to make the identification among the cluster members 

unambiguous.’ 

 

In his later years Mills did not hold a grudge [11]: 

 

‘I could not really blame Minkowski for dismissing our result, because three positions of 

the source had been published previously, all in wild disagreement and in disagreement 

with ours; the radio measurements of obviously ignorant newcomers were clearly not 

taken seriously, especially when in conflict with the conventional wisdom.  However, the 

whole episode marked the beginning of my development of a healthy scepticism toward 

authoritative pronouncements and the confidence to rely on my own judgment …’. 

 

The Palomar observations continued and by May 1952 Baade and Minkowski were 

able to resolve the object into two bright condensations consisting of a bright central 

region surrounded by much fainter outer parts of elliptical outline.  If the distance to 

the object provided an extraordinary surprise, so too did the apparent nature of the 

Cygnus source [12]: 

 

‘At first sight, this nebula is a very curious object which seems to defy classification.  

The clue to a proper interpretation lies in the fact that it has two nuclei which are tidally 

distorted and that hence we are dealing with the superimposed images of two galaxies.  

Both are late-type systems, judging by the low density gradients … Actually, the two 

systems must be in close contact because of the strong signs of tidal distortions which the 

nuclei show.  This suggests that we are dealing with the exceedingly rare case of two 

galaxies which are in actual collision.’ 

 

An astronomical traffic accident of such violent proportions had never been detected 

before.  Baade and Minkowski explained how the collision could generate intense 

radio emission [13]: 
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‘As far as the stars of the colliding systems are concerned, such a collision is an 

absolutely harmless affair.  The average distance between two stars is so large that the 

two galaxies penetrate each other without any stellar collisions.  The situation is very 

different for the gas and the dust imbedded in the two systems.  Because of the much 

shorter free paths of the gas and the dust particles, the collision of the two galaxies means 

a real collision of the imbedded gas and dust, which are heated up to very high 

temperatures, since the collisional velocities range from hundreds to thousands of 

kilometres per second.  It is obvious that this behaviour of the gas and dust provides a 

beautiful test of our hypothesis that the two galaxies which we identify with the radio 

source Cygnus A are actually colliding …’. 

 

Knowing the distance to Cygnus and the flux received, and assuming the emission is 

isotropic, Baade and Minkowski were able to calculate the total energy emitted in the 

radio region as 8 × 1042 ergs/sec.  They concluded:  ‘The source of energy for the 

radio emission may be the relative kinetic energy of the colliding nebulae, which is of 

the order of 1059 ergs for a relative velocity of 500 km/sec.’ 

 

As we noted in Chapter 2, Karl Jansky and Grote Reber suggested that the Galactic 

radio emission arose from the scattering of energetic charged particles – electrons and 

positive ions – moving freely in interstellar space.  With the discovery of the first 

discrete sources, Bolton had speculated that much of the radio emission might come 

from pre-main sequence or post-main sequence stars.  During the late 1940s and early 

1950s a number of theoretical papers attempted to explain the mechanism responsible 

for the radio emission from discrete sources.  A survey of these theories is beyond the 

scope of the present thesis [14].  However, we can note that none of these theories 

seemed capable of explaining the prodigious amount of radio energy emitted by 

peculiar extragalactic objects such as Cygnus. 

 

The collision theory was widely adopted as the correct mechanism for other 

extragalactic sources such as Centaurus and Virgo.  Some astronomers, including 

Martin Ryle, claimed that the theory provided strong evidence in favour of the big 

bang cosmology.  Soon after the big bang, when the Universe was in a very compact 

state, collisions between pairs of galaxies were probably commonplace.  It was 

argued that the current population of extragalactic sources was providing a ‘window’ 
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back to the very early epoch of colliding galaxies.  However, the idea was soon 

shown to be untenable.  Not even the energy generated by galactic collisions seemed 

enough to account for the intense radiation.  By 1955, three years after the 

announcement by Baade and Minkowski, most astronomers had abandoned the 

collision theory of distant radio sources [15]. 

 

The mechanism to emerge to account for the intense emission from radio sources was 

named after a new type of laboratory particle accelerator – the synchrotron which 

accelerates charged particles to relativistic energies, confined by a strong magnetic 

field.  In 1947 a synchrotron designed by the General Electric Company in the US 

produced a new and unexpected blue light emitted by the electron beam.  In 1950 the 

physicists Hannes Alfvén and Nicolai Herlofson in Stockholm, and independently 

Karl-Otto Kiepenheuer in Freiborg, suggested that synchrotron radiation was the 

principal mechanism for radio emission from discrete sources [16].  The idea did not 

find much immediate support because astronomers were convinced that the correct 

mechanism must involve some form of interaction between pairs of charged particles, 

rather than the interaction of individual particles with a magnetic field.  The idea was 

however taken up in the early 1950s by the Russian theorists Vitaly Ginzburg and 

Iosif Shklovsky who independently worked out the theoretical formalism of the 

synchrotron mechanism.  Whereas the Alfvén–Herlofson theory had been applied to 

stars, the Ginzburg–Shklovsky theory applied to galaxies.  Their papers were 

published in Russian in relatively obscure journals which significantly delayed their 

arrival and acceptance in the West.  It is interesting to note that both Alfvén and 

Ginzburg were subsequently awarded the Nobel Prize for Physics, in 1970 and 2003 

respectively, though there was no mention of synchrotron radiation in either of their 

citations [17]. 

 

Caltech theorist Jesse Greenstein dated a conference at Jodrell Bank in June 1955 as 

the time when consensus was finally reached that synchrotron radiation was the 

correct mechanism [18]: 

 

‘The 1955 IAU Symposium was probably radio astronomy’s coming-of-age party.  It was 

quite an international meeting which brought definitive agreement that non-thermal, 

electron-synchrotron radiation dominated strong radio sources.  The Ginzburg–Shklovsky  
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model triumphed.  Cosmic-ray electrons at relativistic energies (although rare in our 

Galaxy) radiated copiously in the magnetic fields of radio sources, from X-rays to radio 

frequencies … Thermal radiation from ionised gas clouds, or galaxies in collision, proved 

too small.  Thus, 1955 marked the realisation that enormous violence dominated the 

cosmos.’ 

 

Although the galactic-collision mechanism turned out to be incorrect, the optical 

identification of Cygnus in 1952 by Baade and Minkowski proved to be a major 

milestone in the development of radio astronomy.  After the Sun and the supernova 

remnant Cassiopeia, by astronomical standards our near neighbours, Cygnus is the 

next strongest radio source, even at the extraordinary distance of 1000 million light-

years.  Much weaker sources could easily be detected with the simple aerials in use 

during these early days of radio astronomy.  As we noted at the end of Chapter 4, the 

identification of the Centaurus and Virgo sources with extragalactic objects by 

Bolton, Stanley and Slee in 1949 opened up the possibility of radio astronomy being 

able to reach much further out into the Universe than traditional astronomy.  Baade 

and Minkowski clearly recognised this possibility [19]: 

 

‘Cygnus A is without doubt an object of exceedingly rare type.  But its intensity is so 

high that at a ten times larger distance it would still be an easily observable source.  At 

such a distance it would cease to be an optically observable astronomical object; and even 

at a distance of only twice that of Cygnus A recognition as a peculiar nebula and 

observation of the spectrum would become very difficult.  Thus a large volume of space 

is easily accessible to radio observations but is practically or entirely beyond the limit of 

astronomical work, even with the largest telescope.  The number of observed or 

observable sources in this volume cannot be determined.  It may be sizable, and it would 

be no contradiction to any known fact if the majority of the unidentified sources should 

turn out to be of this type.  Whether this is so, only the future can decide.’  

 

Their prediction turned out to be correct.  The discovery during the early 1960s of 

remote quasi-stellar sources (quasars) – in which John Bolton played a leading role 

(see next chapter) – pushed back the known boundaries of the Universe and led to a 

revolution in modern cosmology. 
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6.2  Coming of Age – The 1952 URSI Congress in Sydney 

In Chapter 4 we noted that, during the expedition to New Zealand in mid-1948, 

Bolton and Stanley had shunned the interest in their work by the local press.  The 

visits by reporters to the site at Pakiri Hill were seen as an unwelcome distraction and 

disruption.  Talking to the press was considered equivalent to bragging about the 

importance of their research, not the sort of behaviour expected of a scientist.  Bolton 

went so far as to refer to the reporters as ‘a menace’ [see note 12 in Chapter 4].  In 

this section we briefly review how this attitude at Radiophysics to the press and other 

media changed during the late 1940s.  By 1952, when Sydney hosted the General 

Assembly of the Union Radio Scientifique Internationale (URSI), the Radiophysics 

Lab was actively encouraging media stories about its radio astronomy and its other 

research programs. 

 

The relationship between the Radiophysics Lab and the British scientific 

establishment did not get off to a good start.  As discussed in Section 3.1, the first 

radio astronomy paper from Radiophysics was a letter to Nature in February 1946 by 

Joe Pawsey, Ruby Payne-Scott and Lindsay McCready reporting that sunspots were 

the source of intense bursts of radio emission from the Sun.  As an indication of how 

radio astronomy was still in its infancy, the letter contained just four references to 

earlier work – the papers by Jansky and Reber, and the wartime reports by Stanley 

Hey in England and Elizabeth Alexander in New Zealand.  Several newspaper reports 

of the Radiophysics discovery appeared in England and the United States, including 

mention of the confidential reports by Hey and Alexander.  However, there was a 

problem – even though the war had ended and the contents of the two confidential 

reports were widely known, both reports were still classified secret.  Sir Edward 

Appleton wrote from London to CSIR head office condemning the disclosure of the 

two reports and requested an apology.  It was left to Taffy Bowen to humbly write to 

Archibald Hill, a senior figure at the UK Department of Scientific and Industrial 

Research [20]: 

 

‘We have just had a note from Sir Edward Appleton referring to the fact that in a recent 

letter to ‘Nature’ from this Laboratory reference was improperly made to two confidential 

reports.  We regret very much that this has occurred and wish to apologise for not seeking 

prior permission from the authorities concerned.’ 
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‘Our excuses if they can be given at this late stage are that, on the one hand, we were 

most anxious to acknowledge the priority of the British and New Zealand work, and, on 

the other, we were misled by the fact that while the contents of the two reports had 

become common knowledge, the reports themselves remained classified.  I sincerely 

hope that this omission on our part can be overlooked and I will see that it does not occur 

again.’ 

 

A similar incident occurred late in 1947.  A year earlier, radar operators in Hungary 

and the United States had been the first to detect radar signals bounced off the Moon, 

however it was a Radiophysics group that achieved the first results of significant 

scientific value.  Frank Kerr, Alex Shain and Charles Higgins began their own radar 

experiments using a powerful transmitter installed at the overseas broadcast station 

‘Radio Australia’ at Shepparton in Victoria, in conjunction with a receiving station at 

Hornsby near Sydney (Figure 5.3).  The group succeeded in registering echoes from 

the Moon and, by analysing the modulation of the return signal, were able to deduce 

some of the properties of the lunar surface (later confirmed during the Apollo 11 

mission). 

 

A reporter in Shepparton picked up the story and several newspaper reports appeared 

in November 1947, some containing a number of factual errors.  Rather than 

welcoming the publicity, the CSIR chief executive David Rivett was scathing in his 

criticism of the reports [21]: 

 

‘Don’t worry about the news hawks.  After all, people probably think it is a matter of 

tremendous scientific importance to get an echo from the Moon.  If only the reporters had 

described it as noises from the Moon, created, presumably, by the tom toms of its 

inhabitants, you would all have been regarded as really great men.  Has anybody, by the 

way, yet asked you who makes the noises in the Sun?’ 

 

In contrast to the unwelcome intrusion of the popular press, the Radiophysics Lab 

faced the opposite problem in the professional literature.  In another illustration of the 

‘tyranny of distance’ noted earlier, the Radiophysics contributions were often 

overlooked or devalued.  As one example, early in 1948 the prestigious British 

journal Proceedings of the Institution of Radio Engineers published a review of 
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progress in radio science the previous year, including solar and galactic noise, but 

failed to make a single reference to Radiophysics.  Similarly, a popular account of 

radio astronomy by the Cambridge astronomer Michael Ovenden, published in the 

widely read Science Progress, made no mention of the work at Dover Heights.  

Bowen expressed his frustration [22]: 

 

‘I realise that there is nothing worse in scientific work than cries of ‘we did it first’, but I 

am sure you will understand that we are having a difficult time keeping radio work going 

in this rather distant outpost and it is a bit hard to find later work elsewhere getting the 

credit.  I realise that distance and the difficulties of publication are the basic reason for 

this but we are attempting to overcome it by giving as wide a distribution as possible to 

our papers.’ 

 

 

 

Figure 6.4.  A composite image where the text is from the Sydney Morning Herald in October 

1948, the first Australian newspaper to regularly publish articles on radio astronomy.  The 

sketch is from the periodical Smith’s in a December 1948 article on the ‘Sad fate of radio 

stars’.  The article noted that Cygnus could be a star near the end of its life, no longer visible in 

the optical, but still emitting radio: ‘Maybe the big noise in the Swan is really only a little chap, 

beyond telescope or photography, but still able to kick up a noise on the radio before he 

passes out.’ [courtesy: Bolton papers, National Library of Australia] 

 

The earlier reluctance to publicise the activities at Radiophysics now gave way to 

active promotion of its research (see e.g. Figure 6.4).  In 1949 Bowen commissioned 

an 18 minute documentary showcasing eight main research areas, including moon 

echoes, rain making, electronic computing, radar aids to air navigation and, of course, 

radio astronomy.  Radiophysics staff travelling overseas were encouraged to take 

along a copy of the film.  Bowen himself showed the film at a meeting in June 1951 

of the British Astronomical Association in London.  Feature articles on radio  
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Figure 6.5.  Two photos from the series taken by Life magazine photographer Fritz Goro during his visit 

to Sydney in July 1951: (above) At Dover Heights with the 4.8 m dish on its equatorial mount.  A colour 

version with a red dawn sky in the background was the main image used in the Life feature article on 

radio astronomy. (below) John Bolton inside the blockhouse (the photo was not included in the article).  

[courtesy: Life magazine] 
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astronomy also began to appear in popular magazines, both local and overseas.  The 

highlight was a feature in September 1951 in the leading American Life magazine, 

under the title ‘New “Ears” are Huge and Costly’, which included photos of Potts Hill 

and Dover Heights (see Figure 6.5) [23]. 

 

The event that really boosted the growing public profile of the Radiophysics Lab was 

the Tenth General Assembly of the Union Radio Scientifique Internationale (URSI) 

held in August 1952.  As we saw in Section 5.4, a principal aim of Bolton’s tour of 

Europe was to represent Radiophysics at the URSI General Assembly in Zurich in 

August 1950.  At the meeting David Martyn (Commonwealth Observatory at Mt 

Stromlo) was the president of the newly-formed commission on Radio Astronomy, 

with Joe Pawsey as its secretary.  At the Zurich meeting Martyn and Pawsey 

successfully lobbied to have the next general assembly held in Sydney.  It was a coup 

of great significance, the first time any major international scientific organisation had 

decided to meet outside Europe or North America.  The decision was a tribute not 

only to Australia’s leadership in radio astronomy, but also to the strength of 

Australian radio science as a whole. 

 

Over sixty delegates from thirteen countries attended the congress, with a large 

number of local delegates (see Figure 6.6).  Although radio astronomy was only one 

of seven URSI commissions, about one third of the delegates signed up for the radio 

astronomy program.  Radiophysics hosted the event, while the meeting itself took 

place in the nearby Department of Electrical Engineering which had a sufficient 

number of lecture theatres to accommodate the various sessions.  A concert by the 

Sydney Symphony Orchestra in the university’s Great Hall opened the proceedings 

and over the next two weeks the delegates were treated to a round of official 

receptions, a tour of the city and its beaches and, of course, a harbour cruise.  Official 

tours were arranged to Potts Hill and to Dapto on the south coast (see Figure 5.3), 

while other smaller informal visits were made to other field stations (though there is 

no record of a visit to Dover Heights).  A weekend trip to Canberra included a visit to 

the fledgling Australian National University and to the Mt Stromlo Observatory, with 

Martyn acting as proud host [24]. 
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Figure 6.6.  The URSI General Assembly held in Sydney in August 1952 was the first international 

scientific conference held outside Europe and the United States. (above) Joe Pawsey (right) and Taffy 

Bowen extend a shipboard welcome to Sir Edward Appleton, the president of URSI.  (below) Bolton with 

Robert Hanbury Brown (right) from Jodrell Bank and two other delegates.  [courtesy:  RAIA] 
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The radio astronomy program was divided into four sections dealing with solar 

studies, the physics of ionised gases, the 21 cm hydrogen line, and the discrete 

sources.  The five talks on discrete sources were given by Graham Smith 

(Cambridge), Robert Hanbury Brown (Jodrell Bank) and, from Radiophysics, Bernie 

Mills, Alex Shain and Bolton.  The optical identification of Cygnus with a distant 

extragalactic object had radically altered the landscape for discrete sources.  Bolton 

no longer felt compelled to argue that the objects identified with Centaurus (NGC 

5128) and Virgo (M87) must be within the local Galaxy.  Both were now considered 

‘provisional’ extragalactic objects, in line with increasing evidence from optical 

astronomers that they were indeed, like Cygnus, pairs of colliding galaxies.  The 

prevailing view that the discrete sources were a new class of radio ‘star’ – optically 

dim and relatively close – was changing fast.  There were now (see note [12]) seven 

sources where the optical identifications were fairly certain:  three supernova 

remnants in the Galaxy, three peculiar galaxies, and one ‘normal’ galaxy.  Bolton was 

given the task of summarising the radio astronomy program in an article written for 

the British astronomy magazine The Observatory.  For the section on discrete sources 

he concluded: ‘It seems that the term radio “star” may be a misnomer’ [25]. 

 

The success of the URSI Congress was very much a coming of age for the 

Radiophysics Lab.  The international delegates were impressed by the size and calibre 

of its staff, the well-equipped laboratories and workshops, and the breadth of its 

research program at the various field stations in and around Sydney.  Bowen basked 

in the Lab’s achievement [26]: 

 

‘We are going round with something of a glow at the present time as a result of the 

stream of letters that are coming in from departing delegates expressing their appreciation 

of the show that was put on.  It is quite clear that they will remember it for a long time to 

come and we will benefit immeasurably as a result of it.’ 

 

For most of the delegates, the scale of the activities at Radiophysics dwarfed their 

own small university or observatory programs, which operated on shoestring budgets 

during the postwar years of austerity in Europe.  One of the most senior delegates to 

make the voyage to Australia was Jack Ratcliffe who, as we saw in the previous 
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chapter, was the nominal head of the Cambridge radio astronomy group.  Ratcliffe 

was so impressed by the Radiophysics facilities that he was concerned that 

Australians would no longer be interested in coming to the Cavendish Lab [27]: 

 

‘I do hope that you can continue to spare an occasional man to come and work with us.  

We value our Australian contacts very much and it does us good to have people from 

overseas in the Laboratory.  Without the help of the Dominions’ students we should not 

be able to keep our work, and particularly our ionospheric work, running at its present 

level.  Please help us with an occasional PhD student for three years, or a more senior 

man for a shorter time.’ 

 

The tide was turning from when it had been almost mandatory for a young Australian 

scientist to spend time studying at a British university.  Bowen sent an extract of 

Ratcliffe’s letter to Fred White, who commented: 

 

‘I can well imagine, now that he [Ratcliffe] has seen Radiophysics, he perhaps wonders 

why we bother to send our students to Cambridge or, in fact, to any other centre in the 

United Kingdom interested in radio.  I know that he was very much impressed with your 

facilities and said quite frankly they exceed his.  However, there are many other virtues in 

a young man having experience in England and in one of the older universities, and I for 

one would certainly advocate sending our younger men to Cambridge occasionally.’ 

 

At a business meeting during the congress the URSI Executive Committee called for 

special reports to be prepared on four subjects – meteors, the distribution of radio 

emission across the solar disc, interstellar hydrogen, and the discrete sources.  For the 

fourth subject, the Executive appointed a sub-committee consisting of the four ‘young 

Turks’ – Smith, Hanbury Brown and Mills, with Bolton as chair.  The fifty-six page 

report was completed just over a year later, in September 1953.  Although it was 

published by the URSI General Secretariat in Brussels, rather than in a peer-reviewed 

journal, the report was the first comprehensive review of the field.  The report was 

divided into eight sections dealing with a historical overview; optical identifications; 

source surveys and the general background radiation; scintillations and refraction; the 

detection of sources and the problem of confusion; the determination of positions of 

sources; and the determination of angular widths.  The introduction began with a 

generous acknowledgment [28]: 
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‘The discovery by Hey, Parsons and Phillips (1946) of short period fluctuations in the 

intensity of extra-terrestrial noise from a small region in the constellation of Cygnus 

opened a remarkable chapter of modern astronomy … The fluctuations, or scintillations 

as they are now called, which led to the discovery of the first discrete source, have since 

been shown to be due to irregularities in the ionosphere.  Thus Hey’s pioneer discovery 

had led not only to knowledge of new types of astronomical objects, but has provided 

new methods of investigating the conditions in the ionosphere.’ 

 

As a clear indication of how the three main centres dominated the field, the report’s 

bibliography listed a total of 63 papers published by:  the Radiophysics Lab (38% of 

all papers), the Cavendish Lab (30%), Jodrell Bank (23%) and Other groups (9%).  

Similarly, the British and Australian journals accounted for the great majority of 

papers: Nature (30%), Aust. J. Scient. Res. (30%), Mon. Not. R. Astron. Soc. (10%), 

Proc. R. Soc. London (8%) and Others (22%) (see [29]). 

 

6.3  A Hole-in-the-Ground:  Discovery of the Galactic Nucleus 

Late in 1951 the Royal Society of New South Wales, Australia’s oldest learned 

society (founded 1821), awarded Bolton its Edgeworth David Medal, citing ‘his 

outstanding contributions in the field of radio astronomy’.  Named after the 

prominent Australian geologist and Antarctic explorer, the medal was awarded to 

promising scientists under the age of 35 and would be the first of many Bolton 

received over his career.  Joe Pawsey wrote the nomination [30]: 

 

‘Australian research in radio astronomy over the past few years has represented a major 

contribution to the science of astronomy.  In this Bolton has played an outstanding part.  I 

consider his scientific contributions over the past few years to be materially greater than 

any other young Australian physicist, mathematician, astronomer or meteorologist of 

whom I know.’ 

 

Bolton expressed his gratitude to Fred White at CSIRO head office [31]: 

 

‘Thank you very much for your letter of congratulation which I value as much as the 

award of the medal itself.  I should like to say that I regard the award as an award to a 

team as I have been extremely fortunate in having as assistants two very able men to 
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whom a forty hour week means nothing.  Our results have been mainly due to Stanley’s 

initial design of equipment and to Slee’s persistence in improving equipment 

performance and making tedious observations.  I hope that we shall be able to continue 

the past standard of research.’ 

 

Bolton’s research was also gaining recognition where it mattered most.  When he 

joined Radiophysics in September 1946, Bolton began on the lowest rung of the 

research officer level, but with a series of double and triple annual increments he had 

rocketed up the research ladder.  In July 1952 Bolton was promoted to the grade of 

Senior Research Officer (SRO) at a salary more than double that from September 

1946.  Barely 18 months after his promotion, Bolton was again promoted to the next 

grade of Principal Research Officer (PRO).  At the age of 31, he became the youngest 

officer to be appointed to this grade in CSIRO [32]. 

 

After returning from his overseas trip in 1950, Bolton decided on a new line of attack.  

As we have seen, the observational program at Dover Heights since 1946 had been 

based on the technique of sea interferometry.  The one exception was the sky survey 

carried out by Bolton and Kevin Westfold in 1949 using the nine-Yagi array mounted 

on the roof of the blockhouse (see Figure 5.7).  During his visit to Jodrell Bank, 

Bolton had been greatly impressed by the 67 m (220 ft) diameter above-ground 

parabolic dish.  Bernard Lovell had built the dish in 1947 with the aim of using radar 

to study the showers of charged particles produced by cosmic rays, but then converted 

the instrument to radio astronomy.  In 1950 Robert Hanbury Brown and Cyril Hazard 

used the dish to detect radio emission from the Andromeda galaxy. 

 

Bolton decided to build a similar radio telescope, but rather than suspending the aerial 

above ground using steel poles and guy ropes, the dish would be dug into the sandy 

soil at Dover Heights.  Bolton decided to carry out the work in secret, fearing Joe 

Pawsey would disapprove and veto the project.  A site at the northern end of the field 

station was chosen, out of view to any casual visitor.  Over a three-month period late 

in 1951 the Dover team spent their free time with shovels and wheelbarrows digging 

over 1500 cubic metres from the hole, with the spoil used to build up the outer rim.  

With no budget for the unofficial project everything had to be done on the cheap.  

Several truckloads of unwanted ash from a nearby power station were used to 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 173 

stabilise the sandy surface.  The 22 m (72 ft) diameter reflecting surface of the dish 

consisted of discarded steel strips used for binding packing crates, scavenged from 

the docks at Botany Bay.  Finally, a mast was installed at the centre of the dish to 

carry a dipole feed to a receiver operating at 160 MHz at the base of the mast (see 

Figure 6.7) (for previous accounts of the hole-in-the-ground telescope see [33]). 

 

 

 

Figure 6.7.  The 22 m parabolic 'hole-in-the-ground' antenna excavated in the sand at Dover Heights by 

Bolton, Slee and Stanley.  Shown are the packing case metal strips used for the reflecting surface, the 

catwalk that provided access to the centre of the antenna, the aerial mast and dipole, and the 

instrument box at the base of the mast that contained part of the 160 MHz receiver.  This novel radio 

telescope had a beamwidth of 6° and was used in late 1951 and early 1952 to generate a preliminary 

isophote map of the Galactic centre region.  [courtesy: RAIA] 

 

Similar to other transit telescopes, the hole-in-the-ground relied on the rotation of the 

Earth to map along a narrow strip of sky.  By progressively altering the tilt of the 

receiver mast, successive strips of the sky could be built up.  Early in 1952 the Dover  

group completed a survey at 160 MHz of the region between declinations –20° and –

47°, which included the Galactic plane and the Galactic centre.  The survey showed a 

considerable improvement on the earlier one at 100 MHz with the nine-Yagi array,  

with a three-to-one reduction in the aerial bandwidth producing a three-to-one 

improvement in resolution. 
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Although Taffy Bowen knew of the hole-in-the-ground telescope, and was given a 

guided tour when the excavation was in progress, it was only after the preliminary 

160 MHz results had been obtained that Pawsey was informed of the project.  Far 

from disapproving, Pawsey gave his full support and immediately provided funds to 

upgrade the dish.  Pawsey’s support was a surprise and made Bolton’s original 

decision to carry out the project in secret difficult to justify.  The preliminary results 

at 160 MHz were towards the upper limit of the frequency range (40–200 MHz) 

assigned to the Dover Heights group by Pawsey.  Bolton’s clear intent was to push to 

higher frequencies which he suspected would meet with Pawsey’s disapproval.  

Nevertheless, even though Pawsey gave his support, he would have been keenly 

aware of Bolton’s challenge to his authority, especially when it had Bowen’s tacit 

approval.  It was a preview of further trouble ahead [34]. 

 

In upgrading the 22 m hole-in-the-ground Bolton aimed for a further three-to-one 

improvement in the resolution of the dish, which required a more accurate surface and 

an increase in the aperture diameter.  The surface was concreted using a rotating 

parabolic template and short lengths of galvanised wire were left protruding from the 

concrete to secure the final wire-mesh surface.   Aluminium tubes at the perimeter 

and annular tension wires extended the diameter from 22 to 24 m (see Figure 6.8).  

The greater accuracy of the new surface meant the dish could operate at the higher 

frequency of 400 MHz, giving the desired factor of three improvement in the 

resolution.  The preamplifier and associated electronic items were located in a 

waterproof box at the base of the aluminium mast, while the main receiver, amplifier 

and chart recorder were housed in a small hut near the southern rim of the dish.  The 

upgrade of the dish took most of the second half of 1952 to complete. 

 

As with the first hole-in-the-ground, the primary aim of the upgraded dish was to 

survey the Galactic plane and the region surrounding the Galactic centre.  At 

Sydney’s latitude of 34°S, the Dover Heights site was an ideal location for the survey, 

with the Galactic centre passing within 5° of the zenith.  In 1918 Harlow Shapley, 

then at the Mt Wilson Observatory, was the first to determine an approximate position 

for the Galactic centre, based on a study of the distribution of globular clusters.  

Shapley concluded that the centre lies near the border of the Sagittarius and Scorpius  
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Figure 6.8.  Upgrading the hole-in-the-ground telescope: (above) In February 1953 a concrete surface 

was added and the diameter extended from 22 to 24 m.  The rotating wooden jig was used to position 

formwork for the concrete and also to finish the parabolic surface. (below) The completed dish showing 

the addition of the wire-mesh surface, the receiver mast, and the housing for the second stage of the 

receiver at the vertex.  Gordon Stanley uses a theodolite to measure the angle of tilt of the mast.  

[courtesy: RAIA] 
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Figure 6.9.  The 4.9 × 5.5 m parabolic antenna at the Radiophysics field station at Potts 

Hill.  In 1950 Jack Piddington and Harry Minnett used the antenna to discover the strong 

radio source Sagittarius A.  [courtesy: RAIA] 

 

constellations at a distance from the Sun of approximately 4 × 104 light-years (the 

currently-accepted distance is 2.7 × 104 light-years). 

 

The Dover Heights group was not the first to carry out a radio survey of this region.  

In 1950 senior Radiophysics staff Jack Piddington and Harry Minnett carried out a 

similar survey at the high frequencies of 1210 and 3000 MHz at the Potts Hill field 

station, in south–west Sydney (see Figure 6.9).  They found a very strong source 

which they named Sagittarius A and noted that the source lies in the Galactic plane 

and ‘also lies very close to the centre of the Galaxy’.  However, Piddington and 

Minnett hesitated in claiming Sagittarius A to be the Galactic centre, probably for two 

reasons.  The first was the prevailing view that it seemed highly improbable that 

strong radio sources could be at great distances, a view that had held back both 

Bolton and Mills in their attempts at optical identifications.  The second reason was 

that astronomers only had a very approximate idea of the location of the Galactic 

centre.  Dense dust clouds in this direction block out the visible light by factors of 106 

or greater, which made it almost impossible to determine an exact position.  
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Similarly, observations in the infrared had been unable to penetrate the dust clouds; 

however, the clouds are transparent to radio waves.  Instead, Piddington and Minnett 

suggested that Sagittarius A might coincide with a nebula located somewhere 

between the Sun and the Galactic centre [35]: 

 

‘Although … the accuracy of location of the source is not high, it may be significant that 

the position found almost coincides with that of the Galactic nebula NGC 6451, a loose 

cluster of about 70 stars extending over 15 minutes of arc.  A much more accurate 

determination of position is required, however, before the coincidence is given serious 

consideration.’ 

 

 

 

Figure 6.10.  Dick McGee working on the feed of the 4.8 m dish on top of the blockhouse (see 

Figure 6.5).   After serving in the army and airforce during WWII, McGee joined the Radiophysics 

Lab in 1949 and was transferred to the Dover Heights group late in 1952.  [courtesy: McGee family] 

 

Late in 1952 Richard (‘Dick’) McGee joined the Dover Heights group, effectively 

replacing Kevin Westfold who had taken up an academic position at the University of 

Sydney (see Figure 6.10).  McGee recalled [36]: 

 

‘When I found out that Pawsey was posting me out there a few people at Radiophysics 

said, ‘Bad luck mate’.  Some considered John to be a typical pommy bastard.  You had to 
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get to know him.  Once you did, John would do anything to stick up for you, to defend 

you.  When I arrived they were upgrading the hole-in-the-ground, concreting the surface.  

I offered to solder together the wire mesh making the reflecting surface.  What I didn’t 

know is that this is what appealed to John.  If you were prepared to work, you were 

accepted.’  

 

The group spent most of 1953 using the upgraded dish to carry out a new survey of 

the Galactic plane and Galactic centre.  McGee did most of the observing and data 

reduction, while Bolton, Stanley and Slee concentrated on completing a sky survey 

for discrete sources using a new 12-Yagi sea interferometer (see next section).  

Pawsey, who lived in the neighbouring suburb of Vaucluse, visited late one afternoon 

just as McGee had completed sketching the intensity contours in pencil.  Pawsey 

realised immediately the significance of the intense source Sagittarius A that McGee 

had shaded in black.  He arranged for a photograph to be taken of the sketch and 

mailed copies to a number of astronomers overseas, including Walter Baade at the Mt 

Wilson–Palomar Observatories in Pasadena.  Baade replied immediately [37]: 

 

‘Now to the object in the centre of the Galaxy, the contour diagram of which you kindly 

included in your letter.  Frankly, I jumped out of my chair the moment I saw what it 

meant.  I have not the slightest doubt that you finally got the nucleus of our Galaxy!!  

Visually one can see nothing in this region since the obscuration by dark clouds …   

Altogether I concluded about two years ago – after a careful examination of my 48 inch 

Schmidt plates of the nuclear region of our Galaxy and thorough checking of all 

suspicious objects at the 200 inch – that there was positively no chance whatsoever to 

detect the nucleus of our Galaxy in the optical range and that we had to await what you 

radio people could do about it. … It is very improbable that the coincidence between 

inferred and observed position of the nucleus is accidental.’ [Baade’s underline] 

 

At this time the Dutch astronomer Henk van de Hulst was visiting Pasadena, who had 

predicted the existence of the 21 cm hydrogen line in 1944 (see Section 5.4).  After 

the initial detection of the line by a Harvard group, van de Hulst, Jan Oort and the 

group at Leiden Observatory followed up the discovery by mapping the distribution 

of hydrogen along the Galactic plane.  A study of the Doppler shift of the hydrogen 

line in gas clouds close to the Galactic centre led the Dutch group to conclude that the 
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position of the Galactic nucleus appeared to closely coincide with the position of 

Sagittarius A.  Pawsey had also written to van de Hulst, who replied [38]: 

 

‘Baade got really excited about your fine observations of the Galactic nucleus and shows 

your plot to anybody who comes near his office.  The position agrees quite well with the 

best we can do on the basis of the 21 cm observations …’ 

 

Baade also sent the contour diagram to Jan Oort who enthusiastically noted [39]: 

 

‘I have been excited by Pawsey’s diagram that I received from you this morning.  The 

longitude of the concentration which the Sydney observers have found coincides exactly 

with the longitude of the centre that Mr Westerhout has now deduced with considerable 

accuracy from the 21 cm observations.  The angular velocity of the Galactic system keeps 

on increasing up to very small distances from the centre, and then reverses sign so 

sharply that an accurate determination of the longitude of the centre is possible.’ 

 

In keeping with the standard Radiophysics practice, McGee drafted a paper to Nature 

with the title ‘The Galactic Nucleus’ to announce the discovery.  Pawsey then 

extensively rewrote the paper with a new title ‘Radio Observation of the Galactic 

Nucleus’.  Before the paper could be submitted to the journal it needed the approval 

of the Radiophysics publications committee, chaired by Frank Kerr.  The internal peer 

review system at Radiophysics was more rigorous than most journals, with the result 

that it was relatively uncommon for a Radiophysics paper to strike trouble with 

journal referees.  McGee recalled [40]: 

 

‘There was some skepticism in the Lab as to whether our analysis was correct and 

whether we had found the Galactic centre.  This happened with most of the work that 

came from the Lab and at times the criticism could be quite vicious.  One of the reasons 

our work was so well received overseas is that it had gone through this internal criticism.  

I used to think that if you could get your paper past Pawsey, you were safe.  You had to 

get it past him before it went out the door.’ 

 

One of the internal referees maintained that, since the distance to Sagittarius A was 

unknown, it was not possible to rule out a chance alignment of the source and the 

Galactic nucleus.  As a compromise Pawsey settled on the final title ‘Probable 
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Observation of the Galactic Nucleus at 400 Mc/s’.  The three-page paper was 

published in Nature on 22 May 1954 (see Figure 6.11), followed by a detailed paper 

in the Australian Journal of Physics which contained the full results of the Galactic 

survey [41]. 

 

 

 

Figure 6.11.  A three-page paper by McGee and Bolton on the Galactic nucleus was published in 

Nature in May 1954.  After rigorous internal refereeing at Radiophysics, the word ‘probable’ was added 

to the title to cover the possibility of a chance coincidence.  [courtesy: Nature] 
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McGee and Bolton reported the following position for the source: 

 

Galactic longitude l = 327.9°    Galactic latitude b = –1.0°, 

 

with uncertainties estimated to be ±0.2° in each coordinate.  Although the analysis 

was complicated by the rapidly varying background in the region of the nucleus, 

McGee and Bolton estimated a flux density for the source of 1400 Jy at 400 MHz, the 

sameorder as the flux density from Cygnus A at this frequency.  They also noted that 

the angular size of the object appeared to be less than the hole-in-the-ground 

beamwidth of 2°. 

 

In August 1955 at the general assembly of the International Astronomical Union in 

Dublin, Bolton put forward a proposal for the IAU to introduce a new system of 

Galactic coordinates to replace the existing system introduced in 1932.  A 

subcommission was appointed consisting of Joe Pawsey, the young Australian 

astronomer Colin Gum, and the two Dutch astronomers Adrian Blaauw and Gart 

Westerhout.  The brief of the subcommission was to study the results of the Sydney 

and Leiden groups and ‘to investigate the desirability of a revision of the Galactic 

pole and of the zero of Galactic longitude’ [42].  The recommendations of this 

subcommission were reported and then adopted at the next IAU general assembly 

held in Moscow in 1958.  The point of zero longitude and latitude in the new system 

was designated lII = 0 and bII = 0, while the old Galactic coordinates of the nucleus 

were given as lI = 327.69° and bI = –1.40°, based on the most recent 21 cm 

observations (compare with the McGee–Bolton position given above). 

 

In Section 6.1 we saw how the identification of the Cygnus A source with an object 

that appeared to be two galaxies in collision proved to be a major milestone in the 

development of radio astronomy.  Astronomers realised that the new astronomy 

would be able to study the distant reaches of the Universe, beyond the range of the 

most powerful optical telescopes.  Similarly, the discovery and identification of the 

Galactic nucleus by radio methods proved to be another major milestone.  The dark 

dust clouds blocking visible light from the Galactic centre made it highly unlikely 

that optical astronomers could determine an accurate position for the Galactic centre. 

 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 182 

Radio astronomy had again demonstrated its power to investigate and solve problems 

beyond the reach of traditional astronomy. 

 

6.4  The Struggle for Resources:  The Final Years at Dover Heights 

Earlier we noted how the Dover Heights group published a series of eight papers over 

the period 1950–54, each with the generic title of ‘Galactic radiation at radio 

frequencies’ (see note [39] in Chapter 5).  The first four parts were published in the 

Australian Journal of Scientific Research during 1950–51.  As noted at the beginning 

of this chapter, part II of the series consisted of the sky survey carried out by Stanley 

and Slee in 1949 which catalogued a total of 22 discrete sources (Table 6.1).  Parts I 

and III of the series by Bolton and Westfold described the sky survey of continuum 

radiation at 100 MHz using the nine-Yagi array at Dover Heights (see Figures 5.7 and 

5.8).  In particular, part III presented evidence that the Sun is located in an arm of a 

spiral and that the sense of rotation of the galaxy is that of the spiral unwinding. 

 

A further paper by Bolton and Westfold (1951, part IV) analysed the distribution of 

radio stars in the Galaxy (the paper was based on the talk Bolton gave at the URSI 

meeting in Zurich in September 1950).  The paper referred to the discrete sources as 

radio stars with the property of high radio and low optical emission.  Using the data 

from part I, the paper assumed that the background continuum radiation was the 

aggregate emission from a distribution of radio stars typified by the discrete sources 

already known.  Bolton and Westfold then estimated the local number density, the 

flux from a typical radio star, and the probable distances of some of the known 

discrete sources.  

 

The remaining four papers V – VIII were published over the period 1953–54 with the 

authors being Bolton and various permutations of Slee, Stanley and Westfold.  It is 

worth while giving a brief summary of each. 

 

Part V.  The Sea Interferometer 

Bolton and Slee summarised their knowledge of the technique that had served the 

Dover Heights group so well since 1947.  They began by discussing the advantages of 

the sea interferometer over a two-aerial interferometer.  Twice the sensitivity is 

achieved with a single aerial and no interconnecting cables or pre-amplifiers are 
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required.  The most important advantage is due to the ‘cutoff’ of the sea’s horizon.  

The interference pattern commences sharply as a source rises above the horizon, in 

contrast to a gradual ‘fading in’ with the two-aerial interferometer.  This feature was 

particularly valuable in resolving two or more close sources.  (This problem, known 

as ‘confusion’, plagued the operation of the early two-aerial interferometers at 

Cambridge – see note [11] in Chapter 7.)  However, most of the paper was an analysis 

of how to minimise the disadvantages of the sea interferometer.  For example, the sea 

interferometer is adversely affected by the curvature of the Earth which leads to 

divergence or ‘smearing’ of the reflected beam, resulting in less signal power and 

therefore incomplete interference between reflected and direct beams.  More serious 

are the adverse effects of atmospheric refraction and scintillation, where sources in 

sea interferometry are observed low on the horizon with the signal passing through a 

longer column of the atmosphere. 

 

Although it was the first detailed study of the technique, Part V did not provide a 

blueprint for the future use of sea interferometry.  On the contrary, the technique had 

effectively run its course and was about to be overtaken by other forms of radio 

telescopes.  It is interesting to note that no other radio astronomy group adopted sea 

interferometry.  Curiously, the only radio astronomer to show an interest in the 

technique was none other than the early pioneer Grote Reber.  In 1947 he accepted an 

invitation to start a radio astronomy group at the National Bureau of Standards in 

Washington, DC.  Reber lobbied the NBS to fund a 60 m diameter dish, but was 

unsuccessful.  Disillusioned, he decided to return to radio astronomy the way he had 

started – as a lone individual.  In 1951 he moved to the island of Maui in Hawaii 

where he set up a sea interferometer on top of Mt Haleakala.  At an elevation of 3000 

m the site dwarfed the clifftops at Dover Heights.  However, Reber had only limited 

success, as noted by his biographer [43]: 

 

‘By replacing the fixed antenna design used by the Australians with one that rotated 

in azimuth, and by working on the top of a mountain, he could observe sources both 

rising in the east and setting in the west with an interferometer that had an effective 

baseline of 6 km.  In principle, his sea interferometer had a resolution of about 1ʹ, but he  
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Figure 6.12.  Bolton working on the 12-Yagi array at Dover Heights: (above) the view to the south and 

(below) the view to the north.  This array began as an eight-Yagi array in 1951 and in early 1952 was 

up-graded using cannibalised elements of the earlier nine-Yagi array erected on the roof of the 

blockhouse (see Figure 5.7).  The 12-Yagi antenna was used to carry out the last major source survey 

at Dover Heights, cataloguing a total of 104 discrete sources.  [courtesy: RAIA] 
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was plagued by ionospheric refraction and terrestrial interference and was only able to 

obtain useful results for a few of the strongest radio sources.  He finally concluded that 

mountaintops were not suitable for radio telescopes.’ 

 

Part VI.  Low Altitude Scintillations of the Discrete Sources 

As discussed in Chapter 4, an important outcome of the New Zealand expedition in 

1948 were the simultaneous observations of Cygnus A at Pakiri Hill and Dover 

Heights, two sites over 2000 km apart.  The observations showed there was no 

correlation in the fluctuations of the source at each site, providing strong evidence 

that the fluctuations are not intrinsic to the source but are caused by the Earth’s 

atmosphere.  Bolton, Slee and Stanley carried out a systematic study of these 

fluctuations, or scintillations as they became known, based on about 2000 records of 

the four strong sources Cygnus, Virgo, Taurus and Centaurus over the period 1948–

51.  They showed that the correlation between individual scintillations at two sites 

disappeared for distances greater than about 5 km.  The study found that for the 

scintillation index, a measure of the amplitude of the scintillations: (1) the index 

increases with increasing wavelength; (2) decreases rapidly with increasing altitude of 

the source; and (3) shows seasonal and diurnal variations, with the seasonal 

component having minima near the equinoxes and the diurnal component near dawn 

and sunset.  The paper concluded by establishing a strong correlation between the 

occurrence of the scintillations and an effect known as sporadic E – irregular and 

transient ionisation disturbances in the E layer of the ionosphere at a height of about 

100 km. 

 
Part VII.  Discrete Sources with Large Angular Widths 

Bolton, Westfold, Stanley and Slee used three types of radio telescope to reveal the 

existence of a number of sources of angular width more than 1°.  The first was the 22 

m hole-in-the-ground telescope operating at 160 MHz, before its upgrade to 24 m 

diameter.  The second was the 12-Yagi sea interferometer (see Figure 6.12) fitted 

with automatic control of the receiver gain, a technique devised by Bruce Slee.  The 

technique suppresses the slowly varying components in the receiver output which 

drown out faint sources in regions near the Galactic plane.  The third was a new 

instrument known as an azimuth interferometer, consisting of two sea interferometer 

aerials spaced at variable distances along the cliff-top.  Combining the fringes from 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 186 

 

Table 6.2:  List of extended sources at 100 MHz 
[adapted from Bolton et al. (1954b) p. 103] 

 

Source 
 

Position A 

Galactic coordinates 
l               b 

Estimated 
flux density 

(102 Jy) 

Estimated 
angular 
size B 

Equipment 
used C 

Remarks 

A 
 

206°        –56° 6 ½–1° AzI Probably Fornax A 

B 
 

145°        –16° 20 10×5° AGC Lies along a parallel of 
   Galactic latitude  

C 
 

215°        –35° 15 1–2° AzI Possibly Pictor A 

D 
 

173°        –14° 15 10×5° AGC Lies along a parallel of 
   Galactic latitude 

E 
 

227°        –2° 15 1–2° AzI Source Puppis A 

F 
 

230°        –2° 70 5° HitG, AzI 
AGC 

– 

G 
 

210°       +27° >10 – AzI Possible position error 
   of several degrees 

H 
 

270°       +69° 25 4° AzI Possible position error 
   of several degrees 

J 
 

274°      +20° 50 2° AGC, AzI Concentric with 
   Centaurus A 

K 
 

309°        –2° 350 10×6° AzI, HitG Lies along a parallel of 
   Galactic latitude 

L 
 

329°         0° >>300 12×2° AzI, HitG Lies along the Galactic 
   equator 

 
A   Approximate position of apparent centroid    B To ~20% of central brightness 
 
C  AzI, azimuth interferometer;  AGC, automatic gain control on 12-Yagi array;  HitG, 22 m diameter 
hole-in-the-ground 

 

both sea interferometers produces a third azimuth fringe system.  The azimuth fringes 

reveal the presence of extended sources, which do not appear in the individual sea 

interferometer fringes [44]. 

 

Bolton et al. claimed the existence of over 20 extended sources and presented data for 

11 of them, most of which had been detected by the azimuth interferometer (see 

Table 6.2).  In their discussion of each of the 11 sources they noted: 

 

Sources A and C.  These sources appear to coincide with the discrete sources Fornax 

A and Pictor A, respectfully, catalogued by Stanley and Slee (1950). 

 

Source E.  As noted above in Section 6.1 (note [12]), the coordinates for the Puppis A 

source had been sent to the Mt Wilson–Palomar astronomers:  ‘The new 

determination of position and observation of angular width have led to the 

identification of this source by Baade and Minkowski (personal communication) with 
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a network of gaseous filaments similar to that which coincides with the Cassiopeia 

source.’  After Taurus A and Cassiopeia A, Puppis A became the third radio source 

identified with a supernova remnant. 

 

Source J.  Previous work had established that the angular diameter of Centaurus A is 

less than 7ʹ, which is less than the visible extent of the galaxy.  ‘It is possible that the 

small source is associated with the nucleus of the Galaxy and the extended object 

with its outer regions.  It would be a remarkable coincidence if these two bright 

sources had no physical connection.’ 

 

Source L.  The authors noted that the centre of this extended source is close to the 

accepted position of the Galactic centre.  ‘We are left with the inference that there is 

an extended physical object at the centre of the Galaxy, which is an unusually intense 

source of radio noise.’   The subsequent observations with the 24 m hole-in-the-

ground (Section 6.3 above) would prove them correct. 

 

Part VIII.  Discrete sources at 100 Mc/s between declinations +50° and –50° 

In mid-1953 Bolton, Stanley and Slee completed a sky survey with the 12-Yagi array 

at Dover Heights (Figure 6.12).  It catalogued 104 sources, more than any of the five 

major surveys previously published (see Table 6.3).   The survey covered 

approximately 70% of the celestial sphere, less than the survey by Mills (50° to –

90°).  However, the 104 sources reported exceeded the 77 in the Mills survey because 

of the greater resolving power of the 12-Yagi array.  The published catalogue 

contained the following information on each source: the constellation in which it was 

found; its position in both equatorial and galactic coordinates; errors in time of rising 

and in azimuth; the flux density; and, where appropriate, whether the source appears 

in any of the surveys 2–5 in Table 6.3. 

 

After a detailed comparison of the Dover Heights survey with surveys 2–5, Bolton et 

al. could confidently claim that 73 of their 104 sources were confirmed by one or 

more of the previous surveys.  They concluded:  ‘The agreement between the 

individual sources of the various surveys has been found to be quite high after due 

allowance has been made for factors such as the different sensitivities of the 

instruments and conditions of the surveys.’  Finally, tentative optical identifications 
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were made for ten of the sources – seven with extragalactic objects of photographic 

magnitude about 12.5 and three with the galactic nebulae NGC 6445 and 2792 and 

the expanding shell of Nova Aquila 1918. 

 

 
Table 6.3:  Surveys of discrete radio sources 1950–54  

[adapted from Bolton et al. (1954c) p. 111] 
 

Survey 
number 

 

Observers 
(publication 

year) A 
 

Field 
station 

Frequency 
(MHz) 

Limit of 
sensitivity 

(Jy) 

Survey 
region 
 (Dec.) 

Number 
of 

sources 

1 
 

Stanley–Slee 
(1950) 

 

Dover 
Heights 

100 100 50° to –50° 22 

2 
 

Ryle–Smith– 
Elsmore (1950) 

 

Cambridge 81 30 90° to  10° 50 

3 
 

Mills 
(1952a, b, c) 

 

Potts Hill 
NSW 

100 50 50° to –90° 77 

4 
 

Hanbury Brown 
–Hazard (1953) 

 

Jodrell 
Bank 

158 5 70° to  40° 23 

5 
 

Shain–Higgins 
(1954) 

 

Hornsby 
NSW 

18 3000 10° to –90° 37 

6 
 

Bolton–Stanley– 
Slee  (1954c) 

 

Dover 
Heights 

100 50 50° to –50° 104 

 
 A  Stanley–Slee (1950), Aust. J. Scient. Res. A3, 234–50;   Ryle–Smith–Elsmore (1950), Mon. Not. R. 
Astron. Soc. 110, 508–23;  Mills (1952a, b, c), Aust. J. Scient. Res. A5, 266–87; A5, 456–63; Nature 
170, 1063–64;  Hanbury Brown–Hazard (1953), Mon. Not. R. Astron. Soc. 113, 123–33;  Shain–Higgins 
(1954), Aust. J. Phys. 7, 130–49;  and Bolton–Stanley–Slee (1954c), Aust. J. Phys. 7, 110–29. 

 

 

***** 

A search through the Radiophysics files covering the early 1950s reveals almost as 

many proposals for new radio telescopes as there were radio astronomers.  With the 

completion of the sky survey with the 12-Yagi array in mid-1953, the Dover Heights 

group had several ideas on how to proceed next.  Bolton suggested a second hole-in-

the-ground, but tilted at an angle of 25° to the south so that it could continue the sky 

survey at 400 MHz between declinations –50° and –90°.  Another possibility was to 

build a second hole-in-the-ground at the opposite end of the Dover site and connect 

the two as an interferometer, enabling a survey of the Galactic plane with 

unprecedented resolution.   Gordon Stanley was in favour of another type of 

interferometer known as the rolling barrels, consisting of two cylindrical parabolas 

mounted on tracks to vary the distance between them.  However, Bolton’s first choice 
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was to build a new type of sea interferometer, one that did not involve an array of 

Yagis.  The interferometer would consist of a 6 m high wall 60 m in length and 

curved into the shape of a parabola.  Viewed from above, the parabolic wall would 

face out to sea with a focal length of 45 m fed by a vertical stack of dipoles.  The wall 

would consist of steel poles and wire mesh and resemble the fence around a tennis 

court.  With tennis courts springing up all over Sydney at this time, there would have 

been no shortage of contractors and the cost would be relatively modest [45]. 

 

The Dover designs were in direct competition with a range of proposals by other 

Radiophysics groups, both solar and non-solar.  Despite long and at times heated 

discussions over the relative merits of particular designs, in the event an entirely new 

type of radio telescope emerged triumphant.  As we saw in Section 6.1, Bernard Mills 

carried out a series of observations on Cygnus A, first at Potts Hill and then at 

Badgery’s Creek, trying out a number of interferometers with aerials spaced up to 10  

km apart.  This period of experimentation impressed on Mills that to achieve a high 

resolution the collecting areas of the aerials were relatively unimportant in 

comparison with the spatial extent of the array.  Mills investigated a number of aerial 

systems before hitting on the idea of having two long arrays of small dipole aerials 

lying north–south and east–west along the ground in the form of a cross.  The key 

feature was that each arm of the cross would produce a fan-shaped beam which could 

be fed to the central receiver through a switch which, in turn, would join the two 

beams alternately in and out of phase.  Combining the two signals in this way would 

lead to a relatively narrow ‘pencil’ beam which would be far more effective in 

resolving closely-spaced radio sources than other types of interferometers.  The great 

promise of the cross was that its resolving power would be roughly equal to a 

parabolic dish with a diameter equal to the length of the cross arms.  Because the 

working components housed in each arm would be inexpensive and involve no 

complex engineering, it seemed possible to build a cross of very large dimensions. 

 

The theory of the cross was not exactly simple.  The initial reaction to the proposal 

prepared by Mills in March 1953 proved far from positive, as he recalled [46]: 
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Figure 6.13.  (above)  The first full-scale cross telescope devised by Bernard Mills and built at the Fleurs 

field station in 1954.  (below)  Mills (right) with Alec Little who supervised the construction of the cross.  

[courtesy: RAIA] 
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‘There was opposition to the idea in the Laboratory for some technical reason that I never 

really understood, and perhaps a political reason which I could well understand.  

However, Pawsey supported me and gave approval for the construction of a small 

experimental model to explore the technique.’ 

 

The pilot model with arms 36 m in length and operating at a frequency of 100 MHz 

was constructed at the Potts Hill field station.  The trials not only showed that the idea 

worked but also turned in some useful astronomy, including the first detection of 

continuum radiation from the Large Magellanic Cloud.  The results convinced the 

radio astronomy group that, among the range of competing proposals for new 

telescopes, a full-scale cross was worth supporting.  

 

First, a new field station had to be found because Potts Hill did not have an adequate 

area of flat land.  A disused airstrip further west was leased and christened the Fleurs 

Radio Observatory; the new site became the main field station used by Radiophysics 

for the rest of the 1950s (Figure 5.3).  The full-scale cross consisted of two arms 455 

m (1500 ft) in length, each housing two rows of 250 dipole aerials tuned to receive at 

85 MHz.  Mills spent much of 1953 visiting astronomy centres in the United States, 

leaving Alec Little to supervise the construction of the cross (see Figure 6.13).  By 

the middle of 1954 the full-scale cross began producing its first data.  Detailed studies 

were made of a select number of radio sources but by far the richest scientific yield 

came from the program for which the cross had been designed – the most extensive 

survey yet of the southern sky. 

 

The Mills Cross telescope and variations in its design dominated research in cosmic 

radio astronomy by the Radiophysics group for the rest of the 1950s.  The principle 

found application in other areas such as solar studies (the Chris Cross named after 

Chris Christiansen) and in radio emission at very low frequencies (the Shain Cross 

after Alex Shain).  The principle was also widely adopted internationally with 

versions built at various new radio centres, including the Department of Terrestrial 

Magnetism (Washington, DC), the University of Bologna (Italy) and the Lebedev 

Institute of Physics (Serpukhov, Russia).  The construction of these crosses marked a 

transition from what Paul Wild [47] has called the period of ‘little’ science in the 

postwar years of radio astronomy, characterised by its small, inexpensive and 
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experimental radio telescopes, to a period of ‘middle’ science which saw the 

introduction of larger and more complex equipment and more refined observing 

techniques. The cross telescopes could, however, still be wholly designed, 

constructed and financed with the resources available to Radiophysics.  The 455 m 

Mills Cross, for example, took ten men about nine months to build and the materials 

cost about £5000.  The project remained an in-house one, though this limited the 

possibility of backing other proposals for large instruments for cosmic work put 

forward in the early 1950s. 

 

Early in 1953 Bolton arranged a meeting at the Radiophysics Lab with Joe Pawsey in 

a last ditch attempt to get support for a large new sea interferometer at Dover Heights.  

The competition for limited resources and the view that sea interferometry was 

coming to an end both counted against Bolton.   A heated argument broke out and 

both men went to see Taffy Bowen in his office.  Shortly after Bolton emerged and 

went to find Gordon Stanley.  Bolton announced ‘I’m out of radio astronomy’ and 

promptly left the building [48]. 

 

There were two further papers produced by the Dover Heights group, both published 

after operations were shut down at the field station late in 1954.  The first was a solo 

paper by Bruce Slee reporting variations in the flux density from the strong source 

Hydra A.  Slee observed the source over a period of a year, first with the 12-Yagi sea 

interferometer and then with the Mills Cross at Fleurs.  The observations showed that 

the flux density could vary in strength by up to 30% on successive nights, though no 

periodic changes were detected.  Cygnus-like scintillations in the ionosphere could be 

ruled out and the mechanism causing the variation remained unknown [49]. 

 

The final paper from Dover Heights was authored by Gordon Stanley and Robert 

Price, a visiting post-doctoral fellow from the Massachusetts Institute of Technology.  

Following the discovery of the interstellar 21 cm hydrogen line in 1951, astronomers 

speculated on whether line radiation might also be detected from its isotope, atomic 

deuterium.  The following year the Russian theorist Iosif Shklovsky predicted an 

emission line for deuterium at 327 MHz (compared with 1420 MHz for hydrogen).  

Even though the terrestrial abundance of deuterium is only 0.015% that of hydrogen, 

the strong 21 cm emission suggested that it might be possible to detect the much 
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weaker deuterium line.  Stanley and Price spent much of 1954 making lengthy 

observations at 327 MHz using the hole-in-the-ground telescope.  Rather than 

searching for the emission line, they attempted to detect the corresponding absorption 

line along the line of sight to the strong sources Sagittarius A and Centaurus A.  

Although their attempt failed, Stanley and Price were able to place an upper limit on 

the deuterium abundance of 0.1% compared to interstellar hydrogen.  To end a fine 

tradition, their null result was published in Nature – the swansong publication of the 

Dover Heights team [50]. 
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Notes to Chapter 6 

 
[1]  See Stanley and Slee (1950).  The paper was published at the same time as the first 

Cambridge survey, which listed fifty radio ‘stars’ in the Northern Hemisphere (Ryle et al. 

1950, Mon. Not. R. Astron. Soc. 110, 508–23).   The Stanley–Slee paper was the first of the 

Dover Heights papers without Bolton as a coauthor (nor is he acknowledged at the end of the 

paper).  The paper was submitted in November 1949, before Bolton’s departure overseas, and 

there is no doubt that he contributed significantly to the work.  This was characteristic of 

Bolton later in his career.  He occasionally omitted his name from research papers, 

presumably so that his junior colleagues would receive more credit and exposure.  A classic 

case is the 1963 paper announcing the discovery of the first quasar (see next chapter).  Bolton 

had done more than any of the paper’s three authors to prepare the Parkes telescope in NSW 

for the observations and ought to have been named as the senior author.  Elsewhere, I have 

speculated that Bolton’s sometimes casual attitude to publishing may have cost him a Nobel 

Prize in physics – see Robertson (2016), ch. 15. 

 

[2]  Mills (2006), p. 3.  This personal memoir was written by Mills after receiving the honour 

of being invited by the Annual Review of Astronomy and Astrophysics to introduce its annual 

volume for 2006.  For a detailed history of the Potts Hill field station see Wendt (2009). 

 

[3]  Mills to Minkowski, 16 December 1949, NAA file A1/1/1, part 4. 

 

[4]  Minkowski to Mills, 29 December 1949, NAA file A1/1/1, part 4. 

 

[5]  Mills and Thomas (1951), Aust. J. Scient. Res. A4, 158–71.  Very little is known of Adin 

Thomas.  It appears he may have left Radiophysics at this time and returned to his native 

England. 

 

[6]  See Mills (1952), Aust. J. Scient. Res. A 5, 456–63.  Mills also used the broadside array 

to carry out a sky survey that detected a total of 77 discrete sources (see Table 6.3 later in this 

chapter).  He noted that the distribution of the sources could be explained on the assumption 

that there are two major source classes, one having a high degree of Galactic concentration 

and the other having a random distribution. 

 

[7]  Smith to Baade, 22 August 1951, Sullivan papers, NRAO Archives.  See Smith (1951), 

Nature 168, 555, for his report on the positions of the four sources.   

 

[8]  Baade to Smith, 3 September 1951, Sullivan papers, NRAO Archives.  Smith replied on 

26 September:  ‘The coincidence of the Virgo source with M87 is very interesting.  It would 

be most remarkable if the “stars” are in fact extragalactic – even more remarkable than the 

present hypothesis of extremely common “dark stars”.’ 

 

[9]  Baade to Smith, 23 October 1951, Sullivan papers, NRAO Archives.  Smith replied:  ‘We 

were delighted to hear of the object you have found in Cassiopeia.  I am sure you need no 

encouragement to continue with this, but we are extremely interested.’ 

 

[10]  See Baade and Minkowski (1954), Astrophys. J. 119, 206–14.  Baade and Minkowski 

originally estimated the distance to Cygnus A to be 3.3 × 107 parsec or 100 million light-

years, based on the redshift of its emission lines and the then accepted value of the Hubble 

constant.  The Hubble constant was however very poorly known and since then it has been 

revised downward by approximately a factor of 10 to its current accurate value.  In turn, this 

has led to a corresponding increase in the estimated distance to extragalactic objects and so 

we quote the contemporary known distance to Cygnus of 1000 light-years. 

 

[11]  See note [2], p. 3. 
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[12]  See note [10], p. 211.  It is worth noting that the Baade–Minkowski paper reported the 

optical identifications of three radio sources:  Cygnus and Cassiopeia based on the Smith 

positions and the third source Puppis A which had been included in the Stanley–Slee (1950) 

paper (see entry 21 in Table 6.1).  In November 1951 Bolton sent Minkowski a more accurate 

position for Puppis A and noted its extended angular size.  Baade and Minkowski noted the 

strong similarity of the Puppis and Cassiopeia nebulae ‘in regard to appearance, spectrum and 

motions’.  Puppis A thus became the seventh source to be optically identified:  three 

supernova remnants in the Galaxy (Taurus, Cassiopeia, Puppis), three peculiar extragalactic 

objects (Centaurus, Virgo, Cygnus) and one normal extragalactic object (Andromeda).  The 

seven identifications could be credited to Dover Heights 4, Cavendish 2 and Jodrell Bank 1. 

 

[13]  A story told at the time was that Minkowski challenged Baade to prove the collision 

theory by showing that the spectrum of visible light from the source was consistent with such 

an event.  Baade won the bet and with it a bottle of whisky.  It is not known whether Baade 

returned the favour when later the theory was shown to be wrong – see Robertson (1992), p. 

52. 

 

[14]  See Sullivan (2009), chapter 15 for a comprehensive discussion of theories of Galactic 

radio emission.  The very first theoretical paper in radio astronomy was published in 1937 by 

Fred Whipple and Jesse Greenstein, then at Harvard University.  The paper theorised that 

radio waves were generated by thermal radiation from dust particles in the interstellar 

medium.  However, their calculation fell short by a factor of 10,000 in explaining the strength 

of Jansky’s signals.  See Whipple and Greenstein (1937), Proc. Nat. Acad. Sci. (USA) 23, 

177–81. 

 

[15]  The misconception was however propagated in popular books on astronomy for many 

years later – see e.g. Hanbury Brown and Lovell (1962), p. 81. 

 

[16]  See Alfvén and Herlofson (1950), Phys. Rev. 78, 616.  Alfvén was well known for his 

work on applying plasma theory to a wide range of problems in astrophysics and geophysics, 

while the Norwegian Herlofson was an ionospheric physicist.  As noted in Section 5.4, 

Bolton and Westfold visited Alfvén and Herlofson in Stockholm in September 1950, where 

no doubt the synchrotron mechanism would have been discussed in detail.  In early 1948 

Taffy Bowen had attempted to bring Alfvén to Sydney on a one-year fellowship with 

travelling expenses.  The lack of theoretical expertise among the Radiophysics staff had been 

an ongoing concern.  Alfvén agreed to the offer on condition that he could bring his wife and 

five children.  Bowen abandoned the idea knowing that it was highly unlikely that the CSIR 

Executive would agree to fund the offer.  Bowen to Pawsey, 8 March 1948, NAA file 

F1/4/PAW.  

 

[17]  Alfvén received a half-share of the 1970 Nobel Prize ‘for fundamental work and 

discoveries in magnetohydro-dynamics with fruitful applications in different parts of plasma 

physics’.  Ginzburg received a third-share of the 2003 Nobel Prize ‘for pioneering 

contributions to the theory of superconductors and superfluids’. 

 

[18]  Greenstein (1994), p. 558.  Greenstein and Bolton later became close colleagues at 

Caltech – see next chapter. 

 

[19]  Baade and Minkowski (1954), Astrophys. J. 119, 215–31.  This paper was published 

back-to-back with their paper cited in note [10] and presented an overview of the 

identification of radio sources.  They classified the following four types of object: (i) 

remnants of supernovae; (ii) galactic nebulosities of a new type; (iii) peculiar extragalactic 

nebulae; and (iv) normal extragalactic nebulae.  The evidence was reviewed for each of the 

known optical identifications, including the possible identifications of a further eight normal 
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extragalactic objects, proposed by the Cambridge and Manchester groups.  Both papers ended 

with the acknowledgment:  ‘We are greatly indebted to the members of the radio astronomy 

groups in Sydney, Cambridge and Manchester for their generous communication of 

information in advance of publication.’ 

 

[20]  Bowen to A. V. Hill, 7 May 1946, NAA file A1/1/1, part 1.  Hill was the Nobel 

Laureate in Physiology/Medicine in 1922.  His other claim to fame was that his wife was the 

sister of the celebrated economist John Maynard Keynes. 

 

[21]  Rivett to Bowen, 20 November 1947, NAA file [E2: Outside Bodies].  In a similar vein 

Rivett added:  ‘You will be rather amused perhaps to hear that we had a letter from 

Movietone News the other day, saying that they were very keen indeed to prepare films 

depicting our work on rain making and moon echoes.  I hope these well-meaning people will 

not feel too deeply aggrieved at our failure to respond sympathetically.’  

 

[22]  McCready to Pawsey, 9 June 1948, NAA file C4659, Pawsey correspondence, part 8; 

and Bowen to M. Ovenden (University Observatories, Cambridge), 13 October 1949, NAA 

file A1/1/1, part 4.  Ovenden made amends when he published a second article in the April 

1950 issue of Science Progress which highlighted the research at Radiophysics.  Bowen 

expressed his gratitude: ‘… I am writing to say how much we appreciate the description you 

have given of some of the work of this Laboratory.  I thought you did an extremely good job 

of threading it in with other astronomical research and thus bringing it into clever 

perspective.’  Same file, 26 June 1950. 

 

[23]  The Radiophysics documentary is available at the National Film and Sound Archive in 

Canberra, title number 15353, director Tony Doogood.  Another article featuring radio 

astronomy at Radiophysics appeared in Popular Science Monthly (Los Angeles), while 

Arthur Higgs at Radiophysics published a lengthy article on the subject in The Science News 

(Penguin, London, 1951). 

 

[24]  As Goss and McGee (2010, p. 189) have pointed out, there were no German or Japanese 

delegates invited with WWII still fresh in the memories of the organisers.  Similarly, with the 

escalation of the Cold War there were no delegates from the USSR or Eastern European 

countries.  Bolton had met many of the radio astronomy delegates during his 1950 European 

tour.  During the conference Graham Smith stayed with the Boltons at their flat in Bellevue 

Hill.  Smith and Hanbury Brown returned to England via the US where they spent a week in 

Pasadena discussing the optical identification program with Baade and Minkowski.  Bolton to 

J. L. Greenstein, 11 August 1952, Greenstein papers, Caltech Archives. 

 

[25]  See Bolton (1953).  Frank Kerr wrote a similar summary article on the radio astronomy 

program for the popular US magazine Sky & Telescope 12(2) (1953) 59.  He also concluded 

that ‘… the former term radio stars is now falling into disuse, in favour of the more general 

phrase, discrete sources.’  Curiously, Bolton did not take his own advice and continued using 

the term ‘radio star’ for several more years – see e.g. Bolton (1956). 

 

[26]  Bowen to Fred White, 4 September 1952, NAA file [E2: Outside Bodies].  Much of the 

success of the congress was owed to Ron Bracewell, the secretary of the local organising 

committee, who was meticulous in his planning of the event (see note [21] in Chapter 5).  As 

Haynes et al. (1996, p. 222) have noted, Bracewell even arranged for one of the Radiophysics 

staff to be trained in how to make a decent cup of coffee for the international delegates. 

 

[27]  The extract of Ratcliffe’s letter was included in note [26].  White replied on 16 

September 1952 [same file]. 
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[28]  See Bolton et al. (1954a), p. 7.  The report was published with the financial support of 

UNESCO. 

 

[29]  While there may have been some self-selection at work, the four authors included the 

following numbers of their own papers in the bibliography:  Bolton 11, Hanbury Brown 9, 

Smith 9 and Mills 6. 

 

[30]  Pawsey to Secretary CSIRO, 28 November 1951, Kellermann papers, NRAO Archives, 

Charlottesville, VA. 

 

[31]  Bolton to White, 10 March 1952, Bolton’s personal history file, NAA file PH/BOL/005, 

part 1. 

 

[32]  Bowen to DuBridge, 28 September 1954, NLA file 1-2 and NAA file PH/BOL/005, part 

1.  It is interesting to note the grades of other senior research staff in mid-1952:  Chris 

Christiansen (PRO I), Frank Kerr (SRO II), Bernie Mills (SRO II) and Paul Wild (SRO I).  

Gordon Stanley was classified as a Senior Technical Officer and Bruce Slee as a Technical 

Officer. 

 

[33]  See Morton (1985), Orchiston and Slee (2002) and Robertson and Bland-Hawthorn 

(2014). 

 

[34]  Orchiston and Slee (2002), p. 25.  There are parallels between this episode and the 

occasion late in 1946 when Pawsey ordered Bolton and Slee back to the Lab for not sticking 

to their assigned task of monitoring radio emission from the Sun (see note [13] in Chapter 3). 

 

[35]  Piddington and Minnett (1951), Aust. J. Scient. Res. A 4, 459–75.  The Sagittarius A 

source is now known by its contemporary name of Sgr A. 

 

[36]  Dick McGee interview with author, 30 November 2006, Eastwood, NSW. 

 

[37]  Baade to Pawsey, 16 February 1954, NAA file A1/1/1, part 9. 

 

[38]  van de Hulst to Pawsey, 19 February 1954, NAA file A1/1/1, part 9. 

 

[39]  Oort to Baade, 22 February 1954, NAA file A1/1/1, part 9.  Oort sent a copy of this 

letter to Pawsey, noting that he had received a copy of the contour diagram.  Oort added the 

handwritten annotation: ‘This is indeed of very great interest.  As you will see below I share 

Baade’s optimism that what you have observed may actually be the nucleus of the Galactic 

system.’  I am grateful to Don Morton (NRC, Canada) for providing a copy of this letter. 

 

[40]  See note [36].  For a detailed discussion on the preparation of the Nature paper see Goss 

and McGee (1996). 

 

[41]  See McGee and Bolton (1954) and McGee et al. (1955).  The detailed AJP paper 

authored by McGee, Slee and Stanley was only the second from Dover Heights without 

Bolton as an author.  The paper did however acknowledge Bolton ‘who initiated the survey 

and was always ready to assist in the work’, and also Pawsey for ‘his most helpful criticism 

of the manuscript’.  The paper also reported 14 new discrete sources, though approximately 

half were later shown to be fictitious, the result of the effect known as ‘confusion’. 

 

[42]  See Blaauw et al. (1960), Mon. Not. R. Astron. Soc. 121, 123–31.  In April 1960, a month 

after the paper was submitted to Monthly Notices, coauthor Colin Gum was killed in a skiing 

accident in Switzerland.  The Leiden group collaborated closely with the Radiophysics 21 cm 

hydrogen group led by Frank Kerr.  Early in 1953 the Radiophysics group constructed an 11 m 
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diameter dish at Potts Hill and began a detailed survey of the southern sky, while the Leiden 

group started a similar survey of the northern sky.  On completion of both surveys in 1957, 

Kerr worked with Oort and Gart Westerhout in Leiden on splicing the two maps together to 

give the first complete view of the distribution of hydrogen throughout the Galaxy [see 

Robertson (1992), p. 84].  As we saw in Section 5.4, a sky survey by Bolton and Kevin 

Westfold in 1949 had produced tentative evidence for a spiral structure of the Galaxy.  The 

combined Leiden–Sydney 21 cm map showed without doubt what had long been suspected – a 

spiral structure for the Milky Way similar to that observed in many other galaxies. 

 

[43]  Kellermann (2004), p. 706.  At the elevation of Reber’s site the curvature of the Earth 

becomes a major problem and leads to serious degradation of the reflected signal.  As 

mentioned in Chapter 2, note [33], in 1954 Reber moved to Australia and settled in the small 

town of Bothwell near Hobart.  In collaboration with physicists from the University of 

Tasmania, Reber took advantage of a ‘hole’ in the ionosphere at this latitude to study Galactic 

radio emission at frequencies as low as 520 kHz (wavelength 577 m).  See George et al. (2015). 

 

[44]  See part V for an explanation of the automatic control of the receiver gain and the azimuth 

interferometer.  Bolton (1982, p. 355) noted that the azimuth interferometer was abandoned 

‘when special interferometers for measurement of the sizes of the major sources were built at 

Jodrell Bank and Cambridge and by B. Y. Mills in Sydney’ (see later in this section). 

 

[45]  Bolton (1982), p. 357.  The idea for the ‘tennis court’ telescope appears to have come 

from Taffy Bowen.  After visiting an airfield in Suffolk in June 1951 he wrote: ‘I wonder if we 

have been missing out on a simple form of big aerial for radio astronomy which would be very 

cheap and easy to erect.  It has been suggested to me by an experimental parabola being used at 

Martlesham for blind landing experiments.  It is a simple cylindrical parabola 80 feet across and 

20 feet high.  The reflecting material consists of a series of horizontal wires about 8 inches 

apart fixed by staples to posts driven vertically in the ground. The whole thing cost a few 

pounds, and took a day or two to erect and gave an excellent polar diagram.  For radio 

astronomy, it would be quite easy to erect such an aerial on a cliff site like Dover, with an 

aperture of say 500 feet.’ Bowen to Radiophysics Lab, 10 June 1951, NAA file A1/1/1, part 6. 

 

[46]  See Mills (2006), p. 6.  Mills was particularly critical of Bolton:  ‘He said it wouldn’t 

work.  Bolton said that in a constant temperature enclosure it would give zero output.  This is of 

course true, but I had taken measures to overcome the problem.  Apparently he convinced 

Bowen that it wouldn’t work and Taffy didn’t want anything to do with it.  Pawsey however 

was very keen and of course he understood it all completely.’  Mills interview with author, 6 

July 2007, Roseville, NSW.  The theory of the cross was set out in Mills and Little (1953), 

Aust. J. Phys. 6, 272–78. 

  

[47]  Wild (1972), p. 56.  For the Chris Cross see Orchiston and Mathewson (2009); for the 

Shain Cross see Orchiston et al. (2015). 

 

[48]  Stanley (1994), p. 512.  Bolton took up Bowen’s offer to join the Lab’s cloud and rain 

physics group – see next chapter.  For the next few months Bolton worked part-time at Dover 

Heights as the radio astronomy program was wound down. 

 

[49]  Slee (1955); see also Bolton and Slee (1957).  Hydra A has since been shown to be a 14.8 

magnitude diffuse galaxy of very small angular size.  Diffraction in the interstellar or 

extragalactic medium is thought to cause the large intensity variations.  Slee to author, 12 

February 2015. 

 

[50]  Stanley and Price (1956).  The deuterium line was eventually detected and the 

interstellar deuterium abundance was shown to be 0.002% that of hydrogen, far below the 

terrestrial abundance of 0.015%. 
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Chapter 7 

 

Beyond Dover Heights – 

An Overview of John Bolton’s Career 1955–81 

 

 

John Bolton had the unusual distinction of being the foundation director of not one 

but two major radio astronomy observatories.  Although the Americans Karl Jansky 

and Grote Reber pioneered radio astronomy in the 1930s, the US did not build on its 

lead after WWII.  This changed in 1955 when the California Institute of Technology 

(Caltech) invited Bolton and Gordon Stanley to build a new radio astronomy 

observatory.  They chose a site at Owens Valley near the Sierra Nevada Mountains 

and designed an interferometer consisting of two large parabolic dishes.  In 1960 

Bolton returned to Australia to become the inaugural director of the Parkes telescope 

in central New South Wales.  We will see that the remainder of Bolton’s career did 

not deviate too far from the original program at Dover Heights.  During the 1960s and 

1970s he and the Parkes group carried out sky surveys that discovered and catalogued 

over 8000 radio sources, many of which were a new class of object known as quasars.  

Over his career no one did more to establish radio astronomy as a mature new 

science.  This chapter provides an overview of Bolton’s career from 1955 until his 

retirement in 1981. 

 

The failure by Bolton in 1953 to get backing for a large new instrument at Dover 

Heights cast doubt over his future as a radio astronomer.  The decision to build a full 

scale Mills Cross as the principal instrument for cosmic work at Radiophysics 

effectively made the technique of sea interferometry obsolete.  Bolton’s career 

prospects now seemed to depend on developments occurring elsewhere, beyond the 

doors of Radiophysics.  We now trace these developments that helped to shape the 

future course of Bolton’s career. 

 

When Taffy Bowen joined the Radiophysics Lab in 1944 he already had an 

outstanding record in the development of radar.  His group in England (which 
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included Robert Hanbury Brown) created the first airborne radar by miniaturising the 

bulky sets, small enough to fit into the noses of aircraft.  Bowen spent most of the war 

based at the Radiation Laboratory at the Massachusetts Institute of Technology 

(known as the MIT Rad Lab), where he was chief liaison officer between the US and 

British radar research programs.  Bowen got to know a number of very influential 

American scientists including Lee DuBridge, the director of the MIT Rad Lab.  

Immediately after the war DuBridge was appointed president of the California 

Institute of Technology (Caltech) [1]. 

 

By about 1950 there was growing concern among American astronomers that the US 

was being left behind in the exciting new field of radio astronomy.  Although Jansky 

and Reber had pioneered the field, the US failed to capitalise on its early lead.  

Several small groups were formed in university departments and at the Naval 

Research Laboratories in Washington, DC, but none of these groups rivalled the 

centres established in Sydney, Cambridge and Manchester.  Encouraged by Jesse 

Greenstein, the head of Caltech’s astronomy group, DuBridge decided that Caltech 

would take the lead in revitalising American radio astronomy.  Pasadena was the 

home of Caltech and of the Mt Wilson–Palomar Observatories which operated the 

finest collection of optical telescopes in the world.  DuBridge believed it was time to 

establish a major observatory for radio astronomy to complement America’s lead in 

optical astronomy. 

 

Bowen made a point of keeping in touch with his wartime contacts from the Rad Lab, 

including DuBridge who was impressed by the achievements of the Radiophysics 

group.  Early in 1952 he invited Bowen to draw up a proposal to create the radio 

equivalent of the Mt Wilson–Palomar Observatories.  Bowen proposed an 

observatory with a range of radio telescopes, the principal one being a large parabolic 

dish with a diameter in the range 200–250 ft (60–75 m).  For the observatory’s 

personnel, Bowen suggested a staff about the same size as the radio astronomy group 

at Radiophysics, which consisted at this time of ten research scientists plus a further 

thirty technical and engineering staff.  Bowen’s proposals were summarised in a 

report dispatched to DuBridge in May 1952 [2].  Implicit in the report, if the proposal 

did go ahead, was that Bowen would be invited to be director of the new facility with 

John Bolton to accompany him as his second-in-command. 
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Figure 7.1.  Bolton with Taffy Bowen (right) at the tail of one of the RAAF aircraft used for 

the rainmaking trials.  [courtesy: RAIA] 

 

Until the future of the proposed new observatory was decided, Bowen persuaded 

Bolton to leave radio astronomy and join the Lab’s cloud and rain physics group (see 

Figure 7.1).  As discussed in Section 5.2, cloud and rain physics and the artificial 

stimulation of rainfall was the other main research activity at Radiophysics, with a 

staff and budget almost as large as the radio astronomy group.  Bolton spent several 

months studying the properties of the silver iodide crystals used in the rainmaking 

trials, which led to the only research paper of his career unconnected to astronomy.  

He also took part in rainmaking trials in Victoria and northern Queensland.  Although 

there were some promising early results, it was difficult to obtain firm evidence that 

cloud seeding had any significant effect on rainfall patterns. 

 

By early 1954 Bowen’s proposal to build a radio astronomy observatory at Caltech 

had been overtaken by other developments.  Several of Bowen’s wartime contacts 

encouraged him to look into the possibility of building a large radio telescope, not at 

Caltech, but in Australia.  Bernard Lovell was already well advanced with plans for a 

250 ft (75 m) dish at Jodrell Bank, so a similar Caltech instrument would be in direct 

competition with Lovell and probably miss out on the initial discoveries likely to be 

made.  A large dish in the southern hemisphere would complement rather than 

compete with Jodrell Bank.  Bowen was also encouraged to approach American 
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philanthropic foundations to contribute funding for a giant Australian dish.  In May 

1954 the Carnegie Corporation in New York announced it would grant $250,000 

towards an Australian dish.  Shortly afterwards the Rockefeller Foundation 

announced it would grant the same amount on condition that the Australian 

government agreed to fund at least 50% of the cost of the project.  Bowen’s original 

proposal to build an American dish partly staffed by Australians had been 

transformed into an Australian dish partly funded by American grants. 

 

These developments did not alter DuBridge’s decision to build a major observatory 

for radio astronomy at Caltech.  With Taffy Bowen committed to an Australian dish, 

DuBridge decided to invite John Bolton, assisted by Gordon Stanley, to start up radio 

astronomy at Caltech.  In October 1954 Bolton was offered an initial two-year 

contract with the title of Senior Research Fellow in Physics and Astronomy [3]. 

 

7.1  High in the Sierras – The Owens Valley Radio Observatory 

Bolton and his family arrived in Pasadena in January 1955.  His first task was to 

establish an office in Caltech’s Division of Physics, Mathematics and Astronomy and 

recruit staff to the new radio astronomy group.  Caltech itself was founded in 1891 

and during its early years was a vocational college, teaching a wide variety of 

subjects.  In 1907 George Ellery Hale of the Mt Wilson Observatory was elected to 

the college’s board of trustees.  Hale decided to transform the teaching-only college 

into an independent university institute specialising in science and technology.  He 

renamed the college the California Institute of Technology to reflect this change.  

Under the guidance of Hale’s fellow trustee Robert Millikan, physics and astronomy 

emerged as two of the strongest areas at the new institute.  Caltech also began a 

visiting scholars program, attracting many well-known European scientists.  The most 

famous was Albert Einstein who made three extended visits in the early 1930s and 

cemented Caltech’s new status as a world class research centre [4]. 

 

In the late 1940s Caltech went through a second period of expansion following the 

appointment of Lee DuBridge to the new position of president.  DuBridge set about 

recruiting the best talent that he could find.  The first was Robert Bacher who would 

be Bolton’s boss at Caltech.  At the end of the war Bacher had been appointed to the 

new US Atomic Energy Commission, the only scientist on its governing board, but he 
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resigned to take up DuBridge’s offer to become head of the Division of Physics, 

Mathematics and Astronomy.  Another coup for DuBridge was the hiring of Jesse 

Greenstein, appointed to the faculty in 1948 from the University of Chicago.  His 

brief was to build up the astrophysics group in preparation for the opening of the 200-

inch Hale Telescope on Palomar Mountain, the world’s largest telescope.  Greenstein 

learnt of Jansky’s cosmic noise while studying for his PhD and published the first 

theoretical paper attempting to explain the phenomenon [5]. 

 

When Bolton arrived at Caltech the consensus among Greenstein’s astrophysics 

group was that the best instrument to build would be a Mills Cross.  Bernie Mills had 

spent six months at Caltech in 1953 taking a crash course in astronomy, while the first 

full-scale cross was under construction at the Fleurs field station.  Mills gave several 

talks on the work at Radiophysics, including an account of the impressive 

performance of the pilot model of the cross at Potts Hill.  The immediate success of 

the full-scale cross when it came into operation in mid-1954 reinforced the view that 

radio astronomy at Caltech should start with its own version of the cross.  Bolton 

disagreed with the idea.  During his time at Caltech, Mills had spent several weeks 

visiting a group at the Department of Terrestrial Magnetism in Washington, DC.  The 

group had also been impressed with Mills’ ideas and, with funding from the Carnegie 

Foundation, began building a cross in Maryland shortly after his visit. The cross 

began a survey of the northern sky early in 1955 and so would obviously pre-empt 

any research program attempted by a Caltech cross [6]. 

 

Bolton’s main objection, however, was a more scientific one.  Within a year of 

coming into operation at the Fleurs field station, the Mills Cross had exploded the 

number of southern radio sources from the 104 sources painstakingly catalogued at 

Dover Heights to over 600.  Similarly, the Cambridge group in its second sky survey 

published in 1955 – known as the 2C survey – claimed (erroneously as it turned out – 

see below) that the northern hemisphere sources numbered not in the hundreds, but 

close to two thousand.  For Bolton, the priority was not to build another instrument to 

increase the number of known sources.  Rather, the priority would be to design an 

instrument that could reveal the identities of this rapidly growing number of sources.  

Only a handful had been identified with optical objects, simply because their 

positions could not be measured with sufficient precision to make an identification.  
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The Caltech instrument would not focus on discovering new sources, but rather on 

revealing the identity of those already known. 

 

Bolton drew up a proposal for an interferometer consisting of two parabolic dishes, 

with diameters as large as possible depending on the funds available.  The large 

collecting area of the dishes would mean the telescope could detect very faint and 

distant sources, while the accurate surface of the dishes would allow operation at high 

frequencies producing a sharper resolution.  Both dishes would be movable, mounted 

on two east–west and north–south rail tracks, which would allow the baseline 

distance between them to be varied.  Overall, the telescope would lead to an 

improvement in the measured positions of sources by at least an order of magnitude.  

Bolton noted in the proposal [7]: 

 

‘The main aim of the research program will be to identify several hundred radio stars 

with visible objects and to study the mechanism responsible for the generation of the high 

level radio emission.  At present, almost 2000 radio stars have been detected [and] seven 

or eight of the identified objects appear to be grand catastrophes in nature where 

conditions exist for extremely efficient but little understood conversion of other forms of 

energy into radio frequency energy.  It is likely that of the 2000 radio stars known, a large 

proportion are of [this] type.  Recently in the study of the radio stars most workers have 

placed more emphasis on the search for greater and greater numbers of radio stars, rather 

than the more difficult task of identification.  The program at the California Institute of 

Technology will, it is hoped, remedy this deficiency.’ 

 

Unlike the giant parabolic dishes underway in England and Australia, to be funded by 

a combination of government and philanthropic foundations, most of the radio 

astronomy centres springing up across the United States were being funded either by 

the US Navy or US Air Force.  Although the military had no interest in radio 

astronomy as such, the technology of radio astronomy – the aerials, the receivers, the 

electronics – were very much of relevance in areas such as radar and 

telecommunications.  Of the three arms of the military, the Navy was particularly 

active in promoting research through its Office of Naval Research (ONR), which 

funded radio astronomy startups at a number of universities such as Michigan, Illinois 

and, later, Berkeley.  Caltech was also well and truly on its list.  In July 1955 the 
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ONR accepted Bolton’s proposal, without change, and agreed to fund both the capital 

and operating costs of the interferometer and one-half of Bolton’s salary. 

 

 

 

Figure 7.2.  Caltech president Lee DuBridge (left) and chief engineer Bruce Rule with a 

model of one of the two 90 ft dishes to form the Owens Valley interferometer.  [courtesy: 

Caltech Archives] 

 

Shortly after his arrival at Caltech in June 1955, Gordon Stanley began a search for a 

suitable site for the interferometer.  Stanley was under instructions from Robert 

Bacher that the site was not to be more distant than a two-hour drive from Pasadena, 

so that operating costs could be kept to a minimum.  Stanley explored possible sites 

as far south as the Mexican border, but none proved suitable.  The increasing number 

of towns and freeways along the coastal plain between Pasadena and San Diego were 

generating too much radio noise and it would only get worse.  Numerous sites were 

investigated, including the Mojave Desert, but again all proved too noisy.  Stanley 

decided to search further afield in the Sierra Nevada Mountains and discovered the 

Owens Valley, named after the explorer Richard Owens.  Although 400 km due north 

of Pasadena, Stanley knew immediately that he had found the ideal site.  It was a deep 

valley, sparsely populated, with large stretches of flat land covered with low  
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Figure 7.3.  Bolton and the 32-foot radio telescope on Palomar Mountain, published in 

the Los Angeles Examiner in April 1956.  The dome in the background houses the 

200-inch Hale telescope.  [courtesy: Caltech Archives] 

 

 

 

Figure 7.4.  At the Owens Valley site in September 1958:  Bruce Rule (left), Bolton and 

Grote Reber.  [courtesy: Jim Roberts] 

 

semi-arid scrub and, most importantly, surrounded by high mountains that would 

provide a natural shield to outside sources of interference.  All that remained was to 

persuade Bacher that the scientific advantages of the site far outweighed the 

additional costs of operating such a remote observatory [8]. 
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Figure 7.5.  The dedication ceremony of the Owens Valley Radio Observatory in December 

1958: (above) the twin 90 ft dishes mounted on the east–west rail track.  (below) Rudolph 

Minkowski (left), Robert Bacher, Bolton and two members of the Caltech Board of Trustees.  

[courtesy:  (above) Jim Roberts and (below) Caltech Archives] 

 

The detailed design of the Caltech interferometer was carried out by a team led by 

Bruce Rule, Caltech’s chief engineer (see Figure 7.2).  Rule was considered to be the 

dean of American telescope engineers.  In the late 1940s he had overseen the 

completion of the 200-inch Hale telescope and since then had completed a 48-inch 
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Schmidt telescope also on Palomar Mountain.  In parallel with the design stage, 

Bolton and Stanley built a 32 ft (9.7 m) dish on Palomar Mountain (Figure 7.3).  

Although primarily a test instrument, the dish was used to carry out a survey of the 21 

cm hydrogen line and led to the first publication by the Caltech radio astronomy 

group [9].  The on-site assembly at Owens Valley began in July 1958, with the pre-

fabricated components freighted from an engineering firm in Phoenix, Arizona 

(Figure 7.4).  The dedication ceremony was held the following December (Figure 

7.5), even though only one of the dishes had been completed.  It took until late 1960 

before the interferometer was fully operational, partly because a funding shortfall 

delayed the construction of the north–south rail track [10]. 

 

Early in 1959 the Cambridge group published the third or 3C catalogue of radio 

sources, superseding the 2C catalogue from 1955 which had listed almost 2000 

sources.  The 2C catalogue had been shown to be seriously flawed because of a 

problem known as ‘confusion’, which leads to an excess of faint, but fictitious, 

sources [11].  To minimise the problem the 3C catalogue used the same 

interferometer as 2C, but modified to operate at a frequency twice as high (159 MHz) 

and with a resolution four times better.  The catalogue listed a more modest total of 

471 sources, less than a quarter of the number claimed in 2C.  In the meantime, 

Bernie Mills and the Radiophysics group had continued to expand and refine the 

Sydney catalogue, consisting of well over 1000 sources.  The 3C catalogue agreed far 

better with the Sydney one than 2C, but the agreement was still far from perfect. 

 

Owens Valley was now in a position where it could adjudicate between the Sydney 

and Cambridge surveys and decide which was the most complete and accurate.  At a 

latitude well south of Cambridge, Owens Valley was well placed geographically to 

study the broad band of sky covered by both catalogues.  Observations began at 960 

MHz using the first of the two 90 ft dishes completed and by mid-1960 several 

hundred sources from the two catalogues had been investigated.  Over 95% of the 

Cambridge sources were confirmed, although there were discrepancies in the 

measured positions for about a third.  The Sydney catalogue did not fare as well.  

Only 75% of the compact sources could be confirmed and it was worse for the 

sources that Mills had labeled ‘extended’ or ‘probably extended’, with a confirmation 
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rate just above 50%.  Many of these sources were not in fact extended, but blends of 

two or more sources that could be resolved by the Owens Valley dish. 

 

A group at Jodrell Bank led by Henry Palmer had been making its own observations 

of the 3C sources, using the 250 ft dish and a small antenna stationed at locations at 

distances of up to 100 km.  The Jodrell interferometer with its extremely long 

baseline could resolve the structure of sources in far greater detail than Owens Valley, 

though it lacked what is known as phase stability and could not accurately measure 

the positions of sources.  The Jodrell group reported that a handful of 3C sources had 

angular sizes less than 10 arcsec, unlike the typical 30 to 50 arcsec for most radio 

galaxies known at this time.  Bolton took a particular interest in these sources which 

were clearly unusual.  After the interferometer became fully operational, he assigned 

Tom Matthews to measure a more accurate position for one of them, the source 

3C295.  Rudolph Minkowski had recently taken a very high quality photograph of 

this small patch of sky using the 48-inch Schmidt telescope at Palomar.  The source 

3C295 appeared to coincide with a very faint wisp of a galaxy. 

 

Minkowski decided to take a closer look with the Hale telescope.  The spectrum was 

indeed unusual, but he was able to detect a bright emission line of oxygen.  To his 

great surprise, the oxygen line was redshifted by 0.46, equivalent to a velocity of 

recession of 46% of the speed of light.  This was more than double the redshift of the 

most distant object known in the Universe.  In 1951 Milton Humason had used the 

Hale telescope to measure a record redshift of 0.20 for a galaxy in the constellation 

Hydra.  However, despite considerable effort by Humason, the record had remained 

unbroken for the remainder of the decade [12]. 

 

The source 3C295 held the record for the most distant galaxy for 15 years, but not for 

the most distant object.  The discovery of a new class of sources known as quasars 

saw the redshift record tumble frequently during the 1960s.  For Bolton, the 

identification of 3C295 was especially pleasing for other reasons.  Minkowski’s 

observing run on the Hale telescope was his final one before retirement and proved a 

fitting finale to his illustrious career.  Another positive outcome of 3C295 was that 

the identification required the combined effort of Cambridge, Jodrell Bank and 

Owens Valley.  The identification of 3C295 was a fine example of successful 



Peter Robertson:  ‘John Bolton and the Nature of Discrete Radio Sources’ 210 

international collaboration, one involving three of the four leading radio astronomy 

groups in the world. 

 

7.2  Receding Horizons – The Discovery of Quasars 

Taffy Bowen and John Bolton had an understanding at the time when Bolton departed 

Radiophysics for Caltech.  If Bowen succeeded in his ambition to build a giant radio 

telescope in Australia, then Bolton would be his preferred choice as director of the 

new facility.  With the announcement of the grants from the Carnegie and Rockefeller 

foundations in 1954–55, the Commonwealth government agreed to match these funds 

dollar-for-dollar which secured the future of the project.  The initial design study was 

carried out by the renowned English engineer Barnes Wallis (Figure 7.6), while the 

detailed design was carried out by the London firm of Freeman Fox and Partners.  In 

the 1920s the firm’s co-founder, Sir Ralph Freeman, had designed the Sydney 

Harbour Bridge, Australia’s best known landmark.  In contrast to the early 

Radiophysics field stations, the site chosen for the telescope was a shallow valley 

near the township of Parkes in central New South Wales, well to the west of Sydney’s 

sprawling suburbs.  Part funded by the Americans, designed by the English, the 

telescope was very much an international project with the German firm of 

Maschinenfabrik Augsburg Nurnberg (MAN) selected for the construction.  In 

December 1960 Bolton resigned from his position at Caltech and returned to 

Australia to oversee the construction and commissioning of the Parkes telescope [13]. 

 

Edwin Hubble once noted: ‘The history of astronomy is a history of receding 

horizons’ [14].  The discovery of quasars in the early 1960s with their extraordinary 

energy output took the astronomical world by storm.  Originally known as quasi-

stellar objects or quasi-stellar radio sources, the latter term was soon shortened to 

quasars.  Although the origin and nature of these objects is not yet well understood, 

there is general agreement that quasars have played a central role in the creation and 

evolution of the Universe.  Since Jansky’s first observations over 80 years ago, the 

discovery of quasars is undoubtedly one of the finest achievements of radio 

astronomy.  It was one in which both John Bolton and the Parkes telescope played a 

major part.  The path to the discovery of quasars started at Caltech in late 1960 [15]. 
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Figure 7.6.  The prominent English engineer Barnes Wallis (1887–1979) carried out the initial design study 

of the Parkes Telescope.  He introduced new ideas on how to keep a rigid shape for the parabolic surface 

and how to point the dish with great accuracy.   [courtesy: (above) Vickers (London) and (below) RAIA] 
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Figure 7.7.  Caltech postdoc Tom Matthews jokingly speculates on the nature of the source 

3C48.  Matthews measured an accurate position at Owens Valley late in 1960, but for over two 

years the source remained a mystery.  [courtesy: Jim Roberts; credit: Dan Harris]. 

 

As noted in the previous section, Henry Palmer and a group at Jodrell Bank had been 

observing a number of the 3C Cambridge sources with a very long baseline 

interferometer.  They found that several sources had very small angular sizes, 

including the radio galaxy 3C295 with its record redshift of 0.46.  The source 3C48 

had an angular size less than 4 arcsec, making it an exceptionally compact source.  

After Tom Matthews (Figure 7.7) measured an accurate position for 3C48 at Owens 

Valley, Bolton found that it appeared to coincide with a sixteenth magnitude star on 

the Palomar plate.  Further work by Jesse Greenstein, Allan Sandage and Guido 

Münch on the Hale telescope showed the star to have an unusual blue colour made up 

of a combination of strong emission and absorption lines unlike that of any star 

known.  The most puzzling feature was that the object’s spectrum apparently 

contained no evidence for the presence of hydrogen, the major constituent of all 

normal stars.  Several attempts were made to fit the spectrum to known emission 

lines, including one by Bolton who thought that he had successfully identified a 

number of lines.  As he reported to Pawsey in November 1960 [16]: 

 

‘A couple of weeks ago I wrote to Taffy and said I thought we had a star.  It is not a star.  

Measurements on a high dispersion spectrum suggest the lines are those of Neon[V], 
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Argon[III] and [IV] and that the redshift is 0.367.  The absolute photographic magnitude 

is then –24 which is two magnitudes greater than anything known.  The continuum is still 

going up towards the blue end and may very well be synchrotron.  I think this must be the 

early stage of a radio galaxy, probably short lived and so very rare.  The absence of the 

usual O[II] lines is probably due to it being very hot – the main emission probably comes 

only from the centre 1 kpc.  The source is 3C48.’ 

 

A brief report on this highly-unusual object by Matthews, Bolton, Greenstein, 

Sandage and Münch (the chronological order each had joined in the observations) 

was made by Sandage at the Christmas 1960 meeting of the American Astronomical 

Society in New York.  The report did not include Bolton’s redshift estimate of 0.37 

for 3C48.  Although two magnesium and neon lines seemed to provide a good fit, 

their wavelengths were a few angstroms away from their correct values.  These were 

small discrepancies but Jesse Greenstein, in particular, argued that it would cause 

critics to doubt an extraordinary claim that the object – after the radio galaxy 3C295 – 

was the second most distant object known in the Universe.  Instead, the report 

cautiously noted [17]:  

 

‘Since the distance of 3C48 is unknown, there is a remote possibility that it may be a very 

distant galaxy of stars; but there is general agreement among the astronomers concerned 

that it is a relatively nearby star with most peculiar properties.  It could be a supernova 

remnant.  The radio output may be intrinsically ten million times stronger than the Sun’s.’ 

 

The evidence seemed to point strongly to the discovery of the first true radio ‘star’ in 

the local Galaxy.  Despite the initial interest in 3C48 the Caltech group made no 

further observations on the object, as Bolton recalled [18]: 

 

‘Looking back it is ironic that what would now be considered an excellent fit between 

permitted and forbidden lines in quasars stopped the clock for nearly three years.  I did 

not pursue the matter further, for the interferometer still had to undergo tests on the newly 

completed north–south baseline; my personal affairs in California wound up and my 

family embarked on the S. S. Orcades for the journey back to Australia in mid-December 

for the start of the first steelwork construction at Parkes.’ 
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While the nature of 3C48 baffled the Caltech astronomers, another strand in the 

quasar story had begun elsewhere.  The technique of lunar occultations uses the Moon 

to pinpoint a precise position for a source.  The technique was well known in 

astronomy and used to study the detailed shape and motion of the Moon against the 

backdrop of fixed stars.  In radio astronomy the technique can be used in reverse.  

Because the precise position of the Moon’s limb is known at any given time, a careful 

measurement of the times when a radio source disappears behind the Moon 

(immersion) and then later reappears (emersion) enables the position of the source to 

be calculated to great precision.  The accuracy of the technique is limited essentially 

by uncertainties in the detailed shape of the terrain and mountains on the Moon’s 

limb.  In December 1960, shortly before the puzzling results for 3C48 had been 

announced, Cyril Hazard at Jodrell Bank used a lunar occultation to measure the 

position of 3C212 to an accuracy of 3 arcsec (Figure 7.8). 

 

       

 

Figure 7.8.  Cyril Hazard (left) and John Shimmins at Parkes carried out lunar occultation observations 

on the source 3C273.  The precise position measured for the source led to the discovery of quasars, the 

most distant objects in the Universe.  [courtesy: (left) AIP Emilio Segré Visual Archives, John Irwin slide 

collection;  (right) Robert Shanks] 

 

In 1962 a second opportunity arose for Hazard to use the technique to measure the 

position of another Cambridge source, 3C273.  By coincidence 3C273 would undergo 

a series of lunar occultations at southern latitudes during 1962, an event that occurs 
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only about once every twenty years.  By then, Hazard had joined a new astronomy 

group at the University of Sydney to work with Robert Hanbury Brown on a new 

instrument for measuring the diameter of stars, known as an intensity interferometer.  

The first occultation observed at Parkes in May 1962 proved inconclusive.  Only the 

emersion of 3C273 was recorded before the source passed outside the field of view, 

but the occultation curve did at least indicate the source to be of very small angular 

size.  Preparations for the second occultation were made with utmost care.  All roads 

leading to the telescope were closed, unnecessary electrical equipment on the site shut 

down, and rehearsals carried out over a three-day period.  There was however a 

problem.  The times of immersion and emersion were sent to Hazard by the Nautical 

Almanac Office in Sussex, England.  However, the times were calculated for the 

latitude and longitude of the Fleurs field station and so the projected times for Parkes, 

almost 400 km to the west of Fleurs, were known only approximately.  John 

Shimmins (Figure 7.8), who worked with Hazard on the occultations, recalled [19]: 

 

‘It seemed likely that at emersion the zenith angle of the telescope would be slightly 

greater than 60°.  The telescope will only go to 60° and then there is a solid stop.  When 

you reach it bells ring and the brakes are applied.  So, we simply removed the safety 

stops from operation for that observation.  Just to be certain, John Bolton took a grinder 

and cut away some of the housing of the zenith angle bearings.  This meant that we could 

tip the dish by almost another degree.  During the occultation the rim of the dish was 

practically touching the ground.’ 

 

The precaution of grinding away part of the housing turned out to be unnecessary, but 

it illustrates the lengths Bolton would go to ensure the success of the observations. 

 

The observation of the occultation carried out by Hazard, Shimmins and Brian 

Mackey on 5 August 1962 went according to plan (see Figure 7.9).  An analysis of 

these records, combined with the results of a third partial occultation (immersion 

only) in October, revealed that 3C273 is not a simple point source, but a double with 

each component about 6 by 2 arcsec in area with a separation of about 20 arcsec 

between the two centres.  In the meantime, the precise immersion and emersion times 

had been sent to the Nautical Almanac Office which then supplied Hazard with the 

relevant data on the shape and motion of the Moon’s limb.  After a detailed analysis, 
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Hazard calculated the position of the double object 3C273 to an accuracy of 1 arcsec 

– at the time the most accurate position determined for a radio source. 

 

 

 

 

 

Figure 7.9.  Lunar occultation of the quasar 3C273 recorded at Parkes on 5 August 1962.  (above) From 

left to right: the signal from the two-component source is blacked out, with the curve showing where the 

second component starts to disappear.  Because of their orientation with respect to the Moon’s limb, 

both components emerge at the same time.  The wavy curve is caused by diffraction of the signal 

around the Moon’s limb.  (below) Palomar photograph of 3C273 showing the unusual jet extending at 

lower right.  Note the similarity between this object and the galaxy NGC 4486, identified with the Virgo A 

source by the Dover Heights group in 1949 (see Figure 4.11).  [courtesy: RAIA] 
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By coincidence, Rudolph Minkowski happened to be visiting the Radiophysics Lab at 

this time, following his retirement from Mt Wilson–Palomar.  Minkowski brought a 

number of sky plates, including one for the region of sky containing 3C273.  The 

radio position calculated by Hazard coincided exactly with a double source on the 

plate, the compact core of one radio component matching with what appeared to be a 

blue star, the other with a peculiar jet extending out from the star in one direction.   

 

Next came the turn of Maarten Schmidt, a Dutch astronomer who had joined the 

Caltech astrophysics group in 1959.  In December 1962 Schmidt measured the optical 

spectrum of 3C273 and found six strong emission lines.  Four of these lines formed a 

simple harmonic series with a separation and strength similar to the type of series 

which characterises hydrogen and certain highly ionised atoms.  However, an 

extensive search of the tables of spectroscopic data failed to identify the atom 

responsible.  After six weeks puzzling over the lines, Schmidt finally found the 

solution.  Rather than belonging to an unusually rare atom, four of the emission lines 

in the spectrum belonged to hydrogen, but with an entirely unexpected redshift of 

0.16.  The redshift measured by Schmidt corresponded to a distance of about 3 billion 

light-years.  And yet, in view of the brightness measured for the object – thirteenth 

magnitude – this had a startling implication: the comparatively small and compact 

source 3C273 was radiating at least 100 times more energy than the most luminous 

galaxy then known. 

 

Schmidt’s success in identifying the spectrum of 3C273 prompted Jesse Greenstein 

(Figure 7.10) to return to the spectrum of 3C48, which had remained a mystery since 

Sandage had announced the peculiar features of this star-like object at the New York 

meeting in December 1960.  To his surprise Greenstein was able to recognise a 

number of lines in the spectrum belonging to magnesium, oxygen and neon, but 

redshifted by an extraordinary 0.37.  Bolton had been right all along.  The source 

3C48 was at a distance of 7 billion light-years, over twice the distance of 3C273, and 

with a recession velocity close to one-third the speed of light.  The English 

astronomer Fred Hoyle wrote to his close friend Bolton from Cambridge [20]: 
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Figure 7.10.  Jesse Greenstein, head of the Caltech astrophysics group at the time of the 

discovery of quasars.  Initially Greenstein believed quasars to be ultra-dense radio ‘stars’ 

closeby in the local Galaxy.  [courtesy: AIP Emilio Segré Visual Archives] 

 

‘Just a note to inform you that the Caltech chaps have changed their story about the 

sources of very small angular diameter.  According to a letter from Willy [Fowler], 

Maarten Schmidt and Jessie are giving ∆λ/λ = 0.37 for 3C48.  My memory isn’t what it 

was, so I may be wrong in thinking this is very close to what you said a long time ago.  If 

it really is your identification (was it Na VI?) you might want to watch the situation!’ 

 

As mentioned above, it was assumed that 3C48 and 3C273, along with several other 

‘quasi-stellar’ objects under suspicion, were compact radio stars in the local Galaxy.  

Greenstein had already sent a theoretical paper to the Astrophysical Journal arguing 

that these objects were nearby, ultra-dense stars formed from the collapsed cores of 

supernovas, with emission spectra arising from intense radioactive decay of material 

on the object’s surface.  The redshifts measured for 3C273 and 3C48 led Greenstein 

to quickly withdraw his paper from publication.  Rather than nearby stars within the 

Galaxy, these were among the most distant objects in the Universe.   

 

A letter by Hazard, Mackey and Shimmins on ‘Investigations of the radio source 

3C273 by the method of lunar occultations’ was published in Nature in March 1963, 
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accompanied by three others.  One by Maarten Schmidt reported the redshift of 

3C273, noting that the object is ‘about 100 times brighter optically than the most 

luminous galaxies which have been identified with radio sources thus far’ (see Figure 

7.11).  The second paper by J. Beverly Oke at Mt Wilson–Palomar reported the 

energy characteristics of the 3C273 optical spectrum, while the third by Greenstein 

and Matthews gave the results for 3C48, concluding with the understatement that ‘so 

large a redshift, second only to that of the intense radio source 3C295, will have 

important implications in cosmological speculation.’ [21] 

 

 

 

Figure 7.11.  Maarten Schmidt and Bolton at the Parkes Observatory in March 

1963.  The same month, Schmidt published the redshift of 3C273 in Nature. 

[courtesy: Bolton family]  

 

The publication of the first papers on 3C273 and 3C48 in March 1963 triggered one 

of the most intensive hunts ever witnessed in astronomy [22].  Shortly afterwards 

Schmidt and Matthews announced that 3C47 is a quasar with a redshift of 0.43.  Next 

came 3C147 with a redshift of 0.55, exceeding the value of 0.46 for the radio galaxy 

3C295 found by Matthews, Bolton and Minkowski late in 1960.  In April 1964 

Hazard and Brian Mackey in collaboration with Bill Nicholson at the Nautical 

Almanac Office announced the discovery of a further three quasars detected by the 

lunar occultation technique at Parkes [23].  By the end of 1964 a total of 40 quasars 
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had been reported, leading some astronomers to predict that these extraordinary 

objects make up a substantial fraction of the hundreds of radio sources already 

catalogued, but unidentified.  Several of these quasars were found to have redshifts 

approaching 2.0, corresponding to distances of approximately 10 billion light-years.  

In less than two years the discovery and study of quasars had led to a doubling of the 

distance scale of the Universe.  The distance record was broken regularly during the 

1960s, with several record-breaking quasars detected at Parkes.  At one stage in 1966, 

the four most distant quasars were all Parkes sources.  As we see in the next section, 

the most distant of the four, PKS 0237–23 with a redshift of 2.22, was identified by 

Bolton in collaboration with astronomers at the Palomar and Lick Observatories. 

 

7.3  An Australian Icon – The Parkes Radio Telescope 

The inauguration of the Parkes telescope in October 1961 marked an important stage 

in the development of science in Australia (see Figure 7.12).  On a scientific level the 

telescope provided Australian astronomers with the most powerful and versatile 

instrument of its type in the world, one which immediately produced a stream of 

significant and, at times, fundamental discoveries.  On a different level the Parkes 

telescope also had a major impact in shaping the way astronomy developed in 

Australia.  In contrast to the 1940s and 1950s, when small Radiophysics teams built 

and had exclusive use of their own telescopes, Parkes would operate as an 

observatory and have more in common with the great optical telescopes of the world.  

A fulltime specialist group of technicians would look after the maintenance and 

routine operation of the telescope and radio astronomers would now have to compete 

with their peers for observing time on the new instrument.  In this respect the 

completion of the Parkes telescope marked the arrival of ‘big science’ in Australia 

and the arrival of radio astronomy as a mature scientific discipline.  In some respects 

too, it marked the end of the most innovative and interesting period. 

 

In this section we will give a brief overview of John Bolton’s research from 1961 up 

to his early retirement in 1981, caused by ill-health.  Bolton’s research program 

remained essentially unchanged from the Dover Heights years: to survey the southern 

skies; to detect hundreds of new sources; to identify as many as possible with optical 

objects; and to classify the objects into well-defined types.  As the inaugural director  
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Figure 7.12.  An Australian icon – the Parkes dish shortly before its inauguration in October 1961.  On 

horseback is ‘Austie’ Helm who sold part of his farm to CSIRO to provide a site for the telescope.  The 

site was named the Australian National Radio Astronomy Observatory (ANRAO), with Bolton as its 

inaugural director.  [courtesy: Bolton papers, National Library of Australia] 

 

of the Parkes telescope much of Bolton’s time was taken up with routine 

administrative duties and other projects unrelated to his research.  As one notable 

example, over the period 1969–72 Bolton directed the involvement of Parkes in the 

Apollo program of manned Moon landings.  At this time NASA did not have a large 

dish in the southern hemisphere, so it arranged with CSIRO to contract the Parkes 

dish to be a part-time tracking station.  Parkes received the television signals of the 

Apollo 11 moonwalk in July 1969, an event of unique historical importance [24].  

Parkes also played an important role in rescuing the ill-fated Apollo 13 mission and 

was part of each of the remaining missions up to the final Apollo 17 in December 

1972.  Bolton devoted approximately half his time to the Apollo program during this 

period. 

 

The First Parkes Survey at 408 MHz (1962 – 66) 

The first survey of radio sources began late in 1962 at a frequency of 408 MHz 

(wavelength 75 cm).  The strategy was to divide the sky accessible at Parkes (from 

declination +20° north down to the south celestial pole –90°) into four zones and then 
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to make a preliminary scan of each zone.  Even with a rapid telescope drive rate, over 

twenty full nights of observation were required to cover each zone.  Once this 

preliminary ‘finding’ survey had been made at 408 MHz, all of the sources were then 

examined in more detail at the higher frequencies of 1420 and 2700 MHz.  These 

more detailed observations of each zone took a further forty nights to complete.  The 

survey of the first zone from declination –20° to –60° by Bolton, Frank Gardner and 

Brian Mackey was published in April 1964 and listed almost 300 sources [25]. 

 

A feature of this first survey paper was how each source was named.  Until then new 

sources were usually named after the observatory to first detect them; for example, 

3C48 referred to the 48th source listed in the third Cambridge catalogue.  The Parkes 

sources were now listed in the form PKS 0106+01 with the numerals specifying its 

approximate position:  the first two digits give the hour of right ascension and the 

next two digits give the minutes, followed by the (±) degrees of declination.  In 1973 

a designation similar to this was adopted by the International Astronomical Union to 

standardise the names of sources from all observatories.  This was the second 

occasion where Bolton had a significant influence on the nomenclature of radio 

sources.  As we saw in Chapter 4, early in 1948 he introduced the convention of 

naming radio sources after the constellation in which they are found, followed by the 

letters A, B, …, to indicate the strongest, second strongest, etc. source in that 

particular constellation. 

 

The catalogues for the other three zones were completed and published during 1965–

66 to give a grand total of 2133 sources for the first Parkes survey.  The complete 

catalogue recorded the position of each source, its flux density (ie. emission 

intensity), its degree of polarisation, its angular diameter, and whether or not the 

source had been included in the earlier survey carried out with the Mills Cross at the 

Fleurs field station (see Section 6.4).  Another parameter listed was the spectral index, 

describing how the flux density of the source varies with frequency and which could 

be determined from separate observations at 408, 1420 and 2700 MHz.  The value of 

this index provided a strong clue to the nature of the source.  For example, if the 

source was compact with a flat spectrum it could be provisionally identified as a 

quasar, independently of whether it had been identified with an optical object. 
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In December 1964 Bolton made the first of several extended visits to California to 

begin the task of optically identifying the sources in the new Parkes catalogue.  He 

used the Palomar Sky Survey, the comprehensive collection of 2000 photographic 

plates he had learnt to use previously during his time at Caltech.  The survey covered 

all of the northern sky and the southern sky down to a declination of –33°, 

overlapping with approximately half the Parkes catalogue.  Bolton and Allan Sandage 

carried out a number of observing runs on the 200-inch Hale telescope to confirm or 

rule out some of the optical identifications.  Of those confirmed, about 90% were 

galaxies (down to magnitude –18) and about 10% were quasars. Over the next 18 

months Bolton would author or co-author 16 papers, the most productive period of his 

career.  All but three of the papers reported the optical identifications of extragalactic 

objects in the Parkes catalogue [26]. 

 

With such a large sample it was now possible to recognise four distinct classes of 

extragalactic radio sources.  First are the ‘normal’ galaxies that emit radio power on a 

scale similar to our local Galaxy.  Second are galaxies of high intrinsic luminosity 

where the radio source is smaller than the optical galaxy and is probably associated 

with the galactic nucleus.  Next are the radio galaxies such as Cygnus A which 

represent only about 0.1% of all galaxies and which radiate at levels up to a million 

times that of normal galaxies.  They are almost exclusively elliptical galaxies of very 

high intrinsic luminosity.  Fourth are quasars which are characterised by a marked 

excess of ultraviolet radiation and which are the most luminous objects known in the 

Universe. 

 

In August 1966 Bolton made a second extended visit to California, on this occasion 

collaborating with Tom Kinman at the Lick Observatory near San Francisco.  Bolton 

and Kinman published a series of papers identifying 43 of the Parkes sources as 

quasars, with the identifications based on photographic, photoelectric and 

spectroscopic measurements taken at three telescopes: the 48-inch Palomar Schmidt 

(Bolton), the 120-inch Lick (Kinman) and the 200-inch Hale (Sandage).  One of the 

quasars 0237–23 created particular interest with a highly unusual spectrum.  Detailed 

studies of the spectrum by Kinman and Halton Arp led to the identification of 

emission lines with a redshift of 2.22, breaking the previous redshift record.  PKS 

0237–23 was not only the most distant object known in the Universe, but its apparent 
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magnitude showed this quasar to be at least five times more luminous than any other 

object [27]. 

 

The Second Parkes Survey at 2700 MHz (1967 – 79) 

As we have seen, the main project at Parkes during the period 1962–66 was a sky 

survey at 408 MHz leading to the first Parkes catalogue of 2133 sources.  On 

completion of the survey Bolton embarked on an even more ambitious project.  The 

observations at 1420 and 2700 MHz had revealed that about 10% of sources had the 

flat or inverted spectra characteristic of quasars.  Bolton predicted that a high-

frequency survey at 2.7 GHz would reveal a source population with a much higher 

proportion of quasars.  However, such a survey would be difficult to carry out 

primarily because the telescope beamwidth is much narrower at the high frequency, 

and thus it would take much longer to survey a given area of sky.  The 408 MHz 

survey took almost four years to complete.  As it turned out, the 2.7 GHz survey 

would take 12 years to complete and preoccupy Bolton for most of the 1970s. 

 

Although the optical identification program during the 408 MHz survey had been 

largely a solo project, Bolton began to involve other Parkes staff in the 2.7 GHz 

survey.  In a series of four papers during 1971–73 Bolton, Bruce Peterson, John 

Shimmins and Jasper Wall confirmed the identifications of a further 129 southern 

quasars [28].  The increasing number of quasars meant a statistical analysis could be 

made of their properties.  There appeared to be three main classes of quasars: 

 

 The first are those mainly found in low frequency surveys such as the 3C and 4C 

Cambridge catalogues.  The flux density falls away quite steeply at higher 

frequencies, similar to most radio galaxies.  The majority of these objects have 

emission-line spectra and so their redshifts can be determined 

 

 The second class are the flat spectrum sources where there is no overall decrease 

in flux density at higher frequencies.  About half the quasars in the 2.7 GHz 

survey were of this type.  They are also characterised by large variations in flux 

density over time.  The variations at 2.7 GHz are typically 30% in a year and 

variations in optical brightness are even greater.  A small fraction of these objects 

show no emission lines and so their redshifts cannot be measured 
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 The third class are very stable quasars that show no variation in flux density by 

more than about 1%, even over a timescale of ten years.  Optically these objects 

have very strong emission lines.  They are excellent sources for calibrating the 

performance of telescopes such as Parkes. 

 

The fourteenth and final part of the Parkes 2.7 GHz survey, covering the zone –4° to 

–15°, was published in April 1979, twelve years after the project started.  Bolton was 

an author on all but two of the parts.  In his autobiographical memoir for the Royal 

Society, Bolton estimated that close to fifty PhD students, postdocs and Radiophysics 

staff had made significant contributions to the catalogue.  The number of sources 

reported in the 14 parts totalled over 8000, ranging from declination +25° down to the 

south celestial pole.  Aside from the catalogue papers, the great majority of Bolton’s 

papers during the 1970s reported either the optical identification of sources or the 

redshifts of quasars in a particular zone.  As Bolton had predicted, the 2.7 GHz survey 

showed dramatically how the overall appearance of the radio sky varies according to 

frequency.  In the 408 MHz survey, most of the strong sources detected were shown 

to be giant elliptical galaxies, relatively closeby, while in the 2.7 GHz survey a much 

higher proportion of the strong sources were quasars.  Similarly, quasars accounted 

for approximately 10% of sources in the 408 MHz survey, but rose to approximately 

one half in the 2.7 GHz survey. 

 

In a paper in Monthly Notices in 1978 Don Morton, Ann Savage and Bolton showed 

that the quasar PKS 0438–43 had the highest radio luminosity of any known source. 

The source was identified on a UK Schmidt plate and its spectrum measured on the 

newly-completed Anglo-Australian Telescope at Siding Spring in New South Wales.  

A plot of the flux density versus frequency showed that 0438–43 is a classic flat 

spectrum quasar.  The flux density rises from 80 to 160 MHz and then barely changes 

until 10 GHz where it starts to fall away.  A redshift of 2.9 was measured for 0438–43 

and, with the distance to the source known, the absolute luminosity of the source 

could be calculated.  PKS 0438–43 was shown to be almost one hundred times more 

luminous than the Cygnus A source, which in comparison is relatively closeby.  

Perhaps it is fitting that Bolton’s career as an astronomer began with the famous 

Cygnus A source and drew to a close with the discovery of an object with even more 
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extraordinary physical properties.  The paper concluded with two sentences that 

would have been better suited to a popular astronomy magazine, rather than a 

conservative research journal:  ‘The total radio luminosity of 0438–43 has the same 

power as the optical output from ten trillion Suns.  Alternatively, the output of radio 

energy is equivalent to that of seven Type I supernovae per day!’ [29] 

 

 

 

Figure 7.13.  One of the official events to mark Australia’s Bicentenary in 1988 was the 

publication of the book Australian Science in the Making, edited by the eminent historian of 

science Rod Home.  Gordon Stanley’s photo of John Bolton and the Dover Heights blockhouse 

in May 1947 featured on the cover (see Figure 3.3).  [courtesy: Cambridge University Press] 

 

In 1979 Bolton suffered a severe heart attack and went on extended sick leave.  His 

health continued to deteriorate and in 1981 he was forced to take early retirement, 

aged 58.  Apart from his time at Caltech (1955–60), Bolton spent his entire career 

(1946–81) on the staff of the Radiophysics Lab (later renamed the Australia 

Telescope National Facility). 

 

Bolton’s contributions to the foundation and development of radio astronomy were 

recognised in a number of different ways (see e.g. Figures 7.13 and 7.14).  He 

received the highest awards from both the American and British astronomical 

communities: 
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Figure 7.14.  With Bruce Slee at the unveiling of a plaque in November 1989 at Rodney 

Reserve, the site of the Dover Heights field station. The plaque celebrated the birth of 

extragalactic radio astronomy forty years earlier. The field station was converted into a rugby 

field with the plaque close to the halfway line.  [courtesy: RAIA] 

 

 In 1967 he was invited by the US National Radio Astronomy Observatory to 

present the inaugural Karl Jansky Memorial Lecture; in 1968 he presented the 

Henry Norris Russell Lecture to the American Astronomical Society; in 1977 he 

received the Gold Medal of the Royal Astronomical Society; and in 1988 he was 

awarded the Bruce Medal by the Astronomical Society of the Pacific 

 

 Bolton was elected a Foreign Member of the American Academy of Arts and 

Sciences; an Honorary Fellow of the Indian Academy of Sciences; and a Foreign 

Associate of the US National Academy of Sciences 

 

 In 1969 he was elected a Fellow of the Australian Academy of Science and in 

1973 a Fellow of the Royal Society of London (the award he valued most) 

 

 Bolton also served two terms as a Vice-President of the International 

Astronomical Union (1973–79). 
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After his retirement Bolton moved from Parkes to the small town of Buderim on 

Queensland’s Sunshine Coast.  He died of pneumonia on 6 July 1993, aged 71.  He is 

survived by his wife Letty and two sons Brian and Peter. 
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Chapter 8 

 

Concluding Remarks 

 

In this final chapter I will attempt to draw together the main points and conclusions of 

John Bolton’s career during the Dover Heights years 1946–54.  In a series of bullet 

points I will summarise Bolton’s personal achievements, the significance of the 

research by the Dover Heights group, and the contribution of the Radiophysics Lab to 

the development of radio astronomy.  Next, I will suggest a few topics related to this 

thesis which might prove fruitful areas to investigate by future researchers.  Although 

much has already been written about the Radiophysics Lab and its staff over the 

period 1945–60, the field has by no means been fully covered.  This is an indication 

of both the breadth and depth of the contribution made by the Radiophysics Lab to 

the early development of radio astronomy.  Finally, I will make a few remarks about 

Bolton’s later years, showing that the Dover Heights period was the first stage of 

what turned out to be a remarkable career in astronomy – both radio and optical. 

 

As we saw in Chapter 2, in terms of his background and training, Bolton was well 

qualified to be a pioneer of radio astronomy.  He did not begin formal education until 

grade 6 in primary school and he was largely self-taught and independent in his 

thinking.  He showed his academic talent at secondary school and in his final year 

won two scholarships to study at Trinity College, Cambridge.  He majored in 

mathematics and physics in his Bachelor of Science degree which provided a solid 

theoretical foundation for his career ahead.  Bolton enlisted in the Royal Navy in 

1942 and spent two years developing airborne radar equipment and then a further two 

years as a radio officer onboard an aircraft carrier.  He became an expert in getting 

radio and electronic equipment to operate correctly, often in difficult physical 

conditions and often under the urgency of wartime deadlines.  In retrospect we can 

see that his four years in the navy were an excellent preparation for a career in radio 

astronomy. 

 

In 1946 Bolton joined the Radiophysics Laboratory in Sydney, part of the Council for 

Scientific and Industrial Research (the forerunner of CSIRO).  The Radiophysics Lab 
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had been formed in 1940 to carry out secret wartime research on radar for the 

Australian armed forces.  By the end of WWII the Lab had a large and highly-skilled 

staff and was the best-equipped laboratory of its kind in Australia.  The Lab 

investigated a wide range of possible peacetime applications of radar.  Radio 

astronomy turned out to be the unexpected success story and, by 1950, half the 

resources of the Lab were devoted toits pursuit.  If the Radiophysics Lab had been a 

government research organisation with a rigid research program, it seems unlikely 

that radio astronomy would have emerged to become one of the great success stories 

of Australian science. 

 

The discovery of radio waves from space was made in 1932 by the physicist Karl 

Jansky, who worked for the Bell Telephone Laboratories in New Jersey.  Jansky was 

given the task of identifying the sources of interference to a new trans-Atlantic radio 

communication service.  In a fine example of serendipity in science, Jansky found 

that there was a steady component in the interference that appeared to have no 

terrestrial origin.  Jansky’s discovery was followed up by the radio engineer Grote 

Reber, who built his own radio telescope at his home near Chicago.  Reber produced 

sky maps of the radio emission which seemed to suggest that the emission was 

produced by ionised clouds of matter in interstellar space.  At the end of WWII, the 

time was ripe for other enterprising radio engineers and physicists to enter the field. 

 

 A major conclusion of this thesis is that it was Bolton and colleagues who took 

the next major step forward in ‘cosmic’ radio astronomy 

 

When Bolton joined the Radiophysics Lab in September 1946 he was stationed at a 

cliff-top field station at Dover Heights, a short distance south of the entrance to 

Sydney Harbour.  During the war a number of investigators had independently 

discovered radio emission from the Sun.  The Radiophysics Lab began its own 

program of solar observations in October 1945 and Bolton was assigned to the team 

recording and analysing the emission.  He speculated that, in addition to the Sun, 

other astronomical objects might also be the source of radio emission. With colleague 

Bruce Slee, he tried to detect emission from various objects such as the Moon and the 

planets, but the attempt failed. 
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Several months later Bolton decided to investigate a report by an English group that 

there was unusually strong and variable radio emission coming from a small region in 

the constellation of Cygnus.  With colleague Gordon Stanley, Bolton used a technique 

known as sea interferometry which uses one or more Yagi aerials.  The cliff-top aerial 

points out to sea where it picks up the direct radio signal from above the horizon and 

the signal reflected from the sea surface to create an interference pattern.  In June 

1947 Bolton and Stanley succeeded in detecting emission from the Cygnus 

constellation and, from the distinctive interference pattern, they were able to conclude 

that the emission came from a very compact point-like source.  By the end of 1947 

Bolton, Stanley and Slee had found a further five of these point-like sources: 

 

 The Dover Heights group provided strong evidence for a new class of 

astronomical objects previously unknown to astronomers 

 

 The existence of these point-like sources indicated that the radio emission studied 

by Jansky and Reber could be partly resolved into individual discrete sources 

 

 The prevailing view that the mechanism for radio emission – ionised clouds of 

matter in interstellar space – seemed most unlikely to explain the intense emission 

from these discrete sources. 

 

As we saw in Chapter 4, the celestial positions of the first radio sources were known 

only approximately and so it was not possible to positively identify them with 

particular visible objects located in crowded star fields.  Bolton decided to find a 

better observing site than Dover Heights.  He needed a site where the cliffs were 

much higher (and thus would give better resolution) and where he could observe the 

sources rise above the horizon in the east and then set below the horizon in the west 

(and thus give better estimates of sources of error such as atmospheric refraction).  A 

suitable site could not be found on the eastern seaboard of Australia, so Bolton chose 

the north island of New Zealand where there were very high cliffs on both the east 

and west coasts near Auckland.  Gordon Stanley built a sea interferometer on a 

mobile trailer which was shipped to New Zealand in June 1948. 
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Bolton and Stanley returned to Sydney after three months of observations.  It took 

Bolton several months to analyse the data and by the end of the year he had derived 

relatively accurate positions for the four strongest sources, named after the 

constellations in which they were found – Cygnus A, Taurus A, Centaurus A and 

Virgo A.  The Cygnus position was still not accurate enough to make a positive 

identification, but each of the other three coincided with unusual optical objects.  

Taurus coincided with the Galactic object known as the Crab Nebula, a supernova 

remnant which had been studied intensely by astronomers.  The other two, Centaurus 

and Virgo, coincided with what appeared to be peculiar extragalactic objects.  Bolton, 

Stanley and Slee published their first three identifications in a short note to Nature: 

 

 The apparent identifications with extragalactic objects challenged the view that 

the discrete sources, or ‘radio stars’, were nearby objects in the local Galaxy 

 

 The first optical identifications established a bridge between traditional optical 

astronomy and the fledgling new radio astronomy 

 

 The first optical identifications marked the birth of extragalactic radio astronomy, 

arguably the most influential branch of astronomy during the second half of the 

twentieth century. 

 

By 1950 the Dover Heights group was one of a number of Radiophysics groups 

involved in radio astronomy at field stations in and around Sydney.  Approximately 

half the radio astronomy resources were devoted to radio studies of the Sun and the 

other half to studies of ‘cosmic’ radiation.  Collectively, the Radiophysics radio 

astronomy group under the leadership of Joe Pawsey (Bolton’s boss) was the largest 

in the world.  The two main rivals to Radiophysics were the group at the University 

of Cambridge led by Martin Ryle and the group at the University of Manchester led 

by Bernard Lovell.  Both these groups were however relatively small and during the 

postwar austerity in England could not match the resources available at Radiophysics.  

As described in Chapter 5, Bolton spent most of 1950 touring the major astronomical 

observatories and the emerging radio astronomy centres in England, Europe and 

North America.  He lectured extensively on the research at Dover Heights and helped 

to publicise the work at Radiophysics: 
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 By 1950 the Radiophysics Lab was the largest and best resourced centre for radio 

astronomy in the world, the first occasion where Australia became a leader in a 

major branch of the physical sciences 

 

 After his tour of centres in Europe and North America, Bolton was undoubtedly 

one of the best connected and most knowledgeable of the growing band of 

scientists referring to themselves as ‘radio astronomers’. 

 

The second half of the Dover Heights period, covering the years 1951–54, was a time 

of consolidation that built on the successes of the late 1940s.  A succession of larger 

Yagi arrays and improvements to receivers and electronics led to a significant 

improvement in the sensitivity and resolution of the sea interferometers.  Similarly, it 

was a period of increasing competition from other groups, both from within the 

Radiophysics Lab and from a number of groups emerging overseas. 

 

In Chapter 6 we returned to the source Cygnus A which, as discussed in Chapters 3 

and 4, was the primary focus of the Dover Heights group during 1947–49.  Unlike the 

Taurus, Centaurus and Virgo sources, the attempts to identify Cygnus with an optical 

object turned out to be frustrating failures.  However, increasingly-accurate positions 

for the source made by Bernard Mills at Radiophysics and by Graham Smith at 

Cambridge finally led astronomers at the Mt Wilson–Palomar Observatory to identify 

the source with a distant object – one that appeared to be two galaxies in collision.  

The identification, more than any other event, convinced astronomers of the 

importance of this new branch of astronomy: 

 

 As the third brightest object in the radio sky, the identification of Cygnus A with a 

very distant object demonstrated the power of radio astronomy to probe much 

deeper into the Universe than optical astronomy. 

 

Until the early 1950s the Dover Heights research program was based almost 

exclusively on the technique of sea interferometry.  In 1952 the group branched out 

by building a large parabolic dish in the sandy surface of the field station.  The transit 

telescope was used to map radio emission along a band of sky containing the plane of 
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the Milky Way and led to the discovery of the exact position of the Galactic nucleus.  

The discovery helped prompt the International Astronomical Union in 1958 to define 

a new set of Galactic coordinates based on the new position: 

 

 The discovery of the Galactic nucleus was another striking example of radio 

astronomy being able to make a discovery beyond the reach of traditional 

astronomy 

 

The discovery of the Galactic nucleus was the swansong of the Dover Heights field 

station.  Without the prospect of funding for a major new instrument, operations were 

wound back until the eventual closure of the field station at the end of 1954. 

 

Suggestions for Further Research 

As discussed in the Literature Review (Section 1.1), the origins and early 

development of radio astronomy in Australia has been possibly the most intensively-

studied chapter in the history of Australian science.  The first to write about the 

history of Australian radio astronomy were the early practitioners, the radio 

astronomers themselves.  Personal recollections have been given by, among others, 

Bolton (1982), Bowen (1988), Mills (2006), Pawsey (1961), Slee (2005) and Wild 

(1972), all prominent members of the Radiophysics Lab.  Sullivan (1988) was the 

first professional historian of science to research the early history, his study forming a 

chapter in a book celebrating the bicentenary of Australian science.  The books by 

Robertson (1992) on the history of the Parkes radio telescope and by Haynes et al. 

(1996) on the history of Australian astronomy both devote lengthy sections to the 

early years of radio astronomy. 

 

More recently, the early radio observations at a number of Radiophysics field stations 

have been the focus of two PhD theses.  Stewart (2010) has examined the solar radio 

astronomy carried out at the Penrith and Dapto field stations, while Wendt (2009) has 

examined the contributions of the Potts Hill and Murraybank field stations to 

international radio astronomy.  In addition to these substantial studies, over the past 

ten years or so there has been a significant number of journal articles by Orchiston, 

Slee and others on various aspects of early Australian radio astronomy. 
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In view of this growing body of work, the question can be asked:  Is there much of 

significance or of particular interest to attract further scholarly studies in the field?  In 

my opinion the answer is yes.  As noted above, the Radiophysics Lab was the largest 

of the early radio astronomy groups with enough resources to span most areas of solar 

and cosmic studies.  Some of these areas have not been studied in any detail and 

could make interesting additions to the existing body of work. 

 

This thesis has concentrated on the contributions John Bolton made to the early 

development of radio astronomy.  It would be of considerable interest to see similar 

studies of other prominent members of the Radiophysics group.  As noted in Chapter 

7, after the closure of Dover Heights and Bolton’s temporary departure from radio 

astronomy, Bernard Mills became the leading figure in cosmic studies at 

Radiophysics.  His invention of the cross-type instrument led to the construction of a 

pilot model at Potts Hill and then in 1954 a full-scale version at the Fleurs field 

station.  The Mills Cross dominated cosmic studies at Radiophysics for the rest of the 

decade.  In its first full year of operation it detected and catalogued over 600 sources, 

dwarfing the number of 104 sources listed in the final Dover Heights sky survey 

carried out with a 12-Yagi array. 

 

As it turned out, the Mills catalogue was in serious disagreement with the second 

Cambridge sky survey (known as the 2C survey) published by Martin Ryle and his 

group in 1955.  The Cambridge group claimed almost 2000 sources, but in the area of 

sky common to both Cambridge and Sydney there was very poor agreement between 

the two surveys.  Both surveys became caught up in the controversy that raged in the 

1950s between two rival cosmologies – the big bang cosmology developed by George 

Gamow and colleagues in the US and the steady state cosmology developed by Fred 

Hoyle and colleagues in England.  Ryle claimed that the 2C survey provided 

compelling evidence in favour of the big bang, while Mills maintained that his survey 

did not provide strong evidence in favour of either cosmology.  A detailed study of 

role played by Mills and the Radiophysics Lab in the controversy would be of 

considerable interest. 

 

Of course future historical studies of Australian radio astronomy need not be confined 

to the Radiophysics Lab or to the period 1945–60.  It would be interesting to see a 
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detailed study of the events beginning in 1960 when the Radiophysics group 

underwent a major transformation.  Until then the personnel of the group had been 

relatively stable since 1945, but several developments led to deep divisions within the 

group.  One development was the nearing completion of the Parkes telescope and 

Bolton’s return to Australia from Caltech to be its inaugural director.  All non-solar 

research would now be concentrated on this single instrument and the tradition of 

developing novel instruments such as the Mills Cross would cease.  The group 

essentially divided into two camps, with opposing views on the future of 

Radiophysics.  One camp supported Taffy Bowen, Bolton and the big dish, while the 

other camp remained loyal to Joe Pawsey and the view that innovation of new aerials 

and techniques was the way of the future.  Another development was the decision in 

1960 by the School of Physics at the University of Sydney to set up its own radio 

astronomy group, in direct competition to Radiophysics.  Mills, Christiansen and 

several other Radiophysics staff were recruited to the new university group, leading 

to a bitter rivalry that lasted until the end of the 1960s.  A study of these events would 

probably be as much sociological as historical, but nevertheless of interest in how it 

shaped the future development of radio astronomy in Australia. 

 

****** 

 

Chapter 7 provides a brief overview of Bolton’s career after the closure of the Dover 

Heights field station in 1954.  Bolton had the unusual distinction of being the 

inaugural director of two major observatories for radio astronomy, beginning with the 

Owens Valley Radio Observatory built by Caltech (director 1955–60) and then 

followed by the Parkes Observatory built by CSIRO (director 1961–71).  It could be 

argued, in fact, that Bolton had the unique distinction of being the founder of not two, 

but three major radio astronomy centres.  It would be pretentious to refer to the Dover 

Heights field station as an observatory and to describe Bolton as its director.  The 

Dover group never exceeded five people, but Bolton was its clear leader and the one 

who set the research agenda.  Although Joe Pawsey was his boss, Bolton resented 

attempts by Pawsey to influence the research agenda and, in fact, there were at least 

two occasions when Bolton openly challenged Pawsey’s authority.  The first was late 

in 1946 when Bolton and Bruce Slee set aside their solar observations in an 

unauthorised attempt to detect other cosmic sources of radiation.  A second occasion 
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was when the Dover group constructed the hole-in-the-ground telescope in secret, 

suspecting that Pawsey would not support the idea and veto the project.  There is little 

doubt that Bolton was chiefly responsible for making the Dover group the world 

leader in cosmic radio astronomy in the immediate postwar years. 

 

Chapter 7 briefly summarises Bolton’s later contributions to astronomy – both radio 

and optical – over the period 1955–81.   There is however another legacy to his career 

which has not been mentioned.  In the 1940s and 1950s the Radiophysics radio 

astronomers played no formal role in the supervision of university graduate students.  

Bolton’s first contact with graduate students was at Caltech where, in addition to the 

demands of building Owens Valley, he became the supervisor of eight PhD students.  

When Bolton returned to Australia in 1960, the astronomy group at the Australian 

National University, under the leadership of Bart Bok, had introduced a graduate 

program where students could be co-supervised by CSIRO radio astronomers.  Over 

the years Bolton supervised a succession of ANU students.  Most were impressed by 

his hands-on approach to research, including his insistence that students needed to be 

self-reliant, to understand their instruments and to be able to fix problems as they 

arose. 

 

With the rapid expansion of radio astronomy in the 1960s, this ‘second generation’ of 

radio astronomers trained by Bolton went on to have successful careers of their own.  

A significant number became directors of observatories or heads of radio astronomy 

groups in universities.  I will mention just two.  Robert Wilson began his PhD at 

Caltech under Bolton and after graduating joined the Bell Telephone Labs in New 

Jersey, the same place where Karl Jansky made his momentous discovery in 1932.  In 

1965 Wilson and fellow radio astronomer Arno Penzias detected the cosmic 

microwave background radiation, a serendipitous discovery just as Jansky’s had been.  

The discovery ranks as one of the most important in astronomy during the twentieth 

century and led to the award of the Nobel Prize for Physics to Penzias and Wilson in 

1978.  Wilson was later appointed head of Bell’s radio physics research group.  Ron 

Ekers was Bolton’s first Australian PhD student at Parkes and went on to make major 

contributions to the Parkes sky surveys.  He was the inaugural director of the Very 

Large Array (1980–87) in New Mexico and then the inaugural director of the 

Australia Telescope National Facility (1988–2003), the successor to the Radiophysics 
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Lab.  In 2003 he became the first Australian to be elected president of the 

International Astronomical Union. 

 

As we also saw in Chapter 7, Bolton’s research program in later years remained 

essentially unchanged from the Dover Heights years: to survey the southern skies; to 

detect hundreds of new sources; to identify as many as possible with optical objects; 

to measure their redshifts; and to classify the objects into well-defined types.  Bolton 

published relatively little research during his time at Caltech (1955–60) as he 

focussed on the planning and construction of the Owens Valley Radio Observatory.  

However, one triumph in 1960 was the discovery of the radio galaxy 3C295, with a 

redshift more than double the most distant object known in the Universe.  Bolton’s 

role in the discovery of quasars was also examined in some detail, beginning with the 

observations on the source 3C48 at Caltech and concluding with the lunar occultation 

observations on 3C273 at Parkes. 

 

Bolton’s main research program in the 1960s was the Parkes sky survey at 408 MHz 

which took four years to complete and catalogued over 2000 sources.  He made a 

number of extended visits to the Mt Wilson–Palomar and Lick observatories to carry 

out the optical identifications.  Bolton’s time was now divided equally between radio 

and optical astronomy.   In 1967 the Parkes team began a more ambitious sky survey 

at 2.7 GHz, one that catalogued over 8000 sources and took 12 years to complete.  

Bolton’s program of optical identifications received a boost with the construction in 

the mid 1970s of the Anglo-Australian Telescope and the UK Schmidt Telescope at 

Siding Spring in NSW, thus ending his reliance on the large telescopes on the US 

west coast.  Bolton’s career was a fine example of how the distinction between radio 

and optical astronomy (and indeed other bands of the electromagnetic spectrum) had 

become increasingly irrelevant. 

 

Although Bolton took early retirement in 1981 because of poor health, he had enjoyed 

a remarkably productive career in astronomy since joining the Radiophysics Lab 

thirty-five years earlier.  It is fair to say that no one had contributed more to the 

development of radio astronomy – in particular extragalactic radio astronomy – than 

John Gatenby Bolton. 
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