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Abstract This paper reports a new spectral collocation method for numerically solving

two-dimensional biharmonic boundary-value problems. The construction of the Cheby-

shev approximations is based on integration rather than conventional differentiation. This

use of integration allows: (i) the imposition of the governing equation at the whole set of

grid points including the boundary points and (ii) the straightforward implementation of

multiple boundary conditions. The performance of the proposed method is investigated by

considering several biharmonic problems of first and second kinds; more accurate results

and higher convergence rates are achieved than with conventional differential methods.

Keywords: spectral collocation methods, biharmonic problems, multiple boundary condi-

tions, integrated Chebyshev polynomials.

1 Introduction

Biharmonic problems arise in many applications such as in the analysis of fluid flow and

thin-plate bending. Consider the biharmonic equation

∇4v =
∂4v

∂x4
+ 2

∂4v

∂x2∂y2
+

∂4v

∂y4
= b(x, y) (1)

on the square −1 ≤ x, y ≤ 1 subject to two types of boundary conditions

{v,
∂2v

∂n2
} and (2)

{v,
∂v

∂n
} (3)

where b(x, y) is a known driving function and n is the direction normal to the boundary.

In the case of the second-kind biharmonic problem constituted by (1) and (2), one of-

ten prefers to split the governing equation (1) into a set of two weakly coupled Poisson
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equations

∂2v

∂x2
+

∂2v

∂y2
= u (4)

∂2u

∂x2
+

∂2u

∂y2
= b (5)

in which each equation has its own boundary conditions. The solution procedure is thus

straightforward: (i) to solve (5) for the variable u and (ii) to solve (4) for the variable v.

In the case of the first-kind biharmonic problem formed by (1) and (3), the solution

procedure becomes complicated. The choice of the governing equation in the form between

(4)-(5) and (1) has a profound effect on the computing strategy adopted. Using (4) and

(5), one needs to derive a computational boundary condition for the new variable u,

while using (1), one needs to deal with the multiple boundary conditions (two boundary

conditions prescribed at each boundary point). The latter has the advantage of leading

to a smaller system of algebraic equations for equivalent resolution.

Spectral methods have become increasingly popular in the computation of continuum

mechanics problems. The main advantage of these methods lies in their accuracy for

a given number of unknowns. For problems whose solutions are sufficiently smooth,

they exhibit exponential rates of convergence/spectral accuracy. There are three most

commonly used spectral versions, namely the Galerkin-type, tau and collocation methods.

Among them, the spectral collocation/pseudospectral method is particularly attractive

owing to its economy. Comprehensive discussions on spectral methods can be found in

review articles and monographs, see for example [4,5,6,8,9,21,22,23,26].

There are relatively few papers on spectral methods for the direct solution of high-order

problems. In the context of spectral collocation methods, there are two basic techniques

to implementing the multiple boundary conditions. The first implements the multiple

boundary conditions at the expense of leaving a number of interior points out of the
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process of collocating the differential equation (e.g. [3,14,15]); here, it is referred to as

the node-reduction technique (NRT). The second employs interpolants that satisfy the

boundary conditions (e.g. [10,12,26,27]); here, it is referred to as the imposed-kernel

technique (IKT). Both NRT and IKT are capable of giving very rapid convergence. The

latter is more accurate; however, it is difficult to apply the technique to the case of

nonhomogeneous boundary conditions.

Recently, in the context of the radial-basis-function (RBF) collocation method, it was

found that the use of integration instead of conventional differentiation for constructing

the RBF approximations enhances the quality of the approximation of derivatives and

also provides an effective way to implement the multiple boundary conditions [18,20]. For

the former, Kansa et al [13], Hernandez et al [11] and Ling and Trummer [16] made some

discussions: since successively higher-order derivatives of the interpolants have their con-

vergence rates reduced by the order of differentiation (Madych and Nelson [17], theorem

4.4), the use of integrated RBF expansions improves the reduction on the rate of conver-

gence caused by the direct differentiation of the interpolants. For the latter, apart from

the RBF coefficients, there are additional coefficients arising from the integration process

which can be utilized to implement the multiple boundary conditions. There is thus no

need to reduce the number of interior points used for discretizing the governing equation

or to include the boundary conditions in the interpolants.

In this study, a spectral collocation method based on integrated Chebyshev polynomials

for the solution of first- and second-kind biharmonic problems is proposed. Numerical

results will show that the proposed method outperforms the conventional one in terms of

accuracy and convergence rate, especially for the case of first-kind biharmonic problems.

The remainder of the paper is organized as follows. In section 2, Chebyshev spectral

collocation methods based on the proposed integration and conventional differentiation

formulations are presented. In section 3, the proposed method is verified through the
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solution of the second-kind biharmonic problem governed by a set of two weakly coupled

second-order equations and the first-kind biharmonic problem governed by a fourth-order

equation. Section 4 gives some concluding remarks.

2 Chebyshev spectral collocation methods

The Chebyshev spectral collocation method can be described in the following way. An

approximation based on Chebyshev polynomials to the variable v is first introduced. The

set of collocation equations is then generated. The equation system consists of two parts.

The first part is formed by making the associated residual, e.g. (∇4v − b), equal to

zero at the collocation points, while the second part is obtained by forcing the boundary

conditions, e.g. v and ∂v/∂n, to be satisfied at the boundary collocation points. These

tasks need to be conducted in an appropriate manner and they will be presented in detail.

2.1 Chebyshev polynomials

The Chebyshev polynomial of first kind Tk(x) is defined by

Tk(x) = cos(k arccos(x)) k = 0, 1, 2, · · · (6)

where −1 ≤ x ≤ 1. The polynomial Tk(x) can be expanded in power series as

T0(x) = 1 (7)

Tk(x) =
k

2

[k/2]∑
m=0

(−1)m 2k−2m(k − m − 1)!

m!(k − 2m)!
xk−2m, k > 0 (8)

where [k/2] is the integer part of k/2.
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2.2 Conventional differentiation formulation (CDF)

Following standard procedures such as those by Trefethen [26], the conventional Cheby-

shev collocation method can be described as follows.

2.2.1 One-dimensional formulation

Consider a one-dimensional domain: −1 ≤ x ≤ 1 (Figure 1a). The domain of interest is

discretized using the Gauss-Lobatto (G-L) points defined as

{xi}N
i=0 =

{
cos

(
πi

N

)}N

i=0

An approximate solution v is sought in the truncated Chebyshev series form

v(x) =
N∑

k=0

akTk(x) (9)

where {ak}N
k=0 is the set of expansion coefficients to be found. The pth-order derivative

of the variable v is then obtained through differentiation as

dpv(x)

dxp
=

N∑
k=0

ak
dpTk(x)

dxp
(10)

Apart from the capability to provide spectral accuracy, using the cosine-type points (9)

also allows a fast Fourier transform to be used to convert the expansion coefficients {ak}N
k=0

(spectral space) into the nodal variable values {v(xi)}N
i=0 (physical space):

ak =
2

Nc̄k

N∑
i=0

1

c̄i

viTk(xi) (11)

where c̄0 = c̄N = 2, c̄i = 1 for i = 1, 2, · · · , N − 1.
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The values of the derivative dkv/dxk, with k = (1, 2, · · · , p), at the G-L points can be

computed by

d̂v

dx
= D(1)v̂ = Dv̂ (12)

d̂2v

dx2
= D(2)v̂ = D2v̂ (13)

· · · · · · · · · · · ·
d̂pv

dxp
= D(p)v̂ = Dpv̂ (14)

where .̂ labels the vector, e.g., v̂ = (v(x0), v(x1), · · · , v(xN))T , and D(.) are the differenti-

ation matrices. The entries of D (D(1)) are

Dij =
c̄i

c̄j

(−1)i+j

xi − xj

, 0 ≤ i, j ≤ N, i �= j (15)

Dii = − xi

2(1 − x2
i )

, 1 ≤ i ≤ N − 1 (16)

D11 = −DNN =
2N2 + 1

6
(17)

As an alternative approach, the diagonal entries of D can be computed in the way that

represents exactly the derivative of a constant [2]

Dii = −
N∑

j=0,j �=i

Dij (18)

Higher-order derivatives D(p) can be constructed using recursions, see for example [7,27,28],

which are faster and more numerically stable. The roundoff properties of the spectral dif-

ferentiation matrices were studied in, e.g., [1,2] and References therein.

Using (12)-(14), one can reduce ordinary differential equations to systems of algebraic

equations. More details can be found in [26].
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2.2.2 Two-dimensional formulation

Consider a two-dimensional domain: −1 ≤ x, y ≤ 1 (Figure 1b). The domain of interest

is represented by a tensor product grid formed by the G-L points in each coordinate

direction

{xi}Nx

i=0 =

{
cos

(
πi

Nx

)}Nx

i=0

{yj}Ny

j=0 =

{
cos

(
πj

Ny

)}Ny

j=0

An approximate solution is sought in the polynomial v(x, y) of degree at most equal to

Nx and Ny in the x− and y−directions, respectively. The Chebyshev approximations

for derivatives over 2D grids can be constructed using the tensor product theory [26].

Two horizontal and vertical blocks are introduced here for the purpose of computing the

derivatives with respect to x and y, respectively (Figure 1b). In each block, the grid points

are numbered from bottom to top and from left to right. The discretized boundaries do

not include the four corners of a square.

In the horizontal block, the values of relevant derivatives with respect to x at the grid

points can be computed by

∂̂v
∂x

=
(D(1) ⊗ I

)
v̂, ∂̂2v

∂x2 =
(D(2) ⊗ I

)
v̂,

∂̂4v
∂x4 =

(D(4) ⊗ I
)
v̂,

̂∂2

∂x2

(
∂2v
∂y2

)
=
(D(2) ⊗ I

)
∂̂2v
∂y2

(19)

where D(.) are the differentiation matrices of dimension (Nx + 1) × (Nx + 1) obtained

from the one-dimensional case, I is the identity matrix of dimension (Ny − 1)× (Ny − 1),

and ⊗ denotes the Kronecker tensor product (direct product). Using the values of the

boundary condition v and its tangent derivative ∂2v/∂y2 at the boundary points along

the two vertical lines, (19) is rewritten as

∂̂v
∂x

= D̃(1x)v̂ip + k̂(1x), ∂̂2v
∂x2 = D̃(2x)v̂ip + k̂(2x),

∂̂4v
∂x4 = D̃(4x)v̂ip + k̂(4x),

̂∂2

∂x2

(
∂2v
∂y2

)
= D̃(2xy)

(
∂̂2v
∂y2

)
ip

+ k̂(2xy)
(20)
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where v̂ip and
(

∂̂2v
∂y2

)
ip

are vectors of interior values, D̃(.) and k̂(.) are known matrices and

vectors. For homogeneous boundary conditions, (20) is reduced to

∂̂v
∂x

= D̃(1x)v̂ip,
∂̂2v
∂x2 = D̃(2x)v̂ip,

∂̂4v
∂x4 = D̃(4x)v̂ip,

̂∂2

∂x2

(
∂2v
∂y2

)
= D̃(2xy)

(
∂̂2v
∂y2

)
ip

(21)

which are often used for the structural and vibration analysis of thin plates.

Similarly, in the vertical block, the values of relevant derivatives with respective to y at

the grid points can be computed by

∂̂v
∂y

= D̃(1y)v̂ip + k̂(1y), ∂̂2v
∂y2 = D̃(2y)v̂ip + k̂(2y),

∂̂4v
∂y4 = D̃(4y)v̂ip + k̂(4y), ̂∂2

∂y2

(
∂2v
∂x2

)
= D̃(2yx)

(
∂̂2v
∂x2

)
ip

+ k̂(2yx)
(22)

where the boundary condition v and its tangent derivative ∂2v/∂x2 at the boundary points

along the two horizontal lines are transformed into k̂(.)s.

Using the results ∂̂2v
∂y2 obtained from (22) and ∂̂2v

∂x2 obtained from (20), the mixed partial

derivatives in (20) and (22) are expressed in terms of the values of v at the interior points

as
∂̂4v

∂x2∂y2 = D̃(4xy)v̂ip + k̂(4xy)

∂̂4v
∂y2∂x2 = D̃(4yx)v̂ip + k̂(4yx)

(23)

In solving the second-kind biharmonic problem, the imposition of (4) and (5) at the

(Nx − 1)(Ny − 1) interior points (xi, yi), i = (1, 2, · · · , Nx − 1), j = (1, 2, · · · , Ny − 1)

using (20) and (22) yields two sets of algebraic equations for the values of v and u at the

interior points which are only weakly coupled. These systems can be solved separately

using Gaussian elimination.

For the first-kind biharmonic problem, there are two boundary conditions prescribed at

each boundary point. The multiple boundary conditions can be implemented using the

NRT that was briefly reviewed earlier. Following the work of Karageorghis [14], the
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governing equation (1) is collocated at the (Nx − 3)(Ny − 3) interior points (xi, yi), i =

(2, 3, · · · , Nx − 2), j = (2, 3, · · · , Ny − 2). Along the two vertical lines, the normal

derivative boundary conditions ∂v/∂n are imposed at the 2(Ny − 1) boundary points bx1

and bx2; along the two horizontal lines, they are imposed at the 2(Nx − 3) interior points

of by1 and by2. This leads to a set of (Nx − 1)(Ny − 1) equations in (Nx − 1)(Ny − 1)

unknowns

(
D̃(4x) + D̃(4xy) + D̃(4yx) + D̃(4y)

)
ip∗

v̂ip =
(
b̂ − k̂(4x) − k̂(4xy) − k̂(4yx) − k̂(4y)

)
ip∗

(24)

D̃(1x)
bx1,bx2v̂ip =

(
∂̂v

∂x

)
bx1,bx2

− k̂
(1x)
bx1,bx2 (25)

D̃(1y)
by1∗,by2∗ v̂ip =

(
∂̂v

∂y

)
by1∗,by2∗

− k̂
(1y)
by1∗,by2∗ (26)

where ip∗ ⊂ ip, by1∗ ⊂ by1, by2∗ ⊂ by2 (as defined above). The resulting algebraic system

can be solved using Gaussian elimination.

As an alternative approach, the multiple boundary conditions can be imposed using the

IKT (the interpolants satisfy the boundary conditions). For example, in the analysis of

clamped thin-plate problems, one can first multiply interpolating polynomials by (1−x2)

and (1 − y2) and then delete appropriate numbers of columns and rows of the system

matrix. More details can be found in [26,27], where MATLAB software packages imple-

menting pseudospectral methods are also provided.

2.3 Proposed integration formulation (PIF)

The Chebyshev expressions representing the dependent variable and its derivatives in the

governing equation are constructed through integration instead of conventional differenti-

ation. This use of integration produces additional coefficients (integration constants) that

can be utilized for the purpose of forcing the multiple boundary conditions as well as the

10



differential equation on the boundaries. (The detailed implementation of the collocation

formulation based on integration using radial basis functions for the direct solution of

high-order differential equations was reported in [18,20].)

2.3.1 One-dimensional formulation

Consider a one-dimensional domain, −1 ≤ x ≤ 1. The domain is discretized using

the G-L points (Figure 1a). Since the construction process of the PIF starts with the

approximation of a derivative rather than with the approximation of its original function,

it may have many eligible starting points. For this reason, a scheme order is introduced

here. The pth-order PIF scheme, denoted by PIF-p, is an approximation scheme in which

the pth-order derivative is first sought in the truncated Chebyshev series form and then

integrated p times to obtain expressions for lower-order derivatives and the function itself

dpv(x)

dxp
=

N∑
k=0

akTk(x) =
N∑

k=0

akI
(p)
k (x) (27)

dp−1v(x)

dxp−1
=

N∑
k=0

akI
(p−1)
k (x) + c1 (28)

dp−2v(x)

dxp−2
=

N∑
k=0

akI
(p−2)
k (x) + c1x + c2 (29)

· · · · · · · · · · · · · · ·
dv(x)

dx
=

N∑
k=0

akI
(1)
k (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!
+ · · · + cp−2x + cp−1 (30)

v(x) =
N∑

k=0

akI
(0)
k (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · + cp−1x + cp (31)

11



where I
(p−1)
k (x) =

∫
I

(p)
k (x)dx, I

(p−2)
k (x) =

∫
I

(p−1)
k (x)dx, · · · , I

(0)
k (x) =

∫
I

(1)
k (x)dx. These

integrals can be determined by using recurrence relations [23]

∫
T0(x)dx = T1(x) (32)∫
T1(x)dx =

1

4
[T0(x) + T2(x)] (33)∫

Tk(x)dx =
1

2

[
Tk+1(x)

(k + 1)
− Tk−1(x)

(k − 1)

]
, k > 1 (34)

or integrating (7)-(8) directly, e.g., for k > 0:

I
(p−1)
k (x) =

∫
Tk(x)dx =

k

2

[k/2]∑
m=0

(−1)m 2k−2m(k − m − 1)!

m!(k − 2m + 1)!
xk−2m+1 (35)

I
(p−2)
k (x) =

∫
I

(p−1)
k (x)dx =

k

2

[k/2]∑
m=0

(−1)m 2k−2m(k − m − 1)!

m!(k − 2m + 2)!
xk−2m+2 (36)

· · · · · · · · · · · · · · ·

I
(0)
k (x) =

∫
I

(1)
k (x)dx =

k

2

[k/2]∑
m=0

(−1)m 2k−2m(k − m − 1)!

m!(k − 2m + p)!
xk−2m+p (37)

The evaluation of (27)-(31) at the G-L points leads to

d̂pv

dxp
= I(p)ŝ (38)̂dp−1v

dxp−1
= I(p−1)ŝ (39)

· · · · · · · · ·
d̂v

dx
= I(1)ŝ (40)

v̂ = I(0)ŝ (41)

where I(p), I(p−1), · · · , I(0) are the integration matrices and

ŝ = (a0, a1, · · · , aN , c1, c2, · · · , cp)
T . For convenience of computation, I(p), I(p−1), · · · , I(1)

are augmented using zero-submatrices so that they have the same dimension as I(0).
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Phillips and Karageorghis [24] employed integrated expansions of ultraspherical polyno-

mials, of which the Chebyshev and Legendre polynomials are important special cases,

for solving one-dimensional linear constant-coefficient second-order boundary-value prob-

lems. The differential equation is integrated twice; formulae relating the coefficients in the

integrated expansions to those of the original expansion are proved. It is different from

that method, the proposed integrated-expansion method is based on a collocation scheme.

The differential equation is not integrated; integration is only used for the construct of the

approximations. For the purpose of illustration, the present method is described in de-

tail for the solution of a simple ordinary differential equation, namely d4v(x)/dx = b(x),

subject to Dirichlet boundary conditions: v(x0) = α, dv(x0)/dx = α, v(xN) = β and

dv(xN)/dx = β. Using PIF-4, one can obtain the following square system of algebraic

equations

N∑
k=0

akI
(4)
k (x0) + 0c1 + 0c2 + 0c3 + 0c4 = b(x0) (42)

N∑
k=0

akI
(4)
k (x1) + 0c1 + 0c2 + 0c3 + 0c4 = b(x1) (43)

· · · · · · · · · · · · · · · · · ·
N∑

k=0

akI
(4)
k (xN) + 0c1 + 0c2 + 0c3 + 0c4 = b(xN) (44)

N∑
k=0

akI
(0)
k (x0) +

x3
0

6
c1 +

x2
0

2
c2 + x0c3 + c4 = α (45)

N∑
k=0

akI
(1)
k (x0) +

x2
0

2
c1 + x0c2 + c3 + 0c4 = α (46)

N∑
k=0

akI
(0)
k (xN) +

x3
N

6
c1 +

x2
N

2
c2 + xNc3 + c4 = β (47)

N∑
k=0

akI
(1)
k (xN) +

x2
N

2
c1 + xNc2 + c3 + 0c4 = β (48)

for the unknown vector (a0, a1, · · · , aN , c1, c2, c3, c4)
T , in which the first (N +1) equations

are used for collocating the differential equation and the last 4 equations are employed
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for imposing the boundary conditions. The accuracy of the proposed method for solv-

ing high-order ordinary differential equations was reported in [19]. This study is con-

cerned with two-dimensional biharmmonic equations. One distinguishing feature of the

two-dimensional formulation over the one-dimensional formulation is that the spectral

coefficients are converted into the nodal variable values.

2.3.2 Two-dimensional formulation

Consider a two-dimensional domain, −1 ≤ x, y ≤ 1. The domain is represented through

a tensor product grid (Figure 1b). As with the CDF case, two horizontal and vertical

blocks are formed for computing the derivatives with respect to the x− and y−directions,

respectively (Figure 1b). The solution procedure involves the following steps

(i) To transform the spectral coefficients {si}N+p
i=0 into the nodal variable values {vi}N

i=0.

Here, it is referred to as a conversion process.

(ii) To use Kronecker products as usual to construct the approximations for derivatives

over a tensor product grid of the horizontal and vertical blocks.

(iii) To compute the mixed partial derivatives over a grid using the relevant results of the

horizontal and vertical blocks obtained from step (ii).

(iv) To discretize the governing equation at the interior points.

(v) To solve the obtained system of algebraic equations.

The most important difference between the two formulations occurs at step (i). For the

PIF case, the set of unknown coefficients becomes larger owing to the presence of integra-

tion constants. It thus allows one to add additional equations to the conversion system.

These extra equations will be exploited to impose the governing equation on the bound-

aries for the case of second-order equations (single boundary condition), and the governing

equation on the boundaries together with normal derivative boundary conditions for the

case of fourth-order equations (multiple boundary conditions). It is noted that these
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conversion processes need to be carried out numerically because no such a fast Fourier

transform algorithm is available here. Other steps (ii)-(v) in the above flowchart are sim-

ilar to those of the CDF case and therefore, they are omitted here (the matrix-vector

forms of the CFD case can be used here by simply replacing D with I).

For step (i), only conversion processes in the horizontal block (x−direction) are described

in detail here (those in the vertical block (y−direction) are conducted in the same manner).

To simplify the notation, subscripts x will be dropped.

As mentioned earlier, the PIF-p scheme permits one to approximate a function and its

derivatives of orders up to p. The scheme order p should be chosen to be less than

or equal to the order of the differential equation. In solving the first-kind biharmonic

problems governed by a fourth-order equation, the PIF-4 scheme is employed to represent

the derivatives ∂4v/∂x4 and ∂4v/∂y4, while the PIF-2 scheme is utilized for computing

the mixed partial derivatives according to

∂4v

∂x2∂y2
=

∂2

∂x2

(
∂2v

∂y2

)
and

∂4v

∂y2∂x2
=

∂2

∂y2

(
∂2v

∂x2

)

In solving the second-kind biharmonic problem governed by a set of two second-order

equations, all derivatives are approximated using the PIF-2 scheme.

Along each line in a tensor product grid (one-dimensional domain), the PIF-2 scheme
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leads to

v0 =
N∑

k=0

akI
(2)
k (x0) + x0c1 + c2

· · · · · · · · · (49)

vN =
N∑

k=0

akI
(2)
k (xN) + xNc1 + c2

f1 =
N∑

k=0

akI
(α)
k (x0) + α1c1 + α2c2

f2 =
N∑

k=0

akI
(β)
k (xN) + β1c1 + β2c2

while the PIF-4 scheme results in

v0 =
N∑

k=0

akI
(4)
k (x0) +

x3
0

6
c1 +

x2
0

2
c2 + x0c3 + c4

· · · · · · · · · · · · · · · (50)

vN =
N∑

k=0

akI
(4)
k (xN) +

x3
N

6
c1 +

x2
N

2
c2 + xNc3 + c4

f1 =
N∑

k=0

akI
(α)
k (x0) + α1c1 + α2c2 + α3c3 + α4c4

f2 =
N∑

k=0

akI
(β)
k (xN) + β1c1 + β2c2 + β3c3 + β4c4

f3 =
N∑

k=0

akI
(γ)
k (x0) + γ1c1 + γ2c2 + γ3c3 + γ4c4

f4 =
N∑

k=0

akI
(θ)
k (xN) + θ1c1 + θ2c2 + θ3c3 + θ4c4

where the last two equations in (49) and the last four equations in (50) are additional

equations representing ‘extra information’ fi. Tables 1 and 2 present in detail the infor-

mation fi used for computing ∂2v/∂x2 in the solution of (4), and ∂2v/∂x2, ∂4v/∂x4 and

∂4v/∂x2∂y2 in the solution of (1), respectively.
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Since the two systems (49) and (50) have similar structures, it is convenient to write them

in the following matrix-vector form

⎧⎪⎨⎪⎩ v̂

f̂

⎫⎪⎬⎪⎭ = C

⎧⎪⎨⎪⎩ â

ĉ

⎫⎪⎬⎪⎭ = Cŝ (51)

where C is the conversion matrix. The dimensions of C and f̂ are (N + 3) × (N + 3)

and 2 × 1 for the PIF-2 scheme, and (N + 5) × (N + 5) and 4 × 1 for the PIF-4 scheme,

respectively. Solving (51) yields

ŝ = C−1

⎧⎪⎨⎪⎩ v̂

f̂

⎫⎪⎬⎪⎭ (52)

Substitution of (52) into (38)-(40) leads to

d̂pv

dxp
= I(p)C−1

⎧⎪⎨⎪⎩ v̂

f̂

⎫⎪⎬⎪⎭
· · · · · · · · · · · · · · · (53)

d̂v

dx
= I(1)C−1

⎧⎪⎨⎪⎩ v̂

f̂

⎫⎪⎬⎪⎭
where p ≤ 2 for PIF-2 and p ≤ 4 for PIF-4. Expressions (53) can be rewritten as

d̂pv

dxp
= Ĩ(p)v̂ + ĥ(p)

· · · · · · · · · (54)

d̂v

dx
= Ĩ(1)v̂ + ĥ(1)

where Ĩ(.) and ĥ(.) are known matrices and vectors. It is noted that the vectors f̂ on the

right-hand side of (53) involve terms which are given (e.g., known driving functions and

boundary conditions) or easily computed (tangent derivatives of boundary conditions),
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except for the special term

∂2

∂x2

(
∂2v

∂y2

)
at the two end points. The values of this term at the collocation points are not known so

that one needs to use its expression (a sum of the nodal variable values) instead. Hence,

it will be inserted back into the integration matrix
(I(.)C−1

)
via the last two columns.

After performing steps (i), (ii) and (iii), the boundary conditions are incorporated into the

approximations. Furthermore, the governing equation is forced to be satisfied exactly at

the boundary points bx1, bx2, by1 and by2. As a result, step (iv) is then used for collocating

the governing equations at the interior points only. The obtained system can be solved

using Gaussian elimination for the nodal variable values.

For a given N , although the PIF case involves an additional algebraic polynomial of degree

equal to 3 for PIF-4 and 1 for PIF-2, it still requires exactly the same discretization (mesh

size) as the CDF case in seeking the approximate solution in terms of nodal variable values.

Furthermore, the system matrix obtained by PIF has the same dimension as that yielded

through CDF.

For the CDF case, the question here is how it works when an algebraic polynomial is

added to (9) in order to have “the same form” as the PIF case, i.e.,

v(x) =
N∑

k=0

akTk(x) + c1
xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · cp−1x + cp (55)

It can be seen that a set of polynomials
(
{Tk}N

k=0,
xp−1

(p−1)!
, · · · , x, 1

)
in (55) is not linearly

independent because the first and last two polynomials are identical. Consequently, it

cannot further proceed with the same treatment of multiple boundary conditions as for

the PIF case.

The proposed formulation provides an effective way to implement the multiple boundary
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conditions. However, it requires more work to construct 1-D Chebyshev approximations

largely because of the need for a numerical conversion of spectral space (the coefficients)

into physical space (the grid values). Fortunately, these calculations are conducted in

one-dimensional domains only, and hence they do not add greatly to the computational

cost.

3 Numerical results

Several biharmonic boundary-value problems including the static analysis of thin-plate

are considered in this section to investigate the performance of the proposed method. A

rigorous discussion of thin-plate problems is available in many texts, see, e.g., [25]. The

results obtained by CDF are also presented for comparison. The accuracy of a numerical

solution produced by an approximate scheme is measured via the norm of relative errors

of the solution

Ne(φ) =

√√√√√√
∑nip

i=1

(
φ

(e)
i − φi

)2

∑nip

i=1

(
φ

(e)
i

)2 (56)

where nip is the number of interior points, φ
(e)
i and φi are the exact and computed values

of the solution φ at point i. Another important measure is the order of the accuracy

defined by

Ne(N) ≈ γ

(
1

N

)θ

= O(N−θ) (57)

where γ and θ are the exponential model’s parameters. Given a set of observations, these

parameters can be found by the general linear least squares technique.
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3.1 Problem 1: simply-supported square-thin-plate

Consider a simply-supported square-thin-plate (−1 ≤ x, y ≤ 1) under the action of a

distributed loading of the form

b(x, y) = 4 sin(πx) sin(πy) (58)

The boundary conditions for the simply-supported plate [25] are

v = 0 and
∂2v

∂n2
= 0

This problem can be solved analytically and the exact solution for the deflection is

v(e)(x, y) =
1

π4
sin(πx) sin(πy) (59)

which is plotted in Figure 2. This is a biharmonic boundary-value problem of second kind.

The governing equation (1) is split into two Poisson equations (4) and (5) with Dirichlet

boundary conditions. Several tensor product grids are employed to study the behaviour

of convergence. The obtained results concerning the conditioning of the system matrix,

the error norms of the solutions v and u, and the order of the accuracy are presented in

Table 3. The condition numbers evaluated here are in 2-norm, the ratio of the largest

singular value of the system matrix to the smallest. It can be seen that both formulations

converge at exponential rates. The orders of Ne of the solution u for the first five sets

are O(N−19.24) and O(N−17.38) for PIF and CDF, respectively; the proposed formulation

provides faster convergence. In terms of accuracy, the PIF case yields more accurate

results than the CDF case for all grids employed. For example, the errors Ne(u) and

Ne(v) at a grid of 10 × 10 are 7.19 × 10−7 and 9.84 × 10−7 for PIF, and 1.02 × 10−5 and

1.30× 10−5 for CDF, respectively. For finer grids of 18× 18 and 20× 20, their errors are

extremely small (not exactly zero due to rounding errors on the computer). In terms of
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the conditioning of the system, the proposed formulation leads to matrices with slightly

lower condition numbers than those which arise in the conventional one.

3.2 Problem 2: clamped square-thin-plate

A square thin-plate (−1 ≤ x, y ≤ 1) with built-in edges is considered. The boundary

conditions for the clamped thin-plate [25] are

v = 0 and
∂v

∂n
= 0

Given the following load distribution

b(x, y) = 4 cos(πx) cos(πy) + cos(πx) + cos(πy) (60)

the exact solution for the deflection can be verified to be

v(e)(x, y) =
1

π4
[1 + cos(πx)] [1 + cos(πy)] (61)

which is plotted in Figure 3. This is a biharmonic problem of first-kind. In the present

work, the governing equation (1) is solved directly, i.e. without splitting it into two Pois-

son equations. For the CDF case, the NRT and IKT are both employed to implement

the multiple boundary conditions. The obtained results concerning the conditioning of

the system matrix, the error norm of the solution v, and the order of the accuracy are

presented in Table 4. The PIF approach yields the most accurate results, followed by IKT

and then by NRT. For example, using a grid of 12× 12, Nes are 5.27× 10−9, 3.80× 10−8

and 2.24 × 10−5, respectively. Furthermore, the proposed approach produces faster con-

vergence. For the first five grids, the three approaches PIF, IKT and NRT converge

apparently as O(N−21.10), O(N−19.13) and O(N−13.36), respectively. The results obtained

by NRT are far less accurate (almost three orders of magnitudes higher) and their conver-
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gence is much slower than the others, probably due to the fact that this technique does

not collocate the governing equation at every interior point. The conditioning numbers

which arise in the PIF case are slightly less than those yielded through the CDF case.

3.3 Problem 3: Boundary conditions of complicated shapes

The purpose of giving this example here is to further verify the proposed method for

cases, where the prescribed boundary conditions v and ∂v/∂n are of complicated shapes

(non-homogeneous boundary conditions). Consider a square domain −1 ≤ x, y ≤ 1. The

driving function is given by

b(x, y) = 16(π2 − 1)2 [sin(2πx) cosh(2y) − cos(2πx) sinh(2y)] (62)

and the prescribed boundary conditions are

v = − sinh(2y) (63)

∂v

∂x
= 2π cosh(2y) (64)

along the two vertical lines and

v = sin(2πx) cosh(±2) − cos(2πx) sinh(±2) (65)

∂v

∂y
= 2 [sin(2πx) sinh(±2) − cos(2πx) cosh(±2)] (66)

along the two horizontal lines. The exact solution can be found as

v(e)(x, y) = sin(2πx) cosh(2y) − cos(2πx) sinh(2y) (67)

The plot of (67) is shown in Figure 4. Unlike clamped thin-plate bending problems, all

boundary data here are non-zero. It is difficult to apply the IKT to this problem; only the
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NRT is employed here. Results concerning the error norm of the solution v obtained by

PIF and CDF are shown in Tables 5, where similar remarks can be made as for thin-plate

bending problems.

By regarding the results of the CDF case for low- and high-order equations as the basis,

it can be seen that the performance of PIF is enhanced with increasing order of the

differential equation. For example, the value difference of θ in O(N−θ) between the two

formulations is about 2 for Poisson equations (Table 3), but up to about 5 for biharmonic

equations (Table 5). The proposed method appears to be particularly well suited to

high-order equations with non-homogeneous boundary conditions.

One important result here is the PIF yields faster convergence with respect to mesh re-

finement than the CDF. From the literature, it has been shown that successively higher

derivatives of the interpolants have their convergence rates reduced by the order of differ-

entiation (e.g., Madych and Nelson [17], theorem 4.4, page 226 for RBFs; Trefethen [26],

theorem 4, page 34). Here, we have also numerically investigated the order of accuracy of

the Chebyshev collocation scheme for the approximation of a function and its derivatives.

Consider a function y = sin(πx), −1 ≤ x ≤ 1. Using N = (6, 8, · · · , 22), the convergence

rates obtained are of O(N−24.82), O(N−23.40), O(N−21.48) and O(N−19.61) for the approxi-

mation of the first-, second-, third- and fourth-order derivatives, respectively. It can be

seen that the convergence rate is a decreasing function of the order of the derivative.

It appears that the use of integration, which is a smoothing operation, to construct the

Chebyshev approximations improves the reduction on the rate of convergence caused by

the direct differentiation of the interpolants, and it also provides a more effective way to

implement the multiple boundary conditions. These are the main distinguishing features

of the proposed method. It should be emphasized that all comparisons of accuracy and

convergence rate between the proposed and conventional methods are based on the same

discretizations (“mesh size”).
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4 Concluding remarks

This paper reports a spectral collocation method based on integrated Chebyshev polyno-

mials for numerically solving biharmonic boundary-value problems. The use of integration

to construct the approximations allows the multiple boundary conditions to be incorpo-

rated more efficiently. The governing equations are also forced to be satisfied exactly at

the boundary points through the process of converting spectral space into physical space.

Apart from the conversion process, the proposed and conventional methods can be im-

plemented in a similar fashion. For a given N , the proposed method employs exactly the

same spectral tensor product grid and this leads to a system matrix of the same dimen-

sion. Numerical results show that its performance is superior to those of the conventional

methods regarding accuracy and convergence rate. We believe that the proposed method

is applicable to higher-order partial differential equations and to other sets of orthogonal

polynomials.
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Table 1: ∇2v = u: extra information used for constructing a conversion matrix

Term Scheme Extra information
∂2v
∂x2 PIF-2 f1 = ∂2v

∂x2 (x0) = b(x0) − ∂2v
∂y2 (x0)

f2 = ∂2v
∂x2 (xN) = b(xN) − ∂2v

∂y2 (xN)
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Table 2: ∇4v = b: extra information used for constructing a conversion matrix

Term Scheme Extra information
∂2v
∂x2 PIF-2 f1 = ∂v

∂x
(x0)

f2 = ∂v
∂x

(xN)

∂2

∂x2

(
∂2v
∂y2

)
PIF-2 f1 = ∂

∂x

(
∂2v
∂y2

)
(x0) = ∂2

∂y2

(
∂v
∂x

)
(x0)

f2 = ∂
∂x

(
∂2v
∂y2

)
(xN) = ∂2

∂y2

(
∂v
∂x

)
(xN)

∂4v
∂x4 PIF-4 f1 = ∂v

∂x
(x0)

f2 = ∂v
∂x

(xN)

f3 = ∂4v
∂x4 (x0) = b(x0) − ∂4v

∂y4 (x0) − 2 ∂2

∂x2

(
∂2v
∂y2

)
(x0)

f4 = ∂4v
∂x4 (xN) = b(xN) − ∂4v

∂y4 (xN) − 2 ∂2

∂x2

(
∂2v
∂y2

)
(xN)
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Table 3: Problem 1, simply-supported thin plate: A comparison of the condition number
and the accuracy between CDF and PIF. Both methods use the same discretizations and
they result in the systems of algebraic equations of the same number of unknowns. The
order of accuracy is measured for the first five sets. N = Nx = Ny; a(b) : a × 10b.

N + 1 Conditioning Ne(u) Ne(v)
CDF PIF CDF PIF CDF PIF

6 1.66(1) 1.77(1) 2.71(-2) 5.53(-3) 5.54(-2) 1.10(-2)
8 5.41(1) 5.14(1) 5.74(-4) 7.25(-5) 8.12(-4) 1.33(-4)
10 1.39(2) 1.24(2) 1.02(-5) 7.19(-7) 1.30(-5) 9.84(-7)
12 3.02(2) 2.60(2) 1.31(-7) 6.39(-9) 1.59(-7) 7.78(-9)
14 5.81(2) 4.89(2) 1.29(-9) 4.60(-11) 1.52(-9) 5.27(-11)
16 1.02(3) 8.49(2) 1.01(-11) 2.74(-13) 1.17(-11) 3.03(-13)
18 1.67(3) 1.38(3) 6.44(-14) 3.13(-15) 7.51(-14) 4.15(-15)
20 2.60(3) 2.13(3) 3.92(-15) 2.62(-15) 9.28(-15) 3.86(-15)

O(N−17.38) O(N−19.24) O(N−17.94) O(N−19.88)

30



Table 4: Problem 2, clamped thin-plate: A comparison of the condition number and the
accuracy between CDF and PIF. Both methods use the same discretizations and they
result in the systems of algebraic equations of the same number of unknowns. The order
of accuracy is measured for the first five sets. N = Nx = Ny; NRT: node-reduction
technique; and IKT: kernel technique.

N + 1 Conditioning Ne(v)
CDF PIF CDF PIF

NRT IKT NRT IKT
6 4.40(2) 1.56(2) 1.68(2) 1.70(-1) 3.44(-2) 2.12(-2)
8 3.60(3) 1.67(3) 1.50(3) 1.92(-2) 3.32(-4) 1.31(-4)
10 2.02(4) 1.09(4) 8.85(3) 8.62(-4) 3.90(-6) 8.39(-7)
12 9.21(4) 5.11(4) 3.89(4) 2.24(-5) 3.80(-8) 5.27(-9)
14 3.48(5) 1.87(5) 1.37(5) 3.91(-7) 3.04(-10) 2.97(-11)
16 1.11(6) 5.75(5) 4.12(5) 4.92(-9) 2.03(-12) 1.97(-13)
18 3.14(6) 1.54(6) 1.08(6) 4.72(-11) 2.35(-13) 5.50(-14)
20 7.93(6) 3.71(6) 2.59(6) 3.86(-12) 2.54(-13) 5.18(-14)

O(N−13.36) O(N−19.13) O(N−21.10)
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Table 5: Problem 3, first-kind biharmonic problem, non-homogeneous boundary condi-
tions: A comparison of accuracy and convergence between CDF and PIF. Both methods
use the same discretizations and they result in the systems of algebraic equations of the
same number of unknowns. The order of accuracy is measured for the first eight sets.
N = Nx = Ny.

N + 1 Ne(v)
DF IF

6 1.39(0) 8.25(-1)
8 3.48(-1) 5.03(-2)
10 6.78(-2) 1.71(-3)
12 6.92(-3) 5.33(-5)
14 4.78(-4) 1.54(-6)
16 2.40(-5) 3.88(-8)
18 9.19(-7) 8.37(-10)
20 2.76(-8) 1.55(-11)
22 6.87(-10) 2.67(-12)
24 2.96(-10) 4.21(-12)

O(N−13.02) O(N−18.42)
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a) one-dimensional domain

b) two-dimensional domain

horizontal block

vertical block

bx1 bx2

by1

by2

ip

Figure 1: Geometry and discretization. ip: interior points; bx, by: boundary points.
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Figure 2: Problem 1: exact solution.
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Figure 3: Problem 2: exact solution.
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Figure 4: Problem 3: exact solution.
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