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Abstract: Accurate identification and estimation of the population densities of microscopic, soil-
dwelling plant-parasitic nematodes (PPNs) are essential, as PPNs cause significant economic losses
in agricultural production systems worldwide. This study presents a comprehensive review of
emerging techniques used for the identification of PPNs, including morphological identification,
molecular diagnostics such as polymerase chain reaction (PCR), high-throughput sequencing, meta
barcoding, remote sensing, hyperspectral analysis, and image processing. Classical morphological
methods require a microscope and nematode taxonomist to identify species, which is laborious
and time-consuming. Alternatively, quantitative polymerase chain reaction (qPCR) has emerged
as a reliable and efficient approach for PPN identification and quantification; however, the cost
associated with the reagents, instrumentation, and careful optimisation of reaction conditions can
be prohibitive. High-throughput sequencing and meta-barcoding are used to study the biodiversity
of all tropical groups of nematodes, not just PPNs, and are useful for describing changes in soil
ecology. Convolutional neural network (CNN) methods are necessary to automate the detection
and counting of PPNs from microscopic images, including complex cases like tangled nematodes.
Remote sensing and hyperspectral methods offer non-invasive approaches to estimate nematode
infestations and facilitate early diagnosis of plant stress caused by nematodes and rapid management
of PPNs. This review provides a valuable resource for researchers, practitioners, and policymakers
involved in nematology and plant protection. It highlights the importance of fast, efficient, and
robust identification protocols and decision-support tools in mitigating the impact of PPNs on global
agriculture and food security.

Keywords: plant-parasitic nematodes; morphological identification; molecular diagnostics; deep
learning; hyperspectral imaging; remote sensing

1. Introduction

Nematodes are ecologically diverse, abundant metazoan organisms that inhabit soils,
sediments, or host plants and animals [1,2]. Although millions of nematode species inhabit
the natural world, only around 30,000 species have been explored so far [3]. Among them,
4100 species are identified as PPNs [4]. Many PPNs are destructive pests and are significant
threats to crop production. They alter crop physiology, suppress plant immune responses,
and allow secondary infection by pathogens [5].

PPNs are broadly classified into two groups based on their parasitism: ectoparasites
and endoparasites. Ectoparasitic nematodes feed on the outer plant tissues from the root
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surface and remain outside the host plant, whereas endoparasitic nematodes enter the
host plant and damage the cells and tissue layers [6,7]. The most damaging PPNs are the
sedentary endoparasitic nematodes, such as root-knot nematodes (RKNs) (Meloidogyne
spp.) and cyst nematodes (including Heterodera spp. and Globodera spp.). Although plant
cell walls contribute to mechanical support and rigidity, they can also provide a physical
barrier against the pathogen. Nematodes secrete enzymes from pharyngeal gland cells
that weaken the cell wall and help to penetrate the root tissue using stylet [8]. Despite the
differences in PPNs’ feeding habits, all species penetrate the outer cell wall to access the
cell cytoplasm to feed [6]. Consequently, plant root systems are unable to absorb sufficient
nutrients and water [9]. The symptoms of nematode infestation can lead to nutritional
deficiencies or exacerbation of abiotic stresses, resulting in reduced growth, wilting, and
poor yield in intolerant plants [10].

PPNs cause economic losses of more than USD 215 billion worldwide [11,12]. Accurate
identification of PPNs is essential in order to devise appropriate strategies to control or
minimise their impact on crops. It is equally important to quantify the potential mag-
nitude of the damage by estimating the PPN population densities in soil and/or plant
roots. Traditionally, nematologists identify PPNs based on morphological features using a
microscope. Additionally, there are several identification techniques based on molecular
and biochemical characteristics of the nematodes.

To the best of our knowledge, most of the published reviews on this topic have
focused on morphological and molecular techniques. Recently, there have been several
new studies published that refined previous methods or provided novel techniques for
nematode identification. This review investigates current and emerging technologies used
for nematode identification and quantification, including morphological, biochemical, and
molecular techniques, as well as image analysis, deep learning, hyperspectral, and remote
sensing (Figure 1). Furthermore, it provides analytical insights into the significant outcomes
achieved by these different methods.
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2. Nematode Identification Methods
2.1. Nematode Identification Using Morphological Methods

The traditional methods of nematode identification require a microscope and trained
nematologists to observe the morphological characteristics of nematodes and determine
their genus and species. Nematologists differentiate nematode species in terms of morpho-
logical features such as the length and width (Figure 2).
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Figure 2. Sample image of a root-knot nematode.

Furthermore, the discriminating body parts include the anterior or posterior region of
the body, tail shape and stylet morphology [13]. For example, female RKN species can be
identified using the distinguishing features of the head and stylet of second-stage juveniles
(J2). The J2 head shape, length between dorsal oesophageal gland orifice (DEGO) and stylet
base, and stylet morphology such as the length of the cone, shaft, and knobs are useful for
diagnosing morphological characteristics [14].

In a past study, the morphology of cyst nematodes (Heterodera elachista, H. oryzicola,
H. oryzae, and H. sacchari) was differentiated based on the length and width of the cyst,
vulval cone, juvenile stylet length, tail length, and body length [15], which are universal
features of the Heterodera genus and Globodera pallida. Similarly, potato cyst nematodes
(G. pallida and G. rostochiensis) were distinguished by examining the morphological features
of second-stage juveniles (J2), including parameters such as the J2 body length, body width,
stylet length, and stylet knob structure [16].

Many morphological features are also crucial for understanding the physiological
functions and interactions of nematodes with the environment and plant hosts [17]. In ad-
dition to morphological features, anatomical elements and the presence or absence of male
nematodes are also considered. Morphological identification of nematode features using a
microscope is time-consuming and error-prone because of variations in the morphology
within species [18]. Moreover, the shortage of nematode taxonomists has led to reliance on
molecular-based nematode identification methods. Consequently, molecular methods have
become essential for discriminating among nematode species [19].

2.2. Identification of Nematodes Based on Biochemical Methods

Biochemical methods involve distinguishing proteins and isozymes using one- or
two-dimensional gel electrophoresis analysis or serological analyses. This type of multilo-
cus enzyme electrophoresis, also called isoenzyme typing, is based on isozyme migration
patterns related to the molecular weight, electrical charges and variation in the amino acid
composition [2,20]. The isozyme phenotypes were first used to differentiate Meloidogyne
species (M. arenaria, M. hapla, M. incognita, M. javanica) [21]. The carboxylesterases/esterases
were found to be efficient enzymes for discriminating these species. In addition, the malate
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dehydrogenase, superoxide dismutase, and glutamate oxaloacetate transaminase are regu-
larly used to identify Meloidogyne species. This technique has been used to investigate how
nematodes can adapt and evolve in reaction to the changes in their environment [22]. How-
ever, this method requires a sufficient amount of isozyme [23], along with various chemicals
(creatine phosphokinase, lactate dehydrogenase) and techniques (gel electrophoresis, stain-
ing), to obtain results from multiple isozymes [24]. As an alternative to this method,
molecular techniques such as DNA sequencing and polymerase chain reaction (PCR) have
been reported to be more efficient, as they use a single process for all the DNA mark-
ers [24,25]. These molecular technologies are now critical for the diagnosis, treatment and
control of multiple PPNs [26].

2.3. Identification of Nematodes Using Molecular Methods

Molecular testing has emerged as one of the most widely used methods for the identifi-
cation and quantification of PPNs. These methods have high sensitivity and can distinguish
between morphologically similar organisms, and they are effective in detecting PPNs
in asymptomatic infestations or those with a low parasitic burden [27]. However, these
techniques require molecular diagnostic tools, reagents and sophisticated facilities [28].
The main benefits of molecular diagnostics are that they can provide fast, accurate, high-
throughput potential with readily available sequencing information, which can account for
the phenotypic variation and nematode growth stages [29,30].

Molecular diagnostics have often used two primary genomic regions as specific targets
for sequence divergence, ribosomal RNA (rRNA) genes and the mitochondrial cytochrome
oxidase subunit I (COI) gene [31]. The rRNA genes include the coding genes 18S, 5.8S and
28S with non-coding internal transcribed spacers (ITS1 and ITS2). These genes form a region
of the genome that is highly conserved yet divergent enough to effectively distinguish
between species among various nematode groups. These genes are present in multiple
copies in genomes, which facilitates their amplification using polymerase chain reaction [32].
The COI of the mitochondrial DNA (mtDNA) has been widely used as a standard barcode
marker for the identification of metazoans. The mtDNA forms the region of the genome
sequence ranging from 12 to 20 kilobases [33]. Variations in mtDNA sequences serve as
effective markers to distinguish between nematode species [34]. Similarly, satellite DNA
(satDNA) was amplified to identify M. hapla using DNA extracted from juveniles and eggs,
which can be implemented for a routine-based diagnostic tool [35]. Further, a species-
specific probe satDNA sequence was used to detect Pratylenchus thornei and evaluate the
diagnostic potential as it offers an alternative approach for specific identification that does
not require PCR amplification of DNA [36]. In addition, heat shock protein (HSP) was
used to isolate and characterise the cDNA and corresponding genes of M. artielllia, which
could be beneficial for studying multiple sensory behaviours during the development
and survival of different stages of the nematode [37]. HSP90 was utilised to explore the
relationship between the survival of Bursaphelenchus xylophilus and the functionality of the
HSP90 gene [38].

Besides the target regions, several marker-based methods are used to identify PPNs,
such as restriction fragment length polymorphisms (RFLPs), amplified fragment length
polymorphism (AFLP), random amplification of polymorphic DNA (RAPD), and sequence-
characterized amplified region (SCAR). The RFLP method analyses include amplifying a target
region and then digesting it with restriction enzymes. The DNA fragments resulting from the
restriction analysis are subsequently separated by size through gel electrophoresis [39].

AFLP involves digesting DNA with restriction enzymes, selectively amplifying a
subset of DNA fragments and separating them by electrophoresis on a polyacrylamide
gel [40]. This technique is particularly useful for identifying species with incomplete
genome sequences [41]. AFLP is reported to be a highly reproducible and robust tool for
species identification and phylogenetic analysis [41]. The RAPD method amplifies random
DNA segments using arbitrary primers [42]. It is a simple and cost-effective method for
studying biodiversity; however, it requires a consistent amplification protocol to ensure
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sample reproducibility [43]. Furthermore, SCAR is a reliable method for generating DNA
fragments amplified by PCR [44]. SCAR-based markers are used for identification with
both traditional and real-time PCR methods [18,21,33]. The SCAR marker was developed
to identify the M. ethiopica nematode species in field samples [45]. These methods require a
basic molecular biology laboratory with major facilities such as a PCR machine, refrigerator
and freezer, DNA sequencer, high-quality reagents, gel electrophoresis, microcentrifuge,
computational tools, and a sterile work environment. The advantages and disadvantages
of these markers are described in Table 1.

Table 1. Advantages and disadvantages of molecular markers.

Markers Advantages Disadvantages

Restriction fragment length
polymorphisms (RFLPs)

• Relatively uniform technology, does not
required sophisticated tools and prior
information about the species [46].

• It is simple, fast, and more reliable than
isozyme analysis [47].

• Irreproducible because of hybridization
and digestion [48].

• Polymorphism that occurs between
rDNA repeats within one species can
overlap with the RFLP pattern for
another species [49].

Amplified fragment length
polymorphism (AFLP)

• Highly reproducible, robustness, easy
and cost effective, genetic diversity
analysis [48].

• DNA fragments do not depend on
hybridization, partial digestion and faint
patterns [50].

• Laborious and expensive compared to
agarose gel [50].

• Requires restriction enzymes, ligation,
and adapters.

Random amplification of
polymorphic DNA (RAPD)

• Simple, rapid, and safe.
• Useful in detection of intraspecific

variation.
• Reproducible results are obtained using

this method [51].

• Reproducibility between experiments is
relatively low [52].

• The method is susceptible to stringent
PCR conditions and requires pure DNA
from target species [53].

Sequence-characterized
amplified region (SCAR)

• Does not require restriction enzyme
digestion and avoids false positive
fragments [54].

• Easy, fast and discourages use of
radioactive isotopes; beneficial in
diagnosing mixed infections.

• It eliminates the nematode extraction
process and the need for prior knowledge
of morphology [55].

• Random region of gene amplification
may lead to uncertainty [56].

• Requires advanced laboratory
facilities [57].

Random amplified
microsatellite polymorphism

(RAMP)

• High polymorphism.
• Easy and low cost application [58].

• Species specific marker isolation.
• Unclear mutation mechanism [59].

Inter simple sequence repeat
(ISSR)

• Highly efficient in studying genetic
diversity, genetic fidelity and
phylogenetic [60].

• Higher reproducibility than RAPD
primers [61].

• Lower specificity may lead to unclear
fingerprint.

• Low-quality genomic DNA has poor
reproducibility [62].

Sequence-related amplified
polymorphism (SRAP)

• Requires small quantity of template
genomic DNA.

• DNA markers identified without prior
genome knowledge [63].

• Offers greater potential than the
multilocus marker and scalable with
next-generation sequencing [64].

• Might show less genetic variation [63].
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2.4. Next-Generation Sequencing/Deep Sequencing

Next-generation sequencing (NGS) is an innovative technology utilised for sequencing
DNA and RNA, as well as detecting variants and mutations. NGS has the capability to
quickly sequence hundreds or thousands of genes or even entire genomes [65]. It can
simultaneously analyse numerous DNA targets, ranging from hundreds to potentially mil-
lions. For instance, NGS has been used to investigate the effects of nematode communities
and to analyse the sustainability of banana and coffee soil ecology [66]. Next-generation
sequencing (deep sequencing) has been used to identify the microRNA genes of RKN [67].
Similarly, the microRNA of soybean (Glycine max) is utilised in the identification of soybean
cyst nematodes (SCN, H. glycine) through deep sequencing [68]. Some of these miRNAs
potentially target stress-responsive genes. In addition, a wide range of small RNAs re-
spond to SCN infection in both resistant and susceptible soybean roots. NGS has great
potential for exploring parasitism in nematodes [67,69]. However, the limited availability
of suitable primers and extraction kits poses a challenge for their use in DNA analysis [69].
Nevertheless, a recent study developed different primers suitable for identifying various
species of nematodes using NGS-based metabarcoding [70]. NGS has been used to diagnose
M. incognita and M. javanica infestation in tomato [71].

2.5. DNA Metabarcoding

Genetic markers in barcoding and metabarcoding analyses enhance the taxonomic
assignments at the genus level [66] and offer significantly improved precision of identi-
fication at the species or genus level, in combination with molecular and morphological
analyses [72]. Metabarcoding allows improved precision of identification of soil nematode
communities [73,74]. For example, the DNA barcoding method was used to identify species
of Heterodera [75], where combined markers optimised the results. Moreover, another study
focused on the investigation of new and existing primer sets for the metabarcoding of
plant-parasitic nematodes and free-living nematodes [76]. Although metabarcoding is
widely used for classifying nematode species, it often fails to detect all the taxa present in a
sample because PCR primers do not bind effectively to their target [77]. A mitochondrial
metagenomics (mtMG) approach was used to investigate the diversity of nematode species
that were also evaluated morphologically to identify nematode species in terms of the
feeding habits, phylogenetic relationships, and life stages. However, this study also found
a limited reference database. Another study investigated the mitochondrial and ribosomal
reference sequences to determine the species-level clustering threshold, reporting it to
be the most reliable method for rapidly assessing the alpha diversity in environmental
samples [78]. Further, the meiofaunal diversity of PPNs was explored in Atlantic soil
using eukaryotic metabarcoding analysis [79]. This study revealed that the combination of
high-throughput sequencing and morphological analysis can resolve taxonomic classifica-
tion discrepancies and serve as a robust tool for investigating the biological diversity and
conservation management of soil species.

2.6. Nematode Identification Using Polymerase Chain Reaction (PCR) Methods

Polymerase chain reaction (PCR) is one of the most powerful tools used for the analysis
of DNA sequencing in various fields of molecular biology research [80] and it has been
widely used in the identification of PPNs [81], phylogenetic studies, plant resistance, and
gene studies [31]. It uses several primers to identify nematodes causing the infection based
on targeted regions in the genome, such as ribosomal deoxyribonucleic acid (rDNA), SCAR,
ITS, intergenic spacer region (IGS), and satellite DNA (satDNA) [82]. The relevant studies
on the identification and quantification of PPNs are shown in Table 2.

PCR-based methods were employed to detect M. arabicida and M. izalcoensis in soil
and root samples of coffee using SCAR markers [25]. These markers were an effective
alternative species-specific molecular marker. Further, a species-specific SCAR marker was
developed to identify M. ethiopica in kiwi fruit [45], where the specificity of the primer pairs
was validated by analysing other RKN species. Isolates of M. ethiopica were considered
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complementary to esterase phenotyping for identifying nematodes, offering simple and
fast detection of M. ethiopica. Similarly, sets of SCAR primers were developed to amplify the
DNA of M. chitwoodi, M. fallax or M. hapla species [52]. These SCAR markers were readily
detected in DNA samples extracted from juveniles, egg masses, or females of the specific
nematode species, whether the nematodes were found individually, mixed with other
species, or within infested plant material. However, these SCAR primers were unsuitable
for use in a multiplex PCR assay, as the SCAR markers for one or two species were either not
amplified or were barely detectable. To address this issue, a new optimized multiplex PCR
was used, but it could not visualize DNA extracted from a single juvenile [52]. The study
reported that using nested primers significantly enhanced the sensitivity in the subsequent
PCR, suggesting potential applications for PPN diagnosis using DNA extracted from single
juvenile, soil samples, or infected plant material.

Table 2. Identification and enumeration of plant-parasitic nematodes from different hosts using
polymerase chain reaction (PCR) and quantitative PCR (qPCR) methods.

Nematode Species Host References

Meloidogyne arabicida, Meloidogyne
izalcoensis Coffee (Coffea) [25]

Meloidogyne ethiopica
Kiwi (Actinidia deliciosa), Tomato

(Solanum lycopersicum), Grapevine (Vitis
vinifera)

[45]

Meloidogyne chitwoodi, Meloidogyne
fallax, Meloidogyne hapla Tomato (Solanum lycopersicum) [52]

Meloidogyne incognita, Pratyenlenchus
penetrans, Globodera rostochiensis,

Heterodera glycines

Radish (Raphanus sativus), Sweet potato
(Ipomoea batatas), Lotus (Nelumbo nucifera) [83]

Pratylenchus thornei Carrot (Daucus carota), Wheat [84]

Meloidogyne incognita, Meloidogyne
javanica, Meloidogyne arenaria,

Meloidogyne enterolobii
Carrot (Daucus carota) [85]

Pratylenchus vulnus, Mesocriconema
xenoplax

Walnut (Juglans regia), Almond (Prunus
dulcis) orchard [86]

Rotylenchus reniformis, Rotylenchus
parvus, Heterodera glycines,

Meloidogyne incognita

Cotton (Gossypium herbaceum), Soybean
(Glycine max), Banana (Musa acuminata),
Tobacco (Nicotiana tabacum), Eggplant
(Solanum melongena), Cowpea (Vigna

unguiculata), Bentgrass (Agrostis
stolonifera)

[87]

Pratylenchus alleni and Pratyenlenchus
penetrans Sweet corn (Saccharata var. rugos) [88]

Meloidogyne hapla Carrot (Daucus carota) [89]

Real-time PCR quantification of PPNs using specific primers for DNA synthesis has
been developed for RKNs (M. incognita), root-lesion nematodes (P. penetrans), potato cyst
nematodes (G. rostochiensis), and soybean cyst nematodes (H. glycines) [83]. The nematodes
were extracted from roots and soil by the Baermann funnel extraction method and real-time
PCR was used to determine the density of the nematodes (egg, juvenile or adult stages)
in radish (Raphanus sativus), sweet potato (Ipomoea batatas), and lotus (Nelumbo nucifera).
Although a strong correlation was found between the number of M. incognita using the
Baermann method and the PCR method, there was a significant increase in the density of
P. penetrans, which was likely caused by the presence of the DNA of dead nematodes.

The root-lesion nematode, P. thornei, was detected and quantified in wheat using
the asymmetrical cyanine dye (SYBR green-I)-based PCR method [84]. In this study, the
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Whitehead tray method was used to extract nematodes from soil samples and a PowerSoil
DNA Isolation kit was used for DNA extraction directly from the soil. A designed primer
set was used in the ITS region of the rDNA for real-time PCR. The study found a strong
correlation between the number of P. thornei counted using a microscope and the population
determined by the PCR method. Extraction of DNA directly from the soil eliminated the
manual extraction process and need for counts using a microscope.

Discrimination of mixed populations of RKNs (M. incognita, M. javanica, and M. are-
naria) by qPCR was determined by first extracting nematodes from field soil using the
sugar centrifugation method [85]. There was a high correlation between the qPCR assay
and counts using a microscope. However, in some cases, high cycle threshold (Ct) values
were found to limit the detection results. Real-time PCR was used to detect and quantify
root-lesion nematodes (P. vulnus) and ring nematodes (Mesocriconema xenoplax) in a walnut
(Juglans regia) and almond (Prunus dulcis) orchard [86]. In the samples from walnut, the
qPCR method accurately detected nematodes and the study found a strong correlation
(coefficient of determination (R2) = 0.88 for P. vulnus and R2 = 0.65 for M. xenoplax) with
the counts using a microscope. In samples from the almond orchard, the qPCR predictions
were highly correlated with the counts using a microscope (R2 = 0.87 for P. vulnus and
R2 = 0.90 for M. xenoplax). The study also revealed that the efficacy of the molecular assay
was reduced with relatively low organic matter (0.6–0.9% in almond orchard soil and 1.8%
in walnut orchard soil) and low clay composition because of the binding with the extracted
DNA. Another challenge was the inconsistency in the soil quantity when estimating ne-
matode populations using molecular diagnostics, as it was unclear what amount of soil
accurately represents these populations. A recently developed PCR technique, droplet
digital PCR (ddPCR), has shown considerable sensitivity in detecting and quantifying the
stubby root nematode, Paratrichodorus allius, in soil [90]. The method (ddPCR) eliminates
the need for manual nematode extraction, microscopic identification and quantification of
the Ct values because it provides direct copy numbers. ddPCR is resistant to PCR inhibitors
and is effective for the absolute quantification of low-abundance targets; however, it does
have a limited dynamic range.

2.7. DNA Microarray

DNA microarray, also known as DNA chips, is a commonly used method for analysing
global gene expression and assessing microbial diversity [91,92]. It is based on nucleic
acid hybridisation, where the target sequences are typically labelled with fluorescence and
hybridised to spots of complementary oligonucleotide probes fixed to a solid surface [93].
A DNA oligonucleotide microarray was used to identify M. chitwoodi in pure and mixed
samples [94]. The main advantage of the DNA microarray method is that it can be used for
large-scale investigations without the need for the isolation of nematodes [95]. Nevertheless,
the DNA microarray is expensive, time-consuming, and requires expertise in molecular
technology [2,95]. The signal measured on a microarray might not be consistent over a
range of concentrations in a solution, making it cumbersome to detect every gene among
multiple related genes [96]. In contrast, NGS offers many benefits over the DNA microarray
method. Sequencing is an unbiased method for determining the nucleic acids present in a
solution, as it does not rely on prior knowledge of their presence [96]. It can also identify
closely related gene sequences that might be undetected due to cross-hybridisation on DNA
microarrays [96]. As an alternative to these molecular methods, nematodes can be detected
and enumerated by analysing images taken using a microscope. Several methods are used
to study the morphology of nematodes using image analysis and computer vision [97,98].

2.8. Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry
(MALDI-TOFMS)

Matrix-assisted laser desorption/ionisation (MALDI) is one of the most popular
methods for identifying biomolecules [99]. The specific method, matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), was first applied



Plants 2024, 13, 3041 9 of 26

to detect a single root-knot nematode (M. incognita) [100]. The method was found to be rapid
and sensitive in detecting a single nematode and capable of differentiating between the
infective and non-infective stages of nematodes. Additionally, PPNs have been identified
based on the analysis of the nematode protein profiles using MALDI-TOFMS. The findings
indicated that the protein profiles were effective in the identification of PPNs [101]. This
method is simpler and faster for detecting PPNs in mixtures compared to traditional
grinding methods.

2.9. Isothermal Amplification Technologies

Isothermal amplification is a technique used to amplify specific DNA or RNA se-
quences that do not require thermal cycling. It is easy to operate and reduces the risk of
sample contamination [102]. Loop-mediated isothermal amplification (LAMP) has become
a reliable and fast method to detect PPNs [103], such as Ditylenchus destructor [104], Meloidog-
yne spp. [105], M. partityla [106], and M. enterolobii [107]. LAMP has been regarded as an
alternative method, which is 10–100 times faster than conventional PCR. However, LAMP
is sensitive to cross-contamination and requires tedious steps to check for the presence of
reaction inhibitors [108]. In addition to LAMP, the recombinase polymerase amplification
(RPA) method has been used to identify P. allius, where it required low temperatures and a
short duration to amplify DNA [109]. Although RPA methods detect nematodes accurately
with high specificity, the method is dependent on the designed primers. Further, the RPA
assay is not used to detect DNA extracted directly from soil. However, RPA with lateral
flow dipstick was used to detect H. schachtii and its sensitivity was higher than PCR and
qPCR, providing results within 1 h [110].

2.10. Conventional Image Processing Method

Traditional image processing methods are used for the identification and assessment of
nematode biomass and growth. Image processing and computer vision approaches are used
to analyse microscopic images captured using various types of sensors. Nematode experts
initially identify distinct features such as the body shape and size and other morphological
characteristics to distinguish different genera of PPNs. These discriminant features are
integrated into the image processing algorithms, the automated identification process, and
the computation of the nematode population. Several studies have explored image analysis
methods, as shown in Table 3.

Table 3. Studies on nematode detection using the traditional image analysis method.

Nematode
Species

Microscope and
Camera

Analysis
Method Test Parameters References

Meloidogyne
javanica

Inverted microscope
and digital camera ImageJ, Genstat R2 [111]

Heterodera
glycines

Kodak Image
Station 4000MM Pro
(Kodak, NY, USA)

Fluorescence-
based imaging

system
R2 [112]

Heterodera avenae HP Scanjet (HP Inc.,
CA, USA)

Software KS-400
V.3.0

Accuracy,
correlation,

variance
[113]

Meloidogyne
incognita

BX53 Olympus
Microscopes

(Olympus, Tokyo,
Japan)

Python R2, RMSE [97]

A semi-automated image analysis method used the length and width of nematodes
to estimate the biomass of meiofaunal nematodes using the curve perimeter and curve
area [114]. The image analysis method computed similar lengths as measured by humans;
however, significant differences were found in the nematode widths measured by humans
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and computers. Automatic nematode width measurement was found to be two times faster
than manual measurement.

Similarly, the length and width of the RKN were assessed for the detection and quan-
tification of RKN populations using image processing and computer vision [97]. A new
method was proposed to detect and count RKN juveniles using threshold segmentation [97],
employing non-linear morphological operations to remove soil particles. The algorithm im-
plemented the length-to-width ratio to distinguish between nematodes and other substrate
particles and found the highest correlation between the manual and automated computa-
tion of the nematode length compared to a biomass study [114]. Further, it specified the
optimal length-to-width ratio to detect nematodes. However, this method was unable to
detect and count overlapped nematodes, which posed a significant challenge when dealing
with increasing nematode population density within the specimens. Moreover, few studies
have investigated nematode infestation in terms of the nematode eggs [115–117], root gall
index [118], and number of adult females [112,113]. A new feature was used to detect and
count RKN eggs in images from microscopes [115] using the difference between the middle
width of the nematode egg and the average width of the egg to assist in automating the
detection task. However, the applicability of these features may vary according to the
nematode species. These features may vary due to several factors, such as differences in
the morphological characteristics, genetic variation, and environmental adaptation.

In addition, some research has focused on the detection and counting of female
PPN populations using a scanner rather than a microscope. For the development of a
high-throughput method to count female H. glycines, cysts were extracted from soybean
(Glycine max) roots. There was a high correlation between the automated and manual
counting and the high-throughput method was two times faster than the manual counting
method; however, it required additional steps to process the roots [112]. Further, a similar
study on cereal cyst nematodes (H. avenae) based on image analysis techniques identified
H. avenae females in soil and extracted from roots using a scanner [113]. The naïve Bayes
classification had a 96.1% accuracy rate and claimed to be a simple method that could be
applied to different complex backgrounds.

2.11. Nematode Detection Using Deep Learning Methods

Deep learning is a subfield of an emerging machine learning method whose architec-
ture is inspired by human brains when analysing microscopic images and segmenting cells
and tissues [119,120]. There are different types of deep learning models, such as convolu-
tion neural network (CNN) [121], recurrent neural network (RNN) [122], deep feedforward
neural network (DFNN) [120] and autoencoder [123]. CNN is the most popular deep
learning architecture used for biomedical image analysis [124]. All these deep learning
models have a hierarchical structure consisting of three layers of convolution, pooling
and fully connected layers [125,126]. Deep learning can be trained through forward and
backward stages. The goal of these networks is to adjust the weight and bias based on
gradients to compute the loss function. During this phase, the network learns features
required for the detection and classification of objects. After sufficient training, the network
learning process can be concluded. The performance of the model is evaluated on test
data to verify its effectiveness on unseen data. Deep learning models are employed to
detect microscopic images due to their speed and accuracy [120]. They are also used to
detect and count bacterial colonies [127], protozoan parasites [128] and cells in microscopic
images [129]. Recently, deep learning models have been used to detect and enumerate
nematodes in microscopic images (Table 4).
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Table 4. Detection of plant parasitic nematodes using deep learning.

Nematode Species Microscope, Camera, Resolution and
Input Size

Input Size and Number of
Nematodes (NoN) Deep Learning Models Test Parameters References

Genera of Meloidogyne, Pratylenchus
Trichodorus, Criconema,

Hemicycliophora, Criconemoids,
Helicotylenchus, Hirsmaniella,

Hoplolaimus, Radopholus,
Trichodorus, Xiphinema

Olympus CX 31 (Olympus, Tokyo,
Japan), magnification of 40–100×,

Image size (2048 × 1024)
224 × 224, NoN: 1

EfficientNetV2B0,
EfficientNetV2M, CoAtNet-0,

ResNet101V2

Accuracy, mean class
accuracy, F1-score, average

precision, average recall
[130]

Globodera pallida, Globodera
rostochiensis, Globodera mexicana

Wild Leitz DAPLAN microscope Sony
XCD-U100CR (Sony, Tokyo, Japan)
with 40× objective lens, Image size

(1600 × 1200)

192 × 256, NoN: 1 EB-Net Model Accuracy, kappa index [131]

Ditylenchus, Pratylenchus

Olympus BX51 DIC Microscope
(Olympus, Tokyo, Japan), Olympus
C5060Wz camera (Olympus, Tokyo,

Japan), (10×,100× magnification,
Image size (2592 × 1944)

224 × 224, NoN:1 ResNet101 Success rate, misidentified
genera [132]

Helicotylenchus dihystera, Heterodera
glycines, Pratylenchus brachyourus

Binocular microscope, Panasonic
camera (Panasonic, Osaka, Japan), 4×,
10×, 40×, 100× objective lens, Image

size (5120 × 3840)

224 × 224,229 × 229, NoN:1
Xceoption, VGG16,

InceptionV3, ResNet,
DenseNet, EfficientNet etc

Accuracy, F1-score, precision,
recall, specificity [133]

Root-knot nematode galls
(Meloidogyne spp.)

Canon EOS 60D camera (Canon Inc,
Tokyo, Japan)), Image size

(2592 × 1728)
640 × 640, NoN: NA YOLOv3, YOLOv4, Faster

R-CNN, YOLOv5 models
Precision, recall, F1-score,

mAP [134]

Meloidogyne incognita
Olympus BX53 Microscope, DP73

Camera (Olympus, Tokyo, Japan), 4×,
Objective lens 1200 × 1600

416 × 416, 512 × 512,
614 × 614, NoN: 2~11 YOLOv2-v7 Precision, recall, F1-score,

mAP, R2, RMSE, CV [135]

Meloidogyne incognita

Olympus BX53 Microscope (Olympus,
Tokyo, Japan), DP73 Camera
(Olympus, Tokyo, Japan), 4×,

Objective lens 1200 × 1600

224 × 224, 480 × 480,
640 × 640, NoN: 2~11 YOLOv5-v7 Precision, recall, F1-score,

mAP, R2, MAPE [136]
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A convolutional neural network (CNN)-based deep learning model was developed to
identify Globodera species [131]. The datasets consisted of 360 images of Globodera species,
which were later augmented to 14,490 using colour channel extraction. The study also used
a custom computer vision algorithm (CCVA) to identify the morphological features of the
basal knobs width (BKW) and basal knob to head length (BKTH). The EB-Net architecture
was used in the CNN model to extract morphological features. The BKTH feature was
predicted appropriately, whereas the BKW feature was poorly detected by the computer
vision method and EB-Net model. The EB-Net model predicted metrics with 0.83 accuracy
on the training set, whereas the CCVA method predicted metrics with 0.88 accuracy. The
CCVA method achieved 0.85 accuracy on the test set; in contrast, the EB-Net model achieved
0.71 accuracy.

A web-based NemaRec application was developed to identify nematodes in micro-
scopic images [132] using image data from the I-Nema dataset [137]. Further, Gaussian
blurred and random flip methods were used to create an augmented dataset. The ResNet-
101 model was used to identify the genera of nematodes and showed that the ResNet-101
model identified 60% of genera accurately in the specimen-based dataset and 94% to 97%
of genera in the augmented dataset.

Another study was undertaken to identify Helicotylenchus dihystera, H. glycines, Meloidog-
yne sp., P. brachyourus, and Rotylenchulus reniformis from soybean [133]. The dataset used
consisted of 3063 microscopic images of the nematodes taken with a 16-megapixel Pana-
sonic camera attached to the light microscope with 5x objective lenses. The images were
preprocessed to remove any geometric distortion, aliasing, noise, shading, and photo-
metric nonlinearity. To extract the features and classify the nematodes, a CNN model
was customised using DenseNet121 with multiple inception blocks. The image data were
augmented using the random transformation of mirroring, rotation, and flip methods to
avoid overfitting and improve the generalisation error. The model was optimised with
stochastic gradient descent. NemaNet revealed the highest accuracy compared to Incep-
tionV3, Xception, InceptionResNetV2, and DenseNet169 while training from scratch and
using transfer learning.

The root galls of the RKN in cucumber (Cucumis sativus) were detected using the
YOLOv5-CMS model [134]. A Canon EOS 60D camera was used to acquire 686 images
of the root galls and the final images were resized to 640 × 640. These image data were
augmented with random rotation, random brightness, and random contrast. The YOLOv5-
CMS model was enhanced with a dual attention module to extract important features
of the root galls image. The K-means ++ algorithm was implemented in place of the K-
means algorithm to cluster the bounding box and obtain the anchor box size. The original
YOLOv5 model used the Complete Intersection over Union (CIoU) loss function, which
was replaced by the SCYLLA-Intersection over Union (SIoU). The experiment showed
that YOLOv5-CMS achieved the highest accuracy, with precision = 94.3%, recall = 88.5%,
F1-score = 91%, and mAP = 94.8%, compared to the faster recurrent–convolutional neural
network (R-CNN), original YOLOv5, YOLOv3, and YOLOv4. The YOLO model performed
well in the real-time object detection problem; however, the object localization accuracy
has been a challenging issue for the YOLO model [138]. To investigate these issues, YOLO
models have also been used to detect and quantify nematodes [135]. This study revealed
that the YOLOv5 model attained the highest accuracy in the classification and counting
of nematodes compared to other models. This study also investigated the performance
of YOLO models in detecting nematodes that overlapped each other in the microscopic
images and showed that the YOLOv7 model performed better than other models in that
regard. This study also highlighted the significant application of mosaic augmentation in
analysing microscopic images.

The deep learning models are further used for detecting nematodes eggs. In addition,
a deep learning-based decision-support tool was built to estimate the nematode eggs and
juvenile populations in microscopic images and recommend optimal nematode manage-
ment strategies in terms of a damage threshold [136]. This tool can estimate nematode
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juveniles and eggs in microscopic images and allow the recording of population informa-
tion in a database to track population growth for future studies and nematode management
recommendations.

Furthermore, soybean cyst nematode eggs were estimated using deep learning [139].
The method used a convolutional selective autoencoder-based deep learning model to
detect and count soybean cyst nematode eggs in microscopic images. This robust method
reported counting one frame per minute in highly cluttered images and 242 frames per
minute in less-cluttered frames. In another study, robotic instruments were developed
to automate the process of SCN egg extraction [140], contributing to decisions regarding
integrated pest management. Thus, different types of state-of-the-art technologies have
been employed to automate nematode detection and enumeration processes.

2.12. Nematode Infestation Detection Using Hyperspectral Imaging

Hyperspectral imaging uses spectroscopy and radiometric methods to observe the bio-
logical sample response at the molecular level when exposed to light [141]. This method can
detect chemical constituents, defects, and contamination of food or agricultural samples. The
spectral signature captured at different growth stages of crops can be used to analyse crop health
conditions [142]. Few studies present the detection of nematode infestation via hyperspectral
interventions. Hyperspectral data were used to detect early infestation of RKN in cotton [143].
This study used a machine learning classifier, linear discriminant analysis (LDA), principal com-
ponent analysis (PCA), and stepwise LDA to classify RKN-infested and non-infested plants. The
machine learning classifier, PCA and SLDA found a spectra range of 350–1000 nm appropriate
for detecting RKN infestation with overall 95% classification accuracy.

Hyperspectral data were used to differentiate between RKN infestation (biotic stress)
and water deficiency (abiotic stress) in tomatoes [144]. This study used HySpex VNIR and
SWIR spectrometers (HySpex, Oslo, Norway) with two halogen light sources to capture
hyperspectral data. The spectra ranging from 400 to 2500 nm were analysed through partial
least square discriminant analysis (PLS-DA) and a PLS support vector machine (PLS-SVM).
The PLS-SVM identified RKN infestation with 90–100% accuracy. It also discriminated
between water deficiency and well-watered plants with 100% accuracy. The short-wave
infrared spectra were linked to O–H and C–H stretches and were most important for the
detection of nematode infestation and the severity of that infestation.

2.13. Nematode Infestation Detection Using Remote Sensing

Remote sensing has recently been used in agriculture to investigate the temporal
and spatial variation of crop morphology and physiological conditions [145]. Remote
sensing is a sensor technology that utilises a range of electromagnetic radiation to acquire
physical data about an object without contact [146]. Hyperspectral remote sensing involves
capturing images of the object at different bandwidths of the wave spectrum and facilitating
the identification of properties that are invisible to a particular bandwidth [147]. Recently,
remote sensing with hyperspectral imaging has been used to detect nematode infestation.
Narrow-band sensors can capture a rich set of data that can be used to analyse the physical
and chemical characteristics and identify the proteins and metabolites triggered by the
immune system of plants [148]. Examples of studies undertaken to detect nematodes using
remote sensing are summarised in Table 5.

Nematode infection in roots causes the spectral variation of leaves, as demonstrated by
a study that used remote sensing to detect RKN infection in coffee crops [149]. A RapidEye
sensor was used to acquire hyperspectral or radiometric data. In addition, the biomass
content, leaf area index (LAI), and chlorophyll content collected from a spoil and plant
development analyser (SPAD) were used to discriminate healthy, moderately infected,
and severely infected plants. This study found that the LAI, biomass content, and SPAD
could not differentiate between healthy and nematode-infected coffee plants. In contrast,
red, near-infrared, and red-edge spectra are advantageous in differentiating healthy and
infected coffee plants. The Normalised Difference Vegetation Index (NDVI) attained the
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highest classification accuracy of 78%, with a kappa coefficient of 0.71, in differentiating
early and severely infected coffee plants.

Table 5. Plant-parasitic nematode detection methods based on remote sensing.

Nematode Species Host References

Meloidogyne exigua, Meloidogyne paranaesis,
Meloidogyne incognita Coffee (Coffea arabica) [149]

Heterodera schachtii, Rhizoctonia solani Sugar beet (Beta vulgaris) [150]

Bursaphelenchus xylophilus Pine tree (genus Pinus) [151]

Heterodera glycine, Meloidogyne incognita,
Meloidogyne javanica, Pratylenchus brachyurus Soybean (Glycine max) [152]

Bursaphelenchus xylophilus Pine (genus Pinus) trees [153]

Meloidogyne incognita Cotton (Gossypium) [154]

Bursaphelenchus xylophilus Pine trees (genus Pinus) [155]

Heterodera schachtii Sugar beet (Beta vulgaris) [156]

Globodera pallida, Globodera rostochiensis Potato (Solanum tuberosum) [157]

Meloidogyne Lettuce (Lactuca sativa) [158]

Bursaphelenchus Xylophilus Pine trees (genus Pinus) [159]

Pratylenchus thornei Wheat (Triticum) [160,161]

The NDVI has also been used to discriminate between wheat cultivar tolerance and
resistance responses to P. thornei in field experiments [160,161]. The NDVI, which is
the difference between the reflectance of near-infrared and red wavelengths, measures
plant greenness. The tolerance of wheat cultivars at 1000-degree days after sowing in
a field with damaging population densities of P. thornei was highly correlated with the
grain yield (R2 = 0.92). The degree days are calculated by averaging the minimum and
maximum temperature to compute the cumulative thermal time in degree days above a
baseline temperature (0 ◦C) [160]. Similarly, wheat cultivar resistance to P. thornei in field
experiments was also highly correlated with glasshouse-derived ratings of resistance [161].
Remote sensing with the NDVI has the potential to allow plant breeders to rank and
select germplasm for tolerance and resistance in a high-throughput field-based system. In
another study, remote sensing was employed to assess nematode (H. schachtii) and fungal
(Rhizoctonia solani) infection in sugar beet fields [150]. Hyperspectral data were taken from
an Airborne Imaging Spectroradiometer for applications and near-range spectral data were
collected using an ASD FieldSpec Pro Spectrometer (Malvern Panalytical, Malvern, UK)
from one metre above the canopy. A Hyperspectral Mapper imaging sensor was utilised to
acquire 126 spectral bands between 450 and 2500 nm. The spectral angle mapper was used
to classify the hyperspectral images and generate the digital map. The important spectral
vegetation indices, the NDVI, water index (WI), chlorophyll content (CC), simple ratio
pigment index (SRPI), and structural independent pigment index (SIPI), were correlated
with the leaf and beet weight measurement and population density. The results showed
that the spectral vegetation indices were highly correlated with beet cyst nematodes in wet
and mild temperatures. The spectral angle mapper (SAM) method attained a classification
accuracy of 72%, with a kappa coefficient of 0.65. Remote sensing in hot and dry seasons
requires careful consideration when detecting nematodes. The inverse distance weighting
interpolation method employed in digital maps is a powerful tool to differentiate the spatial
distribution. A disparity in the spectral and spatial resolution can result from inconsistency
in nematode infection detection.

The infestation of pine trees by B. xylophilus causing pine wilt disease (PWD) has also
been identified using remote sensing and geographical positioning system (GPS) data [151].
Field drone images of pine trees were acquired using a DJI Phantom 4V 1.0 (DJI, Shenzhen,
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China) at two locations in Republic of Korea (Anbi and Wonchang) and GPS data were
collected from a Garmin Oregon 750T. The images were classified into normal pine trees,
PWD-infected trees, bare land, roads, shadows, and grass fields. This study employed
an artificial neural network (ANN) and support vector machine (SVM) to classify the
images. The classification accuracy was computed with a stratified method based on pixels.
Random pixels were selected from each class in the drone image and used as reference
points, then compared with SVM and ANN classifiers. The SVM classifier achieved the
highest accuracy of 94.13% on the Anbi data and 86.59% on the Wonchang data, whereas
the ANN classification performance was slightly lower with 87.43% on the Anbi data and
79.33% on the Wonchang data.

2.14. Detection of Plant-Parasitic Nematodes in the Field

In order to effectively implement field testing, it is important to assess the feasibility
of field operations that encompass the entire detection process, including sample handling,
the amplification process, and result visualisation. PPNs can be identified in the field using
in-field compatible technology, such as a solid-phase-based method for DNA preparation
developed by Flinders Technology Associates (FTA) that can be carried out at room tem-
perature [162]. This method simplifies the field sampling and genomic analysis of PPNs.
Similarly, the FTA method was combined with LAMP to detect M. hapla in the field [163].
This combined approach used a non-toxic reagent and reduced the detection time by one
hour when identifying nematodes in the field. This method also has high sensitivity and
resistance inhibitors such as humic acid and proteins. In addition, DNA extraction kits
are also available to extract DNA directly from soil. For instance, PowerSoil Pro Kits were
used to extract the DNA of P. allius and M. incognita for quantification in field tests [85,90].
However, the accuracy of in-field tests using kits may reduce the detection efficiency due
to the non-uniform distribution of nematodes in soil [164].

3. Discussion

PPNs are diverse species, with each showing a unique response to environmental
factors. Different methods are utilised to detect and enumerate PPNs, with the most pre-
dominant one being manual counting with the aid of a manual microscope. Morphological
identification and image analysis require accurate nematode extraction, particularly for
nematode population enumeration. The optimal extraction method would achieve 100%
efficiency in extracting all the stages of nematodes species regardless of the temperature
and soil type, while taking a shorter time and lower cost in terms of labour and equipment.
The nematode extraction time may vary depending on the sieve size, specific density of the
nematode and/or the extraction process (sedimentation, flotation/centrifugation, elutria-
tion). Nematologists discern the morphological features of nematodes using a microscope;
however, identifying morphological features for long periods can cause eye stress and
fatigue. Besides traditional morphological identification methods, nematodes are detected
using microscopy image analysis methods. Nematode assessment using image analysis
methods achieves a good correlation between manual and automated measurements of
length [114], but there can be a non-significant relationship between manual and automated
measurements of width. This difference is due to inaccuracy in selecting the widest point
on the nematode body. The automated counting method facilitates the estimation of the
prediction error, which is not accounted for in the manual counting process [165].

In addition, the automated counting method saves time compared to manual counting.
The automated fluorescence-based counting method was reported to be 50% faster than
the manual counting method [112]. Nevertheless, the high-throughput counting method
was only able to count single species [165] and could not differentiate between dead
and live nematodes. The skeleton analysis method could discriminate between live and
dead nematodes; however, false detection was increased when live nematodes had a
structure similar to dead nematodes [98]. The detection of overlapped nematodes required
additional pixel computation using skeleton analysis. The algorithm uses the junction pixel



Plants 2024, 13, 3041 16 of 26

and analyses the angles between two branches and compares them with the threshold
angle to separate overlapped nematodes. In conventional image processing and computer
vision methods, images are acquired in different sizes, such as 2048 × 1536 pixels [98],
320 × 240 pixels [111], 1600 × 1200 pixels [97], and 2560 × 1920 [114]. While there is no
specified pixel resolution for microscopic images, it is typically determined by the features
of the microscope camera. Some microscope cameras, such as the Olympus DP73 and DP75,
offer the flexibility to adjust the pixel resolution, providing greater control over acquiring
microscopic images.

Recently, state-of-the-art machine learning/deep learning models have been employed
to identify nematodes using microscopic image analysis. Deep learning methods employ
different convolution neural networks (CNNs) with a variety of input image sizes. Most
of the studies used an image size of 224 × 224 [130,132,133,166]. However, one study
implemented a larger input size (640 × 640) for deep learning because this study used root-
knot nematode galls [134]. Also, Fudickar et al. [167] employed an 820 × 821 input image
size acquired from the Raspberry Pi camera. Further, deep learning models often require
expensive and high computational resources because of the large number of parameters
and high-dimensional input data, limiting their practical application. Nevertheless, various
techniques have been used to reduce the computational complexity. For example, down-
sampling is used to reduce the spatial resolution of the feature map [168]. It can decrease the
training time to remove redundant or irrelevant information; however, it can lead to the loss
of information for small and imbalanced datasets. For instance, the EfficientNet model used
downsampling for the original image to minimise the training time [169]. EfficientNetV2B0-
and EfficientNetV2M-based deep learning models achieved the best performance using
the RMSProp optimiser with brightness augmentation [130]. Nevertheless, the models
could only identify nematodes with perfect shapes and undamaged conditions. Similarly,
computer vision-based methods and convolutional neural networks accurately identified
G. pallida and G. rostochiensis [131]. The advantage of the CNN is its rapid construction
and adaptability to diverse problems, whereas the computer vision method takes time
to build and provides robust performance for species-specific classification. But these
approaches require a large volume of sample data to create landmarks. Another study also
highlighted the importance of a sufficient amount of training datasets to achieve the best
performance from the machine learning model [132]. Training a machine learning model
with a transfer learning approach is better than training from scratch [133]. Further, the
attention mechanism can be used to improve the capability to extract key features [134].
However, challenges might occur due to negligence in the channel, spatial information, and
avoiding local information. These problems can be mitigated using resilient and delicate
convolution block attention module–coordinate attention (CBAM-CA) to capture special
features of the nematode.

The challenge associated with the detection of overlapped nematodes is the unstable
shape and changeable structure. Deep learning models can detect the overlapping of
multiple nematodes without causing extra computational burden [98,135]. Nevertheless,
deep learning models cannot detect nematodes that fall inside one bounding box [135]. A
bounding box is a rectangular box that is used to localise objects in an image. This issue
can be solved using different approaches to detect overlapped nematodes, such as soft
non-maximum suppression [170] and multiclass methods [171].

In analysing microscopic images, image acquisition plays a crucial role in the identifi-
cation of nematodes. The acquisition of images relies on the specimens, microscope and
sensor features and objective lens. Further, it also depends on the skills and expertise of the
microscope operator to utilise the optimal settings of the microscope. Some studies investi-
gated appropriate settings of microscopes and cameras to acquire nematode images [97]
and found that it is always preferable to use the optimal settings of the microscope and
sensors, such as the light source, magnification, pixel resolution, and contrast, to acquire
high-quality microscopic images. This is because most nematodes are transparent and
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colourless, which may cause challenges during the segmentation of microscopic images or
detection of nematodes.

As an alternative to these approaches, molecular diagnostic methods, particularly
PCR, have been used to identify and estimate nematode populations in soil samples. Real-
time PCR is recognised as an excellent method for the identification and quantification
of PPNs [172]. However, the presence of dead nematodes in soil samples hinders the
accurate quantification of nematodes using this method [83]. On the other hand, real-time
PCR estimation showed a high correlation with counts using a microscope of root-lesion
nematodes [84] and Meloidogyne spp. [85]. Nevertheless, the presence of inhibitors in soil
samples can lead to underestimation in molecular assays [85], and non-specific primer sets
can cause secondary amplification, resulting in incorrect estimates of the target DNA [84].
Many studies have reported inconsistencies between real-time PCR and the counts from
microscopes [173,174]. Such discrepancies may be due to the uneven distribution of nema-
todes. The sensitivity of molecular assays can be influenced by soil inhibitors [84], such
as clay and humic substances and the historical presence of nematodes [163]. The efficacy
of molecular assays can also be reduced in soils with lower levels of organics and clay.
While PCR-based techniques and morphological methods can be impractical for large sam-
ple volumes, advanced techniques such as qPCR, microfluidic PCR, and next-generation
sequencing could be the better alternatives for handling numerous samples [2]. Neverthe-
less, no particular molecular technique provides comprehensive taxonomic information;
therefore, the choice of method depends on the sample characteristics, specific research
questions, and available resources [175].

In addition, non-invasive hyperspectral imaging has been reported to be labour- and
time-efficient compared to other methods. However, it generates high-dimensional redun-
dant data that require efficient algorithms for data modelling, processing and displaying
data and images [176,177]. The high-dimensional data can complicate real-time data acqui-
sition and processing [178]. Further, image acquisition requires a greater time because it
does not directly measure the chemical composition or texture of an object [179]. Instead,
it acquires a wider range of spectral data from an object and uses computation models to
interpret the data, and this process requires calibration. Accurate calibration with a white
reference is necessary to account for changes in illumination [177]. The white reference is
established under the same conditions as the raw image, using a white surface board that
facilitates a consistent reflectance of 99%.

Recently, remote sensing methods have also been used to detect PPN infestation.
For instance, spectral bands (near-infrared bands, red, red edge) and the NDVI were
employed to classify the spatial distribution of healthy, severely infected, and moderately
infected coffee plants. However, the classification results were not reliable because of
confusion between bare soil and infection in coffee plants [149]. The study showed an
inverse relationship between biophysical characteristics, biomass, and RKN infection [149],
but this method could not discriminate efficiently between healthy coffee plants and those
with moderate levels of infection. The near-infrared spectral regions (720–1000 nm) are
more accurate in discriminating between healthy and infected plants; nevertheless, the
spectral response gradually deteriorates in both severely and moderately infected coffee
plants. In contrast, in field experiments, the NDVI was highly predictive of wheat tolerance
and resistance responses to P. thornei [160,161].

The spectral vegetation index (SVI) showed a good association between the symptoms
caused by the beet cyst nematode and R. solani [150]. Nevertheless, inconsistency in the
spectral resolution used in the AISA aerial sensor and aerial HyMap sensor might be
a possible cause of the poor correlation between nematodes and SVIs. This resulted in
differences in the spatial resolution of sensors. Further, the use of the SVI can omit crucial
information from spectral segments because dimensionality reduction was used for easy
and faster analysis of spectral information. To avoid these issues, the SAM classification
method is suitable and provides a multi-temporal assessment of crop canopies. The SAM
method was found to be better in generating detailed maps of diseases in crop fields using



Plants 2024, 13, 3041 18 of 26

a hyperspectral sensor compared to the SVI method. In addition, a differential illumination
condition can occur due to the sunlight intensity or topography of the field, which induces
darker pixels. In SAM classification methods, darker pixels are rendered along with the
same vectors [150]. Thus, it can reduce the sampling point for gathering ground truth data,
resulting in a more efficient approach.

An artificial neural network (ANN) and SVM successfully discriminated pine wilt-
infected trees from other land covers in drone images; however, roads and buildings were
detected in some areas, and bare land and grassland were detected as pine wilt-infected
trees [151]. Similarly, the fusion model (YOLOv4 and GoogleNet) was able to classify dead
nematode-infected pine trees in the aerial image with high accuracy [153], but the model
performance was constrained by the inadequate data volume and shorter pine trees that are
hidden in the shadows of larger trees. Furthermore, the remote sensing method required
high computing resources for satellite imagery and aerial photographs.

Remotes sensing uses various spectral bands to identify materials and is sensitive to
specific conditions. The green and NIR spectral bands are most appropriate for distinguish-
ing symptomatic and asymptomatic plants [152]. Remote sensing can be used to monitor
plant growth and the nutrient concentration due to nematode infection, stunting, and
above-ground symptoms. However, remote sensing using a UAV is limited to single-time
data collection from UAV flights. A robust dataset with greater variability is important for
training machine learning models.

In addition, remote sensing is limited by the inadequate resolution (temporal and
spatial), non-homogenous illumination problems, and cloudy weather conditions [180].
Some of these can be avoided by using unmanned aerial vehicles, but finding the optimal
flight parameters (speed, altitude, camera orientation, flight path) is the main challenge
associated with UAV-based remote sensing. UAV sensors are also susceptible to cloudy
weather conditions and light incidence [158]. Thus, light sources play a significant role in
whether data are collected from remote or microscopic sensors.

All the methods used for identifying nematodes have advantages in some aspects and
disadvantages in others. For example, qPCR has proven to be more practical than tradi-
tional methods for identifying and quantifying plant-parasitic nematodes; however, the
presence of decomposed nematodes in samples can lead to inaccuracies in the quantifica-
tion. Additionally, factors like clay and humic substances may result in an underestimation
of nematode numbers. While deep learning methods can detect and estimate plant-parasitic
nematodes more accurately and efficiently than humans, they require a large amount of
data to train complex computational models. Therefore, no single method is entirely accu-
rate for nematode detection and quantification. Instead, the choice of methods depends
on various factors, including the type of host, sample characteristics, sampling techniques,
and the availability of equipment and skilled personnel.

4. Conclusions

This review investigated various methods for identifying and quantifying major PPNs
and analysed their advantages and limitations. Morphological identification emerged as
the most basic approach for taxonomic identification or morphometric characterisation.
However, its efficacy is hindered by insufficient morphological traits and microscopic
anatomical features, necessitating expertise from nematologists for accurate identification.

Molecular methods can be employed to identify specimens at the genus or species
level. Next-generation sequencing is necessary for analysing large volumes of samples.
Despite advancements in molecular technologies, morphological methods remain crucial
for validating taxonomic identification and providing detailed information on biodiversity.
The integration of genetic information from advanced molecular techniques and physical
traits information from morphological methods could offer a better approach to identifying
PPNs and exploring their interactions with plants and microorganisms.

The emerging technologies are promising, but it is important to evaluate their advan-
tages and limitations before implementing them in agricultural industries. Further, the
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implementation of machine learning approaches in analysing spectral imaging data and
genetic data shows potential in enhancing the identification accuracy and automation of
the discovery of genetic markers responsible for parasitism, understanding gene function,
and complex patterns in genomic data. In recent years, several studies have generated sub-
stantial genomic data, images, and bioinformatic algorithms related to nematodes that need
to be managed properly to ensure their accessibility for future studies. Moreover, analysing
the genomes of free-living and parasitic nematodes is essential for comprehending nema-
tode parasitism. Further, investigating genetic dysfunctions or abnormalities resulting from
the loss of specific genes could be important in understanding nematode parasitism.
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Abbreviations

Abbreviations Meaning
AFLP Amplified fragment length polymorphism
ANN Artificial neural network
BKW Basal knobs width
BKTH Basal knobs to head length
CBAM-CA Convolution block attention module-coordinate attention
CC Chlorophyll content
CCVA Custom computer vision algorithm
CIoU Complete intersection over union
CNN Convolution neural network
COI Cytochrome oxidase subunit I
Ct Cycle threshold
DEGO Dorsal oesophageal gland orifice
DFNN Deep feedforward neural network
DNA Deoxyribonucleic acid
FTA Flinders Technology Associates
GPS Geographical positioning system
IGS Intergenic spacer region
ITS Internal transcribed spacers
IDW Inverse distance weighting
J2 Second-stage juvenile
LAI Leaf area index
LDA Linear discriminant analysis
MALDI-TOFMS Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry
mtDNA Mitochondrial DNA
mtMG Mitochondrial metagenomics
NDVI Normalised difference vegetation index
NGS Next-generation sequencing
NIR Near-infrared
PCA Principal component analysis
PCR Polymerase chain reaction
PLS-DA Partial least square discriminant analysis
PLS-SVM PLS support vector machine
PPNs Plant-parasitic nematodes
PWD Pine wilt diseases
ddPCR Droplet digital PCR
qPCR Quantitative polymerase chain reaction
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rDNA Recombinant DNA
RAPD Random amplification of polymorphic DNA
RFLP Restriction fragment length polymorphism
RKN Root-knot nematode
RNN Recurrent neural network
rRNA Ribosomal RNA
SAM Spectral angle mapper
satDNA Satellite DNA
SCAR Sequence-characterized amplified region
SCN Soybean cyst nematodes
SIPI Structural independent pigment index
SPAD Spoil and plant development analyser
SRPI Simple ratio pigment index
SVM Support vector machine
t-SNE t-distributed stochastic neighbour embedding
YOLO You only look once
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