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ABSTRACT

Arguably the most widely used statistical technique is the linear model. Traditionally
all classical inferences on the parameters of linear model are based exclusively on the
available sample data. Often valuable non-sample prior information on the value of the
parameter of interest is available from the expert knowledge or previously conducted
studies. Inclusion of such information, in addition to the sample data, is likely to improve
the quality of the inference. This paper uses both sample and non-sample information to
define estimators of linear model and investigate their statistical properties. It also
incorporates the non-sample prior information in defining tests for a subset of parameters
when information on the other subset is available. The comparisons of power of the tests
are also explored under different conditions.

Keywords: Pretest and shrinkage estimators,bias and mean squared error, pretest test,
power and size of test. and non-central bivariate ¢ distribution.

1. Introduction

Classical or frequentist statistics exclusively uses sample information to make inference on
population parameters. Incorporation of non-sample prior information with the sample data
B likely to improve the quality of inference. However, any such improvement depends on
the accuracy of the non-sample prior information. Bayesian approach includes the prior
distribution of the parameters of the model along with the sample data to draw inference.
The prior distribution is not unique, indeed often subjective, and the posterior distribution
depends on the choice of the prior distribution, and that affects the ultimate inference.
Nevertheless, non-sample prior information (NSPI) on the value of any parameter from
reliable soureces can be accurate and lead to correct inference.

As a common practice, classical inferences about population parameters are always drawn
from the sample data alone. This applies to methods used in parameter estimation and
hvpothesis testing. Inferences about population parameters could be improved using non-
sample prior information (NSPIL) from trusted sources (cf Bancroft, 1944). Such information,
which is usually available from previous studies or expert knowledge or experience of the
researchers, is un-related to the sample data. It is expected that the inclusion of NSPI in
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addition to the sample data improves the quality of the estimator and the performance of
the test. However, any NSPI on the value of any parameter is likely to be uncertain (or
unsure). In this case, the information can be articulated in the form of a null hypothesis.
An appropriate statistical test on this null hypothesis is useful to eliminate the uncertainty
on the NSPL Then the outcome of the preliminary test is used in the hypothesis testing
or estimation. This approach is likely to improve the quality of the estimator and the
performance of the statistical test (see Khan and Saleh 2001; Saleh 2006, p. 1; Yunus 2010;
Yunus and Khan, 2011a; and Pratikno 2012).

The NSPI can be classified as (i) unknown (unspecified) if NSPI on the value of the
parameter(s) is unavailable, (ii) known (certain or specified) if the exact value of the param-
cter(s) is available, and (iii) uncertain if the suspected value is unsure (that is, suspected
to be a fixed quantity, but not sure). For the three different scenarios, three different esti-
mators, namely the (i) unrestricted estimator (UE), (ii) restricted estimator (RE) and (iii)
preliminary test estimator (PTE) are defined in the literature (see.e.g.. Judge and Bock,
1978; Saleh, 2006, p. 58). Khan (2003), and Khan and Hoque (2003) provide the UE, RE,
and PTE for different linear models. Many authors have contributed to this area to the
estimation of parameter(s) in the presence of uncertain NSPL Bancroft (1944, 1964, 1965)
and Han and Baneroft (1968) introduced a preliminary test estimation of parameters. Later,
Sclove et al. {1972), Stein (1981), Bhoj and Ahsanullah (1994), Khan (1998, 2003, 2005,
20068, 2006b, 2008), Khan and Saleh (1995, 1997, 2001, 2005, 2008), Khan et al. (2002a,
2002b, 2005), Khan and Hoque (2003), and Saleh (2006, p. 55) covered various work in the
area of improved estimation using NSPL

For the testing purpose, three different statistical tests, namely the (i) unrestricted test
{UT). (ii) restricted test (RT) and (iii) pre-test test (PTT) are defined along the same line
as the three different estimators. The UE and UT use the sample data alone but the RE
and RT do not use the sample data alone. The PTE and PTT use both the NSPI and
the sample data. The PTE is a choice between the UE and RE, whereas the PTT is a
choice between the UT and RT. The choice depends on the outcome of the pre-testing on
the uncertain NSPI value. Note that by definition the test statistics of the PT and UT are
correlated but that of the PT and RT are uncorrelated. indeed independent.

There are a very limited number of studies on the testing of parameters in the presence
of uncertain NSPI. Tamura (1965). Saleh and Sen (1978, 1982). Yunus and Khan (2008,
2011a, 2011b), and Yunus (2010) used the NSPI for testing hypothesis using nonparametric
methods. Some authors have studied the UE, RE and PTE for parametric cases (for instance
Bechhofer (1951). Bozivich et al. (1956). Bancroft (1964). Saleh (2006)). and Hoque et al.
{2009) but not the tests. Pratikno (2012) covered the testing after pretest under the para-
metric framework for a number of linear regression models. The non-parametric approach,
namely the M-test method, is used by Yunus (2010) and Yunus and Khan (2011b).

2. The Simple Regression Model
The simple regression model for [(zy,31). (%2, y2).- . .. (.. y.)| can be represented by

y="01,+ 3z +e, (2.1)
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where # and 3 are the intercept and slope parameters,  is the vector of explanatory variable,
y is the vector of the response variable, and the error vector e ~ N{g, o21,) in which I, is
the identity matrix of order n and o2 is the spread parameter. Let uncertain NSPI on the
value of 3 be available, and the degree of distrust in the NSPIbe 0 £ d < 1.

In addition to the simple regression model above, the following linear models may be
considered to estimate parameters and perform tests: estimate /test (1) the intercept vector
of the multivariate simple regression model (MSRM) when there is NSPI on the slope vector,
(2) a subset of regression parameters of the multiple regression model (MRM) when NSPI
is available on another subset of the regression parameters, and (3) the equality of the
intereepts for p (> 2) lines of the parallel regression model (PRM) when there is NSPI on
the slopes. In this paper we do not include these model. It may be noted that to study
the properties (power and size) of the ptetest test of any multivariate model the bivariate
noncentral chi-square (¢f Yunus and Khan, 2011¢) and F distributions are essential. For
details on testing after pretest under parametric model, see Pratikno (2012), and Khan and
Pratikno (2012, 2013).

3. The Estimation Problem

From the sample data alone the unrestricted estimator (UE) of the parameters are
5= (@a) 'y, 6= B2 wnd S2 = —5(uy— )'(y— §) where § = 1+ Ba. (32

Note 52 has a scaled ¥? distribution with d.f. v = (n—2). Consider Zu to be the value
of the slope from & credible source. Then this NSPI can be expressed as a null hypothesis
Ho @ 3 = 8. When the NSP1 is correct, the restricted estimator (RE) of 8 is 8 = Sp. so the
RE of @ becomes f§ = ¥ — 3,X. If the NSPI is under suspicion, its uncertainty is removed by
testing Hy : 8 = Bo against Hp : 8 # Fo using the test statistic £, = S718% (8 - 3) ~ty
with v = (n — 2) df. This test statistic is used to define the preliminary test estimator
(PTE). Note, in general, 2 = Fy .

Let 0 < d <1 be the coeflicient of distrust on the NSPI. The value of d is 0 if there
is no distrust in the NSPL Now the RE, PTE & shrinkage estimator (SE) of the intercept
parameter are defined as follows:

Restricted estimator (RE) : 67F(d) di+(1—-df, 0<d<1,
Pretest estimator (PTE) : F™(d) = @"F(d)I(F < F,)+8I(F > F,)
= f+(6-6)(1—d)I(F <FE,).
FT™(d=0) = 6+ (f-0I(F < F,) whend =0,
Shrinkage estimator (SE): 0°F(d) = 4+ (1 —d)(f — )eS,[v/5..1B8]"". (3.3)

where c is the shrinkage constant, and J(-) is a binary indicator function.
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Figure 1: Graph of the quadratic bias of the RE, PTE and SE against A2.

3.L The Bias of the RE, PTE and SE
The UE is unbiased. The expression for bias of the other estimators are given below.

(1-d)A, where A?=0729,.(5 - 5)%

Bg[ﬁ'“[d)] — S—laZE
Bolf"T*(d)] = (1-d)&(5 - 5)Ga, (37 Fai &%),
B,[05%(d)] = (1-d)S5}/%cx(8 - Bo)E[S,)E [2]2]7].

where Z = 07 /B (8 - 3y) ~ N(A.1) and G, ,,(+ A?) is the e.d.f.  of a non-central
F-distribution with (n,,n;) degrees of freedom and non-centrality parameter A2.

The quadratic bias of the RE, PTE and SE are

QB:[0""(d)] = Sl#%o*(1-d)’A%,
2
OBs[f°™E(d)] = SZ'#0(1 - d) /_\2{6*3 (3-15;&2)} ,
QB4[i*F(d)] = Silo®z’Kl{28(A)-1}7,
where K =v”% ;:—E;—;
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Figure 2: Graph of the relative efficiency of PTE relative to UE and RE against AZ,

3.2 The MSE of the RE, PTE and SE

The mean squared error of the estimators are

My[0"E(d)] = o® [d°H +(1-d)?S;'32A?].
M| FPTE(d)] = o%H + Slo?? :AZ {2(1 — d)Gs, (371 FasA?)
~(1 - d)Gs, (57 Fai A7) } - (1= d*)Ga, (37 Fus !_\2)] ,
M) = o [0+ 5512 {1420 K (1 2e7%) )]

4. The Testing Problem

For testing the base load (see Kent 2009) of the energy consumption in a production plant
test of intercept is appropriate. The three tests for testing Hg : § = 0 are (1) the unrestricted
test (UT) if 8 is unspecified; (2) the restricted test (RT) if 3 is specified (8 = So); and (3)
the pretest test (PTT), if there is uncertainty on the NSPI, after a preliminary test (PT)

on the slope, that is, after testing H, él) : 8 = fp to remove any uncertainty.

From now on we only consider tests for unknown o2.
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Figure 3: Graph of relative efficiency of SE relative to UE, RE and PTE against A2

1. TV = /n(f — 80)[34(1 + 22) 3]~ = \/A(§ — BE)[84 (L + n32520) 3] ™! ~ tin)-

¢ . _ T n i)
2. TS = YA0=00) _ YR8 4 | under Hy, where s2 = ZimtW=0) gpq g2 — Zimlbe=ti)’

=2

3. Tél) = 5;:“1”) = —“S’Z?;SD r~th_a undcrllgl)

[£2)

The associated test functions are defined as (1) D_'il) =1 _Tfl) > tn_g__ﬁ,_] :(2) le) =

1: if{‘lﬁ or "I'g]

(i) . 0* —
! _T2 > t"_l"“‘z]  and (3) 0" = { 0, otherwise,

where lI'l = (Tél) < :ﬂ_gzna,Tél) > tn—l__nz) and @2 = (Tél) > tn_g__m,'ﬂ:l) > tn_g__n‘._).
Consider the local alternative hypothesis
K (9 3) = (51 .,"Irﬁ: 52.-"Irﬁ):
where & = /nf,8 = /n8 are (fixed) real values. For unknown o2 (1) Ti:i) = Tfl) -

:/'1-:;55?;“5“ ~ tam2; (2) Téﬂ = Tél)_ ﬁ_tﬁ ~ tp—1;and (3) Téi) = Tgl)_ %;fl ~ tp_a.
Then

is bivariate t with d.f.=(n—2), location vector (0,0)" and scale matrix ( —1,0 _1'0 ) . Here,
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Figure 4: Power function of different tests for different values of §; when §, = 0.

Ti% and T{" are independent.

4.1. Properties of the tests - unknown o2

The power functions of the three test are given by

o I{V(6) = P(T‘” > tn_p.a, = 61[1 + 1-1/2)

o IV(8)=P (Té” > tnoi.a — 01 — 5:52) . where 6, = A (x A1) and 8, = 22(~ 22),

S

o TI3(8) = P (Tg‘} < tnona, - 6_¢__\/§) x P (Tz(‘} > thotas — 01 — 525)
+ dlp{mb‘p) {tn—Zag - 527;1_1_-. tn—z‘r_n - 61[1 + r_;‘_fjlilfzs —P}

where d; is a bivariate Student’s ¢ probability integrals defined as

v+2

dipla,b,p) = T®) njl_—[ [ { )( +y° —2p:ry)} drdy, (4.4)

2
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&; =0and ounknown 82 =0.1 and cunknown

in which =1 < p < 1 is the correlation coefficient between the TUT and TF7, a = tn2.as —
233 and b = tp_pa, — 0i[1+ 25|71 For large sample, Q1 = 0", 2 = 0f") and
0" = Q7. It follows that for any reasonable small n and for some moderate values of d; and
as, the size of the UT, RT and PTT will be relatively smaller when o is unknown than
when o2 is known because terie = Zeite-

4.2, Tllustrations

Tb compare the power and size of the tests graphically consider the values of the independent
2
variable to be 1,2,3,......,n. Then z = %5, and S,, = " =1 Hence

e 106 = P (T > ta a0 — 811/52).

e () =P (TP > ta 10— 81— (2)5).

o A e )

+d; {tﬂ—z,ﬂg _‘52 %:tn—zp _51 %_\/%}
The power of the tests, for different values of its arguments, are computed from the
generated data and plotted in the graphs for comparison.
The size of the PTT is is given in the following table.

4.3. Comparing power and size

For £ > 0 : (1) The RT is the best choice for its largest power but the worst choice for
its largest size (2) The UT is the best choice for its smallest size but the worst choice for
its smallest power (3) The size of the PTT is smaller than that of the RT regardless the
value of the slope and the power of the PTT is larger than that of the UT for small and
moderate values of the slope. For Z =0: (1) The size and power of RT, UT and PTT are
the same. For Z < 0: (1) The RT is the best choice for its smallest size but the worst choice
for its smallest power. (2) The size and power of the UT and PTT are not much different
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Figure 5: Power function of the PTT for different values of as and varying da.

Table 1: Size of the PTT following PT on slope.

Source of o | d3'\az | .05 | .10 | .20 | .30 | 40 | .50 | .60 | .70 | .80 [ .90
o known 0 .04 [ .04 | .04 | 03 )| 03| .02 )] .02].01]|.01]|.01
o unknown 04 | 04 ) .04 | 03 | 03] .02 )] .02 .01].01).01
o known 10 A2 [ 11| .09 | OR | 06 | .05 | .04 | .02 | .02 | .02
o unknown 10 [ .09 | .08 | .06 | 05| .04 | .03 | .02 | .02 | .02
o known 20 25 .22 | 17 | .14 | 10 | OB | .06 | .04 | .03 | .03
o unknown 21 | .18 ) .14 | 11 | .09 | .07 | .05 | .04 | .03 | .03
o known 30 39 [ .33 .24 | 18 | 13 | .09 | .O7 | .05 | .04 | .04
o unknown 35 [ .29 ) .21 | 16 ) 12 | .09 | .06 | .05 | .04 | .04
o known 40 49 | 39 ) .26 | .18 | 13 [ .09 | .06 | .05 | .04 | .04
o unknown A48 | 38 | 25| .18 | 13| .09 | .O7 | .06 | .05 [ .05
o known 1 A1 [ .07 | .05 | 05| 05| .05 | .05 | .05 | .05 | .05
o unknown A7 | .10 | .06 | .06 | .06 | .06 | .06 | .06 | .07 [ .07
o known 2 05 .05 .05 | .05 ) .05 .05 ).05 | .05|.05|.05
o unknown 07 (.07 | .07 | .07 | .07 | .07 | .O7 | .OT | .07 | .O7
u, 0z, 03=001 ,8; =0and ounknown oy, oz, 53 =005, & =0 and o unknown
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Figure 6: Sizes of UT, RT and PTT for different values of a; = ap = as.

for moderate and large values of the slope. The power of the PTT are larger than that of
the UT and RT for small values of the slope.

The size and power of the PTT is large when the nominal size of pre-test is very close
to 0 especially when the slope (d3) is large (& other arguments fixed). This is because it
approaches to the size of the RT (which is large when the slope (d;) is large).

5. Concluding remarks

Under the unbiasedness criterion, the UE is the best, and RE is the worst if d away from 1.
But the PTE is a compromise between the two. The SE is also biased, but it is better than
the RT and worse than PTE. For d = 1, all estimators are unbiased except the RE.

The UT has the lowest size and lowest power. The RT has the highest power and highest
size. The PTT protects against the lowest power of UT and highest size of RT.
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