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Myocarditis is heart muscle inflammation that is becoming more prevalent these days, especially with the prevalence of COVID-19.
Noninvasive imaging cardiac magnetic resonance (CMR) can be used to diagnose myocarditis, but the interpretation is time-
consuming and requires expert physicians. Computer-aided diagnostic systems can facilitate the automatic screening of CMR images
for triage. +is paper presents an automatic model for myocarditis classification based on a deep reinforcement learning approach
called as reinforcement learning-based myocarditis diagnosis combined with population-based algorithm (RLMD-PA) that we
evaluated using the Z-Alizadeh Sani myocarditis dataset of CMR images prospectively acquired at Omid Hospital, Tehran.+is model
addresses the imbalanced classification problem inherent to the CMR dataset and formulates the classification problem as a sequential
decision-making process.+e policy of architecture is based on convolutional neural network (CNN). To implement thismodel, we first
apply the artificial bee colony (ABC) algorithm to obtain initial values for RLMD-PA weights. Next, the agent receives a sample at each
step and classifies it. For each classification act, the agent gets a reward from the environment in which the reward of the minority class
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is greater than the reward of the majority class. Eventually, the agent finds an optimal policy under the guidance of a particular reward
function and a helpful learning environment. Experimental results based on standard performance metrics show that RLMD-PA has
achieved high accuracy for myocarditis classification, indicating that the proposed model is suitable for myocarditis diagnosis.

1. Introduction

Myocarditis is a condition that causes inflammation of the
heart muscle [1]. It can affect heart pump function as well as
electrical activation and conduction, resulting in heart failure
and arrhythmia, respectively. +e etiology is diverse, in-
cluding infection (e.g., viral infections such as COVID-19 and
parvovirus) [2], systemic inflammatory and autoimmune
diseases, and drug reactions. Symptoms of myocarditis in-
clude chest pain, fatigue, and shortness of breath [3]. Patients
with suspected myocarditis should seek cardiology advice for
early diagnosis and treatment. Endomyocardial biopsy, an
invasive procedure, is recommended in severe cases to
confirm the diagnosis and to guide treatment [4]. Manage-
ment comprises supportive measures, symptomatic heart
failure therapy, antimicrobials for identified infective agents,
and immunosuppression for severe inflammation. Early di-
agnosis and prompt institution of treatment can significantly
reducemorbidity andmortality. Noninvasive cardiac imaging
with cardiovascular magnetic resonance imaging (MRI) [5]
can help clinch the diagnosis. However, MRI requires expert
interpretation, which is manually intensive and subject to
operator bias. In this regard, automated diagnostic systems
can be developed that employ various machine learning and
data mining algorithms to solve medical image classification
problems efficiently [6]. +ey can be applied to reporting
workflows to screen images automatically, saving physicians
time, reducing errors, and enhancing diagnostic accuracy.

Excellent performance of in-depth models has been
demonstrated in diverse applications, including natural
language processing [7–9], computer vision, and medical
image analysis [10, 11]. Deep learning-based algorithms
converge with suitable weights to minimize the error be-
tween the real and predicted outputs. Typically, deep models
use gradient-based algorithms as backpropagation to learn
the weights. However, such optimization methods are
sensitive to initial weights and may become trapped in local
minima [12]. +is issue is mainly encountered during
classification [13]. Few researchers have shown that pop-
ulation-based meta-heuristic (PBMH) algorithms [14, 15]
may help to overcome this problem [16]. Among PBMH
algorithms, the ABC algorithm is one of the most effective
optimizers [17, 18]. It emulates the behavior of bees in nature
and, unlike traditional optimization algorithms, dispenses
with the need to calculate gradients, thereby reducing the
probability of getting stuck in local optimizations [19].

Classification performance in many machine learning
algorithms may be adversely affected by imbalanced classi-
fication [20], which occurs when one class contains dispro-
portionately more data than the others [21]. While
imbalanced models may still attain reasonable detection rates
for majority samples, the performance for minority samples is
weak as minority class specimens can be difficult to identify
due to their rarity and randomness. Also, misalignment of

minority class samples can result in high costs. Methods have
been proposed to address the problem at two levels [22]: data
level and algorithmic level. In the former [23–25], training
data are manipulated to balance the class distribution by
oversampling minority class and/or undersampling majority
class [26]. For instance, the synthetic minority oversampling
technique (SMOTE) generates new samples by linear inter-
polation between adjoining minority samples [24], whereas
NearMiss undersamples majority samples using the nearest
neighbor algorithm [25]. Of note, oversampling and
undersampling can risk overfitting and loss of worthy
information, respectively [27]. At the algorithmic level,
the importance of the minority class can be raised using
techniques [28–32] that include cost-sensitive learning,
ensemble learning, and decision threshold adjustment. In
cost-sensitive learning, different incorrect classification
costs are attributed to the loss function for the whole class,
with a higher cost being allocated to minority class
misclassification. Ensemble learning systems train several
subclassifications and then apply voting or combination
to obtain better results. +reshold adjustment techniques
train the classifier in the imbalanced dataset and modify
the decision threshold during the test. Deep learning-
based methods have also been suggested for imbalanced
data classification [33–35]. +e authors in Reference [36]
introduced a new loss function for deep networks that
could capture classification errors from both minority and
majority classes. Reference [37] introduces a method that
could learn the unique features of an imbalanced dataset
while maintaining intercluster and interclass margins.

To the best of our knowledge, only one work [3] based on
deep learning models has been proposed for the diagnosis of
myocarditis. +e authors developed an algorithm for clas-
sifying images based on CNN and the k-means algorithm
[38], which has the following workflow: after the data
preprocessing stage, the images were placed in several
clusters, and each cluster was considered a class in which the
CNN classified. +e algorithm was repeated for different
clusters, and all the results were combined for the final
decision. +e main problem with the method was that it
considered the image matrix as a vector in k-means, which
resulted in missed pixels around a specific pixel.

+is paper presents a method based on the ABC algo-
rithm and reinforcement learning called RLMD-PA that we
believe would address the above mentioned problems. +e
RLMD-PA model poses the classification problem as a
guessing game embodied in a sequential decision-making
process. At each step, the agent receives an environmental
state represented by a training instance and then executes a
classification under the direction of a policy. If the agent
performs classification perfectly, it will be given a positive
reward and, otherwise, a negative one. +e minority class is
rewarded more than the majority class. +e agent’s goal is to
accumulate as many rewards as possible during the
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sequential decision-making process to classify the samples as
correctly as possible.

+e main contributions of this article are as follows: (1)
we considered the classification problem of medical images
as a sequential decision-making process. We presented a
reinforcement learning-based algorithm for imbalanced
classification; (2) instead of randomly weighting, we have
developed an encoding strategy and calculated the optimal
initial value using the ABC algorithm, and (3) this work is
based on a new well-annotated MRI dataset acquired from
Tehran’s Omid Hospital that we have named the Z-Alizadeh
Sani myocarditis dataset and made publicly downloadable.

+e rest of the article is structured as follows: the second
section is a brief overview of the ABC algorithm and its
working. +e third section introduces the proposed model.
+e fourth section presents the evaluation criteria, dataset,
and analysis of the results. +e last section states the con-
clusions and future works.

2. Background

2.1. Artificial Bee Colony Algorithm. Artificial bee colony
(ABC) introduced by Karaboga and Basturk [39] is one of
the most efficient algorithms for optimizing numerical
problems. It is straightforward, robust, and population-
based [19]. +e algorithm emulates the intelligent foraging
behavior of bees to arrive at the optimal solution. +ere is
a list of food sources that bees seek out over time to get to
the best positions. +e algorithm involves three groups of
bees: employed bees, onlooker bees, and scout bees.
Employed bees discover the positions of food sources,
whereas onlooker bees wait in the hive for the nectar from
food positions to be sent by employed bees. Onlooker bees
use the information to select food source positions. Once
an employed bee has exhausted the food source, it be-
comes a scout bee to search for new positions randomly.
+e number of employed bees equals the number of
unemployed (onlooker and scout) bees. +e steps for
optimizing an algorithm using the ABC algorithm are as
follows:

(1) Initialization: in the first step, an initial population S of
size C is formed from the positions (solutions), as in

s
j

i � s
j

min + rand(0, 1) s
j
max − s

j

min􏼐 􏼑, (1)

where i represents the i-th position, each solution si

is D dimensions, and D means the number of pa-
rameters that must be optimized. s

j

min and s
j
max are

the smallest and largest values in sj, respectively.
(2) Employed bee phase: at this point, new solutions are

recognized by searching the neighborhood for cur-
rent potential solutions. To keep the population size
constant, the quality of new solutions is evaluated. If
it is better than the previous ones, it will be replaced;
otherwise, it will remain fixed. +is step can be
formed as follows:
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i + φj

i s
j

i − s
j

k􏼐 􏼑, (2)

where k is a random solution such that k≠ i. φj
i is a

random number picked from the interval [0, 1]. +e
potentially new solution vi is obtained by changing
only one element of si.

(3) Onlooker bee phase: for the onlooker bees update,
one solution is stochastically elected from the po-
tential solutions, that is, one of the open facility
solutions, according to the probability relation pi

anticipated as follows:

pi �
fit si( 􏼁

􏽐
C
n�1 fit si( 􏼁

. (3)

+e selection process follows the equation provided:
the more appropriate a solution is, the higher the
chance it will be selected. If the chosen employed bee
scores higher than the current onlooker bee’s current
solution, the current solution replaces the previous
one. +is process is repeated for all onlooker bees in
population S.

(4) Scout bee phase: a solution that does not improve its
fit after some repetitions can get the algorithm
caught up in local optimization [40]. To prevent this,
once the solution’s fit does not improve after t it-
erations, the algorithm will discard it, and a new
solution will be supplied according to equation (2).

(5) Algorithm end condition: although different condi-
tions can be defined for the end of the algorithm, the
term termination is repeated in this study, which
means that the algorithm ends after MaxItr iterations.

+e complete ABC algorithm is given in Algorithm 1.

2.2. Reinforcement Learning. Reinforcement learning [41] is
an important branch of machine learning that encompasses
many domains. Reinforcement learning can achieve rela-
tively good classification results because it can effectively
learn the compelling features of noisy data. In Reference
[42], the authors defined classification as a sequential de-
cision problem that used several factors to interact with the
environment in order to learn an optimal policy function.
Due to the complex simulation between the factors and the
environment, the run time was inordinately prolonged. +e
model presented in [43] is a classification based on rein-
forcement learning provided for noisy text data. +e pro-
posed structure comprises of two classifiers: sample selector
and relational classifier.+e former selects a quality sentence
from the noisy data by following the agent, whereas the latter
classifier learns acceptable quality performance from clean
data and gives a delayed reward to the sample selector for
feedback. Finally, the model yields a superior classifier and
quality dataset. +e authors in Reference [44] proposed a
solution for time series data in which the reward function
andMarkov process are explicitly defined. In various specific
applications [45–48], reinforcement learning has been ap-
plied to learn the efficient features. +ese models promote
valuable features for the classification, which leads to higher
rewards that guide the agent to select more worthy features.
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To date, limited work has been done on deep learning for the
classification of imbalanced data. In Reference [44], an
ensemble pruning technique for deciding subclassifiers that
adopted reinforcement learning was proposed. However, the
model underperformed when the amount of data was in-
creased. +is is because it is difficult to choose classifiers
when there are too many subclassifications.

3. The Proposed Solution

+e overall structure of the proposed model is shown in
Figure 1. We considered two critical options for classification.
In the first step, we formulated a vector that includes all the
learnable weights in ourmodel.We assumed an initial value for
the weights with ABC and then applied the backpropagation in
the rest of the path. As mentioned, another problem that most
classifiers suffer from, including ours, is imbalanced data. To
address this, we employed reinforcement learning [49]. +ese
concepts are detailed in the following sections.

3.1.PretrainingPhase. Weight initialization of deep networks
is an essential part of deep models. Sometimes, incorrect
initial values can lead to a failure of convergence in themodel.
+e proposed model has a deep network with weights θ that
need to be optimized. In this section, we present an encoding
strategy and fitness function for the ABC algorithm.

3.2. Encoding Strategy. In our work, the encoding strategy
aims to arrange the CNN and feed-forward weights in a
vector that will be considered the position of the bees in the
ABC. Setting the specific weights is a challenge. Neverthe-
less, we have designed an encoding strategy that is as ap-
propriate as possible after a few experiments. Figure 2
illustrates an example with encoding of a three-layer
CNN network with three filters in each layer and a feed-

forward network with three hidden layers. Note that all
weight matrices in the vector are stored in rows.

3.3. Fitness Function. +e fitness function is defined as
follows to measure the effectiveness of a solution in the ABC
algorithm [12]:

Fitness �
1

1 + 􏽐
N
i�1 yi − 􏽢yi( 􏼁

2, (4)

where N is the total number of samples, and yi and 􏽢yi are the
target and predicted labels for i-th data, respectively.

4. Classification

Due to the difference in the amount of data between our two
classes, we face the problem of imbalanced classification. To
address this, we used the imbalanced classification Markov
decision process (ICMDP) to construct a sequential decision
problem. In reinforcement learning, an agent tries to obtain
an optimal policy by performing a series of actions in the
environment while maximizing its score. In the case of our
model, a sample of the dataset is provided to the agent at
each time point and classified. +e environment then
transmits the immediate score to the agent. A positive score
corresponds to a correct rating, whereas a wrong rating gives
a negative one. By maximizing cumulative rewards, the
agent can arrive at the optimal policy. Let D � (x1, y1),􏼈

(x2, y2), (x3, y3), . . . , (xN, yN)} be the imbalanced set of
existing images with N samples, where xi corresponds to the
i-th image, and yi is its corresponding label. +e following
explains the intended settings:

(i) Policy πθ: policy π means a mapping function
S⟶ A, where S and A are a set of states and
actions, respectively. In other words, every πθ(st)

Input: D: dimensions of every solution, C: population size, limit: number of cycles, MaxItr: maximum number of iterations;
(1) Initialize a population of solutions S � [s1, s2, . . . , sC] using equation (1);
(2) Itr � 1;
(3) while Itr ≤ MaxItr do
(4) //Employed Bee Phase
(5) for i � 1 to C do
(6) Produce new solution xnew using equation (2);
(7) Calculate the fitness fnew for xnew;
(8) Replace xnew with xi if better;
(9) Calculate the probability p for every solution in S using equation (3);
(10) //Onlooker Bee Phase
(11) for i � 1 to C do
(12) if rand(0, 1)<pi then
(13) Produce new solution xnew by using equation (2);
(14) Calculate the fitness fnew for xnew;
(15) Replace xnew with xi if better;
(16) //Scout Bee Phase
(17) If an abandoned solution is found, replace it with the solution produced by equation (2);
(18) Put the best solution in xbest;
(19) Itr � Itr + 1;

ALGORITHM 1: Pseudocode of the ABC algorithm.

4 Contrast Media & Molecular Imaging



means performing the action at in the state st. πθ is
acknowledged as the classifier model with weights θ.

(ii) State st: each state st is mapped with sample xt from
the dataset D. +e first data x1 are deemed the initial
state of s1. For the model not to learn a particular
order, the D is shuffled in each episode.

(iii) Action at: action at is performed to predict the
label xt. Since the offered classification is binary,
at ∈ 0, 1{ }, zero represents the minority class and
one represents the majority class.

(iv) Reward rt: reward considers the performance of an
action. An agent with the correct classification gets a
positive reward; otherwise, it gets a negative reward.
+e amount of this bonus should not be the same for
both classes. Rewards can significantly improve
model performance because the level of reward and
action has been carefully calibrated. In this work,

the prize is defined for action according to the
following equation [27]:

rt st, at, lt( 􏼁 �

+1, at � yt and st ∈ DH,

−1, at ≠yt and st ∈ DH,

λ, at � yt and st ∈ DS,

−λ, at ≠yt and st ∈ DS.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where DH and DS represent the minority and
majority classes, that is, healthy and sick, respec-
tively, and λ is a value in the interval [0,1]. +e
reward λ is less than 1/−1 as the minority class
becomes more critical due to fewer data. In effect,
we can ascribe more importance to the minority
class in order for it to approximate the majority
class. In the results section, we will see the im-
portance of the value λ.

CNNL1 CNNL2

Wf1 Bf1 Wf2 Bf2 Wf3 Bf3

W1 B1 W2 B2 W3 B3

Wf1 Bf1 Wf2 Bf2 Wf3 Bf3

Wf1 Bf1 Wf2 Bf2 Wf3 Bf3

CNNL3 Feed Forward

Figure 2: Placement of weights in a vector.

Yes

No

CNN

Initial Weights

State st

Reward rt

Policy πθ

Flatten

Replay Memory

Dataset

s1, r1, a1, s2, end1
s2, r2, a2, s3, end2
s3, r3, a3, s4, end3
s4, r4, a4, s5, end4

...
st, rt, at, st+1, endt

Minibatch B
Weight Updating

w3

w1 w2

w4

Environment

Figure 1: Overall process of RLMD-PA.
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(v) Terminal E: the training process is completed at
several terminal states, which occur in every
training episode. An episode is the transition tra-
jectory from an initial state to a final state, namely,
(s1, a1, y1), (s2, a2, y2), (s3, a3, y3), . . . , (st, at, yt)􏼈 􏼉.
In our case, an episode stops when all the training
data have been classified or when a sample of the
minority class is misclassified.

(vi) Transition probability P: the agent goes from state
st to the next state st+1 based on the order of the read
data. +e transition probability is determined as
p(st+1|st, at).

In ICMDP, the policy function reports the probability of
all labels by receiving a sample:

π(a|s) � P at � a|st � s( 􏼁. (6)

In reinforcement learning, the intention is to maximize
the discounted cumulative reward, or in mathematical
terms, to attain a high limit for the following expression:

gt � 􏽘
∞

k�0
c

k
. (7)

Equation (7) is termed the return function, which
contains all the accumulated return values of the agent
searches in space. +e discount factor c ∈ (0, 1] [50] is the
coefficient of the effect of each reward. +e function Q

measures the quality of a state-action combination:

Q
π
(s, a) � Eπ gt|st � s, at � a􏼂 􏼃. (8)

Equation (8) is expanded according to Bellman’s formula
[51]

Q
π
(s, a) � Eπ rt + cQ

π
st+1, at+1( 􏼁|st � s, at � a􏼂 􏼃. (9)

By maximizing the function Q supported by π, more
cumulative rewards can be achieved. +e optimal policy of
π∗ is assessed by considering the function Q∗ as follows:

π∗(a|s) �
1, a � argmaxaQ

∗
(s, a),

0, else.
􏼨 (10)

By combining the two equations (9) and (10), the
function Q∗ is expressed as follows [27]:

Q
∗
(s, a) � Eπ rt + cmaxaQ

∗
st+1,at+1( 􏼁|st � s,at � a􏼂 􏼃. (11)

In a low-dimensional space state, the function Q can be
easily solved by a table. However, the table technique is
inadequate when space is joined. To solve this problem,
Q-learning algorithms are used. In these algorithms, the
tuple (s, a, r, s0) received from equation (11) is saved as
experience replay memory M. +e agent gets a mini-batch B

from M and executes the gradient descent on these data
according to the following equation:

L θk( 􏼁 � 􏽘

s,a,r,s′( )∈B

y − Q s, a; θk( 􏼁( 􏼁
2
,

(12)

where y is an estimate of the function Q expressed as follows
[27]:

y �
r, end � True,

r + cmaxa′Q s′, a′; θk−1( 􏼁, else,
􏼨 (13)

where s′ is the following state s, and a′ is the action per-
formed in s′; end means whether the agent makes a wrong
classification for the minority class or not. Finally, the policy
weights π can be updated as follows:

θ � θ + l
∇L θk( 􏼁

∇ θk( 􏼁
,

∇L θk( 􏼁

∇ θk( 􏼁
� −2 􏽘

s,a,r,s′( )∈B

y − Q s, a; θk( 􏼁( 􏼁
∇Q s, a; θk( 􏼁

∇ θk( 􏼁
.

(14)

In conclusion, the optimal function Q∗ can be achieved
by minimizing the loss function presented in equation (12).
Notably, the optimal policy of π∗ is taken using Q∗, which is
the optimal model for the proposed classifier.

4.1. Overall Algorithm. We devised the simulation envi-
ronment according to the above. +e structure of the policy
network depends on the complexity and number of training
samples. According to the structure of the training samples
and the output, the network input equals to the number of
data classes, which is equivalent to 2. +e general training
algorithm of the RLMD-PAmodel is displayed in Algorithm
2. In this algorithm, the policy weights are first initialized
using the ABC algorithm, and then, the agent continues the
training process until an optimal policy is reached. Action is
based on a greedy policy, which is also evaluated by Al-
gorithm 3. +e algorithm is repeated for E times, which is
taken as 18,000 in this paper. At each step, the policy
network weights are stored.

5. Empirical Evaluation

5.1. Dataset. Cardiac magnetic resonance imaging (CMR)
[52] allows for comprehensive anatomical and functional
evaluation of the heart as well as detailed tissue character-
ization [53]. It is the preeminent imaging modality for
noninvasive diagnosis myocarditis without biopsy. +e Lake
Louise criterion (LLC) [54] introduced benchmark criteria
for diagnosing myocarditis using CMR [55] based on the
presence of myocardial necrosis, edema, and hyperemia.+e
presence of late gadolinium enhancement confirms myo-
cardial necrotic damage. T2-weighted images uncover areas
of interstitial edema, which indicates inflammatory re-
sponse. T1-weighted images before and after contrast can
depict hyperemia in the myocardial tissue. Fulfilling two of
three LLC criteria confers 80% accuracy for diagnosing
myocarditis [56]. +is article presents a model for identi-
fying myocarditis by considering the three LLC criteria.

A one-year CMR research project on myocarditis was
conducted from September 2016 at Omid Hospital in
Tehran, Iran, where we performed CMR on patients who
were clinically suspected to have myocarditis (e.g., chest
pain, elevated troponin, negative functional imaging and/or
coronary angiographic findings, and suspected viral etiology)
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and the treating physician assessed that CMR would likely
affect clinical management (e.g., ongoing symptoms, ongoing
myocardial injury evidenced by persistent ECG abnormali-
ties, and presence of ventricular dysfunction). +e protocol
had been approved by the local ethics committee. CMR
examination was performed on a 1.5-Tesla system [57]. All
cases were scanned with body coils in standard supine po-
sition. T1-weighted images were acquired in the axial views.
Shortly after gadolinium injection, the T1-weighted sequences
were repeated. After approximately 10–15minutes, late
gadolinium enhancement [58] sequences were performed in
standard left ventricular short- and long-axis views. Table 1
summarizes the CMR sequence parameters [3].

A total of 586 patients were identified who had
positive evidence of myocarditis on the CMR images,
which might show one or more areas of disease. A total of

307 healthy subjects were included as controls. We chose
eight CMR images from each patient or control subject
for the analysis, which were one long-axis image and one
short-axis image acquired using each of the following
four CMR sequences: late gadolinium enhancement,
perfusion, T2-weighted, and steady-state free precession.
+e final CMR dataset comprises 4,686 and 2,449 sam-
ples from sick (i.e., myocarditis) and healthy subjects,
respectively. Figure 3 shows example images obtained
from this dataset. It may be noted that in this study,
analysis is performed at the image level, and not at the
patient level. In other words, prediction is based on a
single image regardless of how many images are available
for each patient.

Institutional approval was allowed to use the patient
datasets in research studies for diagnostic and therapeutic

Data: D � (x1, y1), (x2, y2), (x3, y3), . . . , (xN, yN)􏼈 􏼉

(1) Initialize the weights of policy π using Algorithm 1;
(2) Initialize environment ε;
(3) Initialize replay memory M;
(4) for Episode e � 1 to E do
(5) Shuffle the data D;
(6) s1 � x1;
(7) for t � 1 to N do
(8) at � πθ(st); //select an action based on ε -greedy
(9) [rt, endt] �Reward (xt, at, yt);
(10) st+1 � xt+1;
(11) Save (st, at, rt, st+1, endt) to M;
(12) Sample randomly a mini-batch of transitions (sk, ak, rk, sk+1, endk ) (sk, ak, rk, sk+1, endk) from M;

(13) yk �
rk, endk � True
rk + cmaxa′Q(sk+1, a′; θ), endk � False􏼨 , Accumulate gradients w.r.t θ: θ � θ +

θ � θ + (∇L(θk)/∇(θk));
(14) if endk �� True then
(15) break;

ALGORITHM 2: Pseudocode of the RLMD-PA algorithm.

(1) Function Reward (xt, at, yt):
(2) endt � False;
(3) if st ∈ DH then
(4) if yt �� at then
(5) rt � 1;
(6) else
(7) rt � −1;
(8) endt � True;
(9) end
(10) else
(11) if yt � � at then
(12) rt � λ;
(13) else
(14) rt � −λ;
(15) end
(16) end
(17) return [rt, endt]

(18) End Function

ALGORITHM 3: Pseudocode of Reward function.

Contrast Media & Molecular Imaging 7



Healthy

Myocarditis

Figure 3: Typical healthy and myocarditis images obtained from the Z-Alizadeh Sani myocarditis dataset. +e yellow lines indicate the
location of myocarditis.

Table 1: Characteristics of the Z-Alizadeh Sani myocarditis dataset.

Protocols TE
(mm)

TR
(mm) NF Slice thickness

(mm)
Concatenation and slice

number NE Breath-hold
time (s)

CINE_segmented (true FISP) long axis (LAX) 1.15 33.60 15 7 3 1 8
CINE_segmented (true FISP) short axis
(SAX) 1.11 31.92 15 7 15 1 8

T2-weighted (TIRM) LAX, precontrast 52 800 Noncine 10 3 1 9
T2-weighted (TIRM) SAX, precontrast 52 800 Noncine 10 5 1 10
T1 relative-weighted TSE (Trigger)-AXIA-
dark blood pre- and postcontrast 24 525 Noncine 8 5 1 7

Late-GD enhancement LGE (high-resolution
PSIR) SAX and LAX 3.16 666 Noncine 8 1 1 7

TE: time echo, TR: time repetition, NF: number of frames, NE: number of excitations.

Table 2: 5-CV classification performances (accuracy, recall, and precision) obtained for automated myocarditis detection using various
combinations of deep learning models with the Z-Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
CNN-KCL [3] 0.783 0.811 0.846 0.810 0.024 0.732 0.738 0.807 0.751 0.032 0.704 0.752 0.789 0.745 0.032
CNN+
random weight 0.755 0.770 0.807 0.772 0.021 0.695 0.713 0.755 0.717 0.213 0.666 0.685 0.737 0.691 0.029

CNN+ABC 0.799 0.803 0.845 0.815 0.020 0.741 0.766 0.814 0.771 0.027 0.726 0.729 0.783 0.746 0.027
CNN+RL 0.821 0.829 0.869 0.840 0.021 0.762 0.798 0.835 0.801 0.028 0.745 0.772 0.819 0.779 0.029
RLMD-PA
(CNN+
ABC+RL)

0.862 0.884 0.912 0.886 0.020 0.837 0.869 0.879 0.863 0.017 0.804 0.837 0.886 0.840 0.034
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purposes. Approval was granted on the grounds of existing
datasets. Informed consent was received from all of the
patients in this study. All methods were carried out in ac-
cordance with relevant guidelines and regulations. Ethical
approval for using these data was obtained from the Tehran
Omid Hospital.

5.2.Metrics. To evaluate the classification performance of the
proposed model, we used six standard performance metrics,
namely, accuracy, recall, precision, F-measure, specificity,
and G-means [59], and they are defined as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
,

F − measure �
2 × Recall × Precision
Recall + Precision

,

Specificity �
TN

TN + FP
,

G − means �

����������������

Recall × Specificity
􏽱

,

(15)

where TP, TN, FN, and FP are true positive, true negative,
false negative, and false positive, respectively. +e F-measure
and G-means are commonly applied to evaluate imbalanced
classification [27], which aligns nicely with our dataset sample
distribution and the reason for existing our proposedmethod.
In addition, it is noteworthy that our prediction is per image.
In this way, the intelligent myocarditis classification system
can effectively screen entire CMR studies and flag individual
images for scrutiny by physician readers. For this purpose,
low FP and high recall metrics would be desired.

5.3.Details ofModel. +iswork used Python and the PyTorch
framework. +e codes are written in Jupyter notebook. We
used five layers of two-dimensional convolution for the CNN
network with 128, 64, 32, 16, and 8 filters. +e size of the
kernel, stride, and padding in each layer are 3, 2, and 1 for

both dimensions, respectively. Each convolution layer in-
volves a max-pooling layer with dimensions of 2× 2. +e
three fully connected layers have 128, 64, and 32 hidden
layers, respectively. To prevent overfitting, dropout with a
probability of 0.4 and early stopping are employed. In every
experiment, the batch size is set to 64. +e images in the
dataset are in gray-scale and light intensities of image pixels
aremapped to the range [0, 1].+e images in the dataset come
in different sizes and are all resized to 100×100 for analysis.

5.4. Experimental Results. While standard techniques like
data augmentation and weighted loss function [60] can
sometimes be used to correct the imbalanced data distri-
butions, they are not applicable in all situations. In our
experiments, data augmentation and weighted loss function
do not enrich our model, which is not unexpected.

We used k-fold cross-validation (k � 5 or 5-CV) in all
our implementations. +e entire dataset is divided into k

subsets. k − 1 subsets are applied for training and the
remaining one k for test. +is procedure is iterated k times
until all data subsets are utilized exactly four times for
training and once for testing. All parameters are expressed as

Table 3: 5-CV classification performances (F-measure, specificity, and G-means) obtained for automated myocarditis detection using
various combinations of methods with the Z-Alizadeh Sani myocarditis dataset.

F-measure Specificity G-means
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
CNN-KCL [3] 0.718 0.746 0.798 0.748 0.031 0.814 0.852 0.870 0.845 0.022 0.772 0.795 0.838 0.797 0.025
CNN+
random weight 0.681 0.702 0.746 0.704 0.026 0.788 0.800 0.838 0.806 0.020 0.742 0.759 0.795 0.760 0.021

CNN+ABC 0.735 0.745 0.798 0.758 0.026 0.826 0.835 0.864 0.842 0.018 0.787 0.795 0.839 0.806 0.021
CNN+RL 0.767 0.777 0.827 0.790 0.026 0.836 0.864 0.889 0.863 0.020 0.811 0.821 0.862 0.831 0.022
RLMD-PA
(CNN+
ABC+RL)

0.820 0.847 0.882 0.851 0.024 0.877 0.900 0.932 0.901 0.024 0.857 0.879 0.905 0.882 0.019
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Figure 4: Performance of deep learning models on the mean.
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means, standard deviations, medians, minimums, and
maximums. First, we compared our proposed method with
the only published work in this field, CNN-KCL [3]. Next, to
investigate the contributions of the two distinct components
ABC and RL in our model, we compared the performance of
a basic model without ABC and RL, that is, CNN+ random
weight, versus the models CNN+ABC and CNN+RL,
which used ABC and RL for training, respectively. +e
evaluation results of our RLMD-PA model performance as
well as the aforementioned comparisons on the Z-Alizadeh
Sani myocarditis dataset are presented in Tables 2 and 3. In
general, the RLMD-PA model reduces the error by more
than 43%. From the means of all the performance metrics,
the RLMD-PAmodel outperforms the CNN-KCLmethod as
well as CNN+ random weight, CNN+ABC, and CNN+RL
combinations of its components. Both ABC and RL indi-
vidually improve on the basic CNN network across all
assessed performance metrics, which supports the use of
combined approaches of initial weight and reinforcement
learning. For better visualization, the results are illustrated in
Figure 4. In terms of time, the best model was obtained after
100 iterations in 2 hours, while CNN-KCL got the best after
350 iterations in 5 hours.

Standard machine learning classifiers have not been suc-
cessful in classifying medical images, because they typically
assume images as one-dimensional vectors, which cause the
neighboring pixels of a specific pixel to be spaced apart. In order
to compare with our deep model, we used five algorithms:
support vector machine (SVM) [61], k-nearest neighbor [62],
näıve Bayes [63], logistic regression [64], and random forests
[65] to classify the CMR images of the study dataset. SVM
performed the best among these methods but is still inferior to
deep models. +e results are summarized in Tables 4 and 5, and
the mean performance metrics is shown in Figure 5.

5.5. Investigation of Other Metaheuristic Algorithms on the
Algorithm. +e proposed model employs ABC algorithm in
conjunction with backpropagation for the initial value. To
compare the performance of ABC versus alternative in-
structors, we employed ABC in our model with five con-
ventional algorithms, namely, gradient descent with
momentum backpropagation (GDM) [66], gradient de-
scent with adaptive learning rate backpropagation (GDA)
[67], gradient descent with momentum and adaptive
learning rate backpropagation (GDMA) [68], one-step
secant backpropagation (OSS) [69], and Bayesian regula-
rization backpropagation (BR) [70], and four metaheuristic

Table 4: 5-CV classification performances (accuracy, recall, and precision) obtained for automated myocarditis detection using various
machine learning algorithms with the Z-Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
SVM 0.568 0.691 0.754 0.683 0.070 0.674 0.745 0.778 0.737 0.042 0.450 0.565 0.651 0.565 0.074
KNN 0.480 0.614 0.635 0.588 0.064 0.399 0.637 0.683 0.589 0.111 0.337 0.490 0.511 0.460 0.072
Naı̈ve Bayes 0.547 0.632 0.676 0.615 0.051 0.388 0.534 0.713 0.565 0.134 0.395 0.510 0.553 0.484 0.062
Logistic
regression 0.627 0.662 0.720 0.661 0.038 0.583 0.658 0.741 0.657 0.057 0.503 0.542 0.603 0.541 0.041

Random forests 0.415 0.550 0.590 0.530 0.070 0.537 0.683 0.711 0.648 0.071 0.329 0.437 0.469 0.420 0.056

Table 5: 5-CV classification performance (F-measure, specificity, and G-means) obtained for automated myocarditis detection using
various machine learning algorithms with the Z-Alizadeh Sani myocarditis dataset.

F-measure Specificity G-means
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
SVM 0.540 0.652 0.695 0.639 0.060 0.505 0.662 0.760 0.651 0.093 0.583 0.704 0.752 0.692 0.065
KNN 0.365 0.554 0.585 0.516 0.089 0.528 0.601 0.629 0.587 0.039 0.459 0.619 0.643 0.587 0.075
Naı̈ve Bayes 0.391 0.522 0.623 0.520 0.092 0.610 0.642 0.692 0.645 0.031 0.499 0.608 0.682 0.600 0.072
Logistic
regression 0.565 0.571 0.665 0.593 0.042 0.606 0.665 0.716 0.663 0.049 0.631 0.646 0.724 0.659 0.038

Random forests 0.408 0.533 0.559 0.509 0.063 0.342 0.471 0.529 0.459 0.071 0.429 0.567 0.605 0.545 0.071
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algorithms, namely, gray wolf optimization (GWO) [71],
the Bat algorithm (BA) [72], Cuckoo optimization algo-
rithm (COA) [73], and whale optimization algorithm
(WOA) [74]. +e population size and number of function
evaluations are 100 and 25,000 for all metaheuristic al-
gorithms, respectively. Other parameter settings can be
seen in Table 6. +e performance metrics of these com-
parisons are summarized in Tables 7 and 8 and illustrated in
Figure 6. In general, metaheuristic algorithms are better
than conventional algorithms with the exception of GDMA
in terms of accuracy, recall, and F-measure scores. Im-
portantly, the ABC algorithm outperformed all conven-
tional and metaheuristic algorithms to improve the error in
the recall and F-measure criteria by more than 25% and
22%, respectively.

5.6. Explore the Reward Function. +e reward function is a
practical device that helps the agent to achieve the goal. In this
work, theminority class reward is +1/−1, while the majority is
+λ/−λ. To examine the effect of the value λ on the classifi-
cation model, we test 10 values of λ ∈ 0, 0.1, 0.2, 0.3,{

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} on themodel. Details of the results
for all the criteria for these experiments are given in Table 9.
For better visualization, we have plotted the trends in Fig-
ure 7. On examination, for the accuracy criterion, when λ
takes the values from [0, 0.3], the chart has an ascending
trend, and from [0.3, 1] has a descending move` +is process
is valid for all criteria. If λ � 0, the importance of the majority
class is disregarded, and if λ � 1, the importance of both
classes is the same. Although the minority class is more
important to us, the majority class cannot be ignored.

Table 6: Parameter setting for the experiments.

Algorithm Parameter Value

ABC

Limit ne × dimensionality of problem
no 50% of the colony
ne 50% of the colony
ns 1

GWO No parameters

BAT
Constant for loudness update 0.50

Constant for an emission rate update 0.50
Initial pulse emission rate 0.001

COA Discovery rate of alien solutions 0.25
WOA B 1

Table 7: Results of 5-CV classification performances (accuracy, recall, and precision) obtained for automated myocarditis detection using
various conventional and metaheuristic algorithms with the Z-Alizadeh Sani myocarditis dataset.

Accuracy Recall Precision
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
CNN+GDM+RL 0.811 0.857 0.868 0.849 0.022 0.784 0.801 0.830 0.806 0.018 0.732 0.806 0.825 0.796 0.038
CNN+GDA+RL 0.817 0.846 0.857 0.840 0.017 0.784 0.812 0.837 0.808 0.022 0.742 0.786 0.828 0.778 0.035
CNN+GDMA+RL 0.829 0.855 0.887 0.854 0.025 0.764 0.816 0.855 0.817 0.037 0.752 0.809 0.849 0.800 0.037
CNN+OSS+RL 0.823 0.849 0.867 0.846 0.016 0.741 0.814 0.837 0.804 0.037 0.778 0.787 0.814 0.791 0.015
CNN+BR+RL 0.826 0.833 0.855 0.837 0.012 0.745 0.796 0.812 0.785 0.027 0.752 0.761 0.850 0.784 0.041
CNN+GWO+RL 0.833 0.848 0.869 0.850 0.016 0.771 0.796 0.842 0.804 0.027 0.769 0.800 0.816 0.797 0.020
CNN+BAT+RL 0.837 0.847 0.865 0.851 0.013 0.778 0.782 0.833 0.796 0.024 0.787 0.805 0.830 0.807 0.016
CNN+COA+RL 0.815 0.843 0.882 0.844 0.028 0.750 0.826 0.856 0.813 0.046 0.748 0.757 0.838 0.781 0.039
CNN+WOA+RL 0.820 0.845 0.847 0.837 0.012 0.750 0.826 0.814 0.789 0.021 0.742 0.783 0.807 0.781 0.024

Table 8: Results of 5-CV classification performances (F-measure, specificity, and G-means) obtained for automated myocarditis detection
using various conventional and metaheuristic algorithms with the Z-Alizadeh Sani myocarditis dataset.

F-measure Specificity G-means
Method Min Median Max Mean Std.dev. Min Median Max Mean Std.dev. Min Median Max Mean Std.dev.
CNN+GDM+RL 0.757 0.811 0.825 0.801 0.026 0.827 0.882 0.898 0.875 0.028 0.805 0.848 0.860 0.840 0.021
CNN+GDA+RL 0.765 0.799 0.811 0.792 0.019 0.834 0.863 0.902 0.860 0.028 0.812 0.839 0.850 0.834 0.015
CNN+GDMA+RL 0.771 0.806 0.849 0.808 0.033 0.838 0.880 0.909 0.877 0.026 0.815 0.843 0.878 0.846 0.026
CNN+OSS+RL 0.759 0.799 0.825 0.797 0.024 0.859 0.873 0.885 0.872 0.010 0.804 0.839 0.861 0.837 0.021
CNN+BR+RL 0.776 0.784 0.794 0.784 0.007 0.841 0.850 0.921 0.868 0.034 0.821 0.825 0.829 0.825 0.003
CNN+GWO+RL 0.779 0.797 0.828 0.801 0.021 0.856 0.880 0.889 0.877 0.013 0.821 0.836 0.863 0.840 0.018
CNN+BAT+RL 0.782 0.793 0.823 0.801 0.018 0.873 0.885 0.901 0.885 0.010 0.824 0.832 0.859 0.839 0.016
CNN+COA+RL 0.752 0.803 0.844 0.796 0.038 0.835 0.854 0.901 0.862 0.028 0.800 0.845 0.876 0.837 0.031
CNN+WOA+RL 0.768 0.793 0.798 0.785 0.014 0.832 0.869 0.888 0.866 0.021 0.812 0.832 0.839 0.827 0.012
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Table 9: Performance evaluation obtained for various values of λ as the reward of the majority class.

λ Accuracy Recall Precision F-measure Specificity G-means
0 0.807 0.778 0.727 0.752 0.824 0.801
0.1 0.838 0.814 0.769 0.791 0.853 0.833
0.2 0.867 0.844 0.810 0.827 0.880 0.862
0.3 0.884 0.858 0.837 0.847 0.900 0.879
0.4 0.877 0.848 0.830 0.839 0.895 0.871
0.5 0.857 0.814 0.807 0.810 0.883 0.848
0.6 0.845 0.798 0.792 0.795 0.874 0.835
0.7 0.825 0.764 0.768 0.766 0.861 0.811
0.8 0.807 0.738 0.746 0.742 0.848 0.791
0.9 0.792 0.709 0.730 0.719 0.842 0.773
1 0.779 0.695 0.710 0.702 0.829 0.759
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6. Conclusion and Future Directions

+is article presents a new model for classifying myocarditis
images. +e proposed model consists of two steps. First, the
model weights are initialized using the ABC algorithm. Next,
the model is considered an ICMDP problem. +e envi-
ronment assigns a high reward to the minority class and a
low reward to the majority class. +e algorithm terminates
when the agent makes a wrong classification for the minority
class, or the number of episodes runs out. We performed
several experiments to examine various factors that affect the
performance of the proposed model. +e designed experi-
ments confirmed that the RLMD-PA model with ABC and
RL is an effective classifier for myocarditis images.

In the future, we will try to employ ensemble con-
volutional neural network (ECNN), as our model to use a set
of CNN networks and connect them to yield higher per-
formance. In addition, we can also work with the generative
adversarial network (GAN), which is widely used in many
applications. It may be worth exploring to employ the de-
veloped model for other medical applications such as stroke
detection, cancer detection and plaque detection.
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