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Abstract: A sleep disorder is a medical condition that affects an individual’s regular sleeping
pattern and routine, hence negatively affecting the individual’s health. The traditional procedures of
identifying sleep disorders by clinicians involve questionnaires and polysomnography (PSG), which
are subjective, time-consuming, and inconvenient. Hence, an automated sleep disorder identification
is required to overcome these limitations. In the proposed study, we have proposed a method using
electroencephalogram (EEG) signals for the automated identification of six sleep disorders, namely
insomnia, nocturnal frontal lobe epilepsy (NFLE), narcolepsy, rapid eye movement behavior disorder
(RBD), periodic leg movement disorder (PLM), and sleep-disordered breathing (SDB). To the best
of our belief, this is one of the first studies ever undertaken to identify sleep disorders using EEG
signals employing cyclic alternating pattern (CAP) sleep database. After sleep-scoring EEG epochs,
we have created eight different data subsets of EEG epochs to develop the proposed model. A novel
optimal triplet half-band filter bank (THFB) is used to obtain the subbands of EEG signals. We
have extracted Hjorth parameters from subbands of EEG epochs. The selected features are fed to
various supervised machine learning algorithms for the automated classification of sleep disorders.
Our proposed system has obtained the highest accuracy of 99.2%, 98.2%, 96.2%, 98.3%, 98.8%, and
98.8% for insomnia, narcolepsy, NFLE, PLM, RBD, and SDB classes against normal healthy subjects,
respectively, applying ensemble boosted trees classifier. As a result, we have attained the highest
accuracy of 91.3% to identify the type of sleep disorder. The proposed method is simple, fast, efficient,
and may reduce the challenges faced by medical practitioners during the diagnosis of various sleep
disorders accurately in less time at sleep clinics and homes.

Keywords: sleep; sleep stages; polysomnography (PSG); classification; ensemble boosted trees

1. Introduction

Sleep is a fundamental part of human life, and its deprivation results in many sleep
disorders, which imposes adverse effects on an individual’s health. Lack of sleep may
even result in the development of dementia and Alzheimer’s disease [1]. Failing to have
proper sleep may disrupt blood sugar levels to a level that a person would fall diabetic.
Inadequate sleep may cause blockage of our coronary arteries, leading to cardiovascular
disease, stroke, and congestive heart failure [1]. Improper sleep significantly contributes
to various other psychiatric conditions such as anxiety, depression, and even suicidality.
Inadequate sleep may result in weight gain for adults and children. Dieting without proper
sleep is ineffective and will result in loss of lean body mass instead of fat. Improper sleep
may deteriorate the quality of life and shorten an individual’s life span [1].
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Researchers believe that sleep has persisted along for years of evolution and therefore
it must be having some significant benefits. However, recent studies show that sleep
serves us a multitude of functions helping both our brains and bodies. Sleep helps our
brain by improving our ability to learn, memorize, and take decisions. Sleep also helps
us in re-calibrating our emotional brain circuits, as a result of which we can plan better
our day-to-day activities and handle psychological challenges. When we sleep, our brain
receives a neurochemical bath, which helps in conciliating sore memories and a virtual
reality space where the brain fuses past and present experiences and knowledge. Sleep
helps our body by restrengthening our immune system, preventing infections and helps
to fight malignancy. Sleep helps in ameliorating body’s metabolic stage by maintaining
the balance of insulin and disseminating glucose. It also helps in controlling our body
weight by regulating our appetite. Proper sleep also helps in lowering blood pressure and
maintaining better heart health, leading to a healthy cardiovascular system. Recent sleep
studies conclude that sleep is the single most effective thing we can do to reset our brain
and body health each day [1].

The first sleep disorder considered in this study is insomnia. Insomnia is characterized
by difficulty in falling and/or staying asleep. According to International classification
of sleep disorders—third revision (ICSD-3), insomnia is mainly classified into two types
(i) short-term insomnia disorder and (ii) chronic insomnia disorder [2]. Short-term in-
somnia lasts for a few weeks however if the symptoms last for at least three nights per
week for more than three months then it is treated as chronic insomnia disorder. Approxi-
mately, 10–30% of total population experiences symptoms of insomnia. If the patients with
co-morbid conditions are also included this number could be around 50% based on the
severity and type of the disorder [3]. Narcolepsy is another sleep disorder considered under
the scope of this study. ICSD-3 has categorized narcolepsy under the category of central
disorders of hypersomnolence, which are characterized by excessive daytime sleepiness.
Recent classification of sleep disorders in ICSD-3 has further subdivided narcolepsy into
two categories namely narcolepsy type-1 and narcolepsy type-2. Narcolepsy with hypocre-
tin deficiency along with cataplexy is termed as type-1 narcolepsy. If the cerebrospinal
fluid hypocretin-1 levels do not meet the narcolepsy type-1 criteria and cataplexy is also
absent, then the condition is termed as narcolepsy type-2 [2].

Nocturnal frontal lobe epilepsy (NFLE) can be regarded as a sleep ailment of varied
etiology [4] and it occurs during nocturnal sleep in the form of epileptic seizures, the CAP
database contains total of 40 patients with NFLE (Table 1). A total of ten patients have
disorder of periodic leg movement (PLM) in the CAP database. ICSD-3 has classified PLM
under the category of sleep-related movement disorders. The PLM can be regarded as a
sleep disorder concerning repetitive and regular flexing or jerking of legs for about 20–40 s
during the sleep. To diagnose the condition as PLM, the frequency of limb movement
must be greater than 15 and five in an hour for adults and children, respectively. The
prevalence of PLM is higher than the prevalence of epilepsy [5]. The CAP sleep database
contains recordings of 22 patients suffering from REM behavior disorder (RBD). ICSD-3 has
classified RBD under the category of parasomnia, which is designated by loss of normal
muscular tension and other abnormal behavior such as enacting dreams during REM sleep.
Commonly, elderly males within the age group of 40–70 are the most common patients of
RBD [6,7]. The CAP sleep database contains four patients with difficulty breathing during
sleep and are categorized into sleep-disordered breathing (SDB). Obstructive sleep apnea
(OSA), snoring, central sleep apnea, and hypopnea are collectively classified as SDB [8].

In clinical practice, a questionnaire-based conventional method is used under which
the patient is kept in the surveillance of doctors for months of duration. Conventionally, the
Pittsburgh sleep quality index (PSQI) is used to evaluate the quality of sleep [9]. In PSQI,
sleep quality is assessed using a self-report questionnaire over a one-month time interval,
and questions are related to the psychometric properties of sleep quality. Generally, ques-
tionnaires include questions on sleep duration, daytime sleepiness, caffeine intake, snoring,
breathing problems during sleep, body mass index, and blood pressure. Answers to these
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questions are very subjective and memory-based, and prone to human errors. The diag-
nostic procedure also includes keeping a sleep log or sleep diary for the past 15 or 30 days.
The doctor decides the type of sleep disorder based on the patient’s answer to the sleep
questionnaires and entries registered in the sleep log. Presently, polysomnography (PSG) is
a conventional method to diagnose and treat sleep-related disorders. PSG methods use
several electrodes and wired sensors to record various physiological events of a patient
such as brain waves using EEG, heart rhythms using electrocardiogram (ECG) [10], muscle
movements using electromyogram (EMG), eye movements using electrooculogram (EOG),
blood oxygen saturation (SpO2), and nasal airflow using thermistors. A medical practi-
tioner observes the overnight PSG recording of a patient and performs the diagnosis of
sleep disorders. Due to several sensors, electrodes, and complexity, the PSG procedure is
costly, time-consuming, and inconvenient for patients and may be inapt to clinicians.

The EEG signals available in the CAP sleep database are labeled according to R & K
criterion [11] as widely used earlier for sleep stage scoring. In R & K criteria of sleep
stage scoring, sleep is divided into six sleep stages: wake (W), S1, S2, S3, S4, and rapid
eye movement (REM). In the CAP database, R & K guidelines are used to score EEG
signals; however, to meet with the updated AASM guidelines on sleep scoring, we have
grouped the stages S3 and S4 together to form the N3 sleep stage. According to AASM
guidelines [12], the sleep of an individual is divided into five sleep stages, namely wake
(W), N1, N2, N3, and rapid eye movement (REM) [13,14]. The sleep stages N1 and N2 are
collectively called light sleep, and the N3 sleep stage is also called deep sleep. All three
N1, N2, and N3 together are called non-rapid eye movement (NREM) sleep. In NREM
sleep, the eyes remain still, while in the REM sleep stage, the eyes move very rapidly.
NREM sleep stage constitutes around 75–80%, while REM sleep constitutes the remaining
20–25% of the total sleep duration. Both REM and NREM jointly form one sleep cycle of
approximately 90 min duration. Around 4–5 sleep cycles occurs per night in the case of
an adult.

Often, PSG-based techniques are employed to detect primary sleep disorders. Some-
times brief questionnaires are also used to detect insomnia [15] and RBD [16]. In the
existing literature, some studies conducted on the automated identification of sleep disor-
ders are scant. Majority of the studies are focused on the detection of sleep stages [13,17,18].
Stephansen et al. [19] used neural networks to develop an automated sleep-scoring algo-
rithm to diagnose narcolepsy. Espiritu et al. [20] have used PSG data to identify sleep-
related disorder events such as arousal and leg movements automatically. However, they
have used only one subject to carry out their study. They have obtained the highest accu-
racy of 90.57%, 88.39%, and 89.79% for arousal detection, left leg movement, and right leg
movement detection, respectively, using a decision tree classifier. David et al. [21] have
developed an automated system to identify SDB related events. They have used power
spectral density (PSD) estimation for feature extraction and obtained an overall accuracy
of 85%.

Recently, Sharma et al. [22,23] have used ECG and EEG signals separately to identify
insomnia and obtained the best accuracy of 97.87%. A similar study using ECG signals and
CAP sleep database, spectral features for automatic identification of healthy subjects, and
three sleep disorders (insomnia, RBD, and SDB) are used. The overall accuracy of 86.27%
is obtained [24]. Shahin et al. [25] have used Hjorth parameters and deep neural network
approach for the automated identification of insomnia and obtained an overall accuracy of
92%. Mehrnoosh et al. [26] have developed a method for detecting Alzheimer’s disease
using Hjorth parameters and EEG signals. Our study has used a novel triplet half-band
filter (THFB) based on Hjorth parameters features of EEG signals to identify six different
sleep disorders jointly and simultaneously. The study not only helps in discriminating
good sleepers from sleep-disordered patients but also identifies the type of sleep disorder
the patient is suffering from. The main features of our study are as follows:

• The proposed method is accurate and efficient as we have considered EEG signals for
the automated identification of various sleep disorders. Additionally, we have tried to
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simplify the method using only two EEG channels. The EEG channels are combined
to obtain better results.

• To perform our study, we have used the publicly available CAP sleep database
containing data from many sleep disorders. Hence, we have obtained the classification
results of a maximum number of sleep disorders.

• We have used Hjorth parameters that are considered prominent in analyzing EEG
signals for feature extraction and are computationally less expensive than other non-
linear features.

• We have used a novel THFB for obtaining subbands of EEG signals. The THFB is com-
putationally less expensive than the conventional biorthogonal wavelet filter banks.

• We have used the individual sleep stages W, N1, N2, N3, REM as well as their combi-
nations N1 + N2 (light sleep), N1 + N2 + N3 (NREM), and W + N1 + N2 + N3 + REM
(all stages) for the classification of sleep disorders. Hence, we have implemented both
sleep stage-dependent and sleep stage-independent classification schemes. Hence, our
developed model can identify disorders based on sleep stages without segmentation
of EEG into sleep stages.

The subsequent portion of the paper is framed as follows. Section 2 portrays the
material used for the study. Section 3 details the methodology, including preprocessing,
filter bank, wavelet decomposition, feature extraction, and classification involved in our
research. Section 4 delineates the results obtained for binary classification of a healthy and
sleep-disordered patient as well as seven-class classification of sleep disorders. Section 5
presents a discussion, and we concluded the paper in Section 6.

2. Material Used

In the CAP sleep database , there is a total of 108 PSG recordings. The PSG signals
have been recorded at the Sleep Disorders Centre of the Ospedale Maggiore of Parma,
Italy. It contains multiple EEG montages, EOG (Electrooculogram) channels, one ECG
(Electrocardiogram), submentalis muscle EMG (Electromyogram), two EMG channels,
and respiration signals. The 10–20 international system has been used for capturing EEG
recordings , and the following channels were recorded: C3/C4, F3/F4, O1/O2 referenced
to A1/A2. Additional channels, namely F4-C4, F3-C3, Fp1-F3, P3-O1, C3-P3, C4-P4, Fp2-F4,
and P4-O2, are also present. The EEG channels F4-C4, and C4-A1, which are sampled
at 512 Hz frequency, have been employed in this study. The maximum number of PSG
recordings possess these two channels. The CAP sleep database comprises healthy subjects
and patients suffering from seven types of sleep disorders: NFLE, insomnia, narcolepsy,
bruxism, PLM, RBD, and SDB. In this study, we have considered patients who contained
EEG recordings sampled at 512 Hz sampling frequency. However, only one subject with a
512 Hz sampling frequency is available for bruxism, and the PSG recording for this patient
seems ambiguous. Therefore, we have not considered bruxism disorder in this study. The
average age of healthy, insomnia, narcolepsy, NFLE, PLM, RBD, and SDB subjects used in
this study is 32, 59, 32, 30, 54, 70, and 78 years, respectively. The range in which the age
of all subjects varies is 14-82 years, with an average age of 45 years. Around 58% of the
subjects are male (45), and 41% are female (32) out of 77 subjects used in this study. It can
be observed that the CAP sleep database mainly represents data of elderly subjects. Hence,
our work can significantly help to detect sleep disorders in older subjects. Table 1 shows
the epochs corresponding to different sleep stages of healthy and different disordered
subjects used in this study. The epochs of SDB patients are less and comparatively higher
than others for NFLE and RBD patients.

https://physionet.org/content/capslpdb/1.0.0/
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Table 1. Epoch distribution for data used in this study.

Sleep Stage Healthy
Disorder Total Epochs

Insomnia Narcolepsy NFLE PLM RBD SBD Number (in %)

Wake 445 3801 1316 3230 1398 5266 211 15,667 19.87%
N1 280 223 301 1123 284 1048 26 3285 4.17%
N2 2172 2456 1708 10,768 2845 7446 251 27,646 35.06%
N3 1757 1085 1044 7207 1943 5386 288 18,710 23.73%

REM 1409 986 1258 5005 1341 3530 16 13,545 17.18%

Total 6063 8551 5627 27,333 7811 22,676 792 78,853(in %) 7.69% 10.84% 7.14% 34.66% 9.91% 28.76% 1.00%

3. Methodology

The sequence of steps involved for sleep disorder classification using our method
are depicted in the flowchart shown in Figure 1. The EEG signals are first filtered and
then segmented into sleep stages according to annotations of sleep stages given in the
database. The annotations are given in the form of each EEG epoch (30 s duration of
EEG signal) labeled with a sleep stage. Epochs of EEG signals of disordered patients
are grouped into different sleep stages and then combined with healthy EEG epochs.
After preprocessing, we have used novel triplet half-band filter pair to perform wavelet
decomposition of EEG signals. From seven level wavelet decomposition, eight subbands
corresponding to each EEG epochs are obtained. Subsequently, we have extracted Hjorth
parameters (activity, mobility and complexity) from each subband. These features are then
fed to various supervised machine learning classifiers for the automated discrimination
of healthy subjects and disordered patients, and the type of sleep disorder. The complete
study with experimentation and model training was performed using MATLAB R2020a
installed on a Windows Server 2019 equipped with Intel Xeon E5-2690 v3 CPU @2.6 GHz
(6 cores), an Nvidia K80 GPU with 12 GB Graphics memory, and 56 GB RAM.

The sequence of steps involved for sleep disorder classification using our method
are depicted in the flowchart shown in Figure 1. The EEG signals are first filtered and
then segmented into sleep stages according to annotations of sleep stages given in the
database. The annotations are given in the form of each EEG epoch (30 s duration of
EEG signal) labeled with a sleep stage. Epochs of EEG signals of disordered patients
are grouped into different sleep stages and then combined with healthy EEG epochs.
After preprocessing, we have used novel triplet half-band filter pair to perform wavelet
decomposition of EEG signals. From seven level wavelet decomposition, eight subbands
corresponding to each EEG epochs are obtained. Subsequently, we have extracted Hjorth
parameters (activity, mobility and complexity) from each subband. These features are then
fed to various supervised machine learning classifiers for the automated discrimination of
healthy subjects and disordered patients, and the type of sleep disorder.

3.1. Preprocessing

We have removed data of an initial 3-min. duration from all the recordings for
performing wavelet analysis. Filtering of EEG signals was performed to eliminate noise
and keep only the required information, and normalization of EEG signals was carried out
to obtain identical amplitude levels. We segmented EEG signals into 30-s epochs. Each
epoch of EEG signal comprised of 15,360 samples sampled at 512 Hz. These epochs are
then labeled with sleep stages.

Filtering for Noise removal: Conventionally, EEG signal is divided into various band
of frequencies namely delta(δ), theta(θ), alpha(α), beta(β) and gamma(γ) with frequency
range of 0–4 Hz, 4–8 Hz, 8–13 Hz, 13–30 Hz and above 30 Hz, respectively. To retain
the useful information and for removal of noise [27,28], as per AASM criterion [12], we
have band-pass filtered the EEG signal using a finite impulse response (FIR) filter with
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Kaiser window. Only frequencies above 1 Hz and below 35 Hz were retained in our study.
Figure 2a,b displays the power spectrum of raw and filtered EEG signal, respectively. The
filtered EEG signals are then standardized to make them centered at zero with a standard
deviation of 1. This is done to take care of the differences in recording equipment and to
make the data easily trainable.

Acquisition of Polysomnographic (PSG) Data

Extraction of EEG from PSG data

Preprocessing of Data

Segmentation of EEG into 30-second epochs

Grouping of epochs into sleep stages as per AASM criterion

Wavelet Decomposition

Hjorth Parameters Extraction

Supervised Machine Learning Classifiers
Healthy

Insomnia
Narcolepsy NFLE PLM

RBD

SDB

Figure 1. Flowchart of the proposed study.
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Figure 2. Power Spectrum of an EEG signal: (a) raw and (b) filtered.
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Segregation of sleep stages from EEG signals: In our study, we have divided EEG
signal from each subject according to sleep stages. The CAP sleep database contains
annotation files along with the signal recordings. The annotation files contained labels
corresponding to 30s epochs of EEG signals as per the R&K rules [11] and the sleep stage
scoring is done by six trained sleep experts. We have removed data of initial 3 min duration
from all the recordings. We have generated the hypnogram for each subject and Figure 3
shows one such hypnogram of a healthy subject. The hypnogram is a graph that depicts
sleep stages as a function of sleep time in hours. It is an easy way to represent the brain
wave activity using EEG signals. We grouped the 30s epochs into five sleep stages with the
help of annotations in the hypnogram. Table 1 shows number of epochs pertaining to each
sleep stage for all the subjects used in study.

0 1 2 3 4 5 6 7 8
Hours of Sleep

Wake

REM

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3. Hypnogram of a healthy subject with sleep stages scored according to R & K [11] criterion.

3.2. Triplet Half-Band Filterbank and Wavelet Decomposition

EEG signals are non-stationary in nature and hence traditional time domain and
frequency domain techniques based on Fourier transform cannot analyze them. Contrary
to this, the wavelet-based techniques are considered to be an excellent choice for the
analysis of non-stationary signals. This encouraged us to use a wavelet-based technique
for the analysis of EEG signals [29–31]. Hence, in this work we have used a new class
of biorthogonal filterbanks [32–38] named triplet half-band filterbank (THFB) with the
parametric Bernstein Polynomial developed by Tay et al. [39].

Tay et al. [39] have designed a novel class of filter bank which has structural perfect
reconstruction (PR) and regularity property [40,41]. This filter bank is designed using three
simple half-band filters. These filters can be designed easily and have certain desirable
properties [42]. This filterbank designed with the help of three half-band filters is known
as triplet half-band filterbank, which overcomes the limitations of the halfbank pair filter-
bank [43]. In this study, we have used THFB in which regularity and sharpness of filters
can be controlled using parametric Bernstein polynomial. The filterbank has been designed
using least square approach. The filters are designed with the objective of minimizing
passband and stopband errors. The optimization problem is a constrain optimization
problem subjected to PR and regularity conditions [29]. The optimization problem has
been solved iteratively to obtain optimal parameters of Bernstein polynomial.

Earlier Phoong et al. [43] have developed a class of biorthogonal filter bank called half-
band filterbank (HPFB) with certain special features namely structural PR and regularity.
However, HPFB had some limitations, such as the restriction in frequency response because
of the analysis low-pass filter being a half-band filter, in which the magnitude responses of
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the analysis and synthesis low-pass filters at f = 0.25 needs to be 1/2 and 1.0, respectively.
However, for THFB, the frequency response at f = 0.25 can be set to any desired value.
The advantage of using THFB and Parametric Bernstein Polynomial is that one can impose
conditions of PR and regularity structurally and the design is more flexible than the
corresponding HPFB. Therefore, in this study we have used THFB to obtain the subbands
of EEG signals.

In this study, we have used analysis and synthesis filters of orders 28 and 38, respec-
tively. The order of regularity chosen for both filters is fixed. Figure 4 shows frequency
responses of the filters. We have used cascade algorithm to generate scaling and wavelet
functions (Figure 5).

The wavelet decomposition is performed using above-mentioned THFB filterbank.
We chose seven decomposition levels as the maximum frequency component present in
the EEG signal is 256 Hz. We have obtained total eight subbands, one for approximation
coefficients and seven for detail coefficients . Then, time-domain Hjorth parameters are
computed from these eight subbands.
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Figure 4. Frequency response of THFB filter pair.
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Figure 5. Cont.
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Figure 5. Scaling and wavelet functions. (a) analysis scaling function; (b) synthesis scaling function; (c) analysis wavelet
function; (d) synthesis wavelet function.

3.3. Feature Extraction: Hjorth Parameters

In the proposed study, we have used Hjorth parameters features representing time-
domain specifications of EEG signals and are widely used in EEG signal processing appli-
cations. The three parameters, namely activity, mobility, and complexity derived by Hjorth,
are used for the analysis of EEG signals. These parameters jointly describe the patterns of
EEG signals concerning magnitude, time-frequency scale, and complexity [44]. The Hjorth
parameters are defined as follows:

Mathematically, Hjorth activity is the squared standard deviation (energy) of a time
series. It represents the mean signal energy. For a signal y(t), the activity can be defined as
given in Equation (1).

activity = var(y(t)) (1)

The Hjorth mobility provides an estimate of mean frequency of the signal. It is
proportional to the standard deviation of power spectrum of the signal. For a signal y(t), it
is defined as the square root of the ratio of variance of the first derivative of the signal to
the variance of signal, as shown in Equation (2).

mobility =

√
var( dy(t)

dt )
var(y(t))

(2)

The Hjorth complexity compares the shape of the signal with respect to a pure sinu-
soidal signal and represents the deviation in frequency. The value of complexity ranges
between 0 and 1, where 0 represents minimum similarity and 1 represents maximum
similarity with pure sine wave. It gives good estimate of bandwidth of the signal. For any
signal y(t), it is defined as the ratio of the mobility of the first derivative of the signal to the
mobility of signal and is given by Equation (3).

Complexity =
mobility( dy(t)

dt )
mobility(y(t))

(3)

3.4. Classification and Validation

Three Hjorth parameters are extracted from all eight subbands to obtain 24 time-
domain features using single-channel EEG signals. We have used Statistics and Machine
Learning Toolboxes available in MATLAB R2020a for developing the model. All features
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are trained using multiple supervised machine learning classifiers [45,46] namely ensemble
bagged trees (EBT), ensemble boosted trees (EBooT), support vector machines (SVM),
and K-nearest neighbor (KNN) using ten-fold cross-validation (CV) to avoid overfitting
problem. We have used the trial-and-error approach for selecting an optimal algorithm as
a priori it cannot be predicted, which algorithms will perform well for the given database,
and found the classifier with the best classification performance. Having searched the best
classifier out of all the classifiers available in the toolbox, we tuned the hyperparameters
of the selected classifier to enhance its performance further. Among all classifiers used,
we observed through our extensive simulations that EBT and EBooT performed the best
and yielded maximum classification performance for most of the classification task. It is
also in line with the theory that ensemble techniques would better predict the individual
member. In the ensemble technique, a bunch of weak learners is combined to form a
strong-learner, resulting in the overall increase of the model’s performance. Many decision
trees classifier are involved in achieving a higher performance than the single decision
tree classifier. Pivotal advantage of employing ensembles is to have improved average
classification performance over any other contributory individual member of the ensemble.
As we have used a large number of epochs and the data are imbalanced, ensemble methods
are highly reliable and capable of generating a robust model by effectively reducing the
problem of overfitting.

Ensemble Bagged Trees: In the bagging algorithm, multiple subsets of training data
are selected on a random basis with replacement, and then each subset is employed for
training a decision tree. Overall performance is obtained from the average of all the
predictions made using different decision trees. The central aim of using the bagging
algorithm is to minimize the variance of the decision tree classifiers. The bagging algorithm
handles higher-dimensional data very well and significantly reduces the overfitting of the
model [47,48].

We noticed the variation in the misclassification error rate with respect to the number
of splits and the maximum number of trees. The number of splits is changed iteratively
from 1 to m − 1 with a step size of 100, and the number of trees is varied from 20 to 200. In
this work, m denotes a total number of epochs (m = 18,710 for N3 dataset in seven-class
classification). We obtained the optimum number of learners equal to 30, the number of
splits equal to m − 1 (i.e., 18,709), and the learning rate equal to 1.

Ensemble Boosted Trees: In this technique, random samples of the training data are
used to train simple decision trees, and then errors are analyzed. Weights of the misclassi-
fied inputs are increased to increase the chances of obtaining previously misclassified input
that is correctly classified in the next iteration. Boosting algorithm aims to improve the
accuracy by increasing the misclassification cost with every iteration, and thus it converts
weak learners to perform as better models [47,48].

K-Nearest Neighbor (KNN): It is one of the most straightforward supervised machine
learning algorithm which can be used for classification and regression [49]. In this algo-
rithm, we need to select the value of K (generally, 5). Then we calculate the Euclidean
distance between K neighbors, take the K-nearest neighbors according to the calculated
Euclidean distance. The data point under consideration belongs to the category which
contains the maximum number of nearest neighbors.

Support Vector Machines (SVM): It is a robust supervised learning algorithm, which
can be employed for binary and multi-class classification or regression. These are widely
used in speech and image recognition, natural language processing, and computer vi-
sion [50,51]. The SVM works on the principle of maximizing the margin between two
classes. To maximize the separation gap among the two groups in the data, an optimal
hyperplane as a decision surface is created that optimally separates the data into two
distinct classes.

In this work, we have performed automated identification of six sleep disorders using
C4-A1 and F4-C4 EEG channels. We used EEG recordings of six healthy subjects and 74
patients with above-mentioned sleep disorders. A total of 78,853 epochs (30 sec duration
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each) were used in this study. A detailed summary of individual epoch count is shown in
Table 1. In this study, six binary classification tasks are considered to discriminate healthy
and sleep disorder subjects. Furthermore, we have considered seven-class classification
problem to identify the type of sleep disorders.

4. Results

In the following section, we have detailed about the data subset formed by us, and
the classification tasks considered for the identification of various sleep disorders.

4.1. Data Subsets Preparation

As per the AASM guidelines [12], we segregated all five sleep stages from recordings
of healthy and sleep disorder patients to form five different data subsets (wake(W), N1, N2,
N3, REM) and performed binary classification using each data subset. Additionally, we
also formulated some more data subsets as mentioned below:

• LSS: It is a stage of light sleep and formed by combining N1 and N2 stages of healthy
as well as disorder subjects.

• NREM : It is a combination of (N1 + N2, andN3 ) of all subjects and patients.
• ALL: It is a combination of epochs belonging to all five stages (W + N1 + N2 + N3 +

REM) .

We have labeled wake stage of healthy subjects as one class and wake stage of sleep
disorder patients as another class and then performed binary classification. Similarly, other
classification tasks are performed using other data subsets as well.

4.2. Classification Results

In this section, we presented the results of classification performance for various clas-
sification problems formulated by us for classifying healthy subjects, and sleep-disordered
patients as well as the type of the sleep disorder.

Insomnia vs. Healthy: We have taken seven patients with insomnia (8551 epochs) and
six healthy subjects (6063 epochs). We obtained classification accuracy in the range of 90%
to 98% using the F4-C4 channel and accuracy of 85.88% to 96.08% using the C4-A1 channel.
However, combining F4-C4 and C4-A1 channels yielded excellent classification accuracy
ranging from 91.25% to 99.23%. Table 2 shows complete classification results obtained for
insomnia and healthy subjects.

Table 2. Performance measures obtained for the automated classification of healthy and insomnia classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 95.64 0.74 0.96 EBooT 96.49 0.79 0.96 SVM 97.48 0.86 0.96 SVM
N1 85.88 0.71 0.94 EBT 90.85 0.81 0.95 EBooT 91.25 0.82 0.98 EBooT
N2 91.12 0.82 0.97 EBT 95.48 0.91 0.99 EBooT 96.93 0.94 0.99 EBooT
N3 95.88 0.91 0.99 EBooT 98.10 0.96 1.00 EBooT 99.23 0.98 1.00 EBooT

REM 96.08 0.91 0.99 EBooT 96.41 0.93 1.00 EBooT 98.16 0.96 0.99 EBooT
LSS 90.43 0.80 0.97 EBT 95.24 0.90 0.99 EBT 96.08 0.92 0.99 EBooT

NREM 92.14 0.84 0.98 EBT 95.92 0.92 0.99 EBT 96.69 0.93 0.99 SVM
ALL 93.60 0.86 0.98 EBT 96.36 0.92 0.99 EBT 96.63 0.93 0.99 EBT

Narcolepsy vs. Healthy: Sleep data of five narcolepsy patients (5627 epochs) and six
healthy subjects are taken, and classification is performed on all eight subsets. Table 3
shows the classification results obtained for healthy and narcolepsy. The range of accuracy
obtained using different data subsets for C4-A1, F4-C4, and both channels combined is
86.69% to 93.61%, 94% to 97.25%, and 94.58% to 98.21%, respectively.
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Table 3. Performance measures obtained for the automated classification of healthy and narcolepsy classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 90.40 0.73 0.95 EBooT 94.00 0.84 0.96 SVM 95.58 0.85 0.98 EBooT
N1 89.67 0.79 0.96 SVM 94.49 0.89 0.98 EBT 95.01 0.90 0.92 EBooT
N2 92.91 0.85 0.98 EBooT 96.13 0.92 0.99 EBooT 97.22 0.94 1.00 EBooT
N3 93.61 0.86 0.98 EBT 97.25 0.94 1.00 EBooT 98.21 0.96 1.00 EBooT

REM 86.69 0.79 0.97 EBooT 95.80 0.92 0.99 EBooT 97.53 0.95 1.00 EBooT
LSS 92.04 0.84 0.97 EBooT 95.56 0.91 0.99 EBooT 96.97 0.94 1.00 EBooT

NREM 92.70 0.85 0.98 EBT 95.77 0.91 0.99 EBT 97.09 0.94 1.00 EBooT
ALL 91.15 0.82 0.97 EBT 95.36 0.91 0.99 EBT 95.95 0.92 0.99 EBooT

NFLE vs. Healthy: Identification of nocturnal frontal lobe epilepsy (NFLE) patients
is carried out using EEG signals obtained from 27 patients (27333 epochs) suffering from
NFLE and six healthy subjects. Table 4 gives a detailed summary of results obtained using
individual and combined EEG channels. It can be observed that N2, N3, REM, and LSS
subsets yielded better performance results using both EEG channels with an accuracy of
96.16%, 96.17%, 96.45%, and 96.21%, respectively.

Table 4. Performance measures obtained for the automated classification of healthy and NFLE classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 90.18 0.41 0.85 SVM 92.27 0.50 0.90 EBooT 92.91 0.66 0.92 SVM
N1 87.31 0.55 0.84 SVM 92.52 0.74 0.95 EBooT 93.73 0.80 0.95 SVM
N2 88.94 0.52 0.89 EBT 95.70 0.83 0.98 EBT 96.16 0.85 0.99 EBT
N3 92.76 0.75 0.96 EBT 95.94 0.86 0.99 EBooT 96.17 0.87 0.99 EBooT

REM 89.07 0.65 0.93 EBT 95.40 0.89 0.98 EBT 96.45 0.89 0.99 EBooT
LSS 88.34 0.50 0.88 EBT 95.76 0.83 0.98 EBT 96.21 0.86 0.99 EBT

NREM 89.64 0.59 0.91 EBT 96.04 0.86 0.98 EBT 95.93 0.85 0.99 EBT
ALL 88.86 0.55 0.90 EBT 95.71 0.84 0.98 EBT 94.33 0.79 0.98 EBT

PLM vs. Healthy: We have used nine periodic leg movement (PLM) subjects (7811 epochs)
to perform the automated identification of PLM against healthy subjects. Table 5 provides
the detailed comparison and summary of results obtained for the classification using
bipolar EEG, unipolar EEG, and a combination of both EEG channels. We have obtained
classification accuracies ranging from 89.54% to 93.68% using the C4-A1 channel, whereas it
ranges between 92.4% to 98.07% using the F4-C4 channel. However, after combining both
EEG channels and performing classification, we obtained excellent classification accuracies
in the range of 95.39% to 98.55%. It can be noted from Table 5 that N3 and REM data
subsets show identical classification performance.

Table 5. Performance measures obtained for the automated classification of healthy and PLM classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 90.02 0.71 0.95 EBooT 92.40 0.78 0.96 SVM 95.39 0.87 0.98 SVM
N1 89.54 0.79 0.96 EBooT 93.44 0.87 0.95 SVM 95.57 0.91 0.98 SVM
N2 92.49 0.87 0.97 EBT 97.03 0.94 0.99 EBT 96.99 0.94 1.00 EBooT
N3 93.68 0.82 0.98 EBT 97.89 0.96 1.00 EBooT 98.30 0.97 1.00 EBooT

REM 90.87 0.85 0.97 EBT 98.07 0.96 1.00 EBooT 98.55 0.97 1.00 EBooT
LSS 91.99 0.84 0.97 EBT 96.51 0.93 0.99 EBooT 96.95 0.94 1.00 EBooT

NREM 91.65 0.83 0.97 EBT 96.65 0.93 1.00 EBooT 97.20 0.94 1.00 EBooT
ALL 90.77 0.81 0.97 EBT 95.81 0.91 0.99 EBT 97.01 0.94 1.00 EBT

RBD vs. Healthy: For the automated identification of RBD sleep disorder, the classi-
fication of 22 RBD patients and six healthy subjects is performed for all eight data subsets.
We have obtained excellent classification accuracies ranging between 91.27% to 95.95%,
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95.56% to 98.33%, and 95.56% to 98.98% for all eight data subsets using C4-A1, F4-C4, and
combination of both channels, respectively. It can be noted from Table 6 that N3 and REM
data subsets exhibit similar performance for the automated identification of RBD.

Table 6. Performance measures obtained for the automated classification of healthy and RBD classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 95.08 0.58 0.90 SVM 96.36 0.71 0.95 SVM 97.30 0.80 0.98 SVM
N1 91.27 0.72 0.92 SVM 95.56 0.86 0.98 EBooT 95.56 0.86 0.99 EBooT
N2 93.41 0.80 0.96 EBT 96.43 0.90 0.99 EBT 97.26 0.92 0.99 SVM
N3 95.95 0.89 0.99 EBT 98.33 0.95 1.00 EBooT 98.82 0.97 1.00 EBooT

REM 93.16 0.83 0.96 EBT 97.37 0.93 0.99 EBT 98.00 0.95 1.00 EBooT
LSS 92.99 0.79 0.96 EBT 96.29 0.89 0.99 EBT 97.07 0.91 0.99 SVM

NREM 93.17 0.82 0.97 EBT 96.29 0.91 0.99 EBT 96.99 0.91 0.99 EBT
ALL 93.41 0.79 0.96 EBT 97.26 0.92 0.99 EBT 97.09 0.91 0.99 EBT

SDB vs. Healthy: We also performed automated identification of sleep breathing
disorder (SDB) by performing the classification of SDB patients against healthy subjects.
It can be noted from Table 1 that we have only one SDB patient with only 16 epochs in the
REM stage and 1409 epochs of healthy subjects. As a result of this inequality in epoch count,
supervised machine learning classifiers yielded poor performance using the REM data
subset. We have obtained the classification accuracies in the range of 90.24% to 98.88% using
C4-A1 channel, and between 95.47% to 99.04% using F4-C4 channel. However, combination
of both channels yielded excellent classification accuracies in the range of 96.88% to 99.46%.
Table 7 provides detailed summary of results corresponding to SDB identification.

Table 7. Performance measures obtained for the automated classification of healthy and SBD classes.

Data Subset
C4-A1 F4-C4 C4-A1 + F4-C4

Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier Accuracy (%) κ AUC Classifier

W 90.24 0.77 0.95 EBooT 95.47 0.90 0.98 SVM 96.88 0.93 1.00 SVM
N1 93.79 0.68 0.97 RUSBooT 96.08 0.68 0.97 SVM 98.69 0.92 1.00 SVM
N2 97.07 0.83 0.98 EBooT 98.84 0.94 0.99 EBooT 99.46 0.97 1.00 SVM
N3 95.79 0.82 0.96 EBooT 98.73 0.95 1.00 RUSBooT 98.83 0.95 1.00 SVM

REM 98.88 0.00 0.68 EBT 98.88 0.00 0.94 EBT 99.30 0.64 0.78 KNN
LSS 96.81 0.81 0.98 EBooT 98.61 0.92 1.00 EBooT 99.30 0.96 1.00 SVM

NREM 95.48 0.76 0.97 EBT 99.04 0.95 1.00 EBooT 99.35 0.97 1.00 EBooT
ALL 94.09 0.66 0.96 EBT 98.41 0.92 0.99 EBooT 98.79 0.94 1.00 EBooT

Identification of type of sleep disorder: After performing binary classification of six dis-
orders against healthy subjects, we have also performed an essential task of identifying the
type of sleep disorder by formulating a seven-class classification task by combining all EEG
recordings of all 77 subjects together. For instance, we have combined wake stage epochs of
all seven types of patients into one data subset, ‘W’ with seven labels (‘Healthy,’ ‘Insomnia,’
‘NFLE,’ ‘Narcolepsy,’ ‘RBD,’ ‘SDB’ and ‘PLM’). Similarly, we have formed five data subsets
(W, N1, N2, N3, REM), and further combinations of these datasets resulted in additional
data subsets LSS (N1+N2), NREM (N1+N2+N3), and ALL (W+N1+N2+N3+REM). In this
work, the seven-class classification of ‘ALL’ data subset represents sleep stage-independent
disorder identification as it contains only seven labels, with each label denoting either
healthy subjects or one of six disorders without any information about five sleep stages.
Thus, for the automated identification of the type of sleep disorders, we have carried
out eight seven-class classification tasks corresponding to each data subset using various
classifiers (EBT, EBooT, KNN, and SVM) with a 10-fold cross-validation technique. First, we
have used unipolar EEG channel (C4-A1) alone followed by bipolar EEG channel (F4-C4)
alone, and then we combined both channels (C4-A1 + F4-C4) and obtained an overall
maximum accuracy of 82.0%, 89.8%, and 91.3%, respectively using N3 data subset using
EBT. Table 8 summarizes the results obtained for seven-class classification using all eight
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data subsets. Table 9 shows the confusion matrix and performance metrics obtained for the
seven-class classification using both EEG channels (C4-A1 + F4-C4) for the N3 data subset.
In this work, it can be observed that the precision rates for the automated identification
of a type of disorder using both EEG channels combined are more than 90% for all sleep
disorders except NFLE.

Table 8. Classification accuracy obtained for type of sleep disorder (seven-class classification).

Data Subset Epochs
C4-A1 F4-C4 C4-A1 + F4-C4

ACC (%) κ ACC (%) κ ACC (%) κ

W 15667 70.3 0.60 81.5 0.75 83.4 0.78
N1 3285 67.2 0.54 80.4 0.72 82.4 0.76
N2 27646 71.3 0.60 85.5 0.80 89.3 0.85
N3 18710 82.0 0.75 89.8 0.86 91.3 0.88

REM 13545 76.6 0.68 87.4 0.83 90.6 0.87
LSS 30931 70.1 0.65 85.6 0.80 88.6 0.84

NREM 49641 73.4 0.45 88.0 0.48 88.9 0.85
ALL 78853 71.1 0.60 86.7 0.82 87.0 0.83

Classifier: Ensemble Bagged Trees

Table 9. Confusion matrix and performance metrics obtained for seven-class classification using N3 sleep stage with
combination of F4-C4 and C4-A1 EEG channels.

Confusion Matrix Performance Metrics

True Predicted Class
Accuracy Precision Recall F1 Score

Class Healthy Insomnia NFLE Narcolepsy RBD SDB PLM

Healthy 73.6% 0.9% 19.7% 0.4% 4.8% 0.2% 0.3% 97.62% 0.94 0.74 0.83
Insomnia 0.4% 81.3% 11.8% 0.9% 5.1% 0.0% 0.5% 96.99% 0.90 0.81 0.85

NFLE 0.5% 1.0% 93.3% 0.4% 4.2% 0.0% 0.6% 91.53% 0.84 0.93 0.88
Narcolepsy 0.6% 3.1% 13.0% 73.1% 9.0% 0.1% 1.1% 97.65% 0.92 0.73 0.82

RBD 0.3% 0.9% 3.7% 0.4% 94.0% 0.0% 0.7% 93.77% 0.86 0.94 0.90
SDB 1.3% 0.4% 11.6% 1.1% 32.7% 52.4% 0.5% 99.48% 0.93 0.52 0.67
PLM 0.2% 0.7% 12.7% 0.4% 11.7% 0.0% 74.3% 96.92% 0.92 0.74 0.82

To validate our model, we have also used 20% hold-out validation with 80% subjects
used for training and 20% subjects separately used for validation. It is observed that
10-fold cross-validation yielded marginally better results as compared to the 20% hold-out
validation scheme. The results obtained using hold-out validation are shown in Table 10.
We have also compared the performance of the EBooT classifier with other conventional
machine learning classifiers such as KNN and SVM. Table 10 clearly shows that the EBooT
classifier performed better than KNN and SVM classifiers. For seven-class classification
using EBT, EBooT, KNN, and SVM, we have obtained classification accuracy of 90.7%,
67.2%, 77.7%, and 71.2%, respectively.

Table 10. Summary of results obtained for sleep disorder classification using various classifiers with
hold-out validation strategy.

Classifier
Accuracy (%)

Insomnia Narcolepsy NFLE PLM RBD SDB

EBooT 98.6 97.3 95.2 98.4 99.1 98
KNN 96.1 93.2 90 93.6 96.6 95.6
SVM 94.9 88.2 84.8 93.9 96.7 96
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We have also performed the above-mentioned classification tasks without using
wavelet decomposition. Without using THFB and wavelet decomposition, we have ob-
tained the classification accuracy ranging between 80.97% to 83.55% and AUC ranging
between 0.85 to 0.89 for binary disorder identification tasks using the N3 sleep stage as
shown in Table 11. However, when we employ the proposed THFB wavelet-based fea-
tures, we attain better classification accuracy ranging between 96.17% to 99.23% and AUC
of 0.99. This is due to the high discriminating ability of optimal THFB wavelet-based
Hjorth features.

Table 11. Classification results obtained without using wavelet decomposition with N3 sleep stage
and both EEG channels (C4-A1 + F4-C4). Results are obtained using 10-fold CV and EBT classifier.

Disorder
Without Wavelet Decomposition With Wavelet Decomposition

Accuracy (%) AUC Accuracy (%) AUC

Insomnia 83.55 0.89 99.23 1.00
Narcolepsy 82.70 0.89 98.21 1.00

NFLE 80.97 0.87 96.17 0.99
PLM 82.77 0.88 98.30 1.00
RBD 83.21 0.89 98.82 1.00
SDB 83.30 0.89 98.83 1.00

seven-class 76.87 NA 91.30 NA

5. Discussion

In the literature majority of studies are focused on automated identification of sleep
stages. In this paper, we proposed a novel approach to automatically identify six sleep
disorders using two EEG channels (C4-A1 and F4-C4 ). We have obtained the classification
results using individual EEG channels as well as their combination. It can be observed
that the classification results improved when combination of both EEG channels are used.
Our proposed model not only classify the healthy and sleep-disordered subjects but also
identified the type of sleep disorder. We observed that in many case N3 sleep stage can
classify better than others.

Espiritu et. al. [20] have developed a method using EEG signals for automatic identifi-
cation of obstructive sleep apnea (OSA) [52,53] and restless leg syndrome (RLS). They have
used two types of disorders (arousal and leg movement events) to discriminate between
OSA and RLS. For classification purposes, they used a decision tree classifier and achieved
a maximum accuracy of 85.02%. Another study proposed by David et al. [21] focused on
identifying only SDB patients. To achieve this task, they have used EEG signals and power
spectral density (PSD) estimation and principal component analysis (PCA). They have
performed the classification using support vector machines (SVM) classifier and obtained
an accuracy of 85%. Table 12 shows the summary of comparison of our study with other
existing studies on sleep disorder identification. Widasari et al. [24] have performed a study
on the classification of healthy subjects and three sleep disorders (insomnia, RBD, and SDB)
using the CAP sleep database. Their study mainly focused on classifying these disorders
using ECG signals and spectral features based on sleep quality parameters. They have
used ensemble bagged trees classifier and obtained an accuracy of 86.27%. Although their
method obtained significant accuracy, they have performed only four-class classification
between healthy subjects and mentioned three disorders. Their study has used 51 subjects,
while in our study, we have used 78 subjects comprising six sleep disorders using EEG
signals with 512 Hz sampling frequency. It can be observed from the comparison table that
we have achieved the highest accuracy for the seven-class sleep disorder classification.

To compare our study with the work done by Widasari et al. [24], we have also
performed four-class classification for the identification of healthy, insomnia, RDB, and
SDB subjects. We have obtained maximum classification accuracy of 96.5% with the
EBT classifier.
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Table 12. Comparison with other studies using CAP sleep database.

Study Signal Features Classifier Sleep Disorders Overall
Accuracy (%)

Sharma et al. [22] ECG Norm features KNN and SVM Insomnia 97.87%

Widasari et al. [24] ECG Spectral features and
sleep quality parameters Ensemble of bagged trees Healthy, Insomnia, RBD

and SDB 86.27%

Proposed Method EEG Hjorth parameters

Ensemble Bagged trees Healthy, Insomnia, RBD
and SDB 96.5%

Ensemble Bagged and
Boosted trees

Healthy Vs Narcolepsy
Vs PLM Vs SDB Vs RBD

Vs NFLE
91.30%

The main features and advantages of our method are as follows:

• To the best of our belief, the proposed study is the first study ever undertaken to
detect six sleep disorders simultaneously and jointly.

• The method used only three Hjorth parameters, which require less computational
time, so feature extraction is fast.

• The model has yielded high classification performance due to the employment of opti-
mal THFB wavelet-based Hjorth features. The high performance indicates promising
discriminating abilities of the optimal wavelet-based features. These highly discrim-
inatory features can be employed in the automated identification of sleep stages,
mental disorders such as depression, schizophrenia, Parkinson’s disease, Alzheimer,
Dementia, etc.

• We have used EEG signals for sleep disorder identification which are proven to be
the standard for brain-related studies. Additionally, our developed method is simple,
accurate, and can be implemented in real-time applications.

• It can be concluded from our results that it is possible to classify sleep disorders using
EEG signals alone with high classification performance.

• Considering the non-stationary nature of EEG signals, we employed a wavelet-based
technique that employs a triplet half-band biorthogonal wavelet filter bank to analyze
EEG signals.

• We have used a publicly available CAP sleep database so that the work can be
reproduced, and other interested researchers may use the data and compare their
results with us. Additionally, the database contains PSG recordings of 108 subjects,
including six different sleep-disordered patients as well as healthy subjects of 906 hrs
of duration.

It can be noted that the PSG recording can be captured only in sophisticated sleep labs
and needs trained clinicians for the acquisition of various physiological signals. Hence,
creating a private database that includes such many subjects and a wide variety of different
sleep disorders is highly time-consuming, complex, vulnerable to errors, challenging,
and costly task. Additionally, no research group has used this data to identify sleep
disorders using EEG signals to date. Hence, we used the public CAP database. Since
the proposed study has attained promising results with EEG signals, a private database
can be created in the future, and the developed model can be tested using it. It is worth
noting that the method is novel as this is the first study that employs the optimal THFB
wavelet-based features for the detection of sleep disorder. In the literature, no study has
employed THFB wavelets for any physiological signals. Thus, this study also indicates
that THFB-based features work well in disease detection for EEG signals. In the future, the
performance of THFB-based features can be explored for the detection of mental disorders
such as Depression, Schizophrenia, Parkinson’s and Alzheimer’s disease, sleep arousal,
and sleep apnea.

In the future, we can explore convolutional neural network (CNN) [54] and long short-
term memory network (LSTM) though it is not guaranteed that they will definitely surpass
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the performance of the model as it requires a larger number of data in each class to develop
the model. However, using deep learning (DL) techniques is advantageous because it does
not require feature extraction, feature selection and classification, etc. Hence, we suggest
the use of these DL techniques as future work using huge, diverse databases.

The limitations of our proposed method are given below:

• Although EEG signals are considered suitable for brain-related studies, they can still
cause discomfort to patients due to multiple electrodes on the scalp.

• The CAP sleep database contains only one SDB patient with a sampling frequency of
512 Hz. As a result, the recall rate obtained for SDB patients in seven-class classification
is less while the recall rate for NFLE patients is high because of the large number of
NFLE epochs (Please see Table 1).

• The data are imbalanced concerning the number of subjects corresponding to each
sleep disorder. Due to this, for identifying the type of sleep disorder, the model
becomes biased towards NFLE and RBD patients as more subjects are involved in
these disorders in our study.

• In our study, the EEG epochs are imbalanced with respect to sleep stages. However,
we have used ensemble bagging and boosting algorithms to minimize the inaccurate
results and overfitting of the model.

• The identification performance of SDB patients among all six sleep disorders consid-
ered in this study against healthy subjects (seven-class classification) is not adequate
using only C4-A1 (unipolar) channel. However, using only F4-C4 (bipolar) channel,
the performance is significantly improved.

• The developed model needs to be trained and tested on real-time data for
clinical application.

Modern advancements in technology have led to several laboratory-based tests for
diagnosing and treating sleep disorders. These lab-based tests include PSG, sleep latency
test, actigraphy, maintenance of wakefulness test and ambulatory EEG [55]. Among these
techniques, PSG is the most widely used lab-based technique. PSG includes a night-long
simultaneous recording of multiple signals and an accurate method for identifying sleep
disorders. However, these PSG-based methods use manual scoring by trained physicians
and involve multiple wired electrodes on the patient’s body, which is uncomfortable to
the patient. These lab-based techniques require patients to spend one or more nights at
designated sleep laboratories. Again, due to the limited availability of sleep laboratories
and high cost, patients suffering from sleep disorders do not prefer these techniques, and
hence many remain undiagnosed. Furthermore, one or two night’s sleep recordings do not
represent the exact sleep condition of the patient. Therefore, there is a need for a device that
can record and monitor the sleep recordings over a longer period to assess longitudinal
variations with minimum discomfort and cost. Thus, we proposed a possible non-invasive,
in-home, and cost-effective candidate to identify multiple sleep disorders using only two
EEG channels.

Our proposed method used only two EEG channels and can be integrated into a
portable device or cloud-based health monitoring system. The patients need not have to be
in sleep laboratories surrounded by so many uncomfortable electrodes.

6. Conclusions

This study aims to develop an automated identification of various sleep disorders
using EEG signals. A novel optimal triplet half-band filter bank (THFB) is used to obtain the
subbands of EEG signals. The Hjorth parameters extracted from subbands are employed
as discriminating features. Our developed model can identify disorders based on both
sleep stage-dependent and independent classification schemes. The highest classification
performance to discriminate between healthy and disordered subjects and to identify the
type of sleep disorders is achieved using the N3 (deep sleep) stage. The highest accuracy
of classification between healthy subjects against insomnia, narcolepsy, NFLE, PLM, RBD,
and SDB subjects is 99.2%, 98.2%, 96.2%, 98.3%, 98.8%, and 98.8%, respectively. In addition,
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for the identification of the type of sleep disorders, we have achieved the best accuracy of
91.3% using the N3 sleep stage. The experimental results show that the ensemble bagged
and boosted trees classifier can effectively classify sleep disorders with high accuracy,
precision, recall, and F1-Score. The developed approach for sleep disorder identification is
simple, accurate, computationally less expensive, and easy to implement in home-based
systems, cloud-based sleep monitoring devices, and hospitals. A private database can be
created in the future, and the developed model can be tested on it. We intend to explore
various deep learning techniques such as CNN and LSTM to automate sleep disorders
using a vast database.
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