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Abstract
The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater
treatment. This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound (GIC)
adsorption, direct anodic oxidation, and $OH oxidation for decolourising Reactive Black 5 (RB5) from aqueous solutions. The electrochemical
process was optimised using the novel progressive central composite designeresponse surface methodology (CCDeNPRSM), hybrid artificial
neural networkeextreme gradient boosting (hybrid ANNeXGBoost), and classification and regression trees (CART). CCDeNPRSM and hybrid
ANNeXGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational pa-
rameters: current density, electrolysis (treatment) time, and initial dye concentration. The optimised decolourisation efficiencies were 99.30%,
96.63%, and 99.14% for CCDeNPRSM, hybrid ANNeXGBoost, and CART, respectively, compared to the 98.46% RB5 removal rate observed
experimentally under optimum conditions: approximately 20 mA/cm2 of current density, 20 min of electrolysis time, and 65 mg/L of RB5. The
optimised mineralisation efficiencies ranged between 89% and 92% for different models based on total organic carbon (TOC). Experimental
studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANNeXGBoost, CCDeNPRSM,
and CART. Model validation using analysis of variance (ANOVA) revealed that hybrid ANNeXGBoost had a mean squared error (MSE) and a
coefficient of determination (R2) of approximately 0.014 and 0.998, respectively, for the RB5 removal efficiency, outperforming CCDeNPRSM
with MSE and R2 of 0.518 and 0.998, respectively. Overall, the hybrid ANNeXGBoost approach is the most feasible technique for assessing the
electrochemical treatment efficiency in RB5 dye wastewater decolourisation.
© 2024 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Dye-contaminated water can prevent the penetration of
sunlight into water and limit photosynthetic activity in the
marine environment, thereby polluting the aquatic environ-
ment and threatening the lives of both organisms and humans.
Notably, Reactive Black 5 (RB5) has been widely utilised by
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textile, printing, and leather industries due to its intense black
colouration, remarkable solubility, and adhesive properties,
making it one of the most suitable options for dyeing cotton
and other cellulose fibres (Droguett et al., 2020; Feng et al.,
2022). Its favourable dyeing properties meet most re-
quirements of textile manufacturers. However, RB5's chemical
stability contributes to significant ecological toxicity when
industrial effluents containing it are discharged into the marine
environment without proper control measures.

Electrochemical oxidation is emerging as an attractive
alternative method for wastewater treatment to replace
of xenobiotic RB5 dye using three-dimensional electrochemical treatment:
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conventional processes owing to substantial quantities of toxic
pollutants generated by various industrial processes, particu-
larly in dye wastewater. In the electrochemical oxidation pro-
cess, organic pollutants undergo removal via two mechanisms:
(1) direct oxidation, wherein electron transfer occurs directly
from organics to the electrode surface, or (2) indirect oxidation,
wherein electron transfer from adsorbed organic species results
in the generation of oxidising species that further oxidise pol-
lutants (Ganiyu et al., 2021). Powerful oxidising agents such as
hydroxyl radical ($OH), active chlorine species, and sulphate
radical (SO,�

4 ) generated during the electrochemical oxidation
process can degrade organic pollutants or even mineralise them
completely into CO2 and H2O (Fu et al., 2023).

The three-dimensional (3D) electrooxidation technology
has recently emerged as a powerful method for wastewater
treatment. It involves using a 3D electrode reactor, wherein a
third electrode, namely graphite intercalation compound
(GIC), is incorporated into the reactor and positioned between
the anode and cathode. In contrast, conventional two-
dimensional (2D) electrochemical reactors lack a particle
electrode apart from the anode and cathode. The advantages of
the 3D electrochemical oxidation process stem from the
electroactive surface area of the particle electrode, which en-
hances the reaction process, spaceetime yield, and current
efficiency (Li et al., 2021). GIC exhibits superior electro-
catalytic efficiency and regenerative capabilities, capable of
restoring adsorptive capacity even after several
adsorptioneregeneration cycles, thereby leading to sustained
catalytic oxidation performance (Trzcinski and Harada, 2023).
However, thorough evaluation of the influence of operational
variables on the electrochemical oxidation process is seldom
undertaken. Variations in operational variables can influence
process conditions in various ways, necessitating a compre-
hensive examination of their combined effects on the elec-
trochemical system's overall responses. Moreover, the
response surface methodology (RSM) serves as an optimisa-
tion tool offering substantial benefits in terms of cost reduc-
tion, including reduced energy consumption, enhanced value
management, and conservation of valuable resources such as
energy and materials (Dong et al., 2023).
Fig. 1. Chemical structure of RB5 and image o
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This study investigated the efficacy of 3D electrochemical
treatment for removing RB5 xenobiotic dye from water, using
an electrically conductive GIC. An RSM with a face-centred
central composite design (CCD) was developed to construct
a mathematical model for predicting dye and total organic
carbon (TOC) removal efficiencies, current efficiency, elec-
trical energy consumption for RB5 and TOC removal, and
annual electricity cost. In addition, the correlation of these
dependent variables with input parameters (including current
density, electrolysis time, and initial dye concentration) was
quantified. Various artificial intelligence and machine learning
techniques were utilised to assess the predictive efficiency of
response variables.

2. Materials and methods
2.1. Materials and electrochemical reactor
All chemicals, including RB5 dye powder (empirical for-
mula: C26H21N5Na4O19S6) with a molecular weight of
991.82 g/mol, were purchased from Sigma-Aldrich, Australia.
HCl (32%; RCI Labscan) and NaCl (99.7%; Chem-Supply)
were used as received. Three stock solutions with various
initial dye concentrations (C0) of 30 mg/L, 65 mg/L, and
100 mg/L were prepared by dissolving RB5 in distilled water.
A schematic diagram illustrating the experimental setup for
continuous adsorption and electrochemical regeneration is
shown in Fig. 1.

The adsorbent employed in this study is an expandable GIC
purchased from Sigma-Aldrich (P/N: 808121). At least 75% of
the flakes possess sizes greater than 300 mm. GIC has no
porous structure and exhibits a relatively low electroactive
surface area of approximately 1 m2/g (Hussain et al., 2016),
with high conductivity (0.8 S/cm) (Asghar et al., 2014). The
3D electrochemical reactor used in this experiment was
designed to remove RB5 from an aqueous solution (Fig. 1).
The design of the 3D electrochemical reactor adhered to the
standards employed in Trzcinski and Harada (2023). RB5
concentrations were measured using an ultravioletevisible
spectrophotometer (DR6000, HACH Co.) at the maximum
f sequential batch electrochemical reactor.
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absorbance wavelength of 596 nm. To quantify the minerali-
sation efficiency of RB5-contaminated water, TOC measure-
ment was conducted using a TOC analyzer (Shimadzu VCHS/
CSN, Japan).
Fig. 2. ANN network with topology.
2.2. Experimental design, modelling, and optimisation

2.2.1. CCDeRSM procedure
An RSM-based face-centred CCD was conducted using

Minitab software to configure, model, and optimise the oper-
ational parameters affecting a response with minimal experi-
mental runs (Asgari et al., 2020). CCD stands out as one of the
most well-established techniques within RSM for determining
the correlation between operational parameters and experi-
mental responses, in terms of linear, interactive, and partial or
full quadratic effects (Pavlovi�c et al., 2014). The selection of
operational parameters was meticulous, aiming to maximise
the performance of the electrochemical system within a
reasonable experimental domain to facilitate optimisation and
yield meaningful outcomes. For instance, dye concentrations
in actual textile wastewater typically fall between 10 mg/L and
200 mg/L (Gahr et al., 1994; Laing, 1991). Conversely, rec-
ommended applied current densities and electrolysis times
typically range from 10 mA/cm2 to 30 mA/cm2 and from
10 min to 30 min, respectively (Chen et al., 2018). Extremely
high current density can induce undesirable side reactions due
to the rapid formation of intermediate breakdown products
from organic pollutants, potentially compromising overall
treatment efficiency. Therefore, this study investigated the
influence of three key operational parameters (current density,
electrolysis (treatment) time, and initial dye concentration) on
the performance of the 3D electrochemical system.

2.2.2. ANN procedure
In addition to the novel progressive central composite

designeresponse surface methodology (CCDeNPRSM), the
artificial neural network (ANN) method was also employed for
modelling and predicting responses affected by operational
parameters (Fig. 2). The number of neurons within the hidden
layer was investigated within a range of 1e20 to determine the
optimum number of neurons with minimum mean squared
error (MSE) while striving for a high coefficient of determi-
nation (R2) for each response variable. Further analyses
incorporated experimental data stipulated in the data matrix in
Table A.1 in Appendix A into the ANN model, with 70% of
the data allocated for training and 30% for validation,
randomly classified in three categories containing input pa-
rameters. The curve fitting of the ANN model relies on
operational parameter values, and variations in input variables
significantly affect the degree of fitness. To mitigate compu-
tational issues, all input variable values and experimental ef-
ficiencies were normalised into a Gaussian distribution within
the range of 0.1e0.9 using Eq. (1) (Asgari et al., 2020):

yi¼0:1þ 0:8ðxi � xminÞ
xmax � xmin

ð1Þ
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where xi is the ith input variable; yi is the normalized value of
xi; and xmax and xmin are the maximum and minimum values of
xi, respectively. The ANN analysis and modelling were per-
formed using MATLAB R2023a. The performance of ANN
models in curving fitting was evaluated using statistical error
function analyses such as MSE, R2, adjusted coefficient of
determination (R2

adj), root mean squared error (RMSE), and
mean absolute percentage error (MAPE).

2.2.3. Optimisation procedure

2.2.3.1. CCDeNPRSM optimisation. To predict responses,
CCDeNPRSM optimisation was performed using an empir-
ical second-order polynomial equation nested within a higher-
order polynomial equation as a transfer function to establish
multilevel nested models. The optimisation procedure was
based on maximum dye and TOC removal efficiencies,
maximum current efficiency, minimum electrical energy
consumption for RB5 and TOC removal, and minimum annual
electricity cost. In the CCDeNPRSM approach, optimisation
follows the desired function derived from statistical software.
To evaluate fitness and prediction accuracy, composite desir-
ability was used to define the objective function based on the
weighted geometric mean of individual desirabilities for
response variables to determine the optimal conditions (Askari
et al., 2017). The weighted geometric mean of individual de-
sirabilities (D) is expressed as

D¼
 Yn

i¼1

dwi
i

!1=w

ð2Þ

where di is the individual desirability for the ith response, wi is
the importance of the ith response, w is the element weight,
and n is the number of responses. If each response holds
of xenobiotic RB5 dye using three-dimensional electrochemical treatment:
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Fig. 3. Derivation of transfer function from block diagram (with RT
denoting sum of input functions and Y* representing output function).
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critical importance or significance, the composite desirability
(Dc) can be expressed as

Dc¼
Yn
i¼1

d
1=n
i ð3Þ

2.2.3.2. XGBoost-based optimisation. Extreme gradient
boosting (XGBoost) is an ensemble method with weaker
models instead of more robust models such as ANN. None-
theless, XGBoost can be used to reinforce ANN optimisation.
Similar to classification and regression trees (CART) models,
XGBoost comprises regression trees. It employs a second-
order Taylor expansion of the loss function, integrating a
regular term to find the optimal solution to balance the decline
in the loss function, manage model complexity, and mitigate
overfitting issues (Wang et al., 2022). The estimated output of
the model for any given sample is obtained by summing leaves
assigned to each sample corresponding to each regression tree
(Ching et al., 2022):

by¼XKb

k¼1

fkðxiÞ ð4Þ

where by is the predicted value, fk is the kth boosted function,
and Kb is the number of boosted functions. Regression trees
are added to the ensemble, such as ft (the boosted function of
variables for t iterations), yielding a new regression tree to
minimise learning objectives. Unlike a single model with a
pre-defined structure, which can be optimised in Euclidean
space (Ching et al., 2022), XGBoost can be integrated with
ANN to create a hybrid model, thereby reducing errors and
enhancing prediction efficiency.

2.2.3.3. CCDeNPRSM. The second-order CCDeNPRSM
may offer satisfactory curve fitting but can produce signifi-
cantly lower MSE and RMSEwhen using highly non-linear and
complex mathematical functions. Through model trans-
formation, a higher order (6th order) polynomial mathematical
function is used as a nested transfer function to modulate curve
fitting, reduce MSE and RMSE, and improve the correlation
coefficient (Zheng et al., 2022). Therefore, CCDeNPRSM
emerges as another research focus to generate multilevel nes-
ted models. When integrated with a feedback control loop,
improvements in RB5 and TOC removal efficiencies can be
achieved (Fig. 3). The proposed CCDeNPRSM entails a step-
by-step procedure for a non-linear regression algorithm:

Y*
i ðxkÞ¼ f

�
K
�
xi;xj

�
G
�
xi;xj

��
x12 ½10;30�;

x22 ½10;30�;x32½30;100� ð5Þ

K
�
xi;xj

�
G
�
xi;xj

�¼Yi

�
xi;xj

�¼b0þ
Xk
i¼1

ðbixiÞþ

Xk
i¼1

�
biix

2
i

�þXk
i¼1

Xk
j¼iþ1

�
bijxixj

�þ g

ð6Þ
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Y*
i ðxkÞ

Ri

�
xi; xj

�¼ K
�
xi;xj

�
G
�
xi;xj

�
1þK

�
xi;xj

�
G
�
xi;xj

�
H
�
xi;xj

� ð7Þ

where Y*
i is the ith output function, f is the composite function,

K the transfer function of the first system, G is the transfer
function of the second system, Yi is ith the predicted response
in the form of a polynomial function, b0 is the intercept or
regression coefficient, bi is the linear coefficient, bii is the
quadratic coefficient, bij is the interaction coefficient, g is the
experimental or residual error, Ri is the Laplace transform of
the ith input function, and H is the closed-loop transfer
function.

2.2.3.4. Predictive analytics by CART machine learning opti-
misation. CART machine learning optimisation stands out as
one of the best-in-class approaches, not only fitting more ac-
curate models when combined with experimental data but also
for handling larger datasets with more variables, messy or
missing data, outliers, and non-linear relationships. With the
power of the original CART, it offers visualisations of pre-
dicted values and interactive effects to achieve optimal pre-
diction accuracy (Okagbue et al., 2021). Initially employed in
the bootstrap aggregation method to tackle complex non-linear
problems, it delivers the most accurate model obtained from
the proprietary predictive analytics of CART.

3. Results and discussion
3.1. Optimisation study using 3D response surface plots
In the experimental study, the effects of operational pa-
rameters, such as current density, electrolysis time, and initial
dye concentration, electrical energy consumption for RB5 and
TOC removal, current efficiency, and annual electricity cost
were investigated using RSM optimisation via CCD. The
primary aim was to determine the optimal current density,
electrolysis time, and initial dye concentration to achieve
maximum dye and TOC removal efficiencies, minimize elec-
trical energy consumption, enhance current efficiency, and
manage annual electricity cost. Batch experimental runs were
conducted according to the CCD design of experiments to
three-dimensionally visualise the effects of independent vari-
ables on targeted responses by optimising results within the
experimental conditions. A general finding revealed that an
of xenobiotic RB5 dye using three-dimensional electrochemical treatment:
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Fig. 4. 3D RSM optimisation plots of interaction effects of current density, electrolysis (treatment) time, and initial dye concentration.
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increase in current density led to increases in dye and TOC
removal efficiencies in the batch runs.

Fig. 4(a) shows the 3D response surface for dye removal
efficiency as a function of current density and treatment time.
To achieve over 95% decolourisation efficiency, Fig. 4(b) in-
dicates a necessity for a current density exceeding 18 mA/cm2

and an electrolysis time exceeding 10 min (dark-shaded green
regions). Among the examined operational parameters, current
density proved the most critical variable. Its effect on targeted
responses, such as dye and TOC removal efficiencies, was
predominant, particularly with the presence of electro-
generated oxidising species like hydroxyl radicals and active
chlorine species due to high current density employed for
oxidising dye contaminants in water. Moreover, Fig. 4(d)
shows that the TOC removal efficiency surpassed 90% when
current density exceeded 18 mA/cm2 and initial dye concen-
tration was approximately 36 mg/L (dark-shaded green re-
gions). However, beyond 18 mA/cm2, an increase in current
density for a similar initial dye concentration resulted in the
TOC removal efficiency exceeding 90% (Fig. 4(c)). As shown
in Fig. 4(i), an increase in current density from 20 mA/cm2 to
30 mA/cm2 led to a decrease in current efficiency below 10%.
This result indicated that higher current density induced side
reactions. In addition, the effect of operational parameters on
electrochemical redox reactions is depicted in Section A.2 in
Appendix A. The reaction mechanisms of RB5 and its in-
termediates in the electrochemical system are detailed in
Fig. A.1 (Feng et al., 2016) and Section A.3 in Appendix A.

Fig. 4(h) shows that when current density exceeded
25 mA/cm2 with an electrolysis time greater than 25 min, the
current efficiency of the electrochemical reactor decreased
below 10%. This result indicated that a higher current den-
sity led to side reactions due to the accumulation of inter-
mediate transformation byproducts, offsetting the current
efficiency of the electrochemical system. Consequently, the
degradation efficiency of RB5 pollutants in water might be
adversely affected as some of the current generated from the
anodic oxidation process was lost through side reactions.
Fig. 4(h) also demonstrates that at a low current density of
10 mA/cm2 and an electrolysis time shorter than 15 min,
current efficiency increased beyond 40%, indicating a more
efficient untilisation of current to generate radical species.
Despite this, dye and TOC removal efficiencies remained
lower than 80%, highlighting an inverse relationship between
current efficiency and dye and TOC removal efficiencies.
Furthermore, although increasing the initial dye concentra-
tion from 50 mg/L to 100 mg/L at a low current density of
10 mA/cm2 boosted current efficiency beyond 40%, it might
compromise dye and TOC removal efficiencies. This indi-
cated that current density exerted the most substantial impact
on dye and TOC removal efficiencies. A prolonged elec-
trolysis duration significantly enhanced electrolytic effi-
ciency, thereby maximising dye and TOC removal
efficiencies. As shown in Fig. 4(b), the interactive effect of
current density and electrolysis time on dye removal effi-
ciency was evident from the elliptical or saddle pattern of the
contour plot. Similarly, Fig. 4(d) highlights the interactive
Please cite this article as: Ganthavee, V., Trzcinski, A.P., Superior decomposition
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effect of current density and electrolysis time on TOC
removal efficiency, with the contour plot exhibiting a similar
elliptical or saddle pattern, signifying its notable impact.
Notably, the TOC removal efficiency was lower than the dye
removal efficiency due to the presence of the residual frag-
ments of dye molecules in the aqueous solution.

As shown in Fig. 4(f), the elliptical or saddle pattern of the
contour plot indicated a significant interactive effect of current
density and initial dye concentration on dye removal effi-
ciency. Similarly, Fig. 4(k) and (l) indicates a significant
interactive effect of current density and electrolysis time on
electrical energy consumption for RB5 removal. Furthermore,
Fig. 4(m) shows that the interactive effect of current density
and treatment time on electrical energy consumption for TOC
removal was more pronounced, as indicated by the degree of
curvature. The elliptical or saddle pattern of the contour plot
(Fig. 4(n)) indicates the greater significance of this interactive
effect on electrical energy consumption for TOC removal
compared to the interactive effect on electrical energy con-
sumption for RB5 removal, implying a higher electrical en-
ergy requirement to oxidise or electrolyse TOC to transform
all RB5 dye molecules into inert and non-toxic end products
such as CO2 and H2O. However, Fig. 4(o) shows that the
interaction between current density and treatment time
significantly affected annual electricity cost if current density
surpassed 20 mA/cm2. No significant curvature is present in
the response surface plot at a lower current density less than
20 mA/cm2. The mild circular pattern in the contour plot
(Fig. 4(p)), particularly below a current density of 20 mA/cm2,
indicated that the interactive effect of current density and
treatment time may not significantly affect annual electricity
cost, implying that the electrochemical treatment process for
RB5 removal might not contribute to significant electrical
energy consumption when current density and treatment time
were below 20 mA/cm2 and 15 min, respectively. This finding
underscored the cost-effectiveness of the 3D electrochemical
treatment process. Detailed mathematical expressions or
functions of various targeted responses are provided in
Appendix A.
3.2. ANOVA analysis
The significance and validity of the generated
CCDeNPRSM models were assessed through analysis of
variance (ANOVA), as presented in Table A.2 (Zhang et al.,
2013) and Fig. A.2 in Appendix A. The quadratic model
yielded F-values of 4.42 and 4.57, with corresponding p-
values of 0.015 and 0.013, indicating statistical significance of
the models for dye and TOC removal efficiencies. Moreover,
the F-values of current density (5.88 and 6.01) and their
associated p-values (0.036 and 0.034) indicated that current
density significantly affected dye and TOC removal effi-
ciencies. The magnitude of the responses and the absolute
values of standardised effects delineate the most significant to
the least significant effects, providing a reference line to gauge
statistical significance. According to the ANOVA results, high
F-values and low P-values for dye removal efficiency (Y1)
of xenobiotic RB5 dye using three-dimensional electrochemical treatment:
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Fig. 5. Pareto charts representing significant effect of three different factors on dye and TOC removal efficiencies.
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( p < 0.05 and F ¼ 4.42) and TOC removal efficiency (Y2)
( p < 0.05 and F ¼ 4.57) indicated the considerable signifi-
cance of the hybrid CCDeNPRSM models. The experimental
results demonstrated the accurate fit of the models with the
theoretical models governing the relationship between inde-
pendent variables and responses.

In the Pareto chart shown in Fig. 5(a), the bars representing
current density (factor A) and treatment time (factor B) sur-
passed the reference line with an absolute value of 2.228. This
signified a statistically significant effect of current density and
electrolysis time on dye removal efficiency, with a significance
level below 0.05. Moreover, synergistic effects like combined
current density and treatment time (AB), combined current
density and initial dye concentration (AC, with factor C
denoting the initial dye concentration), and combined treat-
ment time and initial dye concentration (BC ) also demon-
strated statistically significant effects on dye removal
efficiency. Although ANOVA analysis indicated a slight dif-
ference with a p-value of 0.015 for initial dye concentration,
the Pareto chart reveals that the bar did not cross the reference
line of 2.228 (Fig. 5(b)), less than the absolute value of
standardised effects. This indicated that the magnitude of the
effect of initial dye concentration on TOC removal efficiency
might not be substantially significant.

The one-way ANOVA revealed F-values of 5.88 and 5.77
for current density and treatment time, respectively, in contrast
to an F-value of 5.72 for initial dye concentration in Y1. This
Table 1

Comparison between optimised and non-optimised experimental results.

Model or experimental result I

(mA/cm2)

TE
(min)

C0

(mg/L)

Edye

(%)

E

(

CCDeNPRSM optimisation 20 20 65 99.303 7 8

Hybrid ANNeXGBoost optimisation 20 20 65 99.626 2 9

CART optimisation 20 20 65 99.137 0 8

Experimental result for validation 20 20 65 98.462 2 8

Note: I is the current density, TE is the electrolysis time, C0 is the initial dye concen

EC is the current efficiency, Cdye is the electrical energy consumption for RB5 rem

electricity cost, and Dc is the composite desirability.
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suggested that the variances of current density and treatment
time were significantly different from the mean of initial dye
concentration. In addition, current density and treatment time
also exerted a more significant effect on dye removal effi-
ciency than initial dye concentration. As shown in Table A.2 in
Appendix A, the lack-of-fit F-values surpassed the p-values
for all parameters, underscoring the statistical significance of
the models for both dye and TOC removal efficiencies.
3.3. Predictive accuracy of developed models
The TOC removal efficiency provides a comprehensive
insight into the overall mineralisation efficiency of dye pol-
lutants, It serves as a key indicator of the extent to which the
toxicity of dye pollutants can be converted into inert and non-
toxic CO2 and water, thus facilitating the complete abatement
of RB5 from contaminated water. To assess the optimisation
and predictive capabilities of CCDeNPRSM and hybrid
ANNeXGBoost models in terms of TOC removal efficiency,
20 experimental runs were conducted at specified levels of
operational variables (Table 1). The comparison between
experimental and predicted TOC removal efficiencies revealed
that all three models could accurately predict values close to
the experimental data.

The statistical significance of the three models was evalu-
ated using error function analysis, including MSE and R2, to
gauge the fitness of the models with experimental data. As
TOC

%)

EC

(%)

Cdye

(kW$h/kg)

CTOC

(kW$h/kg)

CE

(AUD per annum)

Dc

9.759 3 22.542 2 2 540.74 715.38 14.020 8 0.805 0

0.471 1 23.075 4 2 934.30 734.26 14.530 6 0.794 9

9.680 0 26.055 8 4 996.63 1 043.92 18.237 0 0.774 3

9.178 3 23.344 9 2 336.55 611.48 12.053 3

tration, Edye is the dye removal efficiency, ETOC is the TOC removal efficiency,

oval, CTOC is the electrical energy consumption for TOC removal, CE is the
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Table 2

Performance of developed models.

Model Response R2 R2
adj MSE RMSE MAPE

CCDeNPRSM Edye 0.998 0.998 0.518 0.720 0.495

ETOC 0.997 0.997 1.010 1.005 0.925

Ec 0.995 0.995 0.858 0.926 3.605

Cdye (ANN�NPRSM) 0.945 0.942 5.536 � 106 kW�h/kg 2.353 � 103 kW�h/kg 0.001

CTOC (ANN�NPRSM) 0.981 0.980 7.625 � 103 kW�h/kg 87.321 kW�h/kg 9.210 � 10�5

CE 0.982 0.981 3.818 AUD per annum 1.954 AUD per annum 18.529

Hybrid ANNeXGBoost Edye 0.998 0.997 0.014 0.120 6.340 � 10�5

ETOC 0.998 0.997 0.007 0.081 7.120 � 10�5

Ec 0.998 0.997 6.630 � 10�5 0.008 2.390 � 10�4

Cdye (ANN�NPRSM) 0.998 0.997 1.035 kW�h/kg 1.018 kW�h/kg 1.400 � 10�6

CTOC (ANN�NPRSM) 0.998 0.997 1.158 kW�h/kg 1.076 kW�h/kg 6.530 � 10�6

CE 0.998 0.997 0.010 AUD per annum 0.099 AUD per annum 3.720 � 10�4

CART Edye 0.991 0.990 2.004 1.416 1.011

ETOC 0.987 0.986 4.290 2.071 2.013

Ec 0.132 0.083 155.407 12.466 60.936

Cdye (ANN�NPRSM) 0.116 0.067 2.797 � 107 kW�h/kg 5.288 � 103 kW�h/kg 110.290

CTOC (ANN�NPRSM) 0.253 0.212 5.580 � 105 kW�h/kg 746.997 kW�h/kg 74.044

CE 0.268 0.228 159.419 AUD per annum 12.626 AUD per annum 99.800

Note: Edye is the dye removal efficiency, ETOC is the TOC removal efficiency, EC is the current efficiency, Cdye is the electrical energy consumption for RB5

removal, CTOC is the electrical energy consumption for TOC removal, and CE is the electricity cost.
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shown in Table 2, CCDeNPRSM and hybrid ANNeXGBoost
models achieved R2 values of 0.998 and 0.998 for dye removal
efficiency, respectively. In contrast, the CART model obtained
an R2 value of 0.991 with an MSE value significantly greater
than those of CCDeNPRSM and hybrid ANNeXGBoost
models. The hybrid ANNeXGBoost model outperformed
CCDeNPRSM and CART models in terms of overall pre-
diction efficiency (Table 2). In contrast, the CART algorithm
yielded significantly higher MSE, RMSE, and MAPE values
than CCDeNPRSM for all response variables, highlighting its
susceptibility to high variances across samples and instability
in managing noise and data changes. With disadvantages of
overfitting, high variances, and great biases, the CART model
tends to make the decision tree structure increasingly unstable
when predicting certain response variables or anomalies with
high fluctuations. To address these issues, hybrid
ANNeXGBoost performs parallel tree boosting and offers
unequal accuracy in predictions using advanced multiple
hyperparameter tuning techniques to optimise loss functions.
These features make the hybrid ANNeXGBoost model suit-
able for managing large datasets with high residual or bias
errors, with advantages of capturing complex patterns in
combined datasets containing multiple response variables.

The CCDeNPRSM model performed much better than
expectations, achieving R2 and MSE values of 0.997 and 1.010
for TOC removal efficiency. Error function analysis revealed
that regarding electrical energy consumption for TOC
removal, hybrid ANN-XGBoost yielded R2 and MSE values of
0.998 and 1.158 kW�h/kg, respectively, significantly out-
performing the CART model with R2 and MSE values of 0.253
and 5.580 � 105 kW�h/kg. Furthermore, CCDeNPRSM
demonstrated superior management of high residual errors or
variances compared to the CART algorithm. Notably, hybrid
Please cite this article as: Ganthavee, V., Trzcinski, A.P., Superior decomposition
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ANNeXGBoost outperformed both CCDeNPRSM and
CART in terms of R2 and MSE for majority of response var-
iables. The hybrid intelligence of combined ANN and
XGBoost minimises training time and avoids undesirable
convergence to local optimal solutions, efficiently handling
complex operational parameters for more accurate predictions
through global optimisation. Therefore, the observed accuracy
of predicted responses confirmed the feasibility of hybrid
ANNeXGBoost optimisation in modelling RB5 aqueous
systems. Except for certain response variables such as elec-
trical energy consumption for TOC removal, the combination
of ANN and CCDeNPRSM optimisation significantly
reduced MSE and RMSE to 1.158 kW�h/kg and 1.076 kW�h/
kg, respectively. CART exhibited limited prediction and opti-
misation capabilities, due to certain nature of datasets and its
susceptibility to noises and overfitting.

In conclusion, each modelling method offers distinct ad-
vantages tailored to specific wastewater treatment processes.
Although the CCDeNPRSM approach can reveal the inter-
active effects of operational variables and their impact on re-
sponses via higher-order polynomial mathematical functions,
hybrid ANNeXGBoost exhibits superior optimisation capa-
bilities compared to both CCDeNPRSM and CART.
Furthermore, hybrid ANNeXGBoost operates as a black-box
model, relying primarily on data availability for accurate
analysis, thus bypassing the need for intricate experimental
designs. Conversely, CART serves as a robust analytical tool
to mitigate some of RSM's limitations in predictive modelling,
accommodating categorical and continuous data, and man-
aging missing values or data clustering through non-
parametric methods without inherent assumptions. However,
CART proves less suitable for handling large datasets with
extreme variances.
of xenobiotic RB5 dye using three-dimensional electrochemical treatment:
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Moreover, Table 2 shows that both CCDeNPRSM and
hybrid ANNeXGBoost models exhibited significantly superior
overall optimisation and predictive capabilities compared to
CART. The current efficiency and electrical energy consump-
tion for RB5 and TOC removal, optimised by hybrid
ANNeXGBoost and CCDeNPRSM, were significantly lower
than those predicted by the CARTmodel, aligning more closely
with experimental data. Ultimately, the hybrid ANNeXGBoost
and CCDeNPRSM algorithms can aid water authorities, envi-
ronmental regulatory bodies, and water resources engineers in
achieving exceptional results through hybrid modelling pro-
cesses. Furthermore, they can be utilised to predict relationships
among variables and optimise responses in scaled-up processes
within real wastewater treatment systems.
3.4. Optimisation efficiency of electrochemical process
The primary purpose of this experimental study was to
enhance the electrochemical process by optimising the opera-
tional parameters to boost dye and TOC removal efficiencies
while minimising electrical energy consumption and reducing
annual electricity cost, all without compromising the treatment
efficiency. The optimised results, with a composite desirability
of 0.805 0 (Table 1), underscored the precision of the results.
Specifically, optimised data in Table 1 reveal that achieving a
dye removal efficiency of 99% or higher for CCDeNPRSM
necessitated a minimum current density of approximately
20 mA/cm2 and an electrolysis time of 20 min for treating 65-
mg/L RB5. Under optimised conditions using the hybrid
ANNeXGBoost algorithm, merely 2 934.30 kW⸱h/kg of RB5
sufficed to attain a dye removal efficiency exceeding 99%
within a 20-min electrolysis timeframe, indicating the remark-
able energy efficiency of the electrochemical process. In
contrast, employing the CART algorithm consumed 1
043.92 kW⸱h/kg of electrical energy for TOC removal to achieve
over 99% and 89% removal efficiencies for dye and TOC.
Comparative research has demonstrated similar results,
achieving a 91.6% RB5 removal rate using 0.4 A of applied
current over 50 min of electrolysis (Feng et al., 2022). In
Table 3

Comparison of electrical energy consumption between experimental results and se

Adsorbent Anode Cathode C0

Granular activated

carbon (3DER-

GAC) particle

electrodes

Ti/SnO2-Sb/b-PbO2 Ti substrate 50 mg/L (2,4-

dichlorophenol

Polymer-based

spherical activated

carbon (AC)

Titanium coated with

RuO2-IrO2-TiO2

Stainless steel 10 mg/L (diclo

(DCF) or

sulfamethoxazo

(SMX))

Mn-Co/GAC particle

electrode

Ti/RuO2 electrodes Ti/RuO2 electrodes 150 mg/L

(amoxicillin (A

Granular activated

carbon particle

electrode

Ti/RuO2-IrO2 Titanium plate 1 000 mg/L

(Rhodamine B

Note: C0 is the initial dye concentration, and CEE is the electrical energy consump
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addition, their research showed that treating 0.5 L of the RB5
solution at an initial dye concentration of 4 mg/L required a
maximum electrical energy consumption of 4.89 kW⸱h/m3.
Table 3 compares electrical energy consumption between
experimental results and the literature. In addition, Table 1
shows that the TOC removal efficiency significantly surpassed
non-optimised experimental results, highlighting the advan-
tages of employing hybrid ANNeXGBoost and CCDeNPRSM
optimisation techniques. Experimental results indicated that
employing a current density of approximately 20 mA/cm2 for
dye solution treatment yielded notably higher current efficiency
than the optimised result, suggesting mitigation of side re-
actions and intermediate oxidation byproduct formation, which
enhanced potential current utilisation efficiency. However, un-
desirably high electrical energy consumption due to voltage
fluctuations was observed under non-optimised conditions,
leading to additional energy wastage, albeit with lower elec-
tricity costs attributed to moderately high current efficiency.

4. Conclusions

This study extensively investigated the electrochemical
degradation of RB5 xenobiotic dye in a simulated dye solution
using a 3D electrochemical process with GIC particle electrodes
and a graphite anode. The effects of operational parameters on
dye and TOC removal efficiencies, current efficiency, electrical
energy consumption for RB5 and TOC removal, and electricity
cost were optimised using CCDeNPRSM, hybrid
ANNeXGBoost, CART algorithms, along with approximating
functions, until satisfactory convergence of solutions was ach-
ieved to maximise fitness in the modelling. Key optimisation
results showed that TOC mineralisation efficiencies of 89.76%,
90.47% and 89.68% were achieved using CCDeNPRSM,
hybrid ANNeXGBoost, and CART optimisation techniques,
respectively, compared to the non-optimised experimental
result of 89.18%. Although CART optimisation accurately
predicted observed RB5 and TOC removal efficiencies, errors
for other response variables were significantly higher than those
of CCDeNPRSM and hybrid ANNeXGBoost. In contrast, the
condary sources from literature.

Reactor CEE Reference

)

Fluidised 3D

electrochemical

reactor

810 kW⸱h/kg for TOC

using 3DER-GAC); 1

570 kW⸱h/kg for TOC

using electrochemical

oxidation (EO)

Samarghandi et al.

(2021)

fenac

le

3D biofilm electrode

reactor (3D-BERs)

38.5 kW⸱h/kg for

DCF; 20 kW⸱h/kg for

SMX

Soares et al. (2022)

MX))

3D electrochemical

reactor

73 kW⸱h/kg for AMX Ma et al. (2022)

)

3D electrochemical

reactor

6.22 kW⸱h/kg for

chemical oxygen

demand (COD)

Ji et al. (2018)

tion.
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predictive efficiency of hybrid ANNeXGBoost exceeded
expectation to other optimisation methods. The overall findings
confirmed the technoeeconomic viability, engineering feasi-
bility, and environmental suitability of the 3D electrochemical
process when optimised by either hybrid ANNeXGBoost or
hybrid CCDeNPRSM.
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