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ABSTRACT
Hard interaction learning between source sequences and their next
targets is challenging, which exists in a myriad of sequential pre-
diction tasks. During the training process, most existing methods
focus on explicitly hard interactions caused by wrong responses.
However, a model might conduct correct responses by capturing a
subset of learnable patterns, which results in implicitly hard inter-
actions with some unlearned patterns. As such, its generalization
performance is weakened. The problem gets more serious in se-
quential prediction due to the interference of substantial similar
candidate targets.

To this end, we propose a Hardness Aware Interaction Learning
framework (HAIL) that mainly consists of two base sequential learn-
ing networks and mutual exclusivity distillation (MED). The base
networks are initialized differently to learn distinctive view pat-
terns, thus gaining different training experiences. The experiences
in the form of the unlikelihood of correct responses are drawn from
each other by MED, which provides mutual exclusivity knowledge
to figure out implicitly hard interactions. Moreover, we deduce
that the unlikelihood essentially introduces additional gradients
to push the pattern learning of correct responses. Our framework
can be easily extended to more peer base networks. Evaluation is
conducted on four datasets covering cyber and physical spaces. The
experimental results demonstrate that our framework outperforms
several state-of-the-art methods in terms of top-k based metrics.

CCS CONCEPTS
• Applied computing→ Sociology; • Computing methodolo-
gies → Neural networks.
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1 INTRODUCTION
In modern society, various sequential prediction tasks can help
humans making informed decisions such as recommendation [28,
32], trajectory prediction [21], click-through rate prediction [25, 38]
and region-centered event prediction [12]. For example, during the
COVID-19 pandemic, precise prediction of infected cases has led
to better allocation of healthcare resources [30, 39]. As shown in
the left side of Figure 1(a), such tasks typically arrange a series of
historical elements (e.g., items, events, locations or their counts)
from a certain generator in chronological order, which constitutes
a sequence. Existing studies have proved that there exist diverse
kinds of interaction patterns between the element sequences and
their corresponding next elements [6, 18, 21, 45]. These patterns can
give humans a hint about what the future element is like to some
degree. In order to provide high-quality predictions, numerous
researchers are trying to model and learn the latent interaction
patterns comprehensively.

To capture the interaction patterns, various deep learningmodels
are proposed. Most works notice that some interactions involved
by humans present more complex characteristics such as irregular
interaction [27, 28, 32], dynamic dependency [35, 43], noise interfer-
ence [12, 20], than others in nature. Therefore, the basic paradigm
of their works is to design a well-adapted structure to better model
sequential interactions. Recent studies indicate that an effective
training strategy can also help to improve prediction performance
by making use of interaction information [36, 41, 45]. Despite the
effectiveness of prior methods, most of them capture interaction
patterns by revising wrong responses where ground-truth is not
inferred correctly.

By jointly considering model responses in training and hardness
of interactions, the mining of interactions can be divided into three
types. As shown in the right part of Figure 1(a), for the lower red re-
gion, the wrong responses often with relatively larger training loss
are a kind of explicitly hard interactions that have caught the eye
of researchers [12, 28, 45]. For the upper region, correct responses
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(a) Different types of interactions between source sequences and the next
targets, and their divisions by jointly considering model responses and hardness.
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Figure 1: An illustration of implicitly hard interactions
caused by subsets of learnable patterns during training.

usually generate relatively lower loss [36]. However, among cor-
rect responses, there are kinds of interactions with some patterns
unlearned by models. Low loss might make models no longer able
to make specific intentional adjustments and prone to a subset of
comprehensive patterns. With the limitation of training samples,
how to learn such implicitly hard interactions is a burning problem
to improve the generalization performance of sequential predic-
tion models. More recently, a multi-view theory [1] proposed by
Microsoft Research indicates that individual models have limited ca-
pability of capturing multiple views of data. In addition, according
to the biased assessment in some psychological mechanisms [4, 16],
one-sided perspective is easy to generate biased self-knowledge
without communicating with others. Inspired by the above stud-
ies, multi-perspective experiences about pattern learning can be
introduced to enhance the learning of implicitly hard interactions
in sequential prediction. We think that some implicitly hard in-
teractions can be identified from the inconsistent response results
across different models. which might make a model easily prone to
a subset of learnable patterns.

To further investigate the implicitly hard interactions, we analyze
the negative log-likelihood of 50 training samples in ML-1m (a
movie ratings dataset) by a hierarchically-clustered heatmap. As
shown in Figure 1(b), several observations are listed as follows:
• From the left side, the likelihood of predicting positive samples
varies with initializations. And, both the interactions and initial-
izations present cluster effects by observing the dendrogram on

the left and top of heatmap, respectively. It denotes that mod-
els with different initializations can generate distinctive self-
knowledge.

• After masking the wrong responses with white blocks, inconsis-
tent training results accounted for 15.42% of total samples can be
observed from the right side. It is noted that some interactions
are correctly predicted with high likelihood (deep color) by only
a model while other models present wrong responses.

Overall, the observations are in line with the limitation of self-
knowledge [1, 4, 16, 37]. And, inspired by them, multiple perspec-
tives of interactions can be generated by distinctive initializations.

To this end, we propose a novel Hardness Aware Interaction
Learning framework (HAIL). Our solution aims at exchanging mu-
tual exclusivity knowledge, which aggregates training experiences
from other perspectives for learning implicitly hard interactions.
First, two base networks are developed from different initializations
to generate distinctive information about implicitly hard interac-
tions. Second, we propose mutual exclusivity distillation (MED) that
subtly transfers the unlikelihood of correct responses for different
interactions. We further infer that such mutual exclusivity knowl-
edge in the form of unlikelihood can adjust the gradients of models,
which can enhance the learning of implicitly hard interactions. This
learning paradigm is conducive to improving generalization per-
formance of models by enriching view patterns and can be easily
extended to more peers.

Our main contributions are summarized as follows:

• We highlight the impact of implicitly hard interactions and iden-
tify their inconsistent characteristics across different perspec-
tives. To our knowledge, it is the first time that implicitly hard
interactions are mentioned in sequential prediction tasks.

• A general learning framework HAIL is developed for sequential
prediction to enhance the learning of implicitly hard interac-
tions. In particular, MED is proposed to derive mutual exclusivity
knowledge, which breaks the conventional manner of mimic
learning in knowledge distillation. We further infer that MED es-
sentially introduces additional gradients to push pattern learning
of implicitly hard interactions.

• With extensive experiments on two benchmark recommendation
datasets from cyber space and two event datasets from physical
space, the proposed framework HAIL outperforms existing state-
of-the-art methods in several typical applications in terms of
top-k based metrics.

2 RELATEDWORK
In this section, we review some sequential prediction works with
respect to hard interactions, and then investigate the advance of
knowledge distillation.

2.1 Sequential Prediction
Sequential prediction is a common technique that is widely used
in various domains such as sequential recommendation [28, 32],
location prediction [21], click-through rate prediction [25, 38].

Incorporating More Information. Early matrix factorization
based methods [7, 10, 15] are difficult to capture hard interactions.
With the emerging of deep learning, substantial neural networks



are proposed to learn hard interactions by incorporating more in-
formation, such as RNN [7, 19, 40] and convolution [2, 32]. Recently,
since self-attention [34] shows promising performance, more ad-
vanced self-attention based methods are proposed to introduce
related information in terms of different applications. These meth-
ods can be divided into two aspects: 1) For the tasks in cyber space,
recommendation is one of the hotspot research areas [28, 35, 45]; 2)
For the tasks in physical space, there are convolution kernels [20],
sparse mechanism based Informer [44], geography-aware based
GeoSAN [21] and adjacent context based DuroNet [12].

Learning Strategy. More recently, some studies indicate that
effective training strategies can also enhance the learning of hard
interactions and they are less affected by specific applications. MIM
can well capture intrinsic data correlation to avoid overemphasizing
the final performance [45]. On the premise of sufficient data, the
learning of partial hard interactions can be amplified by removing
noisy interactions [36].

The above methods focus on learning hard interactions under
self-knowledge from a single perspective, which pays less attention
to implicitly hard interactions. Different from them, our work tries
to capture implicitly hard interactions no matter which specific
cyber or physical spaces they are in by deriving training experi-
ence from others. To this end, we propose a novel hardness aware
interaction learning framework that mainly consists of two base
networks and a MED strategy.

2.2 Knowledge Distillation
Given a training model, this paper focuses on how to draw experi-
ences about learning implicitly hard interactions from other models.
Knowledge distillation is an effective means to transfer knowledge
between models, which is particularly suitable in our scenario.

Model Compression. Ideas underpinning distillation can date
back to model compression [5]. The current and most well-known
neural distillation is proposed by Hinton et al. [11] where small
student models can derive more information from the softened
output of cumbersome teacher models than the ground-truth. Sub-
sequently, a long line of papers about distillation and compression
quickly emerges. In sequential prediction, some progress has been
made in the distillation object, architectures and procedures, respec-
tively. Specifically, some features from the teacher’s hidden layer
are also distilled to guide the learning of student models [26]. Self-
distillation allows the teacher and students lying in a same model
architecture [22]. A two-step distillation is proposed for the pre-
training and fine-tuning stage, respectively [14].

Non-compression Task. Recently, distillation is proved to be
feasible in other tasks that are not for model compression. Two
typical works break the learning pattern from teacher models to
improve performance of image classification. Born-again neural
network obtains improvement from the prior model by teaching
selves [9]. Deep mutual learning collects knowledge from student
cohort [42]. Moreover, multilingual translation can be integrated
into a unified model by distilling different language models [31].

In this work, we break the mimic learning in convention where
student models try to reproduce the knowledge from their teacher
models. We argue that imitation is not much appropriate to fur-
ther improve performance, since the teacher models preferentially

transfer selective knowledge that they are in high confidence. To
this end, MED is proposed to employ mutual exclusivity knowledge
that is also a kind of learning experience. In this manner, a model
can acquire hints from the unlikelihood of others’ correct responses
to notice implicitly hard interactions.

3 FRAMEWORK
In sequential prediction, the principal entities are generators (e.g.,
users, regions) and elements (e.g., items, locations, events). The
generator can generate a series of elements in chronological order.
Given a set of generators G = {д1,д2, ...,д |G |} and a set of elements
E = {e1, e2, ..., e |E |}, the interaction sequence in chronological or-
der for generatorд ∈ G can be denoted asXд = {e

(д)
1 , ..., e

(д)
t , ..., e

(д)
nд },

where e(д)t ∈ E is the element that д has interacted with at time
step t and nд is the length of interaction sequence for generator д.

Sequential Prediction for Next. Based on the above notations,
the task of sequential prediction can be formally defined as follows:
given the historical interaction sequence Xд , the objective is to
learn a prediction modelM : Xд → Pд where Pд is the likelihood
distribution over all elements that generator д possibly interacts
with at time step nд + 1. The next element Ŷ can be inferred by
sorting the likelihood in descending order.

3.1 Overview
The framework of HAIL is presented in Figure 2. HAIL consists of
an shared interaction embedding layer, two base networks (peer for
each other) and a shared prediction layer. In the training stage, the
experience of learning implicitly hard interactions can be distilled
from the peer model. In prediction, either of the base networks can
be removed.

The basic idea of our work is to employ the mutual exclusivity
knowledge of peer’s correct responses to enhance the learning of
implicitly hard interactions. To this end, two base networks from
different initializations are designed to generate distinctive self-
knowledge. Then, MED is proposed to make base networks close
to each other and exchange the unlikelihood of correct responses.
Finally, each model collects the self-knowledge and the mutual
exclusivity knowledge from its peer to adjust the learning weights
for implicitly hard interactions.

In the following, we first introduce the components of the pro-
posed framework HAIL. And then, we elaborate on the hardness
aware learning and the proposed MED.

3.2 Interaction Embedding Layer
As shown in the lower-left region of Figure 2, a sequence of elements
(a.k.a. interaction) is first embedded into fixed-length vectors by
looking up a shared embedding tableU ∈ R |E |×d where |E | is the
number of elements andd is the length of vectors. Here, we train the
table from scratch without introducing any pre-training parameters.
To make use of positional information, we also employ a positional
table S ∈ RN×d to generate a fixed-length position vector where N
is the maximum length of input sequence. Formally, the output of
embedding layer can be derived by suming the element embedding
and the positional embedding ash0i = xiU +si , where xi , si andh0i
are one-hot input, position and embedding vector of the ith element,
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Figure 2: The framework of the proposed HAIL. Implicitly hard interactions are identified by the inconsistent results of two
base networks as shown in Subfigure (a). The base networks exchange mutual exclusivity knowledge in the form of unlikeli-
hood to enhance the learning of implicitly hard interactions as shown in Subfigure (b).

respectively. The embedding matrix H0 = [h01, ...,h
0
i , ...h

0
N
] will

be fed into the following components.

3.3 Base Network
As shown in the middle-left region of Figure 2, to introduce addi-
tional knowledge, two base networks initialized differently are em-
ployed to independently model interactions. We attempt to capture
multi-perspective interactions by employing dark knowledge [42],
since models learn from different starting points can derive mu-
table probability distributions. Note that the architecture of base
networks can be set flexibility according to specific applications.
Without loss of generality, we do not distinguish network M1 and
networkM2 in the following description for simplicity.

3.3.1 Multi-head Self-attention Layer. In most sequential predic-
tion tasks, interactions hide in a relatively long-time span. The
conventional RNNs are easy to meet the vanishing gradient prob-
lem [29]. Hence, we adopt the self-attention that captures interac-
tions between elements without regard to distance.

In particular, the input of the lth layer H l−1 is transformed
into R subspaces simultaneously to derive R attention heads. Then,
the heads are concatenated and transformed again to output the
representations, after a residual connection. The process can be

defined as follows:
Al
0 = Concat(head1, ...,headr , ...,headR )W

l
O +H

l−1,

headr = Attention(H l−1W l
Qr
,H l−1W l

Kr
,H l−1W l

Vr
),

(1)

whereW l
Qr
,W l

Kr
,W l

Vr
∈ Rd×d/R are three projection matrices of

the r th subspace.W l
O

∈ Rd×d is the output projection. R is the
number of heads. Al

0 is the final representation after residual con-
nection. The attention function is a scaled dot-product computation
that can be calculated as

Attention(Q,K,V ) = so f tmax(
QKT√
d/R

)V . (2)

3.3.2 Feed Forward layer. To introduce more nonlinearity, a two-
layer feed forward network is applied on each element representa-
tions as follows:

Al
1 = τ (A

l
0W

l
1 + b

l
1),

Al
2 = Al

1W
l
2 + b

l
2,

(3)

whereW l
1 ∈ Rd×dh andW l

2 ∈ Rdh×d are weight matrixes. bl1 ∈

Rdh and bl2 ∈ Rd are the biases. dh is the dimension of the interme-
diate layer. τ (·) is the activation function (GELU in our experiment).
Finally, the output of the lth encoder can be derived after a residual
connection as H l = Al

2 +A
l
0.



3.4 Prediction Layer for Next
As shown in the upper-left region of Figure 2, the final represen-
tations of masked elements are fed into a prediction layer after
iteratively computing of the latent patterns. A shared feed forward
and the shared embedding table are employed to decode them. The
likelihood distribution p(j) of the predicted next element for the
jth base network can be derived as follows:

z(j) = τ (h(j,L)WP + bP )U
T + bU ,

p(j) = Ψ(z(j)),
(4)

where h(j,L) denotes the final representation of the Lth layer and L
is the number of layers,WP ∈ Rd×d is the weight matrix, bP ∈ Rd

and bU ∈ R |E | are the biases. z(j) = [z
(j)
1 , ..., z

(j)
|E |

] is the output of
logits. Ψ(·) is the score function (softmax in our experiment).

3.5 Hardness Aware Learning
As shown in right part of Figure 2, for each base network, the
ground-truth and the likelihood distribution of the output from
its peer are vital sources of knowledge. To make use of them, self-
knowledge independent learning andmutual exclusivity knowledge
distillation are designed, respectively.

3.5.1 Self-knowledge Independent Learning. To obtain a decent
baseline and avoid model drifting arbitrarily, both base networks
are designed to learn from ground-truth independently. In this way,
they can acquire distinctive self-knowledge from different initial
learning points. By following most existing methods [8, 28, 45],
self-supervised learning is adopted in our work. In particular, for
any element sequence, we randomly mask a proportion of elements
with special tokens "[Mask]". This process can be repeated multiple
times to generate multiple masked sequences. It is worth noting that
more training sequences with final elements masked are appended
to avoid fine-tuning in prediction [28].

As the blue circle shown in the lower-right region of Figure 2,
the cross-entropy loss is adopted to converge the proposed model.
For each input sequence, the self-knowledge based loss of the jth
base model can be defined as:

L
(j)
SK = −

1
|I |

∑
i ∈I

yi ,∗loд(p
(j)
i ,∗), (5)

where I is the index set of masked elements in the input sequence.
For the ith masked element, yi = [yi ,1, ...,yi ,∗, ...,yi , |E |] is the
corresponding ground-truth label. p(j)i = [p

(j)
i ,1, ...,p

(j)
i ,∗, ...,p

(j)
i , |E |

] is
the likelihood distribution of all elements. ∗ denotes the positive
sample.

3.5.2 Mutual Exclusivity Knowledge Distillation. When training
a model, learning experiences from its peer can be introduced by
knowledge distillation. For conventional mimic learning [11, 42],
the student model preferentially obtains the experiences with high
likelihood. However, for sequential prediction tasks, the likelihood
of hard interactions is generally not on a high level. Hence, such
knowledge from mimic learning is not suitable for our tasks. To
address the problem, we employ another learning experience that
is mutual exclusivity knowledge of correct responses to enhance
the learning of implicitly hard interactions.

As the red triangle shown in the right bottom part of Figure 2, the
mutual exclusivity knowledge based loss is derived by employing
the posterior unlikelihood of correct responses from the peer net-
work. For each training sequence, the loss of the jth base network
can be defined as:

L
(j)
MEKpos

= −
1
|I |

∑
i ∈I

(1 − p
(,j)
i ,∗ )loд(p

(j)
i ,∗), (6)

where p(,j)i ,∗ denotes the likelihood of positive label from the peer

network. Note that p(,j)i ,∗ is the distillation target in conventional

mimic learning [11]. Differently, in our work, (1 −p
(,j)
i ,∗ ) represents

the mutual exclusivity knowledge that is distilled in the learning of
positive samples.

Most sequential prediction tasks require predicting the next
element from tens of thousands of candidates. It is intuitive that the
highly similar elements might present more serious interference
for the target. To this end, the mutual exclusivity knowledge is also
introduced in the learning of negative samples. The sum of their
loss is defined as:

L
(j)
MEKneд

= −
1
|I |

∑
i ∈I

|E |∑
k,∗

p
(,j)
i ,k loд(1 − p

(j)
i ,k ), (7)

where p(j)i ,k is the likelihood of the kth element in the likelihood

distribution p(j)i and p(,j)i ,k is the likelihood of the kth element from
the peer model. ∗ denotes the positive sample.

3.5.3 Denoising. The interference of noisy interactions which do
not reflect true preference [36], is an inevitable problem when
enhancing the learning of implicitly hard interactions. It is harmful
to make model fit them, which may hurt the generalization [3, 13].
Some works point out that the number of noisy interactions is less
and their losses are larger [17, 36]. As such, the shared interactions
with large losses in the self-knowledge independent learning are
truncated in the failure experience mutual learning. Formally, for
each positive or negative sample, the truncated hard interaction
loss is defined as follows:

L̄
(j)
MEK{pos ,neд}

=

{
0, rank(L

(∀j)
SK ) < β · SL

L
(j)
MEK{pos ,neд}

, otherwise,
(8)

where β is the proportion of truncated noisy interactions and SL is
the size of interactions. rank(·) denotes the rank of the loss in all
interactions in descending order. In Equation (8), the noisy interac-
tions are also identified by jointly conditioning on the losses from
both networks.

3.5.4 Loss Balance. To balance the knowledge between the ground-
truth and the peer model, a balance factor α is introduced to derive
the total loss of the jth base model as follows:

L
(j)
total = αL

(j)
SK + (1 − α)(L̄

(j)
MEKpos

+ L̄
(j)
MEKneд

). (9)

Eventually, the final loss function that is adopted to converge the
proposed model is defined as follows:

Ltotal = L1
total + L2

total . (10)



3.6 Extension to More Peers
Notwithstanding the promising exclusivity knowledge transfer be-
tween two base networks, the proposed MED can be naturally
extended to more peers with different parameters or structures.
More base networks are expected to introduce such knowledge
from diverse perspectives to conduct learning of implicitly hard
interactions. And in the follow-up deployment, the redundant net-
works can be removed for reducing the computation.

Given T (T ≥ 2) base networks, the mutual exclusivity knowl-
edge distillation can be extended as Equations (11) and (12). For
each network, it can obtain T − 1 hints that are introduced from
the other peers. Such that, Equations (6) and (7) can be regarded
as a special situation with T = 2. Here, a rescaling factor 1

T−1 is
introduced to ensure a balanced value of loss.

L̃
(j)
MEKpos

= −
1

T − 1

T∑
c,j

(1 − p
(c)
∗ )loд(p

(j)
∗ ). (11)

L̃
(j)
MEKneд

= −
1

T − 1

T∑
c,j

|E |∑
k,∗

p
(c)
k loд(1 − p

(j)
k ). (12)

4 DISCUSSION
The key contribution of our work is to enhance the learning of
implicitly hard interactions by employing training experience. To
obtain more insight about it, we explore how MED works. Without
loss of generality, the discussion focuses on the modelM1. We aim
to answer the following questions:
Question 1: Why does MED work? What does mutual exclusivity
knowledge distillation bring?

During the exchange of training experience, the parameters are
usually updated along the direction of negative gradient. Without
loss of generality, for each positive sample in the base model M1,
the gradient of cross-entroy [23] in Equation (6) with respect to
base model’s logits z(1)∗ in Equation (4) can be derived as:

∂L
(1)
MEKpos

∂z
(1)
∗

=
∂L

(1)
MEKpos

∂p
(1)
∗

∂p
(1)
∗

∂z
(1)
∗

= −
1 − p

(2)
∗

p
(1)
∗

· p
(1)
∗ (1 − p

(1)
∗ )
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where y∗ = 1 is the label of positive samples. p(1)∗ and p(2)∗ are the
likelihood of the next element.

As shown in Equation (13), the final gradient is rewritten as
term 1○. In this form, (1−p(2)∗ ) can be interpreted as an importance
weight of the original ground-truth label y∗. When base model
M2 makes a serious mistake (i.e., p(2)∗ ≈ 0), Equation (13) is ap-
proximate to the gradient generated by the self-knowledge based
loss in Equation (5). In this situation, base model M2 gives base
model M1 a hint that the current interaction is hard to learn. And,
base modelM1 will enhance the learning of the interaction with
a gradient affected by another perspective. While base modelM2
with a higher likelihood, the gradient of the interaction will be
rescaled and generate less contribution. Along this line, MED can
take similar effect on negative samples.

Compared with self-knowledge independent learning, mutual
exclusivity knowledge distillation contains an additional term 2○
in Equation (13). The gradient of implicitly hard interaction is de-
rived by jointly conditioning on the likelihood from distinctive
initializations. More views of data are introduced to enhance the
learning of implicitly hard interactions. As shown in the upper-
right region of Figure 2, the combination of prediction results and
ground-truth can be divided into different levels. In particular, if
base models generate inconsistent results, a trade-off gradient can
be derived. Therefore, mutual exclusivity knowledge distillation
conduct a hierarchical learning of different interactions.
Question 2: What is the difference between conventional mimic
learning (learn from p

(2)
∗ ) and MED (learn from 1 − p

(2)
∗ )?

It is straightforward that the proposed MED can dynamically
rescale the importance weights of interactions by their wrong re-
sponses, which aims to distinguish the next target from substantial
candidates. The conventional mimic learning carries information
from teacher to students, which emphasises similar knowledge
among similar elements. In this case, the weight (1 − p

(2)
∗ ) in Equa-

tion (13) is replaced by p(2)∗ , which means the model prefers to easy
interactions. Therefore, for substantial elements in sequential pre-
diction, MED can effectively reduce the interference, which is more
suitable in our scenario.

5 EXPERIMENTS
In this section, experiments are conducted on different datasets
to validate the effectiveness of our HAIL. In particular, we aim to
answer the following research questions:
• RQ1: How does our HAIL perform compared with the state-of-
the-art sequential prediction methods?

• RQ2: How is the performance of HAIL variants with different
combinations of terms in loss function (Equation (9))?

• RQ3:What is the effect of the truncation proportion β in denois-
ing (Equation (8)) and the balance factor α in loss function (Equa-
tion (9))?

5.1 Experimental Setup
5.1.1 Dataset. Experiments are conducted on two benchmark rec-
ommendation datasets from cyber space and two crime datasets
from physical space. These datasets that are involved by humans
contain more implicitly hard interactions. As shown in Table 1, the
size of different datasets varies with the domains.
• ML-1m1: This is a movie ratings dataset created in February,
2003. As one of the stable benchmark datasets, most recommen-
dation algorithms are evaluated on it.

• Toys: Toys is a subcategory in Amazon review dataset. We ob-
tained this dataset from [45].

• CHI-182: This is a public crime dataset updated by Chicago
Police Department in 2018. To achieve a more fine-grained pre-
diction, an event is described by a simple event model (SEM)
[33]. In particular, SEM can model basic events in various do-
mains without domain-specific vocabularies. In this work, the
fields about geographical information are extracted to describe

1https://grouplens.org/datasets/movielens/1m/
2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2



Table 1: Statistics of experimented datasets

Dataset Generator # Elements # Sequence Length
Max. Min. Avg. Std.

ML-1m 6,040 3,416 2,275 16 163.50 192.53
Toys 19,412 11,924 548 3 6.63 8.50

CHI-18 2,692 246 3,525 3 96.18 253.36
NYC-16 3,229 440 4,496 3 144.76 429.78

generators. Then, time slots are divided every 3 hours, which is
smaller than the meaningful interval 6 hours [24]. The time slot
and crime type are together used to describe elements.

• NYC-163: This is a crime dataset provided by New York City
Police Department in 2016. Similar to Chicago, the precincts and
premises are used to describe generators. The time slots and
classification codes are leveraged to describe elements.
For all datasets, the elements are grouped by generators and

sorted in chronological order for each generator. The inactive gen-
erators with fewer than five elements are removed to ensure the
quality of prediction. Moreover, the last element in each sequence is
taken as the test data and the element before the last element as the
validation set. The remaining elements are used for training. The
maximum length of sequence is set as 200. To ensure the sequence
within the maximum length, longer sequences will be sliced into
multiple sub-sequences from right to left.

5.1.2 Metrics. Following the common assessment means [35, 45],
the performance of prediction can be assessed by top-k Hit Ratio
(HR@k), top-kNormalizedDiscounted Cumulative Gain (NDCG@k),
and Mean Reciprocal Rank (MRR). In this paper, the cutoff k is set as
{1,5,10}. Note that HR@1 is equal to NDCG@1 that is a harsh metric
for performance evaluation. To achieve an efficient computation in
a large candidate set, 99 negative elements are randomly selected to
rank with the target element. For all metrics, the higher the value,
the better the performance.

5.1.3 Settings. We implemented the proposedHAIL in Pythonwith
TensorFlow and conducted experiments on a commodity machine
equipped with a 12GB TITAN Xp GPU. We train the model by using
Adam with NOAM decay [34]. The batch size is set as 256. In base
network, we set the layer number L as 2, the head number R as 2,
the hidden size d as 64, the intermediate size as 256. For learning
hyper-parameters, β is tuned in {0,0.01,0.02,0.03}, α is searched in
{0.1,0.2,...,0.8,0.9}. The source code is available at GitHub4.

5.2 Baselines
To validate the effectiveness and generalization of our HAIL, we
conduct a comparison with eight baselines from different domains.
They are elaborated as follows:
• POP: A non-sequential baseline that simply regards the fre-
quency of interactions as the probability of the next element.

Recommendation Methods:
• BERT4Rec[28]: BERT4Rec is a session-based method adapted
from the language model BERT [8]. It employs bidirection infor-
mation to model interactions which are not in a rigid order.

3https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-Year-
To-Date-/5uac-w243
4https://github.com/hukx-issac/HAIL

• R-CE[36]: An adaptive denoising training strategy (ADT) is ap-
plied for BERT4Rec to reduce the effect of hard interactions.

• S3-Rec[45]: It utilizes mutual information maximization to cap-
ture intrinsic data correlation for sequential recommendation.
For fair comparison, the extra attributes of items are removed,
and the MIP and SP objectives are employed.

• HyperRec[35]: It adopts hypergraph to model dynamic interac-
tions between users and items in recommendation.

Event Prediction Methods:
• DuroNet-s[12]: It is a robust crime count prediction model that
reduces the point-wise and the sequence-wise effect of noises.
To adapt to our task, the spatial module is removed.

General Sequential Prediction Methods:
• Convolutional Self-attention (CSa)[20]: It reduces the sensi-
tivity to anomalies in series by utilizing causal convolution.

• Informer[44]: An efficient transformer-based model to capture
dependence in extreme long sequences.
For BERT4Rec5, S3-Rec6, HyperRec7, DuroNet-s8, and Informer9,

we use the code released by the authors. For CSa, we reproduce it
in Pytorch. To make some regression methods adapt to our tasks,
we add a shared embedding layer before and after the original
model and adopt cross-entropy to train them. We adjust the hidden
dimension size from {32,64,128}. The other hyper-parameters are
set as reported in the papers. Their results are reported under the
optimal settings.

5.3 Overall Performance Comparison (RQ1)
The comparison results with all baselines are shown in Table 2.
On the right side, we count the differences of accuracy between
the base models M1 and M2, and the improvements of the best
results relative to the suboptimal results. Several observations are
summarized as follows:

For non-recommendation methods, the recommendation meth-
ods outperform them in most metrics. It is possibly caused by two
reasons: 1) the non-recommendation methods generally assume a
rigidly ordered sequence and design a relatively coarse-grain re-
gression task to predict the next counts; 2) most recommendation
methods conduct a cloze task [8] to pretrain their models, which
generates more samples to train the models. Both DuroNet-s and
CSa employ a convolution operator to reduce the effect of noises,
which smooths the representations of related elements and reduces
the differences. Hence, their values of HR@1 are significantly lower
than other metrics. Informer is a specific method for extreme long
sequences. However, it seems not suitable for recommendation
scenario since it yields an inconsistent performance than POP in
the recommendation datasets which lengths are short.

Among recommendation methods, BERT4Rec achieves compa-
rable performance with S3-Rec and HyperRec. It indicates that
BERT4Rec makes use of interaction information without model-
ing generator. However, they do not outperform HAIL since they
learn implicitly hard interactions under self-knowledge. When fur-
ther changing the learning strategy of BERT4Rec with R-CE, the

5https://github.com/FeiSun/BERT4Rec
6https://github.com/RUCAIBox/CIKM2020-S3Rec
7https://github.com/wangjlgz/HyperRec
8https://github.com/hukx-issac/DuroNet-for-crime-prediction
9https://github.com/zhouhaoyi/Informer2020



Table 2: Accuracy comparison with baselines on four datasets. The optimal results are denoted in bold while the suboptimal
results are underlined. "∗" indicates significant improvement.

Dataset Metric Recommendation Non-recommendation HAIL(ours) Diff. Improv.
POP BERT4Rec R-CE S3-Rec HyperRec DuroNet-s CSa Informer M1 M2 M1-M2

ML-1m

HR@1 0.0407 0.3695 0.3988 0.2897 0.3180 0.1321 0.1778 0.0265 0.4291∗ 0.4252 +0.0039 7.60%
HR@5 0.1603 0.6851 0.6478 0.6575 0.6631 0.3849 0.4629 0.1154 0.7202 0.7214∗ -0.0012 5.30%
HR@10 0.2775 0.7823 0.7404 0.7911 0.7738 0.5412 0.6108 0.2023 0.8098 0.8146∗ -0.0048 2.97%
NDCG@5 0.1008 0.5375 0.5327 0.4557 0.5014 0.2616 0.3243 0.0707 0.5862∗ 0.5843 +0.0019 9.16%
NDCG@10 0.1383 0.5690 0.5627 0.5266 0.5375 0.3121 0.3723 0.0986 0.6155∗ 0.6134 +0.0021 8.17%
MRR 0.1233 0.5108 0.5179 0.4535 0.4731 0.2615 0.3154 0.0922 0.5622 0.5791∗ -0.0169 13.37%

Toys

HR@1 0.0260 0.1390 0.1130 0.0990 0.1147 0.0465 0.0534 0.0144 0.1783∗ 0.1780 +0.0003 28.27%
HR@5 0.1046 0.3379 0.3189 0.3023 0.2875 0.1608 0.1754 0.0682 0.3751 0.3755∗ -0.0004 11.13%
HR@10 0.1848 0.4596 0.4529 0.4393 0.3909 0.2572 0.2723 0.1286 0.4796∗ 0.4796∗ +0.0000 4.35%
NDCG@5 0.0652 0.2409 0.2179 0.2021 0.2031 0.1040 0.1148 0.0407 0.2802∗ 0.2802∗ +0.0000 16.31%
NDCG@10 0.0909 0.2802 0.2611 0.2463 0.2365 0.1350 0.1459 0.0600 0.3138∗ 0.3136 +0.0002 11.99%
MRR 0.0861 0.2444 0.2233 0.2081 0.2087 0.1211 0.1301 0.0628 0.2812∗ 0.2810 +0.0002 15.06%

CHI-18

HR@1 0.0249 0.4421 0.4114 0.3978 0.1679 0.1386 0.1378 0.3507 0.4744∗ 0.4703 +0.0041 7.31%
HR@5 0.1668 0.6861 0.6349 0.6664 0.3956 0.4577 0.4499 0.5914 0.7117∗ 0.7099 +0.0018 3.73%
HR@10 0.3250 0.8024 0.7708 0.7942 0.6088 0.6356 0.6333 0.7166 0.8243∗ 0.8228 +0.0015 2.73%
NDCG@5 0.0926 0.5691 0.5253 0.5383 0.2834 0.3039 0.2981 0.4744 0.5985∗ 0.5956 +0.0029 5.17%
NDCG@10 0.1440 0.6068 0.5692 0.5799 0.3525 0.3613 0.3569 0.5148 0.6347∗ 0.6321 +0.0026 4.60%
MRR 0.1190 0.5567 0.5197 0.5243 0.2957 0.2961 0.2917 0.4650 0.5853∗ 0.5823 +0.0030 5.14%

NYC-16

HR@1 0.0660 0.4339 0.4472 0.3874 0.3137 0.1871 0.1975 0.3685 0.4772∗ 0.4754 +0.0018 6.71%
HR@5 0.1994 0.6931 0.6261 0.6909 0.6358 0.5401 0.5509 0.6178 0.7166 0.7182∗ -0.0016 3.62%
HR@10 0.3537 0.8250 0.7088 0.8287 0.7690 0.7114 0.7275 0.7461 0.8433 0.8458∗ -0.0025 2.06%
NDCG@5 0.1332 0.5668 0.5396 0.5446 0.4816 0.3688 0.3795 0.4968 0.6014 0.6019∗ -0.0005 6.19%
NDCG@10 0.1824 0.6095 0.5665 0.5893 0.5247 0.4244 0.4363 0.5383 0.6427 0.6435∗ -0.0008 5.58%
MRR 0.1616 0.5527 0.5322 0.5245 0.4611 0.3511 0.3608 0.4862 0.5893∗ 0.5893∗ +0.0000 6.62%
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Figure 3: Ablation Study of HAIL in terms of HR@1. The higher histograms, the better the performance.

performance does not present significant improvement. It demon-
strates that enhancing the learning of implicitly hard interaction is
effective to enrich model patterns.

Finally, by comparing all the baselines, we can find that HAIL
consistently achieves significant improvements. In terms of differ-
ence, the performance of modelM1 is highly closed to that of model
M2, indicating that exchanging mutual exclusivity knowledge can
effectively reduce the gap between two models and improve gener-
alization performance. For the dominant performance on datasets
from different domains, HAIL is proved to be generalized to a much
broader cyber or physical scenarios.

5.4 Ablation Study (RQ2)
To investigate the effectiveness of components in mutual exclusivity
knowledge distillation, we remove the positive sample term (vari-
ant I), the negative sample term (variant II), both of them (variant
III) in the Equation (9) and the denoising strategy (variant IV) in
the Equation (8), respectively. Note that the shared embedding and

prediction layers are still kept. And then, we compare their per-
formance with the original HAIL in terms of HR@1, since it is a
harsh metric for performance evaluation. The results are reported
in Figure 3. We have the following findings:

• Finding 1: Mutual exclusivity knowledge distillation effectively
improves the performance. Compared with variant III, the per-
formance of original model improves relatively 2.48%, 11.51%,
1.76% and 2.67% on four datasets, respectively. It demonstrates
that enhancing the learning of implicitly hard interaction can
improve the generalization performance of models.

• Finding 2: The contribution of positive sample term is robust.When
removing the positive sample term, the performance of variant I
drops obviously. For example, compared with the original model,
the performance of variant I decreases relatively 2.43%, 9.52%,
2.47% and 2.51% on four datasets. Meanwhile, the negative sam-
ple term shows a little fluctuation, particularly for CHI18 dataset
(the red dash line). The observation demonstrates that distilling
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Figure 4: The analysis of parameter sensitivity (HR@1).

mutual exclusivity knowledge in positive samples is more effi-
cient. The negative sample term might be affected by the size of
elements, which denotes less candidates in prediction.

• Finding 3: The denoising strategy proves to be helpful. Except for
the benchmark ML-1m dataset, denoising is imposed on the other
datasets at different degrees. Compared with the original model,
using denoising strategy improves the performance by 7.16%,
1.50% and 1.87% on the three datasets. This is because denoising
can effectively avoid the interference of noisy interactions.

5.5 Parameter Sensitivity (RQ3)
To investigate the effect of different parameters, we tune the value
of truncation proportion β from 0 to 0.03 with a step 0.01 and the
value of balance factor α from 0 to 1 with a step 0.1.

As shown in the first row of Figure 4, the bigger truncation
proportion β , the greater strength of denoising. It can be observed
that the performance of model directly falls or first rises and then
falls with the growth of the value β . This is because the fitting of
noisy interactions might mislead models. And, the performance can
be improved if noises are removed. However, if limiting the noises
too much, the meaningful hard interactions might be damaged and
the performance decreases.

As shown in the second row of Figure 4, the bigger balance
factor α , the smaller proportion of failure experience based loss. The
red dash line indicates a meaningful region with a shape like "W".
It implies that HAIL performs better when the ratio of two types of
knowledge based learning is balanced or either of them achieves
a dominated ratio. In fact, with the increase of failure experience
based on loss (α varies from 1 to 0), the learning will step into three
independent stages. To further explain this observation, the curve
can be divided into three regions.
• For the first stage in the right region, the proportion of self-
knowledge based loss is dominated. Here, mutual exclusivity
knowledge is similar to regularization, since some extra informa-
tion about parameter learning can be introduced to lightly adjust
the risk of overfitting.

Table 3: The comparison between conventional knowledge
distillation (CKD) and the proposed MED.

Dataset Mutual mimic learning [42] MED

HR@1 NDCG@5 MRR HR@1 NDCG@5 MRR

ML-1m 0.3952 0.5656 0.5386 0.4291 0.5862 0.5622
Toys 0.1693 0.2761 0.2767 0.1783 0.2802 0.2812

CHI-18 0.4699 0.5932 0.5815 0.4744 0.5985 0.5853
NYC-16 0.4660 0.5956 0.5806 0.4772 0.6014 0.5893

• For the center red region, both losses get into a balance period. In
this stage, the base models can obtain a decent baseline from the
self-knowledge and enhance the learning of implicitly hard inter-
actions by employing mutual exclusivity knowledge. However,
the performance decreases after the balance is broken.

• As shown in the left region, the models mainly learn frommutual
exclusivity knowledge. This stage is similar with the first stage
where self-knowledge based loss is like a regularization. However,
if its weight is set to 0, both the models might mislead each other.

5.6 Evaluation w.r.t. Mutual Distillation
To investigate the difference between mutual mimic learning [42]
and MED, two types of knowledge (i.e., likelihood distribution)
mentioned in §3.5.2 are transferred between two base models, re-
spectively. The results from either of base models are randomly
selected as the final output. As shown in Table 3, the proposed MED
is better than mutual mimic learning. It is because mutual mimic
learning makes models prone to the learning of easy interactions
while hard interactions might be taken for noises. However, se-
quential prediction is a challenging task with complex interaction
patterns and substantial candidates. The proposed MED can effec-
tively enhance the learning of implicitly hard interactions, which
is more suitable for our task.

It is fair to discuss the increase of parameters and runtime. As
shown in the left part of Figure 2, this work tries to reduce pa-
rameters by introducing more shared layers. Parameters are only
doubled in the base networks. In terms of the benchmark ML-1m
dataset, the training time of mutual distillation is about 17 seconds
for each batch while the individual model is about 9 seconds.

6 CONCLUSION AND FUTUREWORK
In this paper, we highlight the effect of implicitly hard interactions.
To this end, a hardness aware interaction learning framework called
HAIL is proposed to enhance the learning of them. In particular,
based on the proposed MED, implicitly hard interactions are iden-
tified from different perspectives. And, both base models derive
training experience from each other to adjust themselves learning
strategy. Extensive experiments are conducted on four datasets
covering cyber and physical spaces. The results show that HAIL
outperforms several state-of -the-art methods. For future work,
we are interested in extending the framework to more complex
sequential prediction tasks, such as multi-modal prediction, and
sequence-to-sequence prediction.
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