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Abstract: Microplastics are emerging as widespread modern pollutants, posing a variety
of health and environmental risks. Microplastics are found in agriculture; they are often
introduced via biosolids from wastewater treatment plants and are sold as alternatives to
inorganic fertilizers. In Australia, there has been limited research on the agricultural con-
centrations of microplastics, and there has been no predictive modelling to identify which
geographies are most at risk for pollution. Based on global emerging trends, this study
uses geospatial modelling to map potential high-risk areas for agricultural microplastics
within an area of the Murray-Darling Basin in New South Wales, Australia. In doing so,
this study demonstrates the use of a geospatial methodology that may be used in future
risk assessments, both within Australia and globally. Risk index mapping was conducted
for three different pollutant transport pathways: rainfall-runoff of microplastics, in-soil
retention of microplastics, and groundwater infiltration of microplastics. Particular areas of
risk were identified for each transport pathway, providing visualised mapping results that
represent the value of the study and its methodology.
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1. Introduction
Globally, two megatons (Mt) of plastic were produced in 1950, and by 2015, this

figure was closer to 400 Mt, with an annual compound growth rate of roughly 8% between
1950 and 2015 [1]. By the year 2050, it is estimated that 26,000 Mt of plastic waste will
have been generated, and that 45% of that amount will be disposed of in landfills or the
environment [1]. The majority of plastics are not fully biodegradable; however, they can
break down into smaller fragmented microplastics. In general, microplastics are defined as
“any solid or polymeric matrix of a regular or irregular shape, ranging from 1 mm to 5 mm
in size, of primary or secondary manufacturing origin, that is water insoluble” [2].

In today’s environment, microplastics are found in significant concentrations almost
everywhere, e.g., in the air, atmosphere, water, the bodies of edible fish, blood, and even the
snow on top of Mount Everest [3–7]. Upon exposure via contact, inhalation, or ingestion,
microplastics have been shown to cause numerous negative health effects in humans
and other animals, including intestinal damage and digestion disruption [8], decreased
capacity for immune response systems [9], neurotoxicity (resulting in reduced learning and
memory functions) [10], hormonal and endocrine system damage [11], decreased fertility,
adverse effects on offspring [12], and oxidative stress in the lungs and airways (resulting in
respiratory dysfunction) [13].
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In agricultural contexts, microplastics have been shown to reduce soil fertility and
soil microbe content [14], reduce plant growth and crop yield [15], increase soil–water
evaporation [16], and decrease livestock fertility and transport to human food chains [17].
These agricultural microplastics also exhibit the potential to be transported to downstream
aquatic environments [18], or infiltrate into groundwater [19], carrying adsorbed pollutants
and heavy metals [20]. Microplastics are mostly introduced into agricultural settings as
byproducts of wastewater treatment plant (WWTP) processes called biosolids. The use of
biosolids in agriculture is based on their organic content as well as their potential to provide
an environmentally friendly alternative to traditional fertilizers, promoting circular reuse
as well as reducing greenhouse gas emissions associated with fertilizer production [21].

In Australia, total biosolid production is estimated to be around 349,000 tonnes of dry
solids per year [22], with two-thirds of this material being applied to the soil as fertilisers
or other soil-applied products [23]. Whilst there are state and federal regulations around
biosolid application in Australia, current regulations neither recognise the risk of biosolids
transporting microplastics to the agricultural environment nor provide any controls or
measures to prevent this pollution.

Studies have shown that approximately 0.5–3% of biosolids contain microplastics [24],
with concentrations of up to 287 µg/g of microplastics found in biosolid sludge [25].
According to a recent Australian study, approximately 4700 metric tons of plastics are
released annually into the environment via biosolids, 3700 metric tons of which are released
directly into agricultural settings [26].

In agricultural fields treated with biosolids in the long term, total microplastic con-
centrations have been found to be as high as 18,760 microplastics kg−1 in Chinese soils;
5190 microplastics kg−1 in Spanish soils; and 10,400 microplastics kg−1 in Chile [27–29].
Slightly lower concentrations were found elsewhere in Spain (~300 microplastics kg−1)
and in England (~900 microplastics kg−1) [30,31]. There are few studies on microplas-
tic field concentrations in Australia, but a recent study on biosolid-amended fields near
Toowoomba, Queensland, found an average concentration of 1137 microplastics kg−1,
compared to 36 microplastics kg−1 at a non-amended reference site [32]. Substantial
groundwater concentrations of microplastics were found in a Victorian groundwater bore,
attributed to its proximity to agricultural land use, which may have been biosolid-applied
land [33].

Utilising geospatial mapping techniques, this study aims to predict at-risk sites for
agricultural microplastic contamination within the study area, the Murray-Darling Basin
(MDB) agricultural region of New South Wales (NSW), Australia. This study focuses on
three key pollutant transport pathways: the transportation of microplastics from agricul-
tural sites via rainfall-runoff, the retention of microplastics in agricultural soils, and the
transportation of microplastics into groundwater. To the best of the authors’ knowledge,
this applied methodology is a first in the field of microplastic research and represents a
foundation for further risk assessment studies to build upon, as the literature base expands
globally and within Australia.

This study employs Quantum Geographic Information Systems version 3.34.6 (QGIS),
which is a widely used, free, and open-source geospatial software that enables the input,
processing, analysis, and output of a wide range of map data and information [34].

2. Materials and Methods
The methodology of this study began with a scope definition and the selection of a

geographical study area. Following this, the global literature base was reviewed to deter-
mine possible risk factors that promote the three key transport pathways of microplastics
as an agricultural pollutant: the transportation of microplastics from agricultural sites
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via rainfall-runoff, the retention of microplastics in agricultural soils, and the transporta-
tion of microplastics into groundwater. Input data were then sourced to represent each
of these risk factors within the study area, for each transport pathway. The study then
combined the effects of these risk factors through geospatial modelling overlay techniques
by standardising multivariate data sources for results-mapping production.

2.1. Study Area

The chosen study extent encompassed a portion of the Murray-Darling Basin (MDB)
in the Australian state of New South Wales (NSW). NSW was chosen due to the quality and
availability of spatial input data from the NSW State Government. The MDB encompasses
more than 1 million square kilometres, including drainage catchments of the Murray
and Darling Rivers, Australia’s first and third longest rivers, respectively. The MDB
produces approximately 40% of Australia’s produce and is home to about 2.4 million
people, including members of over 50 First Nations groups [35]. Additionally, the region
is ecologically important, with 35 endangered species, 16 international wetlands, and
120 varieties of waterbirds [35]. Figure 1 illustrates the broad range of land uses within the
MDB.
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Figure 1. NSW MDB and land use. Mapping produced by using publicly available input data [36–41].

2.2. Land Use

Due to the limited categorisation of which agricultural land types are most applied
with biosolids, and the lack of data toward this end in Australia, this study assumed
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uniform distributions of biosolid application rates across the study area and the selected
agricultural land use types. Based on a review of global biosolid usage literature, two land
use types were selected for the study: broadacre cropping and horticulture. Data on land
use was obtained from the NSW government [40] and an overall study area polygon was
drawn based on this land use. More than 90% of the chosen land use types found in the
NSW MDB were captured within the study extent polygon and its boundaries were aligned
to enclosed local government areas (LGAs). The study contained 50 LGAs, with boundaries
and names redacted for reporting purposes. Figure 2 shows the study land use types and
the study extent. Study extent polygons were divided into the three zones and aligned to
internal LGA boundaries for analysis and presentation.
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2.3. Risk Factors for Each Transport Pathway and Representative Input Data for Each Risk Factor

Potential risk factors for each of the three transport pathways were determined from
the current global literature base on agricultural microplastic pollution as described below.
Relevant spatial data were then sourced, or generated, for the mapping of each risk factor.

2.3.1. Rainfall-Runoff of Microplastics

In agricultural soils, microplastics are subject to rainfall-runoff cycles that ultimately
transport them to downstream freshwater environments such as rivers, creeks, lakes, and
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further aquatic environments [18]. There are many negative effects of microplastics in
aquatic environments: disrupting metabolic processes in corals [42], reducing chlorophyll
absorption [43], and transporting other adsorbed pollutants such as perfluoroalkyl and
polyfluoroalkyl substances (PFAS) [44]. Several key risk factors have been identified in
the currently available literature, which may encourage the runoff of microplastics from
applied biosolids.

Clay soils: Clay soils are the least permeable soil profiles, which reduce microplastic
retention in soil during rainfall-runoff cycles. Applied biosolids are at risk of increasing
runoff from poorly draining clay soils [45,46]. Figure 3 shows a modelled percentage of
clay within the upper layers of soils (0–200 cm depth), within the study extent.
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High average annual rainfall: In Ontario, Canada, a region that experiences a relatively
high average annual rainfall of up to 1000 mm/year, one study showed that—from a
large amount of biosolids applied—greater than 99% of the microplastics contained in the
biosolids were unaccounted for just one year after application [47]. This could be explained
by a large rainfall event shortly after the biosolid fertiliser was applied, resulting in potential
mass runoff and microplastic loss [47]. Similar results were found in Hampshire, England, a
study area that receives a similarly high average of 800 mm/year precipitation; researchers
found that microplastic concentrations were higher during the summer when rainfall was
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lower, suggesting runoff may be responsible for microplastic transport [31]. In the Shaanxi
province of China, researchers tested different climatic condition effects on agricultural
microplastic retention with similar rates of biosolids application and land use. There was a
retention of 2490 microplastics kg−1 in the arid northern zone versus 1700 microplastics
kg−1 in the far southern region (which receives 1400 mm of rainfall each year) [48].

Figure 4 shows the average annual rainfall, sourced from publicly available data from
the Australian Bureau of Meteorology for the period 1991–2020 [49] across the study extent.
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data [49].

Proximity to nearby waterways: The proximity of an agricultural land use parcel to a
waterway plays a key role in ranking the risk of agricultural runoff entering downstream
waterways. A publicly available hydrograph was obtained [38] for the entire state extent,
in the form of vector line data with an attribute for the watercourse name. As shown in
Figure 5a, a centroid for each study land use polygon was created and the QGIS function
’Shortest line between features’ was used to find the waterway string closest to each land
use polygon. Figure 5b shows the resultant lines generated by this function, with distance
measurements appended as attributes to the land use parcels. Once the distance attribute
was assigned to each land parcel, a rasterisation average grid was placed over the study land
use extent, using the average value (distance to the nearest waterway) for each 100 × 100 m



Agronomy 2025, 15, 47 7 of 22

area to map this risk factor across the study extent. The results of this raster average can be
seen in Figure 6.
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2.3.2. Retention of Microplastics in Soil Profiles

Agricultural soils that retain microplastics are more likely to promote reduced soil
fertility and soil microbial community, leading to poor soil quality and nutrient cycling [14],
reduced crop yields and plant growth [16], increased soil–water evaporation [15], and
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decreased livestock fertility and transport to food supply [17]. The following risk factors
were identified in this study as contributing to retention:

Aridity: A study conducted in 31 agricultural fields in Melipilla, Chile, found that
fields treated with 40 tonnes ha−1 of biosolids retained a residual concentration of 2000 mi-
croplastics kg−1 two years after application [29]. Similar conclusions were reached by
another study in a semi-arid Spanish climate [30]. The aforementioned study in China also
found that microplastic retention and concentrations were higher in the more arid northern
zone, as compared to the other more temperate areas in the study [48]. Using spatial data
sourced from the NSW Government [50], the ’aridity index’ was used to represent aridity in
the study extent. The aridity index dataset used measures the long-term balance between
rainfall and net radiation [51]. The data across the study can be seen in Figure 7.
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Horticultural land use: The use of horticultural land in agricultural soils appears to
be another key variable. In the study previously mentioned [48], researchers found the
highest levels of microplastic concentration in fruit-tree fields and the lowest levels in rice
fields. In another study focusing on fruit orchard plantation sites amended with biosolids,
a high concentration was detectable 15 years after biosolid application [52]. In France, a
study covering cropping, vineyards, and fruit orchards found median concentration values
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of 258 microplastics kg−1 with maximum values ranging from 1290 microplastics kg−1 in
crops to 3096 microplastics kg−1 in vineyards and fruit orchards [53].

Figure 8 shows the horticultural land use for the study extent. The study area contains
over 89,000 hectares of this land use type, despite appearing sparse in the figure.

High-ionic strength soils: Several laboratory studies have shown that soil–water solu-
tions with high-ionic strengths reduce the vertical transportation potential of microplastics,
thereby increasing their retention potential in upper soil horizons [54–56]. As direct soil–
water ionic strength measurements are not currently available within the study extent,
salinity was used as a substitute measure, often being used to represent the ionic strength
of water [57].
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Input data were sourced from the NSW government, which provides a state-wide
mapping layer for salinity hazard rankings [58]. Data were input into the project QGIS
environment as vector polygons and salinity risk attributes were used to represent high-
and low-salinity values. As shown in Figure 9, the original data were qualitative and
replaced with numerical classes for mapping.
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2.3.3. Groundwater Infiltration of Microplastics

Whilst research is limited, recent studies have detected elevated microplastics in
groundwater near agricultural activities that may have been treated with biosolids [19,59].
In a groundwater sample in the Australian state of Victoria, substantially high microplastic
concentrations were found, attributed to the proximity to agricultural land that may have
been fertilized with biosolid [33]. Microplastics in groundwater may reach bores used
for potable water or irrigation. Eventually, they can reach more downstream waterways
through groundwater aquifers. Microplastics can also adsorb pollutants such as PFAS [44]
and heavy metals like cadmium [20], which can then also be transported through soils to
groundwater.

Low groundwater levels: Low-lying groundwater is obviously a concern to any poten-
tial groundwater contamination. This has been acknowledged by the NSW Department of
Primary Industries, in relation to biosolid amendments [45]. Groundwater mapping data
were obtained as publicly available point data from the NSW government [60].

Low-ionic strength soils: As previously mentioned, high-ionic strength soil–water
matrices may inhibit the vertical transportation of microplastics. In this study, it was
assumed that low-ionic strength soil–water matrices might transport microplastics deeper
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within their profile, providing a greater risk for groundwater infiltration within low-lying
areas.

High sandy soils %/hydraulic conductivity: In 2004, the NSW Department of Primary
Industries identified that sandy soils were at a ’severe’ risk of transporting biosolid contam-
inants to groundwater [45]. The risk identified is consistent with the findings of multiple
studies. According to one study, microplastics transported through sandy soils of varying
sizes could potentially penetrate to depths that, over time, could expose these microplastics
to subterranean fauna or aquifer systems [61]. It has also been suggested that environments
prone to drought cycles may increase penetration depths linearly with alternating wet/dry
cycles, with the study’s model predicting microplastic penetration depths of up to 7 m [61].
According to another study, copper content in sandy soils decreased with microplastic accu-
mulation, suggesting potential copper leaching occurred as hydraulic conductivity passed
water through the sandy soil [62]. In a sandy-loam soil profile containing high-density PE
microplastics ranging from 48 µm to 2.0 mm, Ref. [20] found reduced soil adsorption of
cadmium, as well as increased soil desorption.

Figure 10 shows the modelled percentage of sand within the upper soil layers
(0–200 cm depth) from the Terrestrial Ecosystem Research Network (TERN) [46].
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Table S1 in the Supplementary document provides a summary of the three study
transport pathways, the risk factors that have been determined to promote these risks, and
the spatial data used to represent these factors for the mapping portion of this study.

2.4. Geospatial Mapping Overlay Process for Each Transport Pathway
2.4.1. Data Reclassification into Standardised Quantiles

The different input data sources were multivariate, so QGIS was used for standard-
isation. First, the raster input data (raster squares of different sizes) were rescaled into
100 × 100 m squares across the study area. Then, each raster was reclassified into 100 quan-
tile distribution classes based on the average values within these squares. Statistical
quantiles were ranked according to risk factor, with higher numbers indicating greater risk
(for example, the 99th percentile of annual rainfall value in the study extent was given a
quantitative raster value of 99). An example of quantile reclassification, displaying the
upper and lower quantiles of average annual rainfall, can be seen in Table 1 below.

Table 1. QGIS quantile reclassification example data, average annual rainfall (mm/year and corre-
sponding quantiles 1–100).

Min
(mm/Year)

Max
(mm/Year) Quantile

0.00 232.21 1
232.21 250.93 2
250.93 254.83 3

. . . . . . . . .
800.08 835.69 98
835.69 886.61 99
886.61 100,000.00 100

It should be noted that although most risk factors can be reclassified into 1–100 quantiles, a
different approach was taken for the risk factors of horticultural land use and ionic strength.
In the case of horticultural land use, a binary approach was used, with squares containing
land use assigned a value of 100 (i.e., contributing most to the risk factors), and squares
without land use assigned a value of 0. The input data for ionic strength were available as
part of a qualitative set of attributes, ranking salinity risk through five categories: very low,
low, moderate, high, and very high. In order to quantify ionic strength, n values (20, 40, 60,
80, 100) were assigned to the high- and low-ionic strength rasters, corresponding to the five
original risk categories.

2.4.2. QGIS Raster Calculator to Combine the Effects of Risk Factors for Each
Transport Pathway

The raster calculator is a tool within QGIS that enables the algebraic addition of raster
squares that have the same geographical location. Figure 11 illustrates the process that
occurs during raster calculator addition. To produce a raster map output that is representa-
tive of the risk index across the study extent, raster addition was applied to each transport
pathway to sum the reclassified risk factor rasters. Each risk factor for each transport
pathway was added to the other risk factors in that pathway. As shown in Figure 12, the
study risk factors were reclassified into quantile distributions, and the raster calculations
were added for each transport pathway. Based on the ascending ranking of all processed
quantile risk factor data, a higher sum resulting from the addition process indicates a raster
square (100 × 100-meter geographical area) at a higher risk. For each transport pathway,
multiple risk factors were identified. This resultant number was normalised by dividing
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the sum of the raster addition by the number of risk factors for that transport pathway,
resulting in an integer between 1 and 100 for any given results raster.
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Results rasters were ‘clipped’ to the extent of the study land use within the study areas.
Zonal statistics were generated at both a high level for comparison of the three zones and
at a more granular level by way of local government areas within the study area.

QGIS zonal statistics were also used to average the results rasters for each contained
LGA polygon. The results for each of the transport pathways were ranked alongside
the contributing study land use area within each LGA. The weighted mean ranking was
developed by taking into consideration the risk associated with each transport pathway, as
well as the contributing land use area of each LGA.

3. Results
3.1. Rainfall-Runoff of Microplastics

The risk index mapped for rainfall-runoff from microplastics across the study extent
is shown in Figure 13. A general trend is observed toward the eastern areas of the study
being at a higher risk for this transport pathway. The central zone displays the highest
level of general risk, as indicated by its mean risk index value of 30.49. A low-risk profile is
displayed in the southern zone with a mean value of 15.80; however, there is an isolated
high-risk pocket adjacent to the eastern extent of the Murray River within the southern
zone. The northern zone, with a mean risk index value of 24.13, displays less concentrated
areas of risk than the southern zone.
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3.2. Retention of Microplastics in Soil Profiles

Based on the results raster presented in Figure 14, areas with the greatest risk of
retaining microplastics in their soils can be identified. In general, there is a greater risk
along the south boundary of the study area, adjacent to the Murray River, as well as smaller
pockets of very high-risk zones where horticultural land use is present. The southern zone
is at the highest risk, with a risk index value of 45.04. Both the central and northern zones
are at similar levels of risk, with mean values of 33.64 and 29.61.
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3.3. Groundwater Infiltration of Microplastics

The results of the risk mapping for groundwater infiltration of microplastics are shown
in Figure 15. Based on the results, high risk is generally observed in the central-west and
central-east zones of the study area, with smaller pockets found in the south-western zone.
Overall, the southern zone has the highest mean risk value of 56.26, closely followed by the
central zone, which has a mean value of 55.00. In addition to the zonal statistics outlined
above for each transport pathway, a generalised statistical analysis was performed for each
of the three transport pathways over the entire study area. Table 2 provides a statistical
overview of this analysis.
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Table 2. Risk factor overlay results raster zonal statistics.

Transport Pathway Min
Value

Max
Value Range Mean

Value
Standard
Deviation

Rainfall-runoff of
microplastics 0.431 97.667 97.236 9.661 23.687

Soil retention of
microplastics 7.333 99.333 92.000 35.581 9.588

Groundwater infiltration
of microplastics 10.120 98.713 88.593 50.683 15.038

3.4. Local Government Area Results

The list of local government areas (LGAs) that are most at risk within the study extent
can be found in Table 3. In the results presentation, the names of LGAs are redacted.
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Table 3. Risk factor overlay results by LGA/ranking. Colour graduation from green (low risk) to red
(high risk) are used in the rankings.

LGA Study
Zone

Study
Land Use
Area (1)

Rainfall-
Runoff
Risk (2)

Soil
Retention
Risk (3)

Ground Water
Risk (4)

Mean
Rank

(1,2,3,4)
A 1-South 6 22.5 2 4 8.625
B 3-North 1 11 22 11.5 11.375
C 3-North 3 18.5 15 9 11.375
D 1-South 5 25 10 7.5 11.875
E 2-Central 4 22 14 9 12.25
F 2-Central 2 22.5 18 10 13.125
G 3-North 8 17.5 17 12.5 13.75
H 1-South 9 22.5 13 11 13.875
I 2-Central 15 20 12 13.5 15.125
J 1-South 17 26 8 12.5 15.875
K 2-Central 16 23 11 13.5 15.875
L 2-Central 11 11.5 24 17.5 16
M 2-Central 10 27 16 13 16.5
N 3-North 7 10.5 33 20 17.625
O 2-Central 12 19 23 17.5 17.875
P 1-South 13 27 19 16 18.75
Q 2-Central 14 21.5 25 19.5 20
R 1-South 29 28.5 7 18 20.625
S 3-North 18 14 28 23 20.75
T 1-South 21 26 21 21 22.25
U 1-South 33 27.5 9 21 22.625
V 2-Central 23 27.5 20 21.5 23
W 1-South 36 37 1 18.5 23.125
X 3-North 20 18.5 31 25.5 23.75
Y 3-North 22 15 32 27 24
Z 1-South 35 40.5 5 20 25.125

AA 2-Central 26 23 26 26 25.25
AB 3-North 27 21 27 27 25.5
AC 1-South 41 39 3 22 26.25
AD 1-South 19 21 37 28 26.25
AE 1-South 39 43 4 21.5 26.875
AF 2-Central 25 29 30 27.5 27.875
AG 3-North 24 21.5 36 30 27.875
AH 1-South 42 42 6 24 28.5
AI 2-Central 31 27.5 29 30 29.375
AJ 2-Central 32 22.5 35 33.5 30.75
AK 1-South 28 23 40 34 31.25
AL 3-North 30 19.5 41 35.5 31.5
AM 2-Central 34 22.5 38 36 32.625
AN 2-Central 37 26.5 34 35.5 33.25
AO 3-North 38 20 39 38.5 33.875
AP 3-North 40 22 43 41.5 36.625
AQ 2-Central 43 24.5 44 43.5 38.75
AR 1-South 46 26.5 42 44 39.625
AS 2-Central 44 24.5 46 45 39.875
AT 3-North 47 24 45 46 40.5
AU 3-North 45 24 47 46 40.5

4. Discussion
This GIS-based geospatial modelling study examined three key pathways for the

transport of agricultural microplastics as generated by biosolid applications in the study
area in the Australian state of New South Wales (NSW). Whilst the study focused on this
discrete Australian area, we believe that the applicability of the methodology represents a
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foundation for similar studies across various global scales. This approach could contribute
to the understanding of microplastic pollution risks from biosolid application.

Since there are limited research studies on the risk assessments of particular loca-
tions, actual field concentrations, and transport behaviours of agricultural microplastics in
Australia, this study developed a set of risk factors that contribute to the three transport
pathways by using emerging trends from the global literature base. Using publicly available
high-quality spatial input data, these risk factors were mapped and subsequently overlaid
to determine the risks associated with each method of transport.

According to study results, regarding the rainfall-runoff of microplastics, a greater
risk was observed in the eastern regions of the NSW Murray-Darling Basin (MDB), where
average annual rainfall is high, and aridity is low. Additionally, a localised region of
high risk was observed in the southern portion of the study area, adjacent to the Murray
River, where agricultural properties are in relatively close proximity to waterways (mostly
irrigation channels draining to natural streams, creeks, and rivers).

The southern extent of the New South Wales Murray-Darling Basin is more likely to
retain microplastics in soil profiles, with high-risk areas generally found in small pockets
of horticultural land use, indicating the importance of this risk factor. From the mapping,
medium- to high-risk areas of agricultural land adjacent to the Murray River appeared once
again, in a region that is relatively arid and contains soils of high potential ionic strength.

According to the risk mapping for groundwater infiltration of microplastics, the
western and southern zones of the study area were generally at the highest relative risk,
with large areas at medium to high risk. High-risk areas were again found near the Murray
River in concentrations of agricultural land, representing an emerging trend from all three
transport pathway risk assessments.

While the study results may be limited by its broad area and assumptions made in
lieu of present data in an emerging area of research, the methodology used in this study
represents a novel foundational framework for the development of similar future risk
assessments. By incorporating future research into the field concentrations and transport
behaviours of agricultural microplastics, such risk assessments can present more high-
resolution mapping, highlighting to policymakers and the agricultural industry areas of
the agricultural landscape that are appropriate for biosolid amendment, and those that
should be avoided to prevent the risk of microplastic pollution and downstream effects.

5. Conclusions
Globally, plastic production and consumption are on the rise and microplastic particles

(microplastics), broken-down forms of these plastics, are emerging as major pollutants. The
use of biosolids, which are wastewater treatment plant byproducts sold to the agriculture
industry as green alternatives to inorganic fertilizers, is causing microplastics to reach
agricultural settings in huge quantities. It has been shown that microplastics may cause
significant environmental and ecological harm in agricultural settings, with certain risk
factors increasing the likelihood that microplastics will accumulate in soils, run off into
nearby waterways, or penetrate groundwater once they are introduced to agricultural
settings.

This study used a GIS-based methodology to analyse a portion of the Murray-Darling
Basin in New South Wales, Australia, overlaying risk factors associated with three key
pathways of microplastic pollution: rainfall-runoff, soil retention, and groundwater infiltra-
tion. Through the standardisation of multivariate input data, this study was able to identify
particular areas of risk for each transport pathway and map them clearly. Identifying these
areas of greatest risk will allow targeted future field investigations within Australia, and
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the novelty of the methodology applied will provide a foundation for global studies to
undertake similar investigative mapping.

This study was limited by the lack of research in the field of agricultural microplas-
tic pollution, and future studies should verify the accuracy of mapping through field
investigations and empirical studies.

A similar GIS methodology to that used in this study is applicable globally, at various
scales of study, with a multitude of possibilities for input data and risk factor overlay, as
the literature base develops.

Within Australia, it is recommended that further investigations be conducted to
determine the actual areas that are applied with biosolids, the levels of microplastic concen-
trations in different types of agricultural land use, and the concentrations of microplastics
in downstream waterways and groundwater near agricultural land use.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/agronomy15010047/s1, Table S1: Risk factors, categories, sources, and
spatial data and sources used.
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